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Abstract—There is growing interest in securing the hardware
foundations software stacks build upon. However, before making
any investment decision, software and hardware supply chain
stakeholders require evidence from realistic, multiple long-term
studies of adoption. We present results from a 12 month evalu-
ation of one such secure hardware solution, CHERI, where 15
teams from industry and academia ported software relevant to
Defence to Arm’s experimental Morello board. We identified six
types of blocker inhibiting adoption: dependencies, a knowledge
premium, missing utilities, performance, platform instability, and
technical debt. We also identified three types of enabler: tool
assistance, improved quality, and trivial code porting. Finally, we
identified five types of potential vulnerability that CHERI could,
if not appropriately configured, expand a system’s attack surface:
state leaks, memory leaks, use after free vulnerabilities, unsafe
defaults, and tool chain instability. Future work should remove
potentially insecure defaults from CHERI tooling, and develop a
CHERI body of knowledge to further adoption. This paper was
originally presented at the NATO Science and Technology Or-
ganization Symposium (ICMCIS) organized by the Information
Systems Technology (IST) Scientific and Technical Committee,
IST-209-RSY – the ICMCIS, held in Oeiras, Portugal, 13-14 May
2025.

Index Terms—CHERI, Morello, C, C++, Defence, grounded
theory, secure hardware

I. INTRODUCTION

A. Background

The foundations of computer hardware and software were

not designed with modern security requirements in mind. As

Cyber Security concerns have grown, so too has the need to

protect the infrastructure society relies on, given the impact

that eroded trust could have on the digital economy. To address

these foundations, recent government initiatives have targeted

the hardware foundations upon which software stacks are

based. On one hand, doing so is a natural progression to

security requirements; hardware might be costly, but investing

in it could offset the cost of software security, and the need

for continual software updates [1]. On the other hand, the

hardware supply chain is no less immune to attack than the

software supply chain, with a range of well-known invasive,

non-invasive, and side channel attack vectors [2].

A secure hardware initiative recently promoted by both

the UK and US governments [3], [4] is CHERI (Capability

Hardware Enhanced RISC Instructions): a hardware-software

co-design initiative, which enables fine-grained memory pro-

tection. Given claims that 70% of software vulnerabilities can

be attributed to memory safety issues [5], wide-spread adop-

tion of CHERI could significantly increase cyber resilience.

However, government promotion does not automatically lead

to widespread adoption. For this, several stakeholder interests

need to be attended to. Software supply chain vendors want to

understand what the return on investment might be for moving

to a new software-hardware solution, based on the challenges

and opportunities perceived by software engineers. Hardware

supply chain vendors want to understand the market their

products. These interests deadlock as evidence to one group of

stakeholders cannot be easily obtained without evidence from

the other. Experiments and small case studies can provide

some of this evidence, but breaking this deadlock requires

evidence from multiple, long-term, convincing evaluations of

the technology.

To contribute to this body of evidence, this paper shares the

results from a 12-month evaluation of CHERI by 15 teams

from industry and academia. Each team was provided with a

Morello development board. This board was produced by Arm

as the first industrial quality demonstrator of CHERI [6]. The

teams were required to port a self-selected body of software

to the new hardware. The ported software was either used

in, or applicable to the Defence sector. The Defence sector

may not appear to offer findings generalisable to the wider

community, but it does have three characteristics both inter-

esting from a software engineering perspective, and relevant

from a software-hardware readiness perspective. First, many

expectations associated with enterprise information technology

do not hold in Defence. Software is often developed for

bespoke, embedded, systems, and written in low level, memory

unsafe languages like C and C++. Second, many systems

are high-integrity, with both security and safety implications.

Failure could harm not just those direct stakeholders operating

the software, but many indirect stakeholders affected by its

failure. As such, software certification is a key concern. Third,

“legacy-by-design” software is dominant. It is not uncommon

for software, and the hardware it runs on, to be in operation

for decades. As such, there are large bodies of code that, for

operational reasons, cannot be easily ported to other, memory-

safe languages. This makes the idea of increased assurance by

doing little more than rebuilding software for new hardware

an attractive proposition.

