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Phishing detection on Ethereum has increasingly leveraged advanced machine learning techniques to identify
fraudulent transactions. However, limited attention has been given to understanding the effectiveness of
feature selection strategies and the role of graph-based models in enhancing detection accuracy. In this
paper, we systematically examine these issues by analyzing and contrasting explicit transactional features and
implicit graph-based features, both experimentally and analytically. We explore how different feature sets
impact the performance of phishing detection models, particularly in the context of Ethereum’s transactional
network. Additionally, we address key challenges such as class imbalance and dataset composition and their
influence on the robustness and precision of detection methods. Our findings demonstrate the advantages and
limitations of each feature type, while also providing a clearer understanding of how feature affect model
resilience and generalization in adversarial environments.

Additional Key Words and Phrases: Ethereum, Phishing Detection, Transaction Analysis, Machine learning

ACM Reference Format:
Ahod Alghuried, Abdulaziz Alghamdi, Ali Alkinoon, Soohyeon Choi, Manar Mohaisen, and David Mohaisen.
2025. Fishing for Phishers: Learning-Based Phishing Detection in Ethereum Transactions . 1, 1 (April 2025),
23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Blockchain technology, particularly Ethereum, has revolutionized decentralized transactions, offer-
ing secure, transparent, and immutable transaction records [14, 22, 28]. However, as blockchain
adoption increases, so does its appeal to cybercriminals, with phishing scams emerging as one
of the most prevalent forms of attack [5, 6, 13, 15, 22–24, 37, 38]. Phishing scams, which exploit
the trust inherent in blockchain transactions and their associated security challenges, account for
millions of dollars in losses annually [9, 16, 32]. The highly publicized phishing attack on Uniswap
Labs in 2022, where attackers stole over eight million dollars, serves as a stark reminder of the risks
that Ethereum users face [29, 31, 46]. Furthermore, recent findings indicate that illicit activities,
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including phishing, have stolen over two billion USD from Ethereum users, highlighting the urgent
need for effective detection mechanisms [1, 5, 24].
Phishing attacks on Ethereum are distinct from traditional phishing attacks, which typically

involve fraudulent websites or emails aimed at stealing sensitive information such as passwords [25,
39, 48]. In contrast, blockchain phishing often exploits the transparency and pseudonymity of
blockchain networks, targeting financial assets directly. These attacks are executed through com-
promised private keys, deceptive wallet addresses, and malicious smart contracts, enabling unau-
thorized transactions and asset transfers [8, 18, 49]. Moreover, while traditional phishing relies on
social engineering to deceive users into providing personal information, Ethereum phishing can be
automated using scripts that manipulate smart contracts or intercept transactions without direct
interaction with the victim [4, 17]. This methodological shift underscores the automated nature of
threats within the blockchain, necessitating advanced countermeasures [7, 35].
Phishing on blockchain networks such as Ethereum exploits the unique complexities of these

systems, using techniques that blur the line between legitimate and malicious transactions [3, 33, 34,
49]. The ability of phishing to undermine confidence in blockchain threatens the very foundation of
trust and security that these technologies promise. Addressing these risks requires approaches that
go beyond traditional methods, incorporating both transactional analysis and advanced machine
learning techniques to detect such attacks [21, 36, 40, 45].
Recent advances in phishing detection have increasingly leveraged machine learning models,

particularly in blockchain transaction analysis. These models typically rely on explicit transactional
features such as transaction values, gas usage, and timestamps [8, 18, 30]. However, while these
features offer valuable insights into individual transaction behaviors, they often fail to capture the
broader relational and temporal dynamics essential for detecting phishing [2, 22]. Graph-based
approaches, which effectively model the Ethereum transaction network as a graph, have emerged
as promising direction for phishing detection. These methods focus on implicit features that reveal
interactions between addresses, thus enabling the detection of coordinated and rapid transaction
patterns indicative of phishing activity [43] (see Figure 1). By utilizing advanced analytical methods,
researchers aim to develop algorithms capable of discerning subtle signs of illicit activities amid
legitimate transactions, addressing both data volume and the cunning nature of these frauds.
Despite progress in this field, current research often overlooks critical issues related to the

robustness and scalability of phishing detection models. For instance, many studies focus on
achieving high accuracy without addressing the inherent class imbalance in phishing datasets,
where phishing transactions are significantly underrepresented compared to benign ones [8, 12, 49].
Moreover, there is limited exploration of how feature selection impacts the model’s ability to
generalize across diverse phishing scenarios. These challenges underscore the need for more
comprehensive and systematic approaches to phishing detection in Ethereum networks.
Contributions. We address these limitations by developing a phishing detection model that sys-
tematically and independently evaluates two distinct feature sets: explicit transactional features and
implicit graph-derived behavioral features. In contrast to prior work that often aggregates features
without assessing their standalone contributions, we adopt a rigorous comparative methodology
to isolate and quantify the impact of each feature type on model performance. Our contributions
are as follows: 1) We design and implement a two-stage evaluation framework that contrasts the
predictive capabilities of explicit and implicit features in phishing detection, providing insights
into their capabilities and limitations. 2) We design a small, focused set of implicit features that
describes how Ethereum addresses behave over time, for example, when they send transactions,
how often, and on which days. These features go beyond raw transaction values by capturing
behavioral patterns that are harder for attackers to fake or hide. 3) We build a Graph Convolutional
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Fig. 1. Illustration of the Ethereum phishing scam network. Phishing addresses (red nodes) are interspersed
among benign addresses (blue nodes), exhibiting similar transactional patterns, thereby complicating detection
within the broader network structure.

Network (GCN) that learns from the connections between Ethereum addresses by analyzing how
they interact over time and across the network. This allows the model to detect suspicious behavior
based on both who is connected to whom and how they behave. 4) We evaluate our model on
a large dataset of Ethereum transactions, demonstrating significant improvements in phishing
detection performance. 5) Our findings show that a small number of carefully selected implicit
features can outperform larger sets of basic transactional features used in prior studies, highlighting
that effective feature design is more important than quantity, especially in adversarial settings.
Organization. The remainder of this paper is organized as follows. In section 2, we discuss related
work on phishing detection. In section 3, we present our data collection process and feature
extraction techniques. Our model architecture and experimental setup are outlined in section 4. We
present our results in section 5, discussion in section 6, and offer concluding in section 7.

2 RELATEDWORK
Phishing detection in Ethereum and other blockchains has attracted considerable research attention
as these decentralized systems increasingly become targets for cybercriminals. Various methods
have been proposed using explicit transactional and implicit graph-based features. This section
reviews the key contributions in the field, organized by feature type, approach, and their relative
effectiveness, as summarized in Table 1.
Explicit Transactional Features. Early approaches to phishing detection primarily leverage
explicit transactional features extracted directly from blockchain data, such as the number of
transactions, gas consumption, timestamps, and transaction values. These features are critical as
they provide the initial set of data points that models use to identify potential threats. While these
models perform well in detecting clear malicious behavior patterns, they often struggle to capture
phishing scams’ more complex relational dynamics.
Wen et al. [42] applied neural networks to explicit transactional features to identify temporal

patterns indicative of phishing scams. Similarly, Kabla et al. [18] employed features such as from,
input, blockHeight, and timeStamp to differentiate phishing accounts from legitimate ones. Despite
their success, these models face challenges when dealing with phishing activities that involve
sophisticated interactions between multiple blockchain addresses.
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Table 1. A summary of recent phishing detection studies (since 2021), focusing on their employed features
(explicit or implicit), methodological approaches (graph-based or machine learning-based), evaluation metrics
(accuracy, precision, recall, and F1-score), and the sizes of the datasets used.

