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Abstract

Event reconstruction is a technique that examiners can use to attempt to infer past activities by analyzing digital artifacts. Despite
its significance, the field suffers from fragmented research, with studies often focusing narrowly on aspects like timeline creation or
tampering detection. This paper addresses the lack of a unified perspective by proposing a comprehensive framework for timeline-
based event reconstruction, adapted from traditional forensic science models. We begin by harmonizing existing terminology
and presenting a cohesive diagram that clarifies the relationships between key elements of the reconstruction process. Through a
comprehensive literature survey, we classify and organize the main challenges, extending the discussion beyond common issues
like data volume. Lastly, we highlight recent advancements and propose directions for future research, including specific research
gaps. By providing a structured approach, key findings, and a clearer understanding of the underlying challenges, this work aims
to strengthen the foundation of digital forensics.
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1. Introduction

Event reconstruction involves recreating past events by an-
alyzing digital artifacts, allowing examiners to determine sys-
tem activities and make informed conclusions about what oc-
curred. While traditional forensic science benefits from a well-
defined framework summarizing the field (Ribaux, 2023), event
reconstruction in digital forensics is often discussed in frag-
mented terms focusing on tasks such as super timeline cre-
ation (Guðjónsson, 2010; Metz et al., 2024), tampering detec-
tion (Palmbach & Breitinger, 2020; Studiawan & Sohel, 2021)
or environmental peculiarities (Schatz et al., 2006). As a re-
sult, research has centered on these narrow aspects, leaving
broader challenges underexplored or overlooked. The absence
of a unified perspective has led to a proliferation of terms, mak-
ing it difficult to discuss event reconstruction comprehensively
or find relevant research, e.g., some studies use the term ar-
tifact (Harichandran et al., 2016), others refer to observable
facets (Jaquet-Chiffelle & Casey, 2021). Terms such as events
(Carrier & Spafford, 2004a), user actions, interactions, or clicks
(Neasbitt et al., 2014) are inconsistently used in literature.

The three contributions: First, the article discusses concepts
and definitions in timeline-based event reconstruction and inte-
grates them into a new visual model (the timeline-based event
reconstruction model or TER-Model), divided into four quad-
rants, integrating digital forensic timeline-based terminology
and Ribaux (2014) model. Second, with this delineation, we
provide a thorough discussion of the issues associated with
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timeline-based event reconstruction. These issues can be used
to evaluate event reconstructions and identify areas of uncer-
tainty in the results. They can also be used to systematically
identify weaknesses in the timeline generation and analysis
techniques and contribute to a knowledge base of such weak-
nesses such as SOLVE-IT (Hargreaves et al., 2025). Third,
we provide future research directions needed within each quad-
rant of the event reconstruction process. This paper is predom-
inantly theoretical, aiming to harmonize timeline-based event
reconstruction terminology, however, a practical illustration of
the use of the model is available online1.

Not in scope: The identification of relevant devices (com-
puter profiling, Marrington et al. (2007)), legal constraints or
ethical issues (Losavio et al., 2015), technical challenges such
as encryption, sophistication of crime (Karie & Venter, 2015),
or very general challenges, e.g., that “results must be repro-
ducible and verifiable” (Soltani & Seno, 2019).

Outline: The next section summarizes core works in event
reconstruction which served as a foundation for this work. Sub-
sequently, Sec. 3 presents terms and technology in existing lit-
erature and outlines the terminology used in this article. A
contribution of this work is the TER-model which is developed
and described in Sec. 4. Using the model, we identified chal-
lenges according to the methodology in Sec. 5 and organized
the challenges for event reconstruction in the two main sections:
Challenges stemming from environmental and process-related
factors and Challenges stemming from deliberate interference,
which are summarized as key findings in Sec. 8. Consider-
ing these, Sec. 9 provides a discussion and identifies specific
research gaps. The final section concludes the paper.

1https://github.com/chrishargreaves/TER-model-example
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2. Event reconstruction

Lee et al. (2001) and many others have discussed event re-
construction for physical crime scenes. Carrier & Spafford
(2004a,b) were the first to define it as applied in digital forensics
and presented an event-based investigation framework. Their
work defines the basic terminology and introduces a formal pro-
cess model that mirrors physical crime scene investigations but
is tailored to the unique aspects of digital evidence. We borrow
from this work as discussed in Sec. 3.1.

Casey (2011)’s work includes the practicalities of linking ev-
idence to behaviors and motives. Casey emphasizes three core
analysis types: (1) temporal which helps establish the time-
line of events (the focus of this article), (2) relational which
explores the connections between objects, people, and loca-
tions, clarifying how different elements of the crime are related,
and (3) functional which assesses what was possible or impos-
sible, such as determining how a system or tool was used in
the crime. Chabot et al. (2015a) defines terminology based on
existing works, outlines challenges, and evaluates existing ap-
proaches. However, the authors limit their challenges to the
volume of data and data heterogeneity where this article pro-
vides a broader discussion. Our work complements these ex-
isting works by providing a new visual model and a thorough
discussion of challenges and future research.

3. Terminology

According to Neale (2023), there is a lack of harmonization
in terms and definitions. This section briefly revisits (Sec. 3.1)
and then highlights the terminology we use for this article
(Sec. 3.2).

3.1. Terms and terminology in existing literature

Carrier & Spafford (2004a) define an event “as an occurrence
that changes the state of one or more objects”. Over time, re-
searchers suggested to differentiate between low-level and high-
level events (human-understandable) (Hargreaves & Patterson,
2012; Vanini et al., 2024b) or introduced terms such as ‘activ-
ity’ (Marrington et al., 2007) or ‘user-browser interaction’ and
‘click’ which are used interchangeably by Neasbitt et al. (2014).
Chabot et al. (2014) defines an event as “a single action occur-
ring at a given time and lasting a certain duration”.

Jaquet-Chiffelle & Casey (2021) define an event as “a com-
plete collection of related things that have happened (or are hap-
pening) in a World within a specific closed interval of time. [...]
The Event can be considered as a whole entity or as a collection
of smaller sub-events”. Notably, their framework emphasizes
the role of traces and introduces several key concepts, includ-
ing trace, facet, and observable facet. While these terms are
well-established in forensic science (Ribaux, 2023), they are
less common in digital forensics. Therefore, we adopt a differ-
ent terminology, while drawing conceptual links to their work.

Similarly, the term artifact is used with different meanings.
For instance, Harichandran et al. (2016) compares various defi-
nitions and concludes properties an artifact should have such as
“artificiality/external force, antecedent temporal relation, and
exceptionality”. Horsman (2019) suggests “a digital object con-
taining data which may describe the past, present or future use

or function of a piece of software, application or device for
which it is attributable to”. Casey et al. (2022) differentiates
between atomic artifacts (“a singular unit of interpretable data
that can be extracted from a given data source”) and depend-
able artifacts (“one or more atomic artifacts needed to expose
the atomic artifact of interest”). Lyle et al. (2022) extends the
atomic artifact definition by adding “...that is useful for address-
ing questions in forensic investigations”, but assessing useful-
ness is difficult, subjective and may change over time.

3.2. Terminology used in this article

Environments/systems. An environment/system is a computa-
tional setting or a software/hardware system that reacts to
events such as user actions, API calls, or sensor inputs. Typ-
ically, it is one or more devices such as computers or smart-
phones but it could also be a virtual machine, network device, or
cloud environment. For readability, the remainder of this paper
uses the term environments instead of environments/systems.
Note we use the plural, i.e., environments, considering that
changes may be in one or more environments, locally, remotely,
or both.

