
“Shifting Access Control Left” using Asset and
Goal Models

Shamal Faily
Defence Science & Technology Laboratory

Portsdown West, UK
sfaily@dstl.gov.uk

Abstract—Access control needs have broad design implications,
but access control specifications may be elicited before, during, or
after these needs are captured. Because access control knowledge
is distributed, we need to make knowledge asymmetries more
transparent, and use expertise already available to stakeholders.
In this paper, we present a tool-supported technique identifying
knowledge asymmetries around access control based on asset and
goal models. Using simple and conventional modelling languages
that complement different design techniques, we provide bound-
ary objects to make access control transparent, thereby making
knowledge about access control concerns more symmetric. We
illustrate this technique using a case study example considering
the suitability of a reusable software component in a new military
air system.

Index Terms—knowledge asymmetries, access control, UML,
KAOS, IRIS, CAIRIS, PYRAMID, DDS

I. INTRODUCTION

The UK MOD’s Secure by Design programme [1] aims to
“shift security left”, to ensure addressing security at the earliest
stage of capability acquisition is more than just a platitude, and
practical advice for doing this at the pre-concept and concept
stages is more than just aspirational. To achieve this, there is
a need for practical techniques and tools to help stakeholders
address security challenges early without security getting in
the way of innovation.

Compared to authentication - verifying the identity of a
user – there has been comparatively little work on how to
effectively design for authorisation - verifying the resources
a user can access. The need for access control is typically
expressed at an abstract level, but this is rarely captured
adequately in specifications, instead often being encapsulated
within detailed designs. Consequently, because access control
mechanisms are rarely perceived directly by end-users, the
root causes of access control inconsistency are not always
obvious from their symptoms. As such, if we can build “access
control by design” not only will this advance complementary
security technology relying on fine-grained access control, e.g.
data-centric security [2], it will also overcome an important
inhibitor to getting stakeholders to think practically about
security at the outset of a programme’s life.

Access control needs impact the interaction between people
and assets, but access control requirements may precede
requirements elicitation, be created in parallel by different
teams, or “bolted on” sometime afterwards. If a system’s
access control requirements fail to adequately account for

users’ access needs then users may violate access control
policies to get their jobs done [3]. Previous work in developer-
centered security [4] points to the presence of knowledge
asymmetries. As knowledge about the problem domain, threat
model, and potential access control expertise is distributed, it
is easy for different stakeholders to fail to appreciate the value
of assets or the vulnerabilities a design affords should security
requirements be miscommunicated or misinterpreted.

In this paper, we present a tool-supported technique for
identifying knowledge asymmetries around access control
based on asset and goal models. By using simple Software
and Requirements Engineering modelling languages that com-
plement different design techniques, we provide boundary
objects – artifacts that are both flexible and robust enough
to retain their identity when used by different stakeholders [5]
– that make access needs transparent to different stakeholders.
This can contribute towards making stakeholder access control
knowledge more symmetric. We describe the related work
upon which our technique is based in Section II, before
presenting and illustrating its elements in Sections III and IV
respectively, before concluding with directions for future work
in Section V.

II. RELATED WORK

A. Knowledge Asymmetries

Previous work in developer-centered security [4] points to
the presence of knowledge asymmetries. These are conditions
created when different people or organisational units possess
different stocks of knowledge [6]. Knowledge asymmetries can
be an important source of innovation. System design entails
synthesizing different perspectives of a problem, so these
asymmetries can be an opportunity to uncover tacit aspects
of a problem [7].

Unfortunately, because knowledge about the problem do-
main, threat model, and potential access control expertise
is distributed, it is easy for different stakeholders to fail to
appreciate the value of assets or the vulnerabilities a design
affords should security requirements be miscommunicated
or misinterpreted. For example, consider the design of a
hypothetical “secure by design” bash shell: byash (Bourne
Yet Again Shell). Figure 1 considers the different spaces of
expertise that need to contribute to the byash requirements.
Alice can provide the perspective of the Unix system adminis-
trator community that will use byash on a day-to-day basis.

ar
X

iv
:2

50
4.