Papers Year Features Method Performance Number of Instances
Acc. F1-Score Prec. Rec. phishing benign

Chenet al. [8] 2021 Implicit Graph-based 0.57 0.23 0.72 0.14 1,157 2,973,382
Xia et al. [44] 2022 Implicit Graph-based - 0.81 0.81 0.82 451 12,834
Kabla et al. [18] 2022 Explicit ML-based 0.98 0.98 0.98 0.98 5,448 79,216
Li et al. [21] 2022 Implicit ML-based 0.92 0.81 0.77 0.85 4,932 6,844,050
Wu et al. [43] 2022 Implicit ML-based - 0.90 0.92 0.89 1,259 1,259
Fu et al. [12] 2022 Implicit Graph-based 0.88 0.87 - - 1,928 1,901
Zhou et al. [49] 2023 Explicit Graph-based 0.98 0.97 0.96 0.99 1,659 5,805
Lin et al. [24] 2023 Explicit ML-based 0.82 0.82 0.87 - 301 4,116,315
Li et al. [22] 2023 Implicit Graph-based - 0.92 0.91 0.92 5,639 25,000
Cheng et al. [11] 2024 - ML-based 0.96 0.68 0.62 0.75 7,696 89,318
Liu et al. [25] 2024 Implicit Graph-based - - - - 5,363 330,000
Our work 2024 Implicit Graph-based 0.95 0.95 0.96 0.95 671,865 2,687,460

Lin et al. [24] refined phishing detection by incorporating explicit transactional features, al-
though their method still encounters difficulties in identifying complex attack structures. Wang et
al. [41] focused on ransomware detection in the Bitcoin network using features such as the total
number of transactions, value exchanged, and the number of neighboring addresses. However, such
an approach may fail to detect more elusive behaviors, especially when attackers obscure their
operations using multiple addresses.
Yazdinejad et al. [47] combined explicit transactional data with device activity features in de-

centralized environments to detect cyber threats. Similarly, Kampers et al. [19] used features like
trading volume, price fluctuations, and transaction frequency to uncover market manipulation
tactics such as spoofing and wash trading. However, reliance on explicit features limits the detection
of subtler, network-based strategies.

Ngo et al. [27] explored the integration of Generative Adversarial Networks (GANs) and anomaly
detection to analyze explicit features such as transaction values for phishing detection. While
effective in high-dimensional datasets, this method fails to address multi-node phishing attacks.
Cheng et al. [10] introduced a hybrid model that integrates explicit transactional features with a
long short-term memory (LSTM) module to capture evolving asset transfer paths, supported by a
graph convolutional network (GCN) to analyze their structural properties.
Implicit Graph-Based Features. In contrast to explicit feature-basedmethods, implicit approaches
focus on capturing the relational dynamics inherent in blockchain networks. These methods
frequently employ Graph Neural Networks (GNNs) or similar graph-based models to analyze the
network structure between addresses, enabling the detection of more phishing schemes.
Zhou et al. [49] introduced an approach called the Edge-Featured Graph Attention Network

(EGAT), which leverages both node and edge features, such as transaction values, gas usage, and
timestamps, to detect phishing behavior by focusing on the relationships between network nodes.
This method uncovers hidden patterns that transactional feature-based models often miss, offering
a deeper insight into the complex interplay of network interactions.

Li et al. [22] proposed the Transaction Graph Contrast Network (TGC), which utilizes contrastive
learning to improve phishing detection by leveraging robust representations of Ethereum addresses
within transaction subgraphs. TGC enhances its detection capabilities by introducing node-level
and context-level contrast modules, making it particularly effective in large, dynamic networks.
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Fig. 2. An illustration of the proposed pipeline, integrating explicit and implicit features from the Ethereum
network.

Limitations and Our Contribution. Despite notable progress, existing approaches still face key
limitations. Models that rely only on explicit features [18, 42] oftenmiss the broader network context
that can reveal important phishing patterns. Conversely, graph-based models [22] may overlook
transactional behaviors that are essential for understanding user activity. Our work addresses both
issues by first evaluating explicit features to capture direct behavioral patterns, and then analyzing
implicit, graph-based features to understand the relational structure between addresses. Unlike
prior studies, we evaluate the model in two distinct phases—using explicit and implicit features
separately—to better assess their individual impact on performance. We also introduce fine-grained
temporal features, such as the time difference between consecutive transactions, which highlight
behavioral anomalies that are often missed in existing graph-based approaches. To validate the
importance of these features, we use a Random Forest classifier (RF) to assess their predictive
value in distinguishing phishing from benign activity. In addition, our study highlights the most
informative implicit features. It incorporates a weighted loss function to address the class imbalance,
resulting in improved detection performance across multiple metrics.

3 METHODOLOGY
Our pipeline, shown in Figure 2, involves several steps as follows. First, Ethereum transactions are
collected and labeled as phishing or benign. Then, both explicit and implicit features are extracted
from the data. Weighted loss functions are applied to address the class imbalance. Subsequently,
these features are fed into GCN, aggregating information from neighboring nodes to classify
addresses. Finally, the model’s performance is evaluated using key metrics. In the following, we
elaborate on the various steps in our pipeline.

3.1 Data Collection
The primary goal of data collection was to compile a comprehensive dataset of Ethereum transac-
tions, explicitly focusing on phishing-related and benign activities. This dataset forms the founda-
tion for developing and testing models to detect phishing transactions on the Ethereum network.
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Benign (0)

If G2 or G3 matched with 
the known phishing address list

No

Yes
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Oxdef…456Oxdef…456Oxdef…456

Verification
 using Etherscan

Phishing (1)

Benign (0)

Transactions:
Sender (G2) & Receiver (G3)

If R1 and R2 
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R2 (0, 1)

R1
 (0

, 1
)
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`

Caption
1. G2 and G3 are address
2. R1 and R2 are results from 
3. Address Example (less important)

Fig. 3. Illustrating the labeling process. G2 and G3 represent the sender and receiver addresses. R1 and R2
are labeling results. In R1, addresses are first matched against the known phishing list. If a match is found,
R2 performs manual verification via Etherscan to ensure labeling accuracy.

The collected data includes transactions associated with known phishing addresses and benign
transactions, providing a balanced view for robust model training.
Data Collection Process. To gather the transaction history for each phishing address, the Ether-
scan API1 was employed. The API provided access to detailed transactions, including block numbers,
timestamps, sender and receiver addresses, and transaction values, which are essential for analyz-
ing blockchain activities. The phishing addresses were sourced from a publicly available dataset
on GitHub2, compiled initially and utilized in [20]. This dataset includes 7,915 unique Ethereum
addresses that have been flagged for their involvement in phishing activities. These addresses
were verified using the Etherscan API to confirm their involvement in phishing activities. Each
address was cross-referenced against transaction histories and community reports to ensure the
accuracy of their classification as malicious. This rigorous process supports our dataset reliability
by substantiating the addresses phishing history.