The structure of this paper is as follows. In Section II, we

briefly introduce CHERI and its hardware and software stack,
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before presenting the approach taken in Section III to run the

multi-team evaluation. In Section IV, we present the results

of our analysis. The implications of these results and the risks

introduced by CHERI are considered in Section V. Finally,

in Section VI, we propose two directions for future work to

advance wider adoption of CHERI.

II. RELATED WORK

A. CHERI

CHERI is a hardware-software co-design initiative, started

in 2010 by the University of Cambridge and SRI International.

CHERI consists of a conventional processor Instruction-Set

Architecture (ISA) extended with architectural capabilities to

enable fine-grained memory protection and highly scalable

software compartmentalisation [7]. Compartmentalisation al-

lows data to be protected not just at rest and in transit, but

also while it is in use, and without the use of coarser-grained

processes or containers.

CHERI provides two forms of memory safety. Referential

safety is provided through the protecting the integrity and

provenance of pointers against corruption and misuse. Spatial

safety is provided by preventing a pointer to one current in-

memory object being used to access another. CHERI does not

provide temporal safety, which would prevent a pointer to one

current in-memory object from accessing past or future objects

using the same storage (i.e. through a pointer now accessing

another context). Although previous work has considered how

this might be supported through capability revocation [8], there

are no current plans to incorporate temporal safety into CHERI

due to the complexity it would introduce [9].

CHERI is not the first attempt to address memory safety in

hardware. For example, Arm introduced a Memory Tagging

Extension (MTE) to the Armv8.5-A processor [10]. The

extension assigned tags to each memory allocation, which

would need to accompany each memory access via a pointer;

feedback can be provided to the operating system in the

event of memory errors. However, what differentiates CHERI

from previous work in software and hardware memory safety

is its non-reliance on secrets or probabilistic techniques, a

focus on minimising disruption to large, pre-existing bodies

of existing code, and a willingness to depend on modest

changes to hardware architecture and microarchitectures to

enable requisite security properties [11].

B. CHERI hardware

Early CHERI cores extended the Microprocessor without

Interlocked Pipeline Stages (MIPS) architecture, and targeted

field-programmable gate arrays (FPGAs) [11]. This was the

initial hardware target for developing the CHERI approach.

The Morello development board was produced by Arm as

the first industrial quality demonstrator of CHERI. Morello is

an experimental board, and only a limited number have been

produced. The Morello multicore system on chip (SoC) in-

corporates four CHERI-enabled Neoverse-N1 processors [12].

The board implements the Morello Arm architecture extension

[13]; this adds instructions for features like setting pointer

bounds, and sealing / unsealing capabilities.

More recently, Microsoft have developed the CHERIoT (Ca-

pability Hardware Extension to RISC-V for Internet of Things)

ISA [14], which was designed for smaller, embedded targets.

The CHERIoT-Ibex RISC-V microcontroller [15] implements

the CHERIoT ISA, and has formed the basis of the Sonata

board [16]. However, because this study preceded the release

of Sonata, discussion of this board is not considered further

in this paper.

Arm’s development of Morello and lowRISC’s development

of Sonata was funded through the UK Digital Secure by De-

sign (DSbD) programme [17]: a five-year programme funded

in 2019 by the UK Industrial Strategy Challenge Fund (ISCF).

In addition to funding technical development of CHERI, the

programme has also run periodic All Hands meetings to help

grow the emerging CHERI ecosystem.

C. CHERI software

Although there has been recent work porting Rust [18] to

CHERI, the bulk of software created for CHERI is written in

C and C++. CHERI C and C++ [9] are variants of their re-

spective languages, but the presence of capabilities make these

more than just “memory safe C and C++”. The open-source

Clang/LLVM compiler and LLD linker [19] was extended

to support the generation of pure capability machine code,

where pointers are implemented as CHERI capabilities. These

are unforgeable tokens of authority, and implemented with

twice the width of native integer pointer types, and incorporate

elements for validity, memory bounds, permissions data, and

an indicator of whether or not the capability can be modified

or dereferenced. To support environments where non-CHERI

aware machine code may be present, CHERI also supports the

hybrid C/C++ where only selected pointers are implemented

as capabilities [9].