Artifact. This article uses Casey et al. (2022) atomic artifact
definition: a singular unit of interpretable data that can be ex-
tracted from a given data source. For simplicity, we will only
say artifact throughout the paper. Examples include log files,
registry keys, timestamps, or network traffic data.

Event. Based on Jaquet-Chiffelle & Casey (2021), an event is
“a complete collection of related things that have happened (or
are happening) in a World within a specific closed interval of
time.” These can be treated as a singular entity or decomposed
into smaller sub-events and cause environmental changes. This
broad definition provides the flexibility for an event to be at
the resolution of: ‘file was accessed’, or ‘Google search was
performed’, or ‘user account was used to run a program’ (con-
sisting of at least two events: user logged in and user executed
binary). Events can be triggered internally, e.g., a cron job, or
externally, e.g., someone clicking the mouse. Note that the dis-
tinction between event and sub-event is blurred and it is up to
the user to define the granularity. For instance,

• an event is sending an email with sub-events such as open-
ing the email client, typing, establishing a connection to
the SMTP server, and sending the message, or
• an event is establishing a connection to the SMTP server

with sub-events such as performing a DNS lookup, initiat-
ing a handshake, and authenticating the user credentials.

4. Model for event reconstruction

This work draws inspiration from Vanini et al. (2023), which,
in turn, is influenced by the work of Ribaux (2023, p226,
Fig. 4.4)2. We adjusted these models to align with standard dig-
ital forensics terminology and emphasize timeline-based event
reconstruction. Our model, named TER-Model (timeline-based

2Note, this is an updated version from the previous work by Ribaux (2014)
and thus has over a decade of history.
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event reconstruction), is depicted in Fig. 1 and can be sepa-
rated into a reality space (Sec. 4.2) and a reconstruction space
(Sec. 4.3). Each of these spaces can be further separated result-
ing in four quadrants (Q1-Q4). Before describing the model,
this section first summarizes the goals of temporal event re-
construction which influenced the TER-Model. The summary
of systematization of knowledge (SoK) in the TER-Model is
shown in Table 1.

4.1. Goals of temporal event reconstruction

Temporal event reconstruction aims to accurately recreate the
sequence of events that occurred which includes finding gaps
and inconsistencies, even if they cannot be accurately filled or
corrected. Thus, it enables investigators to draw meaningful
conclusions about what transpired.

Event reconstruction involves several interrelated analytical
processes that together provide a coherent and defensible narra-
tive of what transpired. At its core is temporal sequencing and
correlation, where a precise order of events is created. It may
be necessary to analyze their relationships across different time-
lines to uncover causal links, sequence dependencies, or con-
current activities (Adderley & Peterson, 2020). Beyond sim-
ple chronology, contextual analysis places these events within a
broader framework, considering factors such as user behavior,
system settings, or external influences to give the data deeper
interpretive meaning (Chabot et al., 2015a). This groundwork
supports hypothesis testing and scenario building, where inves-
tigators construct and refine possible explanations for what oc-
curred, evaluating multiple narratives and ruling out those that
conflict with the evidence (Willassen, 2008a,b; Batten et al.,
2012). It is crucial that the reconstructed timelines are con-
firmed through correlation and verification of evidence to en-
sure consistency and reliability. The goal is to produce a report
to support legal proceedings that not only stands up to technical
scrutiny, but also serves court proceedings by providing a clear,
accurate and accessible story for stakeholders such as lawyers
or jurors (Chabot et al., 2014; Xu & Xu, 2022).

4.2. Reality and its two dimensions (Q1, Q2)

Q1: Timeframe of interest T . This quadrant is an interval that
has a start time tS and an end time tE , i.e., T = [tS , tE] during
which the event (E) and sub-events (e1, e2, ...em) occurred. Each
E or e causes multiple environmental changes, e.g., new log
entries, modified registry values, files marked as non-allocated,
or updated timestamps.

The event (E) is what we wish to be able to say something
about through the event reconstruction process. Carrier (2006)
describes that an event can be any “an occurrence that changes
the state of the system” and Hargreaves (2009) continues that
“digital events occur on a system often as a result of interac-
tions with another digital device, or as a result of interactions
with the real world”. However, in Jaquet-Chiffelle & Casey
(2021) event is formalized such that these external triggers are
integrated into the event itself, defining an event that can cap-
ture the very broad, or the very detailed. In addition, there are
concurrent events such as antivirus scanning files resulting in
changes not tied to the primary event.

Q2: Post-Event Period (∆). During this interval ∆, the envi-
ronment changes caused by E may become intermingled with,
altered, or overwritten by an ensemble of other data gener-
ated by unrelated subsequent events. Jaquet-Chiffelle & Casey
(2021) categorized these changes as adjunction, suppression,
and change. This second interval ends at time tP when the data
is preserved/extracted, i.e., ∆ = (tE , tP]. As tE belongs to T , we
exclude it here from this interval using a half-open interval. It
is important to note that not all environment changes can be ex-
tracted, such as missing/deleted files or new artifacts without a
parser. These gaps may stem from many causes, for example a
lack of knowledge in digital forensics, a tool setup, or errors in
the timeline generation process. Hence, what can be extracted
is named extractable artifact, which is therefore context spe-
cific.

Timeline Generation. Combined with preservation and acqui-
sition, timeline generation bridges the Reality and Reconstruc-
tion spaces. Hargreaves et al. (2024b) define it as a process
within a forensic analysis tool for “extracting timestamps from
the file system...[and] applying file specific processing and ex-
tracting timestamps from within files such as the Windows Reg-
istry, log files, SQLite databases etc., that contain timestamps”.
This artifact and timestamp extraction is complemented by nor-
malization, which is required since timestamps exist in a variety
of formats (e.g., ASCII in a log vs. little-endian hexadecimal in
a proprietary format), and resolutions (i.e., hours, minutes, sec-
onds, nanoseconds, etc.) depending on their source (Raghavan
& Saran, 2013). They may also be stored in UTC or local time.
Ideally, after normalization, all timestamps should be presented
in the same format for better readability and sortability.

4.3. Perception
The lower section of the diagram represents how examiners

attempt to reconstruct past events using reasoning and available
evidence. This process involves uncertainty, as the past cannot
be revisited, making absolute certainty unattainable.

Q3: Timeline. Examiners construct a timeline to facilitate anal-
ysis, and the DFPulse 2024 Practitioner Survey (Hargreaves
et al., 2024a) reports 80.3% are using timelines ‘often’ or ‘al-
most always’. Timelines are composed of a series of entries,
each derived from individual artifacts that are arranged chrono-
logically. Artifacts may originate from multiple independent
data sources, e.g., a computer and a smartwatch. While specific
implementations store multiple data points per event, funda-
mentally these timeline entries are defined as a 3-tuple (t, S ,C):

• The normalized timestamps (t) are used to order the time-
line chronologically.
• A source S refers to the specific location from which

the timestamp and context originate, such as the Master
File Table (MFT), Windows registry, EPROCESS block
in memory, or Chrome browser history file. For clarity,
S should be as detailed as possible; instead of stating the
registry, the exact registry key path should be specified.
• A context C defines what the timestamp represents, such as

the modification timestamp within the Standard Informa-
tion Attribute (SIA) of MFT entry, or a value in a specific
row or field within a database. Given the wide variety of
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Figure 1: TER-Model: Model of timeline-based event reconstruction in digital crime scenes. The small squares (3x4) in the upper part of the diagram represent
changes by the primary event (gray box) and additional changes from subsequent events (white-gray stripes).

contexts, a generic term is used to encompass the diverse
nature of these representations.