A Python script was designed to automate the data collection process by querying the Etherscan
API for transaction data associated with identified phishing addresses. The script systematically
extracted details such as block numbers, timestamps, and transaction values, and organized them
into a structured CSV file for efficient analysis.
Benign transactions, defined as those not associated with the identified phishing addresses,

were carefully collected using the same API parameters and methods. Using the identical API
parameters and collection methods, the benign transactions were directly comparable to the
phishing transactions regarding data structure and content.
Once the phishing and benign transactions were collected, they were combined into a single

dataset. The dataset was labeled to differentiate between phishing and benign transactions. Trans-
actions associated with the 7,915 phishing addresses were labeled as phishing, while those related
to other addresses were labeled as benign. The final dataset includes the following features (ex-
plained in Table 2): Timestamp (G1), Transaction Hash, Sender Address (G2), Receiver Address
(G3), Transaction Value (G4), Gas Used (G7), Gas Price (G6) and Label. The dataset’s composition
concluded with around 2M benign and around 600K phishing transactions, providing a substantial
basis for our phishing detection model.
Labeling Strategy. Each Ethereum transaction in this study was labeled as either phishing (1)
or benign (0). The labeling process is illustrated in Figure 3. G2 and G3 represent the sender and
receiver addresses, while R1 and R2 are intermediate labeling results. In the first step (R1), an
address is matched against the known phishing list compiled from a publicly available dataset used

1Accessible at: https://etherscan.io (accessed November 2024).
2Accessible at: https://github.com/YNclusk/scamsonethereum (accessed November 2024).
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in prior work [20]. If a match is found, a second step (R2) involves manual verification through the
Etherscan API to confirm phishing activity and reduce labeling errors.

Only transactions involving addresses directly (1-hop) connected to verified phishing addresses
were labeled as phishing. This conservative approach minimizes false positives, though it may
overlook some phishing behaviors. For example, if address "0xabc...123", listed in the phishing
dataset, sends funds to "0xdef...456", that transaction is labeled as phishing.
For benign labels, we used addresses with no known history of phishing, scams, or related

activity. Although some benign addresses may later be flagged as malicious, the risk is minimized
by selecting historically clean addresses. For example, if address "0x111...aaa" sends funds to
"0x222...bbb", and neither address appears in the phishing list, the transaction is labeled as
benign. To ensure consistency and fairness, both phishing and benign transactions were collected
using the same Etherscan API and stored in a unified data format.
Data Balancing. A weighted loss function was employed to address the significant class imbalance
in the dataset, where phishing transactions constituted only 7.63% of the total transactions. This
approach involved assigning higher weights to the underrepresented phishing class and lower
weights to the more prevalent benign class. This weighting strategy compels the model to focus
more on phishing, despite their relative scarcity, thereby improving the model’s sensitivity to
phishing. The loss function is defined as follows:

L = −
𝑁∑︁
𝑖=1

𝑤𝑦𝑖 · log𝑝 (𝑦𝑖 ) (1)

where 𝑁 is the number of nodes, 𝑦𝑖 ∈ {0, 1} is the true class label of node 𝑖 , 𝑝 (𝑦𝑖 ) is the model’s
predicted probability for the true class, and𝑤𝑦𝑖 is the weight assigned to the class.

A weighted loss function (Equation 1) was employed to address the problem of class imbalance in
the dataset, as phishing nodes occur much less frequently compared to benign nodes. This method
increases the penalty for incorrectly classifying phishing nodes, encouraging the model to give
special attention to these rare but important cases. As a result, the model avoids overly favoring the
majority class and improves its ability to detect phishing behavior effectively. The weighted loss
function was selected over alternatives like focal loss because it is simpler to implement, provides
better stability during training, and does not require tuning additional parameters. Furthermore, it
naturally aligns with graph neural network models, allowing effective learning from imbalanced
data without adding unnecessary complexity. This choice is particularly valuable in phishing
detection tasks, where overlooking phishing nodes typically causes more harm than mistakenly
flagging benign ones. Ultimately, the use of a weighted loss function helps the model to become
more sensitive to the minority class, leading to more balanced and accurate results.

3.2 Feature Selection Rationale
The selection of features for this study was guided by a combination of observational insights and
established research on blockchain behaviors [8, 25, 49]. This informed approach ensures that the
features we focus on are both indicative of phishing activities and reflective of the unique dynamics
within blockchain transactions.
Transaction Volume (G4). Transaction volume is a critical indicator in phishing detection. Phish-
ing transactions often involve volumes that are either significantly higher or lower than those of
typical benign transactions. High-value transactions may be executed with the intent to quickly
drain compromised wallets, capitalizing on the rapid execution capabilities of blockchain technolo-
gies. Conversely, attackers might also distribute funds in numerous smaller transactions to mimic
routine user behavior, thereby evading detection systems that are tuned to spot large, irregular
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transfers. This dichotomy in transaction sizes provides crucial signals for distinguishing between
benign and malicious activities within the network.
Gas Usage (G7).Manipulation of gas usage is a common tactic in phishing schemes, utilized to
optimize the execution success of malicious transactions. High gas fees are often prioritized to
ensure fraudulent transactions are processed swiftly, outpacing any reactive security measures. On
the other end of the spectrum, lower-than-average gas fees can be indicative of an attacker’s strategy
to minimize operational costs during extensive phishing campaigns that require the execution of
numerous transactions. By analyzing patterns in gas usage, our model can identify deviations from
the norm that suggest underlying phishing attempts.
Timing Features (G1). The timing of transactions offers profound insights into user behavior on
the blockchain. Phishing operations frequently exhibit abnormal timing patterns—such as sudden
bursts of high-intensity activity followed by extended periods of dormancy—that starkly contrast
with the more uniform transaction timing of regular users. These anomalies in transaction timing
are vital for identifying potential phishing activities, as they often reflect the opportunistic nature
of attacks and the subsequent attempts to hide illicit actions within normal traffic flows.
Node Connectivity (Implicit Features). The relational dynamics between nodes, or addresses,
in the blockchain provide a ground for detecting phishing. Patterns such as repetitive transactions
with certain clusters of addresses or the sudden emergence of transactions with new, previously
unrelated nodes can signal the operation of controlled accounts engaged in phishing. These con-
nectivity patterns, especially when they deviate from typical user behavior, are strong indicators of
coordinated malicious activities.
The efficacy of implicit features in our phishing detection framework hinges on their ability

to uncover subtle yet consistent anomalies in transaction patterns and inter-node relationships.
The theoretical underpinnings and empirical validations from previous studies bolster our reliance
on graph-based features to robustly detect anomalies in network security [8, 21, 44]. Moreover,
the inherent transparency of blockchain transactions allows for a comprehensive analysis of
these relational patterns, rendering these implicit features especially powerful for uncovering and
understanding the sophisticated strategies employed in phishing attacks. This detailed exploration
not only aids in effectively identifying phishing activities but also enhances our understanding of
the interaction paradigms within Ethereum’s complex system.