To date, experimental support for CHERI has mainly

been incorporated into two operating systems. The first is

CheriBSD: a capability enabled extension of the FreeBSD

operating system [20]. CheriBSD is comparatively mature,

with several thousand memory-safe packages already ported

to it, including a full KDE-based desktop stack. The second

is Morello Linux [21], which implements a pure capability

kernel-user Application Binary Interface (ABI), supported by

C and C++ libraries (e.g. musl libc) and tooling (e.g. Morello

LLVM).

III. APPROACH

To gather evidence for adoption, identify novel usage ideas,

and support further related research & development, Dstl ac-

quired a number of Morello units to enable industrial/academic

evaluation of CHERI. Dstl ran a themed competition [22]

for teams to access Morello boards and project funding for

up to 12 months to address one or more of three challenge

area: (i) code porting, (ii) software compartmentalisation,

(iii) innovation. A total of 29 proposals were submitted by



teams from industry and academia, 16 were recommended for

funding, and 15 (D1 - D15) proceeded to contract.

Throughout the 12 month period, each team was supported

by a Dstl technical partner. The technical partner was responsi-

ble for independently confirming the fitness for purpose of the

work carried out by each team, and that the outputs produced

met their own processes for technical quality and review. The

technical partner met periodically online, and occasionally in-

person, with each team to review progress, discuss experiences

and challenges, and comment on draft technical deliverables.

Because of the range, maturity, and size of software corpora

being targeted, together with differing expectations around

performance and maintainability, we decided that quantitative

metrics would unsuitable as measures of adoption. Therefore,

in addition to delivering technical artifacts, each team was

required to submit a final report on their experiences with

CHERI/Morello. These reports were analysed using Grounded

Theory [23]. Grounded Theory is a well-established methodol-

ogy for making sense of and conceptualising qualitative data.

Validity of theory emerging from a Grounded Theory analysis

is obtained through transparency of the approach taken, and

the soundness of the arguments constituting the theory.

To capture a broad range of experiences, each team was

asked to structure their reports to encompass the following

areas and questions:

• Aims: what security did teams hope to achieve, and what

Validation & Verification approach was taken?

• Setup: what experience with Morello did teams have, and

how was information about CHERI/Morello obtained?

• Development: for the targets chosen by teams, what

challenges were faced with dependencies, the available

documentation, tooling, and porting? Additionally, how

was security evaluated, what performance trade-offs were

observed, and what benefits did CHERI/Morello bring?

• Reflections: how much did CHERI/Morello meet team

expectations, and what features could have the most and

least impact on security?

Coding of the reports was carried out by the author. The

author has significant and recent C++ software development

experience, significant Cyber Security and Software Engi-

neering experience, experience porting software to CHERI

and Morello within a Defence project, and an internation-

ally recognised, publication track record applying Grounded

Theory to Cyber Security contexts, e.g. [24], [25]. Following

open coding of an initial sample of 10 reports (D1-D10), 204

codes (i.e. themes) based on 237 quotations were obtained.

Following de-duplication, axial coding, and selective coding,

and the inclusion of an additional report, 75 codes based on

268 quotations had been identified. Initial results from this

model were shared with technical partners, and two additional

subject matter experts, following which the remaining reports

were analysed. Some additional codes were identified after

analysis of the 11th report (D11), and theoretical saturation,

i.e. the point that no new codes were identified, was obtained

after analysis of the 12th report (D12). After a final round of

Team Sector Experience

D1 Civil Security CHERI awareness
D2 Industrial Control Unix development
D3 Defence TAP alumni
D4 System Integration Wide-ranged
D5 System Integration Unix development
D6 Maritime Unix development
D7 Defence Unix development
D8 Automotive TAP alumni
D9 Defence Unix development
D10 System Integration TAP alumni
D11 Higher Education TAP alumni
D12 System Integration TAP alumni
D13 Higher Education TAP alumni
D14 Higher Education Unix development
D15 Aerospace CHERI awareness

TABLE I: Sectors and pre-existing CHERI experience of

teams

selective coding to support the model write-up, the final model

constituted of 88 codes and 321 quotations.

Due to commercial restrictions around the release of content

from the team reports, no direct quotations are included in

the paper. However, to back up key points from the analysis,

paraphrased examples are provided.