17
90

6v
1

 [
cs

.C
R

]
 2

4
A

pr
 2

02
5

Unix system
administration

POSIX

Relevant CVIs

ABAC
model

Alice

Bob
Carol

Danbyash
A secure

by
design
bash

Figure 1. Knowledge asymmetries in a “secure by design” shell

Because the shell itself will need to conform to the Portable
Operating System Interface standard (POSIX) [8] to maintain
compatibility and interoperability between operating systems,
Bob - as a system programmer - will also need to provide
some input. It will also be desirable for byash to implement
data-centric security, so Carol’s expertise on Attribute Based
Access Control (ABAC) is required to ensure that policies
are usable to the wide-range of end-users and developers.
Finally, Dan’s experience carrying out Cyber Vulnerability
Investigations (CVIs) on platforms that use the target operating
system will provide insight into the byash threat model
necessary for security requirements capture.

While this example sounds complex, it is comparatively
trivial given the scale of some defence capabilities, and the
myriad Defence Lines of Development expertise spaces that
accompany them. Consequently, boundary objects – artifacts
that are both flexible and robust enough to retain their identity
when used by different stakeholders [5] – play an important
role in creating spaces that intersect the spaces of expertise.
If these are sufficiently boundary spanning then they can
decrease the negative effects of knowledge asymmetries [6].

B. Model driven security

Previous work in model driven security has examined the
capture of access control intent using conventional modelling
languages. For example, SecureUML [9] integrated access
control into UML class diagrams for subsequent model trans-
formation. In this approach, roles (as subjects) have permis-
sions for actions on resources, where roles could be groups
or users, permissions are constraints, and actions could be
atomic or composite. Authorisation constraints were modelled
as Object Constraint Language (OCL) constraints on the ends
of association. Building on this approach have been attempts
to enforce access control policies based on such models, e.g.
[10]. A limitation of this previous work has been the focus
on model transformation. Moreover, while such approaches
are expressive, they assume the presence of a detailed design

based on validated requirements. Basin et al. [11] also note that
expressive modelling languages are problematic for managing
consistency between different models. They allude to the chal-
lenge of developing modelling languages expressive enough to
capture policies, support formal analysis, and provide a basis
for generating infrastructure to enforce or at least monitor
policies.

C. Security Requirements Engineering

Previous work in Goal Oriented Requirements Engineering
has considered requirements modelling for access control.
Giorgini et al. [12] describe the modelling of access control
permissions as predicates where an actor a owns service
s, or actor a has permission to use service s. These are
subsequently used by axioms to determine how permissions
might cascade delegation chains or subgoals. This support
was subsequently added to the Secure Tropos methodology
[13]. Similarly, Paja’s STS-ml modelling language [14] in-
corporates an authorisation view, which models the transfer
and propagation of permissions between actors and allowed
or prohibited read, modify, produce, or transfer operations.
STS-ml also incorporates complementary tool-support (STS-
tool), which can verify the fulfilment of security requirements.
However, these approaches rely on extensions to social goal
modelling that are already visually complex, which can hinder
take-up by stakeholders [15].

IRIS (Integrating Requirements and Information Security)
is a process framework for designing usable and secure
software [16]. It is also supported by the CAIRIS (Computer
Aided Integration of Requirements and Information Security)
platform: an open-source platform for specifying, modelling,
and validating requirements, security, and usability models.
CAIRIS can automatically validate and visualise several views
of a system being specified. These include asset models,
class diagrams of assets based on the AEGIS method [17],
and system goal models based on the KAOS goal modelling
language [18]. IRIS and CAIRIS, together with asset and goal
models, have been used to analyse and improve a security
policy for a critical infrastructure company. However, this
approach did not account for the access control needs of
stakeholders, and how this aligned with the security policy.

III. APPROACH

The technique entails simultaneously modelling access con-
trol needs and requirements using AEGIS asset models and
KAOS goal models respectively. This is complemented by an
algorithm to spot potential issues as both models evolve. Both
modelling languages were chosen due to their expressiveness
and, given the problems raised by [15], low visual complexity.
This facilitates their use as boundary objects by stakeholders
regardless of their expertise.