3.3 Feature Extraction
This work employs a GCN to detect phishing addresses on the Ethereum blockchain by testing
the model with two feature sets: explicit transactional features and then implicit graph-based
features. The objective is to compare which feature set is more effective in improving the model’s
performance and delivering better results. Exploring these different aspects allows us to understand
the impact of each feature type on the predictive capabilities of the model, providing insights into
optimizing detection for enhanced accuracy and efficiency.
Explicit Features. The explicit features refer to the direct, transaction-specific attributes extracted
from the raw Ethereum data, providing key insights into the fundamental properties of each
transaction. These features include critical fields such as transaction timestamp (G1), sender (G2)
and recipient (G3) addresses, value transferred (G4), and gas-related features (G5, G6, G7). The goal
of leveraging explicit features is to capture fundamental transactional behavior, such as the timing,
volume, and cost-efficiency of transactions, which can provide early indicators of phishing. This
direct approach to feature extraction helps in quickly assessing transaction integrity and forming a
preliminary defense against phishing tactics.
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Table 2. Summary of explicit and implicit features transactions on the Ethereum network.

T Features Used G Explanation
Ex

pl
ic
it
Fe
at
ur
es

TimeStamp G1 The timestamp of the transaction
From G2 The sender’s address
To G3 The recipient’s address
Value G4 The amount of Ether transferred
Gas G5 The amount of gas provided for the transaction
GasPrice G6 The price of gas (in Wei) used for the transaction
GasUsed G7 The actual amount of gas used in the transaction

Im
pl
ic
it
Fe
at
ur
es

From_tx_cnt G2 Number of transactions initiated by address
To_tx_cnt G3 Number of transactions received by address
Total_val_sent G4 Total Ether sent by address
Total_val_rec’d G4 Total Ether received by address
Avg_gas_sent G7 Average gas for transactions sent
Avg_gas_rec’d G7 Average gas for transactions received
Mean_hour_sent G1 Average hour of day when transactions are sent
Mean_hour_recd G1 Average hour of day when transactions received
Std_hour_sent G1 Standard deviation of hour transactions sent
Std_hour_recd G1 Standard deviation of hour transactions received
Avg_time_bw_tx G1 Average time b/w consecutive transactions sent
Min_time_bw_tx G1 Minimum time b/w consecutive transactions sent
Max_time_bw_tx G1 Maximum time b/w consecutive transactions sent
Tx_duration G1 Duration b/w first and last transactions of address
Wd_tx_ratio_sent G1 Proportion of transactions sent on weekends
Wd_tx_ratio_recd G1 Proportion of transactions received on weekends

Implicit Features. To capture the deeper structural and temporal dynamics within the Ethereum
transaction, implicit features were extracted from the transaction graph. Unlike explicit features,
which focus on individual transaction details, implicit features highlight patterns from the inter-
actions between nodes (addresses) over time, offering a broader perspective on behavior. These
features are essential for understanding the complex network relationships and potential collusion
among addresses that are often characteristic of phishing.
The implicit features analyze how nodes interact within the network, uncovering patterns

like bursts of rapid transactions followed by inactivity, often associated with phishing activities.
Time-based features such as the average time between transactions (G1), the standard deviation of
transaction times (G1), and identifying irregular transaction patterns common in phishing schemes.

A crucial component of implicit features is the examination of node relationships. For instance,
repetitive or coordinated behaviors, such as frequent small-value transfers, can indicate phishing
clusters. Considering node behavior within the entire transaction graph allowed for identifyingmore
subtle patterns linked to phishing. Temporal characteristics also proved valuable in distinguishing
phishing from benign addresses. Metrics such as transaction time intervals and the duration between
a node’s first and last transactions helped detect anomalies in timing. A detailed description of the
explicit and implicit features is provided in Table 2. These analyses provide a deeper insight into
the tactics employed by attackers, enabling more effective prevention and mitigation strategies.
Feature Analysis and Selection. To identify the most distinguishing features for classifying
phishing and benign nodes, we utilized statistical analysis and Random Forest (RF). Random Forest is
an ensemble learning method that constructs multiple decision trees during training and determines
the output class based on the majority vote among the trees. It is widely used due to its robustness,
interpretability, and ability to handle high-dimensional data. Statistical analysis was first employed
to compare key features between phishing and benign nodes, such as transaction amounts, gas usage,
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Fig. 4. Construction of a directed Ethereum transaction graph and its transformation into PyTorch Geometric
inputs. The resulting data is processed by a GCN to classify addresses as phishing or benign.

and transaction timing. This helped uncover significant behavioral differences between the two
types of nodes. The RF classifier was then applied to rank the importance of the extracted features.
This dual approach ensures a comprehensive understanding of feature relevance, enhancing the
model’s accuracy by focusing on the most predictive attributes. RF provides a quantifiable measure
of feature importance, highlighting the most critical features for distinguishing phishing nodes
from benign ones. This method validated the statistical analysis findings and helped refine the
feature set by prioritizing attributes that proved to be key indicators of phishing behavior.
Data Preprocessing. Before applying the model, several preprocessing steps were performed to
ensure the data was in an appropriate format and range for effective and robust model training.
Namely, these steps included normalization and scaling. These preprocessing efforts align data
from diverse sources and scales, enhancing model training and performance predictability.
① Normalization: To alleviate the bias due to different feature scales, the Min-Max scaling was
applied to the features. This scaling ensures that all features are transformed into a [0,1] range,
which then aids in improving convergence during training. Normalization is particularly impor-
tant in handling outliers and reducing skewness in data distribution. The MinMaxScaler from
scikit-learn was utilized to rescale each feature based on its minimum and maximum values
within the dataset.
② Scaling: The features were categorized into explicit (e.g., timestamp, value) and implicit features
(e.g., transaction frequency, behavioral patterns). After scaling, these features were integrated into a
node feature matrix that was used as input for the GCN model. This structured approach to feature
integration facilitates more effective learning by the neural network, optimizing the detection of
complex phishing patterns.

3.4 Graph Construction
A directed graph was constructed using NetworkX [26], where each node represents an Ethereum
address and each edge represents a transaction between two addresses. Figure 4 illustrates the
full pipeline, including graph construction, data preparation, and the GCN architecture used for
address classification. This graph captures the underlying structure of the Ethereum transaction
network and allows for a detailed analysis of how Ethereum addresses interact. Understanding
these interactions is essential for visualizing complex network dynamics and serves as a foundation
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for analytical models. After construction, the graph is transformed into a format compatible with
PyTorch Geometric for training the GCN. The conversion involves:

(1) Node Features. A matrix where each row corresponds to the feature vector of a node, repre-
senting the explicit and implicit attributes of the Ethereum addresses. This matrix supplies
the necessary data for the GCN to evaluate each node based on its distinct characteristics.

(2) Edge Index. A tensor representing the directed edges between nodes, indicating the rela-
tionships between the sender and the receiver addresses (edge). This tensor is vital for the
GCN to recognize and utilize the connections between nodes, facilitating effective feature
propagation through the network.

(3) Edge Attributes. A label indicating whether the node is involved in phishing activity (1
for phishing, 0 for benign). These labels are imperative for training the model to accurately
classify nodes based on their transactional behaviors and associations.

(4) Node Labels. A label indicating whether the corresponding labeled node is phishing 1 or
benign 0. This classification supports the supervised learning process, guiding the GCN in
generating precise predictive outcomes.

Model Architecture. A GCN was implemented to classify Ethereum addresses as phishing or
benign. The GCN aggregates features from neighboring nodes and propagates information through
the graph, enabling the model to learn embeddings for each node by considering both its features
and those of its neighbors. This architecture takes advantage of network connectivity and feature
sets to uncover subtle indicators of malicious activities that traditional methods might miss.