These timeline entries should not be conflated with events
themselves or ‘low-level events’ (Hargreaves & Patterson,
2012). The context provided by each entry, such as a value
in a ‘modified’ or ‘last change’ field within a file system struc-
ture, does not inherently represent a specific event, such as a
file modification. Instead, it reflects environmental behavior
that must be understood before making any assumptions about
what event occurred. This distinction is critical: while timeline
entries provide the raw data needed for event reconstruction,
they are not events in and of themselves. Rather, they are nor-
malized, sorted compilations of data that result from parsing
artifacts left by events. Therefore, we argue that the term event
should be reserved for the inferred actions, while the term time-
line entry more accurately describes the data points that exam-
iners use to reach those inferences.

Timeline Analysis. Timeline analysis bridges Q3 and Q4, and
describes the process of moving from having a timeline to re-
constructing events, which uses refinement techniques such as:
filtering irrelevant entries, highlighting key entries, or aggregat-
ing entries into more meaningful events (Hargreaves & Patter-
son, 2012). Several other concepts have been discussed such as
event abstraction (Studiawan et al., 2020a; Studiawan, 2023),
the application of machine learning (Khan & Wakeman, 2006),
or visualization (Berggren et al., 2024; Debinski et al., 2019).
Timeline analysis also draws in examiner knowledge to under-
stand potential events that are capable of producing the timeline
entries and integrating them into a reasoning process (Glady-
shev & Patel, 2004).

Q4: Hypotheses and Event Inference. To accurately approach
event reconstruction, it is essential to distinguish between the
event E that occurred in reality and the inferred event E′ which
is derived from the analysis of timeline entries. In the context
of hypothesis generation, E′ represents the best approximation

based on the available evidence. We define an inferred event
E′ as a reconstructed scenario that may have occurred within
a specific time frame, based on the interpretation and analy-
sis of timeline entries and associated artifacts. This definition
acknowledges the uncertainty in reconstructing past events.

Consideration of the timeline entries in the context of ex-
aminer knowledge may result in multiple plausible scenarios
(Jaquet-Chiffelle & Casey, 2021; Gladyshev & Patel, 2004).
Hargreaves (2009) states “if there are multiple events that could
cause the same state of digital data, there is an actual, true event
that caused it, and one or more other events that did not.” This
means that rather than arriving at a single definitive inferred
event E′, we may generate k alternative events, denoted as E′j
where 1 ≤ j ≤ k. Each E′j represents a distinct interpreta-
tion of the evidence, each of which could potentially explain
the observed data. These multiple instances of E′ highlight the
complexity and ambiguity, where different sequences of events
could produce similar artifacts. The process involves not only
constructing these alternatives but also systematically and re-
peatedly testing and eliminating hypotheses to converge on the
most likely scenario while acknowledging that multiple inter-
pretations may still be viable based on the available evidence.
To test and eliminate hypotheses, Casey (2020)’s ‘Strength of
evidence scale’ (C-Scale) may be used, and it may involve re-
search into artifact interpretation and experiments to determine
if a set of actions could produce the observed system changes.

5. Methodology for challenge identification

To identify and categorize the challenges in event recon-
struction, we followed a structured literature review process de-
signed to balance breadth with relevance. The goal was not to
exhaustively capture all existing work but to obtain a represen-
tative and insightful overview of the key challenges discussed
in the field.

Search strategy: We defined a set of core search terms related
to the topic: event reconstruction, timeline, timestamp anal-
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Table 1: Summary of Systematization of Knowledge (SoK) for Timeline-based Event Reconstruction (TER)
Paper Focus area Contribution type/Challenge TER quadrant Data source category

Q1 Q2 Q3 Q4 Ph
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Sec. 2 Event reconstruction
Lee et al. (2001) Foundational event reconstruction Conceptual framework ✓ ✓  

Carrier & Spafford (2004a,b) Event-based investigation process Process model ✓ ✓     

Casey (2011) Temporal, relational analysis Analytical framework ✓ ✓  

Chabot et al. (2015a) Terminology, data volume State-of-the-art review ✓ ✓  

Adderley & Peterson (2020) Temporal sequencing Timeline correlation ✓    # # #

Willassen (2008a,b) Hypothesis testing Model-based reconstruction ✓   #

Batten et al. (2012) Hypothesis development Reasoning methodology ✓ #  #

Xu & Xu (2022) Knowledge graph reasoning Visualization and reasoning model ✓  

Sec. 3 Terminology
Neale (2023) Artifact terminology harmonization Systematic terminology review ✓  

Carrier & Spafford (2004a,b) Event-based investigation process Process model ✓ ✓     

Hargreaves & Patterson (2012) Event granularity Event granularity ✓ ✓    # #

Marrington et al. (2007) Computer activity Activity terminology ✓ ✓    

Neasbitt et al. (2014) User interaction terminology Interaction terminology ✓ #  

Chabot et al. (2014) Duration-based event definition Terminology refinement ✓ ✓  

Jaquet-Chiffelle & Casey (2021) Forensic event structure Forensic event model ✓ ✓  

Harichandran et al. (2016) Artifact properties analysis Artifact comparison ✓  

Horsman (2019) Artifact as digital object Practical definition ✓   

Casey et al. (2022) Artifact definition Artifact catalog ✓  

Lyle et al. (2022) Artifact identification Digital investigation techniques ✓  

Sec. 4 Model for event reconstruction
Ribaux (2014, 2023) Forensic trace model Trace-based model ✓  

Vanini et al. (2023) Event source reliability Reliability modeling ✓ ✓  

Vanini et al. (2024b) Time anchor model Timestamp interpretation framework ✓ ✓   #

Carrier (2006) Investigation process model Hypothesis-based model ✓  #

Hargreaves (2009) Evidence reliability testing Reliability criteria ✓  

Jaquet-Chiffelle & Casey (2021) Event structure Formal event model ✓ ✓  

Hargreaves et al. (2024b) Tool transparency Tool capability model ✓ ✓   

Raghavan & Saran (2013) Timestamp interpretation Timestamp model ✓ ✓   #  

Hargreaves & Patterson (2012) Timeline generation model Timeline generation model ✓ ✓    # #

Studiawan et al. (2020a); Studiawan (2023) Event abstraction Event abstraction model ✓ ✓    # #

Carrier & Spafford (2004a,b) Hypothesis-based investigation Hypothesis model ✓ ✓  

Gladyshev & Patel (2004) Event inference FSM reconstruction ✓  # #

Amato et al. (2017) Semantic evidence correlation Ontology-based model ✓ ✓  

Xu & Xu (2022) Knowledge graph presentation Reasoning model ✓ ✓  

Sec. 6 Challenges stemming from environmental and process-related factors
Sec. 6.1.1 Incorrect environment time
Stevens (2004) Misconfigured system clocks Clock drift challenge ✓  

Raghavan & Saran (2013) Timestamp normalization and storage issues Timestamp interpretation framework ✓    #   

Vanini et al. (2024b) Time anchor abstraction model Time anchor modeling ✓ ✓   #

Kaart & Laraghy (2014) Incorrect timezone data handling Time zone configuration ✓       

Schatz et al. (2006); Buchholz & Tjaden (2007) Network-induced skew, unsync clocks Distributed system time consistency ✓    #  

Henderson (2009) Clock skew in shared environments Network delay and skew ✓   #  

Sec. 6.1.2 Configurations and implementations
Adedayo & Olivier (2015) Log suppression, redirection Log misconfiguration ✓   #

Fernández-Fuentes et al. (2022) Absence of traceability in apps Limited logging capability ✓ # #   

Sec. 6.1.3 Environmental anomalies
Studiawan et al. (2019) Unrecoverable system restarts Environmental disruption ✓    # # #