A. Modelling access control needs with class diagrams

The approach for modelling access control needs is based
on UML class diagrams, where a class represents an asset:
someone or something of value, and its properties are one or

more qualitative security properties, such as Confidentiality
and Integrity; each property value is rated as None, Low,
Medium, or High, where None < Low < Medium <
High. These properties are meant to stimulate dialogue
between stakeholders about what constitutes None, Low,
Medium, and High values. For example, disclosure of a
low Confidentiality information asset might hinder day-to-day
operation of the system, whereas tampering with a medium
Integrity system asset may cause notable damage to operations.
It is not the role of the asset to specify what this hindrance or
damage might be; this is the subject of complementary threat
modelling or risk analysis. An asset is also typed as a System,
Information, or People.

System Information People

System

Information

People ✓

✗

✗

✓✓

✓✓
✓✓

Figure 2. Access rules between subjects (rows) and resources (columns)

In the technique, both the subject requiring access, and
the resource accessed are assets. However, as indicated in
Figure 2, we restrict the types of assets that can request
access to other assets. For example, a person might read
some information, but not vice-versa. It may appear odd
that information should be permitted to access resources but,
during early stages of design, stakeholders might model some
system that stores information as an information asset, or an
information asset needs to access some resource because some
out-of-scope system or person is handling that information, but
the information-information access has some value.

Works Diary Diary Event
1..*

r,w

Figure 3. A class diagram with access needs

Unlike existing approaches like [9] which rely on OCL
to model constraints on access between classes, we take a
simpler approach that entails modelling access needs; such
needs are easier to capture than constraints early in design.
We rely on the optional adornment of class association ends
with information about the role played by the asset on the end
of a relationship. We exploit this feature by adorning ends with
access control information. For example, Figure 3 models the
relationship between a Works Diary and Diary Event; both are
information assets and the former contains one or more of the
latter. The r,w adornment on the tail end of the Works Diary-
Diary Event association should be read as “a works diary
needs to read and write a diary event”. Possible adornments for
access needs are one or more of read (r), write (w), and interact
(x). The choice of x is based on the execute permission used
in unix, but the term interact allows for a range of affordances
beyond execution. Where r, w, or x adornments are omitted
from the end of an association, no access is assumed necessary,

e.g. in Figure 3, diary events do not read, write, or interact with
works diaries. This approach is based on AEGIS, but where
AEGIS considers asset value and requirements elicitation as
synonymous, asset values are necessary but not sufficient for
security requirements elicitation. Asset modelling typically
takes place too early in the design phase to elicit useful
security requirements. For example, setting low Confidentiality
and Integrity properties for a Word Processor asset might
indicate that the word processor is not used for sensitive work.
The values, however, tell us nothing about what the system
needs to do to ensure these values are protected.

B. Modelling access control policies with requirements

Many organisations have multiple access control policies
for disparate systems. Although these may be maintained
by security teams in isolation, these policies impinge on
system goals operationalised by tasks individuals carry out.
To capture this impact, our technique directly aligns access
control policies with access control requirements modelled in
KAOS. An access control policy captures the set of authorised
and unauthorised interactions between assets. Each access
control policy statement is defined as Subject × Access ×
Resource × Permission where Subject and Resource are
assets, Access = {read,write, interact} and Permission =
{allow, deny}, and each policy statement is associated with
a single requirement. The requirements should be precise
enough to specify the conditions or capabilities the system
needs to satisfy for the policy statements to hold. Where this
is not possible, the requirement would need to be subject to
refinement. Consequently, a complete access control policy
should correspond with a complete specification describing
the intent the system needs to satisfy for compliance with the
policy.

When user needs are met, the access needs in class diagrams
should correspond with policy statements with an allow
permission. However, the absence of access needs need not
correspond with a deny permission for the related subject and
resource assets. Other means exist for capturing the rationale
for non-inclusion, and requirements for denying access may
not be within the scope of analysis. The approach allows the
addition of requirements and policy statements if they are.

C. Validating access control needs to identify asymmetries

Access control can be validated with stakeholders by re-
viewing whether the desired access control needs are permitted
by the access control policy. Where these needs are absent
between particular subjects and resources, designers should
agree on whether the needs exist and, if not, requirements
denying access should be specified. The goal model aids
transparency by helping stakeholders appreciate what an allow
or deny means for some desired interaction.