(1) Input Layer. The node feature matrix, where each node is represented by a vector of explicit
features. This layer is the entry point for data into the GCN, setting the foundation for
complex pattern detection.

(2) Hidden Layers.Multiple GCN layers that apply graph convolutions to propagate informa-
tion between neighboring nodes. Each GCN layer updates the representation of a node by
aggregating the features of its neighbors. These layers refine the raw data into actionable
insights, crucial for the detection process.

(3) Activation Functions. ReLU (Rectified Linear Unit) activation is applied after each hidden
layer to inject non-linearity into the model, enhancing its capability to model complex
relationships.

(4) Dropout. Dropout regularization is strategically applied to the hidden layers to effectively
prevent overfitting, especially in the presence of highly imbalanced data. This technique
ensures that the model remains generalizable and effective against various forms of data
variance.

(5) Output Layer. The output layer uses a softmax activation function to produce the final clas-
sification (phishing or benign) for each node. This layer determines the ultimate classification
outcome, translating learned embeddings into definitive labels.

Graph Construction. The Ethereum transaction network was modeled as a directed graph
𝐺 = (𝑉 , 𝐸), where:

✧ Nodes. 𝑉 represents the nodes corresponding to Ethereum addresses. Each node is enriched
with various features, either explicit or implicit, capturing important aspects of the transaction
behavior.

✧ Edges. 𝐸 represents the directed edges corresponding to transactions between addresses.
Each edge connects a sender node 𝑢 to a receiver node 𝑣 , representing a transaction from 𝑢

to 𝑣 , with additional attributes.
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Graph Convolutional Layers. The core of the GCN model consists of graph convolutional
layers, which operate on the adjacency matrix 𝐴 of the transaction graph and the feature matrix 𝑋 ,
with a feature vector for each node. The GCN aggregates the features of each node’s neighbors,
propagating the aggregated information through multiple layers. This enables the model to learn
implicit features that capture the relationships between addresses.

The layer-wise propagation rule for the GCN is given by:

𝐻 (𝑙+1) = 𝜎

(
𝐷− 1

2𝐴𝐷− 1
2𝐻 (𝑙 )𝑊 (𝑙 )

)
(2)

Where 𝐴 is the adjacency matrix of the graph, representing connections between nodes, 𝐷 is the
degree matrix, where each diagonal element represents the degree of the corresponding node, 𝐻 (𝑙 )

is the hidden state at layer 𝑙 , representing the node embeddings at that layer,𝑊 (𝑙 ) is the weight
matrix for layer 𝑙 , which is learned during training, and 𝜎 is an activation function, ReLU in this
case, applied element wise.
Evaluation Metrics. The performance of the model was assessed using the following key metrics,
each defined mathematically.

① Accuracy: Accuracy measures the overall proportion of correctly classified phishing and be-
nign nodes. It is defined as: Accuracy = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , where𝑇𝑃 (True Positives) are correctly
identified phishing, 𝑇𝑁 (True Negatives) are correctly identified benign, 𝐹𝑃 (False Positives)
are benign misclassified as phishing, and 𝐹𝑁 (False Negatives) are phishing misclassified.

② Precision: Precision evaluates the accuracy of the phishing node predictions, focusing on
minimizing false positives. It is defined as: Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 . Precision reflects the proportion
of correctly identified phishing nodes out of all nodes predicted as phishing.

③ Recall: Also known as sensitivity or true positive rate, recall measures the model’s ability
to detect actual phishing nodes. It is defined as: Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Recall emphasizes the
proportion of actual phishing nodes that were correctly identified by the model.

④ F1-Score: The F1-score provides a balanced measure of precision and recall as the harmonic
mean of the two and is useful when there is an imbalance between the classes. The F1-score
is defined as: F1-Score = 2 × Precision×Recall

Precision+Recall . This metric is valuable in assessing performance
when both precision and recall are critical.

3.5 System Model
This work presents a behavior-based detection system that operates at the Ethereum address

level. Rather than focusing on transactional attributes, the system is built around implicit behavioral
characteristics—subtle, often hidden patterns that are difficult for adversaries to forge or predict.
The goal is to distinguish phishing addresses from benign ones by modeling how addresses behave
over time and within their transactional context.

The system starts by constructing a directed transaction graph, where each node represents an
Ethereum address, and each edge represents a transaction between two addresses. This graph is
the basis for learning behavioral features. Each node is embedded with fine-grained behavioral
signals derived from its historical activity, including how frequently it transacts, the timing and
variability of its transactions, and its interaction rhythm with other addresses.

Key features include average inter-transaction times, weekend activity ratios, and standard
deviation in transaction hours—attributes that together form a behavioral fingerprint of each
address. These patterns reveal how an address typically operates and whether its behavior aligns
more closely with legitimate users or with patterns common to phishing activity. For instance, some
phishing addresses stayed inactive for long periods and then started sending a series of low-value
transactions during early morning hours (e.g.,, 2–4 AM UTC). These transactions were usually sent

, Vol. 1, No. 1, Article . Publication date: April 2025.



Fishing for Phishers: Learning-Based Phishing Detection in Ethereum Transactions
13

to new or unfamiliar addresses, which may suggest testing or hiding funds. These actions may not
seem suspicious. However, when combined with short gaps between transactions, regular timing,
or sudden changes in gas prices, the overall pattern can point to automated or hidden activity that
is less common among normal user behavior.

To capture these relationships, the system applies GCN to model these behavioral relationships by
aggregating feature information from neighboring nodes in the transaction graph. This mechanism
allows the model to learn from the features of each address in isolation and the transactional
context in which it operates, such as repeated interactions with certain nodes, timing irregularities,
or sudden shifts in activity patterns. Additionally, the final embedding for each address is passed
through a classification layer that outputs a phishing probability score. Addresses exceeding a fixed
threshold are classified as phishing, enabling proactive intervention. The system is also designed to
operate passively on historical transaction data without relying on future information. Classification
decisions are made at the address level based on past behavior within a fixed observation window,
making the system suitable for deployment in near-real-time detection scenarios.

The system functions as a behavioral detection framework by combining graph-based learning
with implicit temporal and behavioral features. This enables it to flag previously unseen phishing
addresses based on their behavior over time and within the network structure. This approach
is particularly effective at detecting emerging or stealthy threats that do not match the known
phishing profiles but still exhibit suspicious behavior.
3.6 Threat Model
This work assumes a threat model where the attacker is a regular participant in the Ethereum
network with no privileged access. The adversary cannot see system internals or influence the de-
tection model directly. Instead, the attacker operates by creating and controlling multiple addresses,
all of which interact with the blockchain through normal transactions.

The attacker’s main goal is to carry out phishing campaigns by tricking users into sending funds
to addresses under the attacker’s control. To avoid detection, the attacker may try to mimic benign
transaction behavior. For example, they may send low-value transactions, choose normal gas prices,
or maintain long idle periods before starting activity. They can also spread activity across several
addresses to make their actions less noticeable.
However, the detection system is designed to capture behavioral patterns that are difficult to

fake. The system relies on implicit features, such as transaction frequency, average time between
transactions, gas usage patterns, and transaction timing variability. That reflects how addresses
behave over time. These features are based on the statistical behavior observed across historical
activity. As a result, they are harder for attackers to manipulate without leaving detectable traces.
For instance, an attacker might register a new address and leave it inactive for several days. Then,
during early morning hours (e.g.,, 3:00–4:00 AM UTC), the address suddenly begins to send multiple
small transactions to unfamiliar addresses. The attacker increases the gas price to prioritize these
transactions. While each individual action might appear normal, the system detects the combination
of unusual timing, abrupt change in behavior, and tightly spaced transactions as a suspicious pattern.