Oh et al. (2022) Sudden device restarts Restart-induced log gaps ✓    #

Marrington et al. (2011) Program faults, data corruption Software instability ✓     

Sec. 6.1.4 Data fluctuation
Sandvik et al. (2021) Short lifespan of traces Volatile trace loss ✓  

Marangos et al. (2016) Evidence affected by operational cycles Temporal instability ✓  

Sec. 6.2 Post-event period
Gruber et al. (2023) Evidence altered during acquisition Contamination challenge ✓      

Jaquet-Chiffelle & Casey (2021) Evidence fragility and impermanence Temporal evidence integrity ✓  

Khan et al. (2007) Overwriting of data, log aging Aging challenge ✓    #

Soltani et al. (2019); Schuster (2007) Metadata decay, inaccuracy Artifact degradation ✓     # #

Sec. 6.3 Timeline
Patterson & Hargreaves (2012) Cross-source correlation Source integration challenge ✓      

Mohammed et al. (2016) Data format diversity Data normalization challenge ✓         

Horsman (2019) Artifact parsing complexity Parser dependency challenge ✓   

Soltani & Seno (2017) Missing / incomplete timestamps Extraction incompleteness ✓  

Gómez et al. (2005); Levett et al. (2010) Correlation of heterogeneous data Multi-source correlation ✓  

Kälber et al. (2013); Hargreaves et al. (2024b) Tool transparency and automation limitations Human-tool balance challenge ✓ ✓  

Bhat et al. (2021) Misconfigured analysis environments Tool setup challenge ✓ ✓   

Sec. 6.4 Decision making
Chabot et al. (2015a) Data volume for timeline analysis Scalability and overload challenge ✓   

Quick & Choo (2014) Computational resource limitations Resource requirement challenge ✓   

Buchholz & Falk (2005) Event aggregation Event abstraction for analysis ✓   

Kiernan & Terzi (2009) Event summarization Abstraction and streamlining ✓  

Osborne & Turnbull (2009) Visualization accuracy Visual representation integrity ✓  

Sec. 7 Challenges stemming from deliberate interference
Casey (2020) Strength and scale of inference Evaluative opinion framework ✓  

Vanini et al. (2024b) Time manipulation, clock tampering Timeframe manipulation ✓   #

MITRE (2023) Environment manipulation, disabled logging Environment tampering ✓  

Conlan et al. (2016) Erasure or alteration of evidence using tools Anti-forensics tool usage ✓  

Palmbach & Breitinger (2020) File and log manipulation using malware Malware-assisted anti-forensics ✓  

Malhotra et al. (2015) Service manipulation (e.g., NTP tampering) Service compromise ✓  

Choi et al. (2021) Post-event manipulation: logs, timestamps, files Artifact modification & deletion ✓  

Notes:  Mentioned in the paper# Not specifically mentioned, but can be implemented using the data source

ysis, digital forensics, correlation, challenges, and problems.
These terms were combined using Boolean operators and
phrasing variations (e.g., quotation marks for exact matches).
Searches were conducted using Google Scholar, which in-
dexes most major academic publishers (e.g., IEEE, ACM,
Wiley, Springer) and relevant platforms such as DFRWS.org
and arXiv.

Selection criteria: For each query, we considered the first two
pages of results (i.e., 20 entries). Articles were initially
screened based on metadata displayed: title, author(s), pub-
lication venue, and two-line extract. If no direct reference to

digital forensics was evident, the article was discarded. This
filtering yielded a preliminary pool of approximately 200 ar-
ticles.

Challenge extraction: We extracted mentions of challenges
primarily from the abstract and introduction sections, where
such content is frequently summarized. Targeted keyword
searches (e.g., challenge, problem, limitation) were also used
within full texts to uncover implicit references.

Classification: The identified challenges were then mapped
onto a diagram, categorizing them according to the stage or
context in which they occur within the event reconstruction
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process.

We also incorporated our domain expertise to address gaps
in the literature, recognizing that some relevant challenges may
not have been explicitly highlighted in existing works.

Limitations. The article collection and analysis were con-
ducted manually, which may have led to the omission or mis-
classification of relevant articles. By restricting searches to
Google Scholar and considering only the first two pages of
results, important sources further down the list or from other
databases may have been excluded. The focus on abstracts and
introductions might have caused us to overlook challenges dis-
cussed deeper within the papers. Moreover, the subjective na-
ture of challenge classification introduces potential bias based
on the researchers’ interpretations. Finally, the absence of auto-
mated or statistical tools for extraction and categorization limits
the objectivity and comprehensiveness of the analysis. Despite
these limitations, we believe the following sections offer a com-
prehensive and nuanced overview of the challenges.

6. Challenges stemming from environmental and process-
related factors

This section focuses on unintentional challenges and the
structure follows the diagram’s flow, discussing each quadrant.

Note, that while we have strived to define the challenge cat-
egories as distinctly as possible, some overlap is inevitable due
to the interconnected nature of these activities. Certain actions
may reasonably fall into multiple categories, depending on the
context. The categorization is designed to provide guidance
rather than enforce strict mutual exclusivity.

6.1. Q1: Timeframe of interest

Four areas have been identified:

6.1.1. Incorrect environment time
Clock-related challenges originate from the system time

which is used to derive timestamps. If the clock is incorrect, all
timestamps originating from this clock are incorrect (Stevens,
2004; Raghavan & Saran, 2013; Vanini et al., 2024b).

Clock skew: Skew refers to the difference in time readings be-
tween different systems. One reason for clock skew could be
propagation delays which may occur due to network delays
(Schatz et al., 2006; Henderson, 2009) or due to synchroniza-
tion problems, e.g., NTP servers providing incorrect times
(Buchholz & Tjaden, 2007; Hampton & Baig, 2016).

Clock drift: Drift is the gradual deviation of a clock from the
correct time, often caused by factors such as changes in tem-
perature, voltage fluctuations, or inherent defects in the clock
circuitry (Sandvik & Årnes, 2018). Clock drift may exac-
erbate over time. As drift accumulates, the discrepancies
between different systems’ clocks can grow, making it in-
creasingly difficult to correlate events across environments
(Becker et al., 2008).

Time zone changes: As systems traverse different time zones,
whether due to travel or daylight-saving time changes, the
system time may change (Stevens, 2004). This adjustment
process can also be error-prone, e.g., due to an inaccurate
time zone database (Kaart & Laraghy, 2014). Compared to
skew and drift, the range is significantly larger, i.e., hours
instead of seconds. Typically this is only relevant where local
time is stored in a data structure rather than storing UTC.

Note that virtual environments come with their challenges
which are beyond the scope of this article but have been dis-
cussed in VMware (2008).

6.1.2. Configurations and implementations
Environments, systems, and application configurations de-

fine how/what data is generated, stored, and logged. These con-
figurations comprise a wide range of settings, including logging
levels, storage policies, network settings, and security controls.

Suppression/deletion: Conservative default settings can re-
sult in insufficient logging, leading to missing artifacts, e.g.,
database logs prioritizing space efficiency over detail (Ade-
dayo & Olivier, 2015). Systems may also be configured
to suppress artifacts, such as private browsing (Fernández-
Fuentes et al., 2022), or delete them, such as printer jobs re-
moved after completion (Gladyshev & Patel, 2004) or when
an application is closed.

Inconsistent implementations: Different resolutions lead to
inconsistencies, e.g., timestamps recorded in hh:mm
vs. hh:mm:ss format (Song et al., 2016). File systems,
drivers, and implementations may behave differently lead-
ing to unpredictable behavior (Bang et al., 2009; Nordvik &
Axelsson, 2022).