Algorithm 1 was implemented in CAIRIS to warn of po-
tential issues with access needs and the access control policy.
Where access needs are permitted, the policy statements are
verified against security rules for particular security models.
For illustrative purposes, the rules used in this algorithm are

Algorithm 1: Access control validation check
Input : cmGraph - asset model graph
Data: expandedNeeds - set of access need triples

(Subject × Access × Resource) drawn from asset
model , aPolicyStmt - permitted policy statement,
dPolicyStmt - denied policy statement, subjV alue -
subject security property value, resV alue - resource
security property value

1 Function validationCheck(cmGraph) is
2 expandedNeeds ← ∅;
3 while subj needs res ← cmGraph do
4 while acNeed ← expandNeeds needs do
5 expandedNeeds ∪ {subjt,acNeed,res};
6 end
7 end
8 while subj acNeed res ← expandedNeeds do
9 aPolicyStmt ← allowedPolicyStatement subj

acNeed res;
10 if aPolicyStmt = ∅ then
11 dPolicyStmt ← deniedPolicyStatement subj

acNeed res;
12 if dPolicyStmt = ∅ then
13 log ’Unauthorised access’ subj acNeed

res;
14 else
15 log ’Undefined access’ subj acNeed res;
16 end
17 else
18 subjV alue ← confidentialityProperty subj;
19 resV alue ← confidentialityProperty res;

// Check Simple Security Property
20 if (resV alue > subjV alue) ∧ (acNeed =

read) then
21 log ’Potential no read-up violation’ subj

acNeed res;
22 end

// Check *-Security Property
23 if (subjV alue > resV alue) ∧ (acNeed =

write) then
24 log ’Potential no write-down violation’ subj

acNeed res;
25 end
26 subjV alue ← integrityProperty subj;
27 resV alue ← integrityProperty res;

// Check Simple Integrity
Property

28 if (resV alue > subjV alue) ∧ (acNeed =
write) then

29 log ’Potential no write-up violation’ subj
acNeed res;

30 end
// Check Integrity *-Property

31 if (subjV alue > resV alue) ∧ (acNeed =
read) then

32 log ’Potential no read-down violation’ subj
acNeed res;

33 end
34 end
35 end
36 return;
37 end

drawn from the Bell-LaPadula [19] and Biba [20] security
models, which consider the preservation of information Con-
fidentiality and Integrity respectively. Our approach makes no
assumptions about what access control model or implementa-
tion will be enforced in the system being designed.

The algorithm begins by breaking each association between
assets into a triple of subject, roles, and resources where
an access need is present (Line 3). For example, the dia-
gram in Figure 3 yields the triple (WorksDiary, “r, w”,
DiaryEvent); no triple would be present for the association
between Diary Event and Works Diary because no access
needs are present. The needs are subsequently expanded (Line
4-6), such triples with multiple needs are transformed into
multiple triples with single needs, e.g. (WorksDiary,“r, w”,
DiaryEvent) expands to (WorksDiary,“r”, DiaryEvent)
and (WorksDiary,“w”, DiaryEvent).

Each expanded access need is subsequently enumerated
(Lines 8-38) to determine if the access control policy permits
the need (Line 9). If the need has not been explicitly permitted
but the policy forbids this access then an unauthorised access
warning is logged, otherwise an absent access warning is
instead logged (Lines 9-16). The logging of undefined access
is intended to make this potential ambiguity transparent to
designers and stakeholders, who can then review the ac-
cess control policy, the access need, or both. If the access
need corresponds with a policy statement then we obtain
the Confidentiality and Integrity properties associated with
the subject and resources (Lines 18-19, 26-27) and compare
these values based on access need and classes of violation in
certain access control security models. For example, where the
Confidentiality property of a resource that needs to be read is
greater than the subject then there is potentially a violation
of the Bell-LaPadula Simple Security Property, i.e. no read-
up [19]. Similarly, where the Integrity property of a subject is
higher than the level of the resource it needs to read from then
there is potentially a violation of the Biba Integrity *-Property,
i.e. no read-down [20].