Because the model learns from awide set of implicit features and considers the address’s historical
and relational behavior in the graph, it can flag such addresses as phishing, even if the attacker
tries to blend in. The use of graph-based learning further strengthens detection by aggregating
information from neighboring nodes, making it harder for the attacker to isolate their actions.

In summary, the assumed adversary is capable of imitating surface-level activity, but cannot easily
avoid exposing behavioral inconsistencies. The system’s use of implicit temporal and structural
features enables it to detect phishing strategies that would be missed by methods relying only on
explicit or static information.
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Table 3. Training and testing dataset sizes.

Dataset Phishing Nodes Benign Nodes Edges
Training Set 537,492 2,149,968 1,234,355
Testing Set 134,373 537,492 72,848
Total 671,865 2,687,460 1,307,203

4 EXPERIMENTAL SETUP
This section outlines the steps taken to evaluate the performance of the GCN model in detecting
phishing activities on the Ethereum blockchain. The experiment was divided into three main phases:
(1) data preparation, (2) model training and testing, and (3) performance evaluation. The goal of the
experiment was to test the efficacy of explicit versus implicit feature sets in distinguishing between
phishing and benign transactions. This comparative analysis aims to identify the most impactful
features and refine the model’s predictive capabilities for real-world applications.

4.1 Data Preparation

Data Collection. Ethereum transaction data was collected using the Etherscan API, comprising
671,865 phishing transactions from 7,915 phishing addresses and 2,687,460 benign transactions.
This resulted in a final dataset of 3,359,325 transactions. The comprehensive dataset allows for a
robust analysis of phishing patterns and aids in the development of a nuanced understanding of
transaction behaviors.
Data Cleaning and Labeling. The dataset was thoroughly cleaned by removing duplicates,
null values, and irrelevant transactions. Each transaction was carefully labeled as either phishing
or benign. The label distribution was as follows: around 600K phishing and around 2M benign
transactions. This step ensures the accuracy and reliability of the training and testing datasets,
providing a solid foundation for the subsequent machine learning tasks. The final dataset included
important features such as Block Number, Timestamp, Transaction Hash, Sender Address, Receiver
Address, Transaction Value, Gas Used, Gas Price, and the phishing or benign label.
Data Splitting. The dataset, consisting of phishing and benign addresses, was divided into training
and testing using an 80/20 split to ensure proportional representation and effective model training.
This split strategy supports the model’s ability to generalize well to new, unseen data while ensuring
that it is robustly trained on a substantial portion of the available data. The specifics of the split are
shown in the Table 3.
Statistics. The training set contains around 500K phishing transactions and around 2M benign
transactions, connected by around 1M transaction edges. This large number of edges facilitates a
detailed network analysis, enhancing the model’s ability to learn from complex relational data. The
testing set comprises around 100K phishing transactions and around 500K benign transactions,
with 70K edges.
Class Balancing. We employed class weighting during training due to the significant class imbal-
ance, where phishing nodes make up a small portion of the overall dataset. This method adjusts
the model’s focus, ensuring that less frequent but critical phishing cases are not overlooked. This
approach assigns higher weights to phishing nodes, ensuring the model pays more attention to
identifying phishing addresses.
Normalization.Min-Max scaling was applied to the explicit features (e.g., transaction value, gas
used, gas price), normalizing their values between 0 and 1. This preprocessing step ensures that all
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features contribute equally to the training process, preventing any single feature from dominating
due to differences in scale.

4.2 Feature Engineering
Both explicit and implicit features were tested separately to determine their individual contributions
to enhancing phishing detection performance. Initially, the model was evaluated using only explicit
features to understand their baseline. Subsequently, implicit features were applied in isolation to
assess any improvements or changes in detection capabilities. This separate evaluation allows us to
precisely compare the impacts of each type of feature on the model’s performance.

Implicit Features. Various implicit features were extracted from Ethereum transaction data to
characterize each node’s behavior within the transaction network. The following key features were
derived from the raw transaction data:

(1) Transaction Frequency. The number of transactions initiated by a node (transactions initiated)
and the number of transactions received by a node (transactions received) are closely monitored.
This measure helps to identify nodes with unusually high or low activity, which can be clearly
indicative of either central hubs in legitimate operations or potential points of compromise in
fraudulent schemes.

(2) Total Transaction Value. The total Ether value sent and received by each node (total value
sent, total value received). Monitoring the flow of significant sums can help flag nodes that
are potentially involved in money laundering or the unauthorized transfer of funds as part of
phishing scams.

(3) Gas Usage. The average gas used by each node for sending and receiving transactions (average
gas used for sending, average gas used for receiving) is recorded. Patterns in gas usage can pro-
vide vital clues about nodes prioritizing transactions to strategically facilitate quick settlements,
a common tactic in phishing to effectively avoid detection.

(4) Time-Based Features Time-related patterns were captured by computing the mean and
standard deviation of transaction hours for sent and received transactions. These metrics
include the mean transaction hour for sending, the standard deviation of transaction hour for
sending, the mean transaction hour for receiving, and the standard deviation of transaction
hour for receiving. By analyzing these figures, we can discern not only the typical hours during
which users are most active but also the variability in their transaction times, indicating their
temporal transaction habits. This helps in understanding the regularity or randomness of user
activities in terms of time, facilitating insights into user behavior and system usage trends.

(5) Transaction Duration. The time difference between a node’s first and last transaction (du-
ration), as well as the average, minimum, and maximum time intervals between transactions
(average time between transactions, minimum time between transactions, maximum time be-
tween transactions) were calculated to capture temporal transaction patterns. Examining the
frequency and regularity of transactions over time allows for the detection of irregular patterns
that deviate from normal user behavior, often associated with phishing.

(6) Weekend Transaction Ratio. The proportion of transactions initiated or received during
weekends (weekend transaction ratio for sending, weekend transaction ratio for receiving) was
extracted, as phishing addresses may follow distinct temporal patterns compared to benign
addresses. By determining the ratio of weekend transactions, it is possible to identify anomalies
or consistent trends that clearly differentiate suspicious activities from normal behaviors. This
metric helps pinpoint deviations in transactional behavior typically unseen during the regular
working week, thus providing a clearer perspective on potentially malicious operations.
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To capture more complex interactions and patterns within the transaction network that may
not be directly evident from explicit features, graph-based techniques were employed to extract
implicit features. Specifically, GCN was applied to the Ethereum transaction graph, where nodes
represent Ethereum addresses and edges represent transactions. Through the GCN layers, each
node’s embedding was iteratively updated by aggregating information from its neighboring nodes,
capturing the structural and relational properties of the graph. These implicit features reflect the
deeper, latent patterns of node connectivity and behavior within the network, which are critical
in distinguishing phishing nodes from benign ones. This method enhances the model’s capability
to discern complex patterns of interaction within the Ethereum transaction graph, improving its
effectiveness in detecting and addressing potential phishing threats based on network behavior.