IV. RESULTS

A. Supplier background and aims

As Table I illustrates, pre-existing knowledge of CHERI

within teams varied, but could be characterised as one of four

of categories of expertise:

• CHERI awareness: Awareness of CHERI obtained

through material provided by the DSbD programme. In

some cases, such teams also had limited experience with

Unix and C.

• Unix development: Experience developing software for

one or more flavours of Unix/Linux. In some cases,

teams also had some low-level experience developing and

maintaining drivers, with some knowledge of Assembly.

• TAP alumni : DSbD Technology Access Programme

(TAP) [26] alumni, with current or recent experience

working with the Morello board.

• Wide-ranged: Extensive experience developing software

for CHERI.

Only a single team had Wide-ranged expertise, and a small

number of teams were limited to CHERI awareness. The

remainder of teams met one of the remaining two categories.

Table II summarises the body of software ported by each

team. These fell into one of three categories. The first were

stand-alone applications; some of these run on well-established

desktop or server operating systems, but were targeted to a

host supporting CHERI, e.g. CheriBSD. Other stand-alone

applications include an Operating System kernel and Real-

Time Operating System (RTOS), which run on “bare-metal”

hardware. The second are components of some other appli-

cation. These were other software libraries linked into the

larger application, or stand-alone executables coupled to a



Team Product Languages Target OS

D1 Smart camera C, C++ CheriBSD
D2 UAV infrastructure libraries C, C++ CheriBSD
D3 Vehicular monitoring system C CheriBSD
D4 Web stack C, C++ CheriBSD
D5 IoT framework component C CheriBSD
D6 Autonomous system components C++ Linux
D7 General component libraries C CheriBSD
D8 Vehicular middleware libraries C CheriBSD
D9 Cross Domain Solution C, C++, Assembly CheriBSD
D10 Wireless access component C, C++ CheriBSD
D11 RTOS and Rust compiler extensions C, Rust, Assembly Bare metal
D12 OS kernel C, C++, Assembly Bare metal
D13 Python interpreter C Bare metal
D14 UAV middleware libraries C, C++ CheriBSD
D15 UAV flight control components C++ CheriBSD

TABLE II: Products ported by teams, programming languages

used, and target operating system

larger framework, i.e. via API or network protocols. The last

category was a “stack” consisting of multiple applications

or components at different levels, e.g. the software stack

necessary to run web applications, and software applications

using middleware.

No team explicitly set out to make their products secure.

They wanted to port their respective applications or compo-

nents to CHERI/Morello. This was, however, done with the

expectation that using capabilities would lead to improved

security outcomes. Despite these expectations, teams largely

relied on custom functionality tests, unit tests, or some com-

bination of both. There was little specific consideration of

security in the Validation & Verification approaches taken

beyond some ad-hoc out-of-bound memory testing.

B. Blockers

Blockers are the inhibitors found by the teams, which

contributed to slow progress and, in many cases, a reduction

of the pre-agreed project scope. Six classes of blocker were

identified during this analysis.

• Dependencies: people and technology upon which teams’

work explicitly or implicitly depends.

• Knowledge premium: the scarcity, i.e. premium, of

knowledge about CHERI, and the technology necessary

to develop software for it.

• Missing utilities: technology teams rely on for software

development that was either unavailable or available in a

degraded or unstable form.

• Performance impact: the impact of CHERI/Morello on

the performance of ported software.

• Platform instability: instability of CHERI/Morello and its

host operating system during the building and running of

ported software.

• Technical debt: the effort necessary to adapt software for

the target platform and its host operating system.

1) Dependencies: Teams found two classes of significant

dependency: social and technical ecosystems, and tool chain

instability. The first component of ecosystem dependency was

a dependency on the open-source ecosystem. In some cases,

the teams’ choice of target meant that, during porting, there

were no significant open-source dependencies because the tar-

get was well isolated, or the team had an intimate knowledge

of the dependencies. However, some teams faced significant

issues because open-source dependencies they assumed would

be present were not. For example, D2 encountered problems

installing a particular package in Python using pip due to

dependencies such as numpy and scipy. However, these

dependencies had not been ported to the CheriBSD operating

system used by the team.