IV. CASE STUDY: IDENTIFYING ACCESS CONTROL
KNOWLEDGE ASYMMETRIES IN A PYRAMID COMPONENT

A. PYRAMID overview

We illustrate this technique by finding potential access
control knowledge asymmetry when a pre-existing avionics
software component is integrated into a hypothetical military
air system1. The component’s specification is based on the
Pyramid Reference Architecture (PRA). PRA is an open, air
system, reference architecture that is exploiting and execution
platform independent [21]. By providing an open architecture
approach and encouraging systematic software reuse, PYRA-
MID aims to make avionic system design and procurement
more affordable, capable, and adaptable.

To achieve PYRAMID’s goals, the PRA alone is insuf-
ficient for developing PYRAMID components. Exploiting

1CAIRIS model and reviewer instructions for interacting with it available
at https://github.com/failys/icmcis2025_paper_model

https://github.com/failys/icmcis2025_paper_model

Capture requirements for data distribution

Participant interaction Data item provision Delivery format Assess distribution capability Distribute data Gather data Format data

Figure 4. KAOS goal model representing system requirements for data distribution

programmes building air systems need to determine system
and security requirements, while suppliers need to develop
the software components based on their interpretation of the
PRA. When developing these components, suppliers may not
have visibility of system and security requirements. While
requirements and security analysis may precede component
development, this may not be the case where components are
reused from a pre-existing air system. As such, the ability
to identify potential security issues before a component is
integrated into an aircraft’s broader software system could
cast light on unwarranted assumptions that might otherwise
be missed until much later.

The reused component is based on the Data Distribution
component specification within the PRA [22]. The compo-
nent’s role is to prepare and distribute data between partici-
pants in a data exchange. The component is agnostic to detail
about the software and hardware platform it runs on, or the
type of middleware used.

A component implementing this specification was devel-
oped in C++ using Data Distribution Service (DDS) mid-
dleware; DDS is a data-centric middleware protocol and
Application Programming Interface (API) standard, based on
a publisher-subscriber metaphor [23]. This implementation is
used in a pre-existing, legacy air system The key elements of
this component are illustrated in Figure 5. Clients use an API
for mission specific data distribution operations, e.g. reading
and writing messages. Behind the API is a singleton [24]
object that encapsulates DDS entities such as publishers, sub-
scribers, readers, and writers, and state specific information.
The DDS entities are configured at run-time using Quality of
Service (QoS) properties set externally, i.e. through configu-
ration files. Client data passed into the API is translated into
DDS sample data and vice-versa using a factory [24] object.
API operations that map to DDS publication operations are
directly handled by the singleton object. However, the receipt
of DDS samples is handled by listener classes, which update
the state specification information. This state is available from
“read” specific API operations.

As Figure 5, there is alignment between the classes in this
detailed design and the entities in the PRA.

B. Modelling access control needs

Figure 6 shows the resulting asset model of these component
elements. The security properties for each asset are described

Asset Confidentiality Integrity

Data Item Low Medium
Distribution Capability None Medium
Delivery Interaction Low Medium
Delivery Item Low Medium
Delivery Resource None None
Formatting Rule None Medium
Participant None Low

Table I
DATA DISTRIBUTION ASSET SECURITY PROPERTIES

in Table I. The value for the properties is based on the
potential impact of a breach at an associated classification
tier. For example, a Low value is associated with compromise,
loss, or disclosure of the asset at an OFFICIAL classification
[25], which is the indicative security classification for the
component in the PRA.

C. Modelling system requirements and access control policy
statements

The security considerations within the component specifi-
cation note that access to data should be restricted to ensure
different classifications of communication remain separate and
not inappropriately directed. The PRA does not stipulate ac-
cess control policies for this component, but these are implied
within the component specification. Consequently, based on
the specification responsibilities, subject matter semantics,
design rationale and considerations, and safety and security
considerations, seven system requirements were elicited. As
indicated in Figure 4, these requirements were a refinement
of the Capture requirements for data distribution requirement
within the component specification. The access control policies
for the component entities associated with these requirements
are specified in Table II.

D. Validating access needs

Running the model validation algorithm yielded 8 warnings;
the types of warning are summarised in Table III.