6.1.3. Environmental anomalies
Environments may not behave as expected leading to the de-

structing of evidence or the not-creation of artifacts:

(OS) Crashes: A crash (system, application) can result in the
loss or corruption of artifacts, potentially leaving logs in-
complete and missing key events (Studiawan et al., 2019; Oh
et al., 2022). Detecting crashes can be challenging, particu-
larly if the logging mechanisms themselves are compromised
during the crash. Crashes may also lead to restart anomalies
such as services or applications that are supposed to start au-
tomatically failing to do so potentially altering the way sub-
sequent events are logged.

Software bugs: Bugs in software may cause errors in data log-
ging, such as incorrect timestamps or missing events (Mar-
rington et al., 2011).

Resource exhaustion and failure: Environments under heavy
load may fail to log events properly due to resource con-
straints, leading to delayed or missed entries in the event
data. Failures, including hardware malfunctions, can lead to
inadequate data (Marrington et al., 2011).

6.1.4. Data fluctuation
Data may not be accessible due to or only with additional

burden:
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Data volatility: Volatile data, such as RAM content or net-
work traffic, is lost if the ∆ is too large. In addition, IoT de-
vices often have resource constraints resulting in short-lived
data (Sandvik et al., 2021). In cloud environments, VMs can
be easily deleted including their logs (Marangos et al., 2016).

Environment bounds: The changes resulting from an event
may be distributed across multiple locations, including cloud
environments, resulting in fragmented evidence that is chal-
lenging to collect and analyze (Group et al., 2014; Joseph &
Singh, 2019; Manral et al., 2019).

Even with the cooperation of external service providers, data
cannot be recovered, particularly when logging is explicitly dis-
abled, as is often the case with many VPN services.

6.2. Q2: Post-Event Period

This period relates to the influence of time on the changes
left behind after an event.

6.2.1. Subsequent events impacting changes
Over time the changes generated by the primary event are

altered by subsequent events (referred to as intrinsic events by
Jaquet-Chiffelle & Casey (2021), or evidence dynamics by Gru-
ber et al. (2023)).

Deletion: Initial changes may disappear due to subsequent
events. Examples are rotating logs (Sandvik et al., 2021),
temporary files, routine cleanup tasks, or reboots.

Alteration/overwriting: Subsequent events can modify or re-
place existing data. For instance, Khan et al. (2007) men-
tion that much of the application footprint is rewritten each
time the application runs. Routine file operations, such as
automatic backups or updates, may also overwrite metadata,
configurations, or timestamps (Soltani et al., 2019).

6.2.2. Aging and degradation
Digital artifacts and physical devices are susceptible to

degradation, affecting their reliability and accessibility. This
degradation can manifest as file corruption, obsolescence of
file types, or the deterioration of storage media. Furthermore,
changes in software, file formats, or logging systems can intro-
duce additional challenges. As schemas evolve, inconsistencies
in log formats may emerge, complicating the process of recon-
ciling older and newer data entries. Backward compatibility is-
sues also arise when outdated systems or logs are incompatible
with modern tools, requiring extra effort to ensure that histor-
ical data remains interpretable and consistent across different
versions (Schuster, 2007).

6.3. Q3: Timeline

This third quadrant summarizes all timeline-related chal-
lenges. We decided to include the trans-boundary boxes, i.e.,
timeline generation (Q2-Q3) and timeline analysis (Q3-Q4), in
this section as we think they are closer related to the timeline.

6.3.1. Timeline generation
Data comes from various systems, including traditional com-

puting environments and a growing number of IoT devices,
each with distinct structures, conventions, and formats (Patter-
son & Hargreaves, 2012; Mohammed et al., 2016). This in-
creasing heterogeneity of both data sources and devices causes
several challenges.

Artifact/timestamp extraction: Extracting data presents an
ongoing challenge, as tools must be continuously updated to
accommodate new and evolving software (Horsman, 2019).
The acquisition process can introduce alterations, particu-
larly when conducted on live systems, such as during mem-
ory dumps (Soltani & Seno, 2017; Gruber et al., 2023).

Normalization: This involves converting diverse data types,
such as logs, databases, and sensor outputs, into a stan-
dardized structure that enables comprehensive analysis (Han
et al., 2020). This can be challenging due to different time-
stamp formats, timestamp resolutions, and timezone set-
tings. Timestamp formats can also change over time, mean-
ing timestamp normalization needs to be updated over time
and handle older and newer formats.

Contamination and process problems: Evidence might be
unintentionally modified during collection or handling, e.g.,
failing to use a write blocker (Gruber et al., 2023) or corrupt
software, leading to data contamination. Similarly, lapses in
maintaining a proper chain of custody can result in evidence
being mishandled, misplaced, or questioned in terms of au-
thenticity and reliability.

Source combination: Combining data from multiple sources
to create a unified perception is challenging, especially when
sources have different levels of reliability or granularity
(Gómez et al., 2005; Levett et al., 2010).

6.3.2. Tool capabilities and usage
Balancing automated tools with manual analysis is essential

yet challenging. While automation expedites the process, it
may overlook nuances that a human analyst would catch (Käl-
ber et al., 2013) and can introduce various types of error (Har-
greaves et al., 2024b).

Usage challenges: Incorrect settings or carelessness can lead
to incorrect results. For example, errors in the configuration
of the tools have been shown to result in inaccurate extrac-
tions of digital evidence, which can impact the credibility of
the findings (Bhat et al., 2021). The transition to a new tool
may lead to misinterpretation as tools may interpret/visualize
data differently. Some features of tools also do not help in
reducing chances of investigator misinterpretation (see Harg-
reaves et al. (2024b)), e.g., if a tool provides an automated re-
sult of a Google search occurring, this is easy to interpret the
event occurring as a fact rather than Google search data being
present. This is an event reconstruction process, with all the
uncertainty that could be present, as discussed in Sec. 6.4.
Tools can conflate facts with interpretation within their inter-
faces.

Transparency: Many tools operate as black-boxes making it
unclear how artifacts are handled. Transparency of func-
tionality is critical, as proprietary processes can influence as-
sumptions or conclusions, leading to misinterpretation.
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Handling volume: Tools may have limits on the amount of
data they can process or the complexity of queries, leading
to unnoticed gaps in analysis, e.g., a tool limited to analyz-
ing 5,000 files at once. Consequently, validation is essential,
but challenging, given the rapid change of artifacts (Hors-
man, 2018; Arshad et al., 2018).

AI-powered examination: AI-powered tools introduce com-
plexities regarding explainability and transparency, not just
of the models but of training data. Recent approaches such
as LLMs are also problematic due to their non-deterministic
nature and in many cases opaque training data and processes.
These tools can produce inaccurate or misleading outputs,
such as AI-generated errors or ‘hallucinations’ which can af-
fect the analysis (Scanlon et al., 2023).

Developers aiming to create tools should consider the seven
criteria outlined by Chabot et al. (2015b), which provide a com-
prehensive framework for ensuring an efficient reconstruction
tool.

6.4. Q4: Decision Making
Q4 involves the generation and testing of hypotheses based

on the timeline. This is critical and Hargreaves (2009) goes as
far as defining a digital investigation as “a process that formu-
lates and tests hypothesis using digital evidence” with the prior
stages facilitating this goal. Some areas of this are explored,
e.g., timeline analysis, but others, such as hypothesis forming
and testing are less frequently discussed.

6.4.1. Timeline analysis
Although the processing is mostly done using tools, this sec-

tion highlights challenges originating from the processing of
timeline entries.

Volume of data: The extensive amount of information (num-
ber of entries in the timeline) makes the analysis time-
consuming (Chabot et al., 2015a) and overloads examin-
ers. Additionally, significant resources are needed to ex-
tract, process, and store this data, including computational
power, storage capacity, and advanced data management
tools (Quick & Choo, 2014).