5 RESULTS AND ANALYSIS
In this section, we present the GCN’s performance when trained and evaluated on explicit and
implicit features. We assess the model’s effectiveness using key metrics such as precision, recall,
and F1-score, focusing on distinguishing phishing from benign nodes in the Ethereum network. To
identify the most distinguishing features, we employ statistical analysis and RF classifier.

5.1 Distinguishing Features
We conducted a detailed statistical analysis of key features in transaction data to accurately
differentiate phishing from benign nodes. Table 4 summarizes the features most indicative of
phishing behavior, providing insights into the patterns distinguishing these nodes.
Characteristics. We found that the phishing nodes send significantly higher transaction amounts
than benign nodes, with an average of 8.27 × 1019 compared to 3.72 × 1019. Despite similar Max
values, phishing nodes show greater variability, making this a key differentiating feature. Phishing
nodes also receive more value, averaging 3.88 × 1019, compared to 1.73 × 1019 for benign nodes.
While benign has higher Max values, phishing exhibits more consistent high-value behavior.

Although benign nodes generally use more gas on average (73,375 vs. 44,467 for phishing nodes),
phishing nodes display higher outliers, with Max values reaching 2.52 × 107, clearly indicating spo-
radic spikes in gas usage. Phishing nodes exhibit longer intervals between transactions, averaging
1.71 × 105 seconds, while benign nodes average −5.16 × 104 seconds. Phishing nodes also show
significantly higher variance in the hours they receive transactions (1.00 vs. 0.37 for benign nodes),
reflecting more irregular and unpredictable behavior.
The most significant differences between phishing and benign nodes lie notably in transaction

volume and timing. Phishing nodes send and receive considerably larger amounts, show higher
variability in gas usage, and typically have longer intervals between transactions, making these
key indicators essential for distinguishing them from benign nodes.
Random Forest Classifier for Feature Importance. RF classifier was applied to accurately
quantify the most important features for distinguishing phishing from benign nodes. The RF
analysis identified the total value sent as the most important feature (score of 0.40), aligning
perfectly with the statistical analysis. The average gas used when sending transactions (score of
0.31) also emerged as a critical feature. Timing-related features such as the average time between
transactions further supported the classification of phishing nodes. These feature importance
scores are represented in Figure 5, which highlights the top 10 most influential implicit features for
distinguishing phishing behavior, as ranked by the RF model.
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Table 4. Comparison of implicit features for phishing vs. benign nodes in terms of mean, max, and standard
deviation (Std). Highlighted cells indicate notably higher phishing statistics.

Feature Phishing Nodes Benign Nodes
Mean Max Std Mean Max Std

G2/G3 5.20 20,393 107.65 3.40 20,393 64.53
G4 (Sent) 8.27 × 1019 4.61 × 1024 1.26 × 1022 3.73 × 1019 4.61 × 1024 7.09 × 1021
G4 (Received) 3.88 × 1019 1.55 × 1024 4.52 × 1021 1.74 × 1019 2.33 × 1024 3.65 × 1021
G7 (Sent) 44,467.31 25,258,280 149,682.80 73,375.15 7,600,027 120,198.40
G7 (Received) 1,289.49 89,612 5,111.78 782.73 89,612 4,245.39
G1 (Mean hour sent) 11.99 23 6.08 11.63 23 6.01
G1 (Std hour sent) 7.99 264.50 23.77 10.71 264.50 27.94
G1 (Std hour received) 1.00 264.50 8.01 0.38 264.50 5.24
G1 (Avg time between tx) 171,726.90 222,295,100 7,434,316 -51,675.76 270,628,700 10,037,440
G1 (Weekend tx ratio sent) 0.29 1 0.42 0.24 1 0.39
G1 (Weekend tx ratio recvd) 0.02 1 0.11 0.01 1 0.09

0 0.1 0.2 0.3 0.4 0.5
Std Hour Sent

Weekend Transaction Ratio Sent
From Transaction Count

Transaction Duration
Max Time Between Transactions
Avg Time Between Transactions

Mean Hour Sent
Min Time Between Transactions

Avg Gas Used Sent
Total Value Sent

Fig. 5. Top 10 important features based on Random Forest.

Takeaway

The combination of high transaction volumes and irregular gas usage and timing provides
the strongest basis for distinguishing phishing nodes. These findings highlight the value of
combining statistical analysis withmachine learning to identify suspicious behavior in Ethereum
networks.

5.2 Performance on Explicit Features
In our first experiment, we trained the GCN using only explicit features, which included basic
transactional details such as value, gas used, and timestamps. The model achieved an overall
accuracy of 0.79, showing reasonable success in classifying benign nodes. However, its performance
in detecting phishing nodes was poor, as reflected by a recall of zero, indicating a complete failure
to correctly identify phishing. Table 5 presents the performance metrics.
The low recall for phishing nodes suggests that relying on explicit features limits the model’s

ability to capture the nuanced and coordinated behaviors that characterize phishing activities.
While the model performed well in classifying benign nodes with a precision of 0.79, it struggled
with phishing detection, as evidenced by a precision of only 0.76 and an F1-score of 0.01 for phishing
nodes. This result highlights the need for more complex features that can better distinguish between
benign and phishing behaviors.
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Table 5. Performance of GCN model using explicit for Phishing and Benign Transactions.

Metric Benign Phishing Weighted Avg
Precision 0.79 0.76 0.79
Recall 1.00 0.00 0.79
F1-Score 0.89 0.01 0.70

Table 6. Performance of GCN model using implicit for Phishing and Benign Transactions.

Metric Benign Phishing Weighted Avg
Precision 0.98 0.25 0.96
Recall 0.97 0.33 0.95
F1-Score 0.97 0.28 0.95

5.3 Performance on Implicit Features
The second experiment expanded the feature set by incorporating implicit features derived from
the transaction graph. These features capture more complex relational and behavioral patterns,
such as transaction frequency and node interactions, providing a richer representation of the
Ethereum network’s transactional dynamics. When implicit features were included, the model’s
overall accuracy improved significantly to 0.95, and the recall for phishing nodes increased to 0.33,
(see Table 6). This improvement indicates that implicit, graph-based features are more effective
at capturing the underlying behaviors associated with phishing activities, which often involve
coordinated and rapid transactions between nodes.
The classification report for implicit features underscores the effectiveness of incorporating

network-level information into the model. Precision for benign nodes remained high at 0.98, while
phishing node precision, although still low at 0.25, shows a marked improvement compared to the
experiment with explicit features. The F1-score for phishing nodes increased to 0.28, reflecting
a better balance between precision and recall, and further demonstrating the utility of implicit
features in detecting phishing activities.

Takeaway

The results of both experiments highlight the limitations of explicit features and the advantages
of incorporating implicit, graph-based features. While phishing detection remains challenging,
the improvements with implicit features offer promising directions for future detection on
blockchain.