The second component was a dependency on other com-

munities. One of these is the DSbD community, but others

are communities associated with commercial and open-source

dependencies. Many such communities are international and,

even if they were aware of the DSbD community and sympa-

thetic of its goals, their interests are orthogonal. For example,

D6 attempted to port an open source middleware product to

CHERI, but the focus of that open source community was

not CHERI but an overhaul of the product that consumed

discussion across multiple websites and Discourse channels.

Suppliers were also dependent on the stability of the tools

they were using. Suppliers were often using tools they had

some familiarity with, but with an unexpected level of in-

stability. For example, D11 encountered frequent crashes or

unusual behaviours with the CHERI community’s Eclipse

IDE. Software development often entailed writing and editing

assembly code to get to a state where, while not correct, the

debugger and Eclipse no longer crashed.

2) Knowledge premium: Almost every team found their

progress inhibited by one or more of five documentation

blockers:

• Outdated documentation: guides or scripts providing non-

working instructions. In some cases, this was due to

search engines indexing out-of-date content.

• Compartmentalisation gaps: teams were unable to find

adequate material on how to apply software compartmen-

talisation.

• Documentation distribution: teams were left to forage

for information they needed on sites hosted by different

organisations. The published information was not always

consistent, particularly because each site made assump-

tions about the host Operating System, i.e. CheriBSD in

documentation hosted on one site, and Linux in docu-

mentation hosted on another.

• Missing examples: teams missed non-trivial examples of

how to use capabilities, which would be relevant to their

projects. This blocker was particularly problematic for

those using compartmentalisation, or relying on the use

of Assembly or C for interfacing hardware.

• Build gaps: teams found little help troubleshooting build

problems, or guidance on cross-compilation. In some

cases, teams were reliant on examples found in GitHub

repositories or archived posts on mailing lists.

As indicated in Section IV-A, the pre-existing knowledge

teams brought to their projects played a role in the knowledge



premium they had to pay. In the case of outdated documenta-

tion, the fast moving nature of dependent open source projects

such as CheriBSD also played a part. A significant factor is

the expectation made by authors of documentation about those

consuming it, i.e. their expertise was the same as theirs. For

example, instructions provided with the Morello referenced

the need to build firmware, without indicating what firmware

and how. The expectations were particularly opinionated when

teams were left to work with the same code repositories being

actively maintained. For example, D8 encountered difficulties

building software when changing the Git repository branch

they were working on. On obtaining support, D8 was directed

to not change the branch but instead build using the Morello

branch instead. Guidance on what branches to use and their

stability were not documented.

Problems with documentation, particular its distributed na-

ture, led to shared confusion in the community about different

aspects of CHERI. This was especially the case for compart-

mentalisation. For example, one DSbD All Hands meeting

featured an open session on compartmentalisation; this was

attended by Dstl, and several teams. At the session, teams

perceived a lack of uniform definition for what compartmen-

talisation was, and several attendees described having trouble

understanding the documentation associated with it.

3) Missing Utilities: Suppliers were explicitly asked to

comment on which tools they missed while porting their

software. Their responses feel into one of three categories of

blocker.

First, teams working with CheriBSD were unable to use

Integrated Development Environments (IDEs) they were ac-

customed to. Some teams were left working directly with

unfamiliar makefiles and debuggers directly from the terminal.

Others had to find ways of sharing directories across machines,

so they could use IDEs on Linux machines.

Second, although debuggers were available for CHERI/-

Morello, some teams found them less functional than expected

when working with CHERI specific features. For example, D9

noted that crashes within compartments were not associated

with source code within the debugger. Pointer addresses of

crashes had to be manually adjusted by the base offset of the

compartment, and then searched for in object dumps to find

the affected function. As such, the use of printf became

the only viable debugging method, and this sometimes relied

on relaying to an implementation outside of the compartment.

Finally, many teams missed expected tools from their usual

build tool chain. These included code analysers, linters, and

performance analysis tools tailored for CHERI/Morello. In

some cases, a stable C++ development environment was also

expected but missing. This led to some teams resorting to

cross-compilation for CHERI/Morello on an off-target devel-

opment environment.

4) Technical Debt: Four types of technical debt blocker

were encountered.