Aggregation, organization and visualization: Techniques
such as combining related events into cohesive units (some-
times called high-level events or super events) (Buchholz &
Falk, 2005; Kiernan & Terzi, 2009; Hargreaves & Patterson,
2012; Inglot & Liu, 2014; Raju et al., 2017) can streamline
analysis but may result in the loss of granularity or context.
Similarly, visualizations (Osborne & Turnbull, 2009) require
consideration to ensure that they accurately represent the
data without oversimplifying or distorting the information.
The volume of the raw data can be a challenge to visualize
and reduction of the data before visualization is meaningful
may be necessary, e.g., Hargreaves & Patterson (2012).

Correlation: The process of establishing meaningful relation-
ships between disparate timelines entries is fraught with diffi-
culties, especially when data originates from various sources
or formats (Schatz et al., 2006) or times across environments
are not synchronized (Marangos et al., 2016). Detecting and
validating these connections requires experience and metic-
ulous attention (Amato et al., 2017). For example, incorrect

handling of local time vs. UTC can disrupt the sequencing
of events, particularly in global systems where data spans
multiple time zones (Buchholz & Tjaden, 2007). Verifying
data across different sources and formats is challenging but
necessary to ensure the accuracy and completeness of the re-
constructed timeline.

6.4.2. Interpretation, trust and integrity
Ensuring that data is accurate and trustworthy is fundamen-

tal (Neale et al., 2022). Determining which sources to trust and
how to weigh them can significantly affect the reliability of the
reconstruction. This challenge becomes even more pronounced
when different sources report the same event but provide incon-
sistent or conflicting details, leading to uncertainty.

Interpretation: Investigators work with a static set of data
which includes evidence and irrelevant information gener-
ated by subsequent activities or during investigative pro-
cesses (Roux et al., 2022). Misinterpretation can arise from
factors such as incorrect ordering, aggregation, or filtering of
entries, leading to distortions in the reconstructed narrative
but also from unawareness of an examiner, i.e., insufficient
knowledge of an event or timestamp (Boyd & Forster, 2004).

Untrusted internal sources: The presence of anti-forensic
tools (Conlan et al., 2016) or tampering indicators, such
as manipulated timestamps or hidden data, raises suspicion
about the authenticity of the evidence3. According to Neale
(2023), detecting and addressing such tampering is crucial to
maintaining trust in the evidence (more in Sec. 7).

Untrusted external sources: Combining data from external
sources, such as cloud services, introduces additional chal-
lenges. When the integrity of these sources cannot be inde-
pendently verified, especially due to possible alterations in
transit or at rest, the reliability of the event reconstruction
may be compromised (Battistoni et al., 2016).

6.4.3. Knowledge and perception bias
Investigators may interpret evidence differently based on

their prior knowledge, experience, or expectations, which can
lead to skewed interpretations of the data. Perception and deci-
sion bias may cause certain patterns or details to be overlooked.

Artifact interpretation knowledge: Previous knowledge may
become outdated due to the release of a new operating sys-
tem, or new version of an application (Horsman, 2019). Ex-
aminers may be unaware of certain behaviors (e.g., (Thierry
& Müller, 2022) identified multiple unexpected and non-
compliant behaviors of timestamps). Limitations in knowl-
edge reduce the investigator’s ability to generate viable alter-
native hypotheses that would produce the same artifacts.

Algorithmic bias: Tools operate based on algorithms that
might make certain assumptions or prioritize specific types
of data, which can introduce biases into the reconstructed
events (Jinad et al., 2024). For instance, an AI-powered tool
may be biased due to unbalanced training data.

3We decided to include this challenge here and not in Sec. 7 (deliberate
interference) as the presence of these tools does not necessarily mean that they
were executed.
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Human bias: Analysts may bring their own preconceptions
into the analysis, influencing how they interpret and prioritize
different events (Kang et al., 2013). This can lead to con-
firmation bias, where analysts might favor hypotheses that
align with their pre-existing beliefs or expectations, uninten-
tionally skewing the analysis (Kassin et al., 2013).

6.4.4. Complexity in testing hypotheses
Testing hypotheses against a timeline is complex, especially

when considering all the aforementioned challenges.

Multiple interpretations: Evidence may be open to multiple
interpretations, making it difficult to draw definitive conclu-
sions and infer events from the past. This ambiguity can lead
to varied interpretations of the same data, which impacts the
ability to test hypotheses with certainty. Effective hypothesis
testing must address temporal inaccuracies or manage the in-
herent uncertainty that arises from imperfect data such as log
files (Latzo & Freiling, 2019).

Defining error: Hargreaves (2009) discusses that error in
event reconstruction can be defined as “the difference be-
tween the inferred history and the true history of the exam-
ined digital evidence”. This error cannot necessarily be ex-
pressed as a definite value, e.g., x±y, but can be expressed as
uncertainty (possible error) in the inferred events, i.e., alter-
native possible hypothesized events that explain the current
state of the examined digital evidence. Communicating these
uncertainties transparently is vital to ensure that conclusions
drawn are appropriately qualified and reflect the limitations
of the available evidence.

7. Challenges stemming from deliberate interference

To complement the previous section, this one outlines chal-
lenges stemming from deliberate actions such as backdating,
erasing, or wiping, to hide activities (Casey, 2020). While it
may not always be the case, for this work we assume that the in-
vestigative body and tool vendors are free from insider threats.
Therefore, challenges are limited to the reality.

As already pointed out in Sec. 6, some overlap of challenges
is inevitable due to the interconnected nature of these activities.

7.1. Q1: Timeframe of interest

Interference with the environment can be conducted before
the event occurs, with the intent to complicate investigations.
Such interference often seeks to generate misleading artifacts or
prevent their creation altogether, e.g., examples under ‘defence
evasion’ in the MITRE ATT&CK Matrix4.

Time manipulation: An adversary may turn off set time and
date automatically and actively manipulates the system time
or timezone (Vanini et al., 2024b). Even when detected, dis-
tinguishing between accidental misconfigurations and delib-
erate tampering remains difficult.

4https://attack.mitre.org/tactics/TA0005/

Environment manipulation: It is possible to disable or tam-
per with logging mechanisms, preventing activities from be-
ing recorded. Similarly, security tools may be compromised
or altered (MITRE, 2023). Decoys such as fake accounts or
planted traps such as cleanup scripts may be used to further
obscure activities.

Anti-forensics and malware: Adversaries may use software
to obscure their actions. For instance, anti-forensic tools
erase or alter evidence (Conlan et al., 2016) or rootkits and
malware to cover access and manipulations to files and logs
(Palmbach & Breitinger, 2020). Anonymization services
such as VPNs and TOR hide the attacker’s origin, making
it difficult to trace activities

Service manipulation: Instead of manipulating an environ-
ment directly, an adversary may compromise utilized ser-
vices. For instance, by manipulating the NTP service, an
attacker can change the system time (Malhotra et al., 2015).
Another example would be a compromised update server.

7.2. Q2: Post-Event Period

Post-event one may manipulate or delete metadata or con-
tent such as altering timestamps, modifying log entries, or
deleting critical files (e.g., remote wiping of mobile devices).
Logs and other files are often not protected against alternation
or deletion (Choi et al., 2021). Active tampering and manip-
ulation of artifacts present some of the most challenging ob-
stacles in event reconstruction and the risk of misinterpretation
increases (Casey, 2020) especially when performed from ad-
vanced persistent threads.

8. Key findings

This section summarizes the key findings identified in the
foundational sections 2 to 4, and the challenge identification
sections 6 and 7:

1. The terms “event” and “artifact” in digital forensics are
defined inconsistently across existing studies and it leads
to ambiguity in their usage.