5.4 Comparative Evaluation
To evaluate our approach, we compare our model against recent phishing detection systems as
summarized in Table 1. These baselines traverse various machine learning, feature types, and
experimental settings, enabling a multi-faceted assessment of our method’s effectiveness.
Different Learning Mechanisms. Our method is based on GCN, which allows learning over
Ethereum’s transaction graph. In contrast, many prior works adopt alternative learningmechanisms,
such as classical machine learning (e.g.,, decision trees, random forests, XGBoost) or deep learning
on tabular data. For example, Kabla et al. [18] used ML classifiers over explicit transactional
features and reported high F1-scores (0.98) on a relatively small dataset of 5,448 phishing instances.
Similarly, Cheng et al. [11] explored hybrid models using LSTM and ML components. However,
these approaches rely on limited features and datasets, with weaker generalization in large or
imbalanced settings. Our GCN model, by comparison, achieved an F1-score of 0.95 and precision of
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0.96 on over 600K phishing cases, demonstrating better performance and scalability in learning
from structural context.
Different Feature Types. The majority of prior studies fall into two camps: those using explicit fea-
tures (e.g.,, transaction value, timestamp, gas) and those using implicit, graph-derived features (e.g.,,
connectivity, behavior patterns). Zhou et al. [49] and Kabla et al. [18] achieved strong performance
with explicit features and ML models, but their datasets were significantly smaller and less diverse.
Conversely, works like Li et al. [22] and Wu et al. [43] leveraged implicit features in graph-based or
ML-based models. Our study builds upon the latter category but further refines implicit features
using temporal patterns and behavioral distributions, such as transaction inter-arrival times and
weekend activity ratios. This richer representation contributes to our higher recall (0.95) compared
to others, such as Chen et al. [8] (recall: 0.14) and Li et al. [22] (recall: 0.92).
Same Feature Class, Different Instantiations. Among studies utilizing implicit features, our
work distinguishes itself through the granularity and temporal depth of the extracted features.
Prior studies such as Li et al. [22] relied on node- or subgraph-level embeddings using contrastive
learning, while Fu et al. [12] explored address linkages without temporal decomposition. In contrast,
our implicit features were handcrafted to reflect detailed transaction behavior over time. These
include statistical metrics such as average, minimum, and maximum inter-transaction intervals;
gas usage patterns across sending and receiving behaviors; and distributional metrics like the
proportion of weekend activity. We also analyzed behavioral rhythms through time-of-day statistics
(mean and standard deviation of transaction hours), providing temporal signatures that distinguish
phishing nodes from benign ones. Importantly, we combined this with statistical validation and
feature importance ranking using Random Forests to systematically identify and prioritize the
most predictive attributes. These refined implicit features enabled our GCN to capture nuanced
behavioral patterns that are often subtle or obscured in generic graph representations. As shown
in Figure 5, the most influential features include total value sent, average gas used when sending, and
time-based metrics like minimum time between transactions and standard deviation of send hours.
These distinctions set our model apart from other graph-based systems using implicit features but
less expressive or temporally coarse representations.
Dataset Scale and Generalization. Our dataset includes over 671K phishing and 2.6M benign
transactions, making it one of the largest used in this domain. Many prior works use fewer than 10K
phishing samples. Despite scale and class imbalance, our model maintains high precision, recall,
and F1-score, showing strong generalization.

6 DISCUSSION

Performance of Explicit Features. In the initial experiment, where only explicit transactional
features such as transaction value, gas usage, and timestamps were used, the model exhibited
limited ability to distinguish phishing from benign nodes. While these features effectively identified
benign transactions, they fell short of capturing the intricate behaviors typical of phishing scams,
resulting in a high rate of false negatives. This observation suggests that while explicit features can
identify clear-cut cases of normal transactions, they do not provide the nuanced understanding
required to detect more deceptive phishing strategies. As such, this highlights the limitations of
relying solely on explicit data for detecting phishing, as these features offer only a surface-level
view of transaction patterns.
Impact of Implicit Features. When the GCN was tested with implicit features derived from the
Ethereum transaction graph, a marked improvement in phishing detection was observed. Implicit
features, which capture the relationships and transactional dynamics between nodes, enabled
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the model to better identify the complex, coordinated activities common in phishing scams. This
improvement in detection capability illustrates the critical role of network context in identifying
fraud, which is often missed when analyzing transactions in isolation. These graph-based features
allowed the model to consider transaction patterns. This underscores the value of focusing on
the broader network structure rather than isolated transaction details. However, despite these
improvements, the recall for phishing nodes remained at 0.33, indicating that a significant proportion
of phishing activities went undetected due to the inherent complexity of phishing patterns, which
our current model struggles to fully capture. Graph-based models like GCNs generally require
more computational resources compared to traditional machine learning methods, but this cost is
often justified by their improved ability to capture complex relational patterns.
Feature Comparison andModel Insights. The comparison between the two experiments demon-
strates the distinct roles of explicit and implicit features in phishing detection.While explicit features
are useful for understanding basic transactional properties, they lack the depth needed to capture
sophisticated behaviors. In contrast, implicit features, which account for interactions and transac-
tion sequences within the network, offer a more detection capability. The GCN’s performance with
implicit features highlights the importance of relational data for detecting phishing activities.
Addressing Class Imbalance. A key challenge throughout the experiments was the significant
class imbalance, with phishing transactions being vastly outnumbered by benign ones. To mitigate
this, a weighted loss function was employed, which improved recall for phishing nodes, especially
in the experiment using implicit features. However, despite these improvements, the model still
faced issues with false positives, suggesting that further refinement is needed to enhance precision
while maintaining high recall.
Clarifying Performance Comparisons. We understand that comparing our results to prior
studies can be misleading if the datasets or evaluation methods differ. In Section section 5, we only
included these comparisons to give general context, not as a direct benchmark. Our model was
trained and tested on a much larger dataset that we built independently, and we reported both
per-class and weighted metrics to give a full picture of the model’s performance. Still, we agree that
detecting phishing is the most important part, and we have been transparent about the limitations
of our recall. In the future, we plan to use shared datasets or re-run baseline models on our data to
allow for more consistent and fair comparisons.
Limitations and Future Directions. Although the use of implicit features improved phishing
detection, the model’s precision for phishing nodes remains lower than desired, indicating room for
optimization. Additionally, the limitations of explicit features highlight the need for approaches to
feature engineering. To address the challenge of detecting a higher proportion of phishing, future
efforts will focus on refining the model to improve recall, ensuring fewer malicious transactions are
missed while maintaining precision. Additionally, future work could explore integrating advanced
techniques such as attention mechanisms or temporal graph networks to further refine phishing
detection capabilities. Addressing these challenges could enhance both precision and robustness,
especially in real world with imbalanced data. Another important direction is adapting the model
to work with streaming Ethereum transactions, allowing it to support real-time phishing detection
as transactions occur. Exploring these new methodologies could provide the breakthrough needed
to advance the state of phishing detection on the Ethereum blockchain. We also plan to explore
adversarial training to better capture subtle phishing behaviors and improve recall.

7 CONCLUSION
This study investigated phishing detection on the Ethereum blockchain using GCNs with explicit
and implicit features. While explicit features like value and gas usage provided a basic foundation,
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they were insufficient for detecting the complex behaviors of phishing attacks. Implicit, graph-based
features significantly improved detection by capturing relationships between addresses and broader
network patterns. Addressing class imbalance with a weighted loss function enhanced the model’s
recall for phishing nodes, but challenges with precision remain, indicating a need for further
refinement. Our results highlight the importance of using implicit features for more robust phishing
detection. Future work should focus on improving precision and exploring advanced techniques
like attention mechanisms and temporal graph networks. In summary, implicit features are essential
for detecting phishing activities, and addressing class imbalance will be key to developing more
effective detection on blockchain networks.
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