Six of the warnings were due to absent policy statements
where access was expected in the component implementation,
but not specified in the access control policy associated with
the system requirements. For example, Distribution Capability
objects need to read Delivery Items within the component
implementation, i.e. to handle topic samples the participant

Client

DDS Singleton

QOS Property

DDS State

DDS Entities

Network Stack

Client Data

Sample Factory

Sample

Topic Listener

Participant

Delivery Interaction

Delivery Capability Data Item

Formatting Rules

Delivery Item

1

1

1

1

*

1. .* 1. .*

1. .*

1

1

1. .*

*

1

1

*

1. .*

Figure 5. Legacy Data Distribution class model

Requirement Subject Access Type Resource Permission

Participant interaction Participant write Delivery Interaction allow
Data item provision Participant read Data Item allow
Delivery format Formatting Rule read Data Item allow
Assess distribution capability Delivery Interaction read Distribution Capability allow
Distribute data Distribution Capability write Delivery Item allow
Gather data Delivery Interaction read Data Item allow
Format data Formatting Rule write Delivery Item allow

Table II
DATA DISTRIBUTION POLICY STATEMENTS

Security rule Violation

Simple Security Property Y
*-Property N
Simple Integrity Property Y
Integrity *-Property N
Absent policies Y

Table III
SECURITY RULE VALIDATION CHECK RESULTS

might have subscribed to. However, the policy statement for
the component indicates that Delivery Capability objects can
only write Delivery Items. This warning identifies potential
asymmetries of knowledge between the programme and sup-
plier around which entities should be responsible for DDS
publication and subscription; these need to be resolved before
updating the policy statements.

The violation of the Simple Security Property occurred be-
cause Formatting Rule objects need read access to Data Items,
but the Confidentiality property of the resource is higher than
the subject. While the PRA implies that Formatting Rule is a

static collection of rules, the component implements it using
a collection of factory methods [24], where the appropriate
Delivery Item object is created based on the type of Data
Item parameter. While the policy stipulates that Formatting
Rule should be able to write Delivery Item and read Data Item
objects, the component implementation needs to interact with
the Formatting Rule factories. Because this is not stipulated
as a policy statement, the warning should promote discussion
between the programme team and supplier around expectations
for formatting data before and after data distribution.

The violation of the Simple Integrity Property occurred be-
cause Participants need write access to Delivery Interactions,
but the Integrity value of the resource is higher than that of the
subject. From the perspective of the supplier, the Participant
Integrity value is no higher than that implied within the PRA,
and its corruption is not considered within scope. However,
for the exploiting programme, failing to protect Delivery
Interactions from tampering could lead to interactions at a
lower-level of classification tainting interactions at a higher-
level. This situation could have arisen because the component

Participant

Delivery Interaction

* w

*

Distribution Capability

1 r,x

*

Data Item

* r

*

Delivery Resource

* x

*

Delivery Item

* r,w

*

Formatting Rule

* r,w

* r,w

* w

*

Figure 6. Data Distribution component asset model

had originally been deployed in a legacy environment where,
for several reasons, such protections were unnecessary.

V. DISCUSSION AND CONCLUSION

In this paper, a tool-supported technique was presented
for identifying knowledge asymmetries around access con-
trol based on asset and goal models. The technique does
not replace comprehensive approaches for capturing security
requirements, but could be plugged into such approaches. As
such, the paper makes three contributions.

First, we show how simple, conventional models that may
already exist shed light on access control issues that might
otherwise remain hidden; this can make access control more
transparent leading to fewer knowledge asymmetries related to
access control. While the worked example is simple enough
that the problems found could be spotted by careful inspection
alone, such issues become harder to spot as models grow. Our
work also complements other participative design or threat
modelling techniques. For example, we could use outputs
from premortems [26] in threat modelling workshops to elicit
access needs, validate asset values, or review access control
requirements.

Second, this work provides a view of what “shifting access
control left” looks like. Previous work [27] has already shown

how processes and tools akin to those in this report support
the provision of machine-readable design models that can be
incorporated into Continuous Integration / Continuous Devel-
opment (CI/CD) pipelines. Moreover, although the tooling that
supported this approach was implemented in CAIRIS, there is
no reason it could not be implemented in other modelling or
system requirements/architecture tools that facilitated interop-
erability with other tools, i.e. by supporting an API. Doing so
ensures that thinking about access control is productive and
does not inhibit other design or innovation practices.