2. Event reconstruction relies on modeling two critical inter-
vals: the timeframe of interest (T ) where events occur, and
the post-event period (∆) where subsequent changes may
overwrite or obscure evidence.

3. Event reconstruction is highly affected by unintentional
challenges such as incorrect system time, insufficient log-
ging, environmental anomalies, and data volatility.

4. Subsequent events can delete, overwrite, or degrade digital
artifacts; so they reduce the availability and reliability of
evidence over time.

5. Timeline generation faces challenges from data hetero-
geneity, software updates, extraction errors, normalization
issues, and tool limitations.

6. Event reconstruction requires careful hypothesis genera-
tion and testing, but faces challenges from data volume,
correlation complexity, trust issues, and investigator bias.

7. Deliberate actions such as time manipulation, anti-
forensics, and post-event tampering can alter or destroy
digital evidence and make event reconstruction even more
challenging.
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8. Several research directions have emerged to address chal-
lenges in event reconstruction, including forensic readi-
ness, improved artifact extraction, timeline verification,
tamper detection, AI/NLP integration, and advanced anal-
ysis techniques.

9. Discussion and research gaps

From the previous sections, the summary of key findings, and
Table 1 (which provides a mapping of the focus areas in Sec-
tions 2 to 7, against the quadrants in Figure 1, illustrating the
distribution of existing research) it is possible to infer general
research gaps. However, this section highlights selected sig-
nificant challenges and proposes specific potential avenues for
future research.

The section is organized by quadrant of the TER-model,
demonstrating the utility of the model as an organizational tool.
Given the vast body of literature, it is not feasible to reference
every relevant article. Therefore, we focus on studies from our
initial collection as well as recent works.

One general point, is that throughout the TER-model (Q1-
Q4) a broad research gap is the understanding and handling
of uncertainty, from system configuration through to a reliance
on examiner knowledge for hypothesis generation and testing.
This is considered an ongoing limitation to the process that re-
quires addressing.

Research Gap 1. Uncertainty is potentially introduced through-
out the model and research into handling it at each stage, and
how it could propagate is needed.

9.1. Q1: Timeframe of interest

Digital forensic readiness is a proactive approach ensuring
systems and networks are prepared to efficiently collect, pre-
serve, and analyze evidence when a security incident occurs
(Sachowski, 2019). Forensic readiness for event logging has
been researched, as demonstrated by Reddy & Venter (2013)
and Kebande & Venter (2018). To support forensic readiness,
administrators should activate extended logging, which records
additional data and audit trails. Moreover, operating system de-
velopers could still provide more comprehensive system-related
logs (Rivera-Ortiz & Pasquale, 2019) but this conflicts with
privacy-centric approaches expected from consumers.

This also has anti-forensics implications. If an attacker
deletes logs (one of the primary sources for event reconstruc-
tion), investigators must first recover them (as discussed in
Q2/Q3). To address this, security measures such as central-
ized or encrypted log servers could be implemented in sys-
tems where this is feasible, and even advanced techniques such
as blockchain can be used to mitigate anti-forensic techniques
(Kłos & El Fray, 2020).

Research Gap 2. Forensic readiness needs further development,
and more creative solutions need researching to achieve similar
goals on ‘unmanaged’ systems where forensic readiness solu-
tions cannot be deployed.

9.2. Q2: Post-event period

In evidence seizure, timing has an effect during forensic in-
vestigations. This affects if volatile artifacts are captured if not

done on time, e.g., credentials stored in memory. Secondly,
challenges related to cloud environments imply any delays in
data acquisition may effortlessly cause the loss of crucial evi-
dence, e.g., Alqahtany et al. (2016) discuss evidence that sup-
ports the need for timely acquisition. There is also the issue
of long-term log retention by internet service providers, which
may be important in some cases (Khan et al., 2016). Mandating
extended retention ensures information can be accessed after
an incident, but conflicts with privacy regulations. There are
also ‘awareness’ concerns. For victim systems, communication
is crucial to ensure device owners minimize interactions with
devices containing potential evidence. The same applies to ex-
aminers, where changes to the evidence should be anticipated
and minimized from a data preservation/acquisition perspective
(Gruber et al., 2023). Moreover, recent work by Spichiger &
Adelstein (2025) highlights that preservation should not be nar-
rowly focused on the trace itself but must also consider the
reference environment in which the trace was produced. As
systems evolve, e.g., through software updates, operating sys-
tems, or third-party services, insufficient preservation of refer-
ence data can result in a loss of contextual meaning and increase
the uncertainty of later reconstructions. Expanding the defini-
tion of preservation to include such reference data is therefore
essential in environments where evidence may need to be inter-
preted long after the fact.

Research Gap 3. There is little work on the persistence of arti-
facts, and determining if the absence of data is due to configura-
tion, tampering, or simply the passing of time. Work in this area
could reduce this aspect of uncertainty within the model and pro-
cess, and provide practical advice on the temporal boundaries of
useful preservation periods.

9.3. Q3: Timeline

This aspect of event reconstruction has received the most at-
tention and many articles and concepts have been discussed.

Continuous updates/improvement to timestamp extraction:
Files and formats containing timestamps are subject to
change. Ongoing research that tracks these changes and
uncovers new timestamp sources provides the foundational
data necessary. This means ongoing ‘artifact research’ (as
defined by Breitinger et al. (2024)) is critical.

Integration of non-explicit timing information: Dreier et al.
(2024) discussed implicit timing (e.g., ordering of log file
entries) to detect inconsistencies in an automated way. A
second possibility is digital stratigraphy, as defined by Casey
(2018), and further implemented in Schneider et al. (2024),
which is a method that takes advantage of file systems and
the behavior of their allocation algorithms. By analyzing the
logical position of files on a disk, investigators can infer po-
tential events, provided they understand how the file system
allocates those files. This knowledge enables the reconstruc-
tion of hypothetical sequences of events based on file place-
ment. These are still early implementations, and additional
work is needed to evaluate more variations in environments,
file systems, drivers, and behavior patterns.

Timeline representation: Timelines are mostly flat, i.e., tex-
tual files in chronological order. The community should ex-
plore alternatives. For instance, an ontology-based approach
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improves event reconstruction by providing a structured and
formal representation of data, which helps standardize and
automate the analysis process (Bhandari & Jusas, 2020). An
ontology captures the semantic relationships between events,
objects, and subjects, allowing investigators to infer new
facts, identify correlations between events, and visualize data
more effectively (Chabot et al., 2015b; Turnbull & Rand-
hawa, 2015). We should also reconsider visualizing time-
lines, moving beyond the frequently used basic bar charts
counting the number of events within defined timeframes,
and exploring AR or VR.

Automated timeline verification: Willassen (2008c) intro-
duced a hypothesis-based approach where investigators cre-
ate clock hypotheses to model historical clock values and
test their consistency with timestamp evidence. Vanini et al.
(2024b) suggested using time anchors (i.e., artifacts that
include internal and external timestamps) and looking for
anomalies. Research efforts need to continue to build verifi-
cation methods that allow us to identify whether the timeline
is out-of-sequence (irregularities found) or likely correct.