Given the changes to pointer size, challenging assumptions

made about pointers within code bases was expected by

teams. In some cases, this entailed changing pointer types to

ensure portability, but - in some cases - assumptions about

pointer sizes were used in build tools to make decisions about

a target’s architecture. For example, D6 found that CMake

examined the pointer size on target systems when determining

if a system was 32-bit or 64-bit. As such, because CHERI

is a 64-bit platform with 128-bit pointers, this broke CMake

detection.

Because of the introduction of a new signal (SIGPROT) for

handling capability exceptions, teams were required to imple-

ment defensive code and new exception handling mechanisms.

This was necessary not just for code susceptible to buffer

overflows, but behaviour previously considered acceptable

that CHERI now considered unsafe. If not addressed, such

behaviour might be dangerous to security and safety. For

example, D7 noted the possibility that an unexpected operating

condition could hit the boundary of a sandbox and trigger

an exception. They considered this a design error that should

have been found and fixed during design and verification, but

careful consideration of exception handling would be needed

to ensure that the system recovered in a safe and secure way.

A claimed benefit of CHERI is its application to legacy

code with minimal changes. While the changes made by

teams were comparatively minor, some refactoring of legacy

code took place - either as an opportunity to improve its

quality, or because changes were forced due to incompatibility

resulting from the use of LLVM. For example, D6 found that

one of their target’s dependencies would not build out-of-the-

box with the Morello CMake tool chain due to references to

ltstdc++fd: a legacy C++ library for backwards compati-

bility with the filesystem library on older compilers.

Finally, the use of a different operating system led some

teams to make architectural changes to their software to

account for now absent software dependencies. For example,

D5 found that a significant task of their porting exercise was

to entirely decouple their application’s logic, so it could be

driven by a platform independent API. This included UDP

stack handling, serial port access, multi-threading, and thread

safe message queues. This entailed porting software to Linux,

determining the software worked as expected, and migrating

the code to CheriBSD.

5) Performance Impact: Given the experimental nature of

the CHERI/Morello, the performance of the ported software

was found to be adequate. However, notably reduced perfor-

mance was observed by teams. Four classes of performance

blocker were identified.

• Algorithmic changes: either due to software architectural

changes, or changes to the machine code generated by

the tool chain.

• Inference speed: reduced inference speed for machine

learning applications and inefficient query plans in

database applications.

• Network latency: at times, a reduced throughput of 35%

was noted for one popular open-source RPC framework.

• Allocation speed: the type and size of memory allocated

from the heap had a notable impact on performance. One



team noted a reduction in execution time of around 20%

during the processing of small chunks of memory.

The performance issues could not be easily attributed to

either the CHERI ABI or the Morello micro-architecture.

Moreover, latency could also have been introduced by bugs

during the software porting process, particularly for those

applications comparatively high up the software stack. Op-

timisation opportunities do, however, exist should the nature

of the targeted software be well understood. For example, on

considering the software they were porting, D4 found that

some functions did not access any state in their respective

libraries, and were either pure functions or operated only on a

state object provided as an argument. As such, those functions

could potentially be executed without a domain transition by

incurring minimum or no loss of security guarantees.

6) Platform Instability: Two types of platform instability

blocker were identified: CHERI instability and CHERI imma-

turity.

The first class, CHERI instability, related to instability

associated with CHERI/Morello. Hardware instability was

evident in several ways, including undefined behaviour when

accessing registers on the Morello, resetting of the proces-

sor, and unpredictable boot times. CHERI incompatibility

arose through ABI incompatibility, and linker issues due to

incompatible object types. Compartmentalisation immaturity

resulted from the need to use low-level features to implement

isolation; teams expected such features to be available via

compiler options or through interfaces similar to containers

or hypervisors.

The second class, CheriBSD immaturity, concerned insta-

bility associated with the CheriBSD operating system. Driver

instability characterised some known issues that were subse-

quently patched in the kernel, but not all driver problems were

known. For example, D8 found that WiFi support appeared to

be unstable. There were unpredictable periods of extremely

slow response to input, while, at other times, the connection

appeared stable and fast, seemingly irrespective of network

conditions.

Linux / CheriBSD variations were not limited to the miss-

ing dependencies described in Section IV-