Finally, we presented a validation approach, which is poten-
tially extensible and doesn’t preclude the specification of more
elaborate policies, based on different access control models.
For example, the initial loop in Algorithm 1 could be refined
to incorporate access needs resulting from role or object
hierarchies expressed using class inheritance; this would allow
needs associated with a Role-Based Access Control (RBAC)
policy to be captured. Similarly, if class attributes were also
captured then fine-grained needs could be evaluated against
ABAC models, i.e. those associated with data-centric security
policies. Moreover, while the algorithm does not traverse the
asset model, a similar approach could be employed to [28],
where the graph could be traversed to obtain a set of asset
association traces that could subsequently analysed for more
elaborate taint checking, or modelling the impact of delegating
subgoals similar to [12].

For future work, we will conduct a more comprehensive
validation of this technique with different access control mod-
els, participative design, and threat modelling techniques for
eliciting access control requirements, and improving knowl-
edge asymmetries. We will also further improve the validation
algorithm, including making greater use of usability and
security concepts supported by IRIS to identify context of use
nuances with access control implications.

ACKNOWLEDGEMENTS

This document is an overview of UK MOD sponsored
research. The contents of this document should not be inter-
preted as representing the views of the UK MOD, nor should
it be assumed that they reflect any current or future UK MOD
policy.

© Crown copyright (2024), Dstl. This information is
licensed under the Open Government Licence v3.0. To
view this licence, visit https://www.nationalarchives.gov.uk/
doc/open-government-licence/version/3. Where we have iden-
tified any third party copyright information you will need to
obtain permission from the copyright holders concerned. Any
enquiries regarding this publication should be sent to: Dstl.

REFERENCES

[1] Ministry of Defence, “Secure by Design: Secure from the start,”
https://www.digital.mod.uk/secure-by-design/secure-from-the-start, Au-
gust 2024.

[2] K. Wrona, “Towards Data-Centric Security for NATO Operations,” in
Digital Transformation, Cyber Security and Resilience, T. Tagarev and
N. Stoianov, Eds. Springer, 2024, pp. 75–92".

https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
https://www.digital.mod.uk/secure-by-design/secure-from-the-start

[3] S. Bartsch and M. A. Sasse, “Guiding decisions on authorization
policies: A participatory approach to decision support,” in Proceedings
of the 27th Annual ACM Symposium on Applied Computing. ACM,
2012, p. 1502–1507.

[4] O. Pieczul, S. Foley, and M. E. Zurko, “Developer-centered security and
the symmetry of ignorance,” in Proceedings of the 2017 New Security
Paradigms Workshop. ACM, 2017, pp. 46–56.

[5] S. L. Star and J. R. Griesemer, “Institutional ecology, "translations" and
boundary objects: Amateurs and professionals in berkeley’s museum of
vertebrate zoology, 1907-39,” Social Studies of Science, vol. 19, pp.
387–420, 1989.

[6] M. Ronko and M. Makela, “Asymmetries of Knowledge Between
Engineering and Marketing in Software Product Development,” in
Proceedings of the 2018 European Conference on Information Systems.
Association for Information Systems, 2008.

[7] G. Fischer, “Symmetry of ignorance, social creativity, and meta-design,”
Knowledge-Based Systems, vol. 13, no. 7, pp. 527–537, 2000.

[8] The Open Group and IEEE, “IEEE Std 1003.1 - 2024 Edition,” https:
//pubs.opengroup.org/onlinepubs/9799919799, August 2024.

[9] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security: From
uml models to access control infrastructures,” ACM Transactions on
Software Engineering and Methodology, vol. 15, no. 1, pp. 39–91, Jan.
2006.

[10] J. Bogaerts, M. Decat, B. Lagaisse, and W. Joosen, “Entity-based
access control: Supporting more expressive access control policies,”
in Proceedings of the 31st Annual Computer Security Applications
Conference. ACM, 2015, p. 291–300.