Tamper detection: Galhuber & Luh (2021) found that time-
stamp forgery tools may introduce detectable changes, such
as reducing timestamp accuracy from nanoseconds to sec-
onds. Among the tools they evaluated, only one was capable
of modifying the full range of file system timestamps on Win-
dows. Andrade (2020) noted that $FN timestamps are typi-
cally modified only by the Windows kernel and are generally
unaffected by anti-forensic timestomping tools, offering an
example of a timestamp that is harder to manipulate during
event reconstruction. Jang et al. (2016) presented a method
to detected time manipulation in NTFS file system. More
general experiments as conducted by Schneider et al. (2020,
2022); Vanini et al. (2024a) show that the probability of de-
tecting it is high, especially when it concerns file metadata.
One reason is that it is difficult to forge a timestamp without
causing subsequent inconsistencies. While some progress
has been made in detecting tampering, this area still requires
further exploration and automation. Ideally, a tool should be
capable of analyzing a timeline and automatically highlight-
ing all potential tampering events.

Research Gap 4. Advances in timeline generation research are
still needed in multiple areas: from artifact research, integra-
tion of non-timestamp-based timing information, visualization
of timelines, and detecting inconsistencies and tampering.

9.4. Q4: Analysis and investigative conclusions

This includes the timeline analysis which bridges Q3 and Q4
since it may revisited as part of Q4 hypothesis testing.

Timeline analysis: Efforts focus on methods to reduce and
manage data, including techniques for filtering, labeling, and
aggregating data. Flagging entries that match certain crite-
ria can be performed, or more complex approaches such as
discussed by Hargreaves & Patterson (2012); Studiawan et al.
(2020b) where patterns of events are bundled to provide mul-
tiple entries that support an event reconstruction. This re-
duces large timelines to more manageable sets of interesting
events, but as they are inherently a reduced set, switching

back to the lower-level entry view is an important feature to
retain to see inferred events in context and show provenance
of the reconstructed event. A limitation discussed by Harg-
reaves & Patterson (2012) is the need to manually create the
patterns that need to be matched based on research and ex-
perience. Better centralized documentation of the expected
changes from sets of actions in different environments, sim-
ilar to Casey et al. (2022); Grajeda et al. (2018) and integra-
tion into a standard timeline analysis tool would make time-
line analysis more accessible.
Visualization is also a vital additional layer of abstraction to
help make sense of the large amounts of data, and can be a
valuable tool to assist with analysis, e.g., to support timeline-
based cross drive analysis (Patterson & Hargreaves, 2012).
An increased availability of ground truth data sets with anno-
tation of the actions carried out would assist with developing
analysis plugins for tools (Grajeda et al., 2017). Automated
event inference, either using machine learning, or through
automation in digital forensic experimentation to carry out
actions and record the resulting traces may help with this.

Artifact reliability: If the timeline contains conflicting infor-
mation i.e., at least two artifacts provide conflicting infor-
mation, a resolution is needed. Automation in identifying
accurate artifacts would be advantageous. One possibility is
to compare artifacts and assess their reliability, e.g., the ease
of manipulating an artifact (Vanini et al., 2024a). Hargreaves
& Patterson (2012) began work on handling conflicting ar-
tifacts, where each inferred high-level event was assigned a
series of expected artifacts. On a match, the supporting and
contradictory timeline entries were stored within the inferred
event, highlighting entries that were expected but absent,
forming the basis for the evaluation of reliability assessment.
Casey (2011) discusses the number of independent sources
and their resistance to tampering as part of the C-Scale, but
if this were to be more strictly quantified, e.g., with Bayesian
networks for example (Kwan et al., 2008), in terms of as-
signing weight to expected artifacts, other factors may have
an impact. For example ‘artifact longevity’, i.e., how long
an artifact is known to persist may allow appropriate weight
to be given to the absence of specific, expected, hypothesis-
supporting information. It remains unclear how appropriate
precise numerical assessments in event reconstruction are.

AI integration: The use of AI for digital forensics is becom-
ing more common (Du et al., 2020a; Jarrett & Choo, 2021).
AI can help analyze and identify digital evidence (Henseler
& van Beek, 2023; Sreya et al., 2023) or aid investigators in
writing forensic reports (Michelet & Breitinger, 2024). As
discussed by Scanlon et al. (2023), LLMs may help with
event analysis, such as suspicious activities or attack iden-
tification. However, they may hallucinate when responding
to investigator questions. Future work should focus on eval-
uating and validating this new technology for forensic pur-
poses. Others have tried to apply AI techniques to acceler-
ate the process, e.g., by searching for anomalies (Studiawan
et al., 2017; Studiawan & Sohel, 2021) or relevant artifacts
(Du et al., 2020b; Marková et al., 2022).

Natural Language Processing (NLP) integration: NLP may
support timeline analysis as each event is represented by a
descriptive message. These messages contain valuable infor-
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mation that can be extracted and analyzed. By applying tra-
ditional NLP techniques, such as sentiment analysis (Silalahi
et al., 2023c; Studiawan et al., 2020b), named entity recog-
nition (Silalahi et al., 2023a,b; Studiawan et al., 2023), and
information extraction, researchers can derive insights. For
future research, there is potential to explore other NLP meth-
ods to enhance the field. For instance, topic modeling and de-
pendency parsing could be employed to gain deeper insights
into events and establish relationships between them.

Process mining: Event reconstruction is a common task in
process mining (Weijters & van der Aalst, 2001; Jürgensen,
2021), though it is typically applied to business process logs
(Nguyen & Comuzzi, 2019). However, the domain faces
similar challenges. For example, Dixit et al. (2018) describe
a set of timestamp-based indicators for identifying event or-
dering imperfections in logs and present a method for resolv-
ing these issues using domain knowledge. Therefore, future
research could explore various process mining techniques
(van der Aalst, 2016) for forensic event reconstruction.

Training and education: Specialized training and continuous
education play a key role in ensuring investigators can han-
dle complex cases and maintain the admissibility of evi-
dence in court (Jahankhani & Hosseinian-far, 2014). How-
ever, cognitive biases and human errors can impact the in-
tegrity of findings, but some techniques can be used to mit-
igate this, e.g., collaborative approaches, such as the 4-eye
principle—where at least two individuals review the find-
ings. More research is needed to explore how collaborative
techniques and advanced decision-support systems, includ-
ing AI-assisted tools, can further minimize human errors and
biases, ensuring more reliable and transparent event recon-
struction processes.

Research Gap 5. The challenge of performing efficient and ef-
fective timeline analysis remains. Handling the volume of ex-
tracted timestamps in an effective way is needed (Q3/4), which
could include technological solutions such as performance im-
provements or AI based filtering, but also process changes,
where the ‘extract everything’ model needs research to ensure
it is still the most appropriate approach.

Research Gap 6. Automation is likely the only practical way to
handle the challenge of inferring events at scale (Q4), but how
to handle the practical research challenge of automated infer-
ence of events from timeline entries that are subject to operating
system, application, and environmental changes earlier on in the
process (Q1,Q2) is challenging.

Research Gap 7. Ensuring and communicating a clear delin-
eation between extracted timestamp values as facts, and inferred
events as working hypothesis, in both research and in forensic
tooling (Q4), requires work from digital forensic scientists, and
potentially UX experts to clearly communicate residual uncer-
tainty.

10. Conclusions

Event reconstruction is a critical part of the digital forensic
process, yet the process and terminology are vague and incon-
sistent. This work has shown that this mixture of terms can be

unified and as a result, a systematic organization of issues as-
sociated with timeline-based event reconstruction can be com-
piled. When an event reconstruction is completed, these po-
tential issues can be considered and evaluated as to whether
they may have influenced the result of the reconstruction. Aside
from practical uses, it has also allowed clear future directions
in event reconstruction research to be identified.

While some of these identified challenges will be obvious to
seasoned investigators, there is a need within digital forensics,
to formalize definitions and make explicit that which is cur-
rently tacit. This provides the foundation for more formal and
potentially future quantitative evaluation of the trustworthiness
or indeed reliability of reconstructed events in a digital forensic
investigation.
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