[11] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,”
in Proceedings of the 16th ACM Symposium on Access Control Models
and Technologies. ACM, 2011, pp. 1–10.

[12] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Modeling
security requirements through ownership, permission and delegation,”
in Proceeedings of the 13th IEEE International Conference on Require-
ments Engineering. IEEE, 2005, pp. 167–176.

[13] P. Giorgini, H. Mouratidis, and N. Zannone, “Modelling Security and
Trust with Secure Tropos,” in Integrating Security and Software Engi-
neering. Idea Group, 2007.

[14] E. Paja, “STS: A Security Requirements Engineering Methodology for
Socio-Technical Systems,” Ph.D. dissertation, Università degli Studi di
Trento, 2014.

[15] D. L. Moody, P. Heymans, and R. Matulevicius, “Improving the ef-
fectiveness of visual representations in requirements engineering: An

evaluation of i* visual syntax,” in Proceedings of the 17th IEEE
International Requirements Engineering Conference. IEEE, 2009, pp.
171–180.

[16] S. Faily, Designing Usable and Secure Software with IRIS and CAIRIS.
Springer, 2018.

[17] I. Fléchais, M. A. Sasse, and S. M. V. Hailes, “Bringing security home:
a process for developing secure and usable systems,” in Proceedings of
the 2003 New Security Paradigms Workshop. ACM, 2003, pp. 49–57.

[18] A. van Lamsweerde, Requirements Engineering: from system goals to
UML models to software specifications. John Wiley & Sons, 2009.

[19] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical
Foundations,” MITRE, 2547, 1974.

[20] K. J. Biba, “Integrity Considerations for Secure Computer Systems,”
MITRE, Tech. Rep. 3153, 1975.

[21] Ministry of Defence, “PYRAMID Exploiter’s Pack Version 4.1,” https:
//assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/
PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf,
September 2023.

[22] ——, “PYRAMID Exploiter’s Pack Version 4.1: Annex A - PRA
Description Document Issue 4.1,” https://assets.publishing.service.gov.
uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_
Main_Document_Issues_4.1.pdf, September 2023.

[23] Object Management Group, “DDS Foundation Portal,” https://www.
dds-foundation.org, January 2023.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Creational Patterns,”
in Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[25] Cabinet Office, “Government Security Classi-
fications Policy,” https://www.gov.uk/government/
publications/government-security-classifications/
government-security-classifications-policy-html, August 2024.

[26] S. Faily, J. Lyle, and S. Parkin, “Secure system? challenge accepted:
Finding and resolving security failures using security premortems,” in
Designing Interactive Secure Systems: Workshop at British HCI 2012,
2012.

[27] S. Faily and C. Iacob, “Design as code: Facilitating collaboration
between usability and security engineers using cairis,” in 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW),
2017, pp. 76–82.

[28] S. Faily, R. Scandariato, A. Shostack, L. Sion, and D. Ki-Aries, “Con-
textualisation of data flow diagrams for security analysis,” in Graphical
Models for Security. Springer, 2020, pp. 186–197.

https://pubs.opengroup.org/onlinepubs/9799919799
https://pubs.opengroup.org/onlinepubs/9799919799
https://assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf
https://assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf
https://assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf
https://assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf
https://assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf
https://assets.publishing.service.gov.uk/media/651167922f404b0014c3d850/PYRAMID_Exploiter_s_Pack_Main_Document_Issues_4.1.pdf
https://www.dds-foundation.org
https://www.dds-foundation.org
https://www.gov.uk/government/publications/government-security-classifications/government-security-classifications-policy-html
https://www.gov.uk/government/publications/government-security-classifications/government-security-classifications-policy-html
https://www.gov.uk/government/publications/government-security-classifications/government-security-classifications-policy-html

	Introduction
	Related Work
	Knowledge Asymmetries
	Model driven security
	Security Requirements Engineering

	Approach
	Modelling access control needs with class diagrams
	Modelling access control policies with requirements
	Validating access control needs to identify asymmetries

	Case Study: Identifying Access Control knowledge asymmetries in a PYRAMID component
	PYRAMID overview
	Modelling access control needs
	Modelling system requirements and access control policy statements
	Validating access needs

	Discussion and Conclusion
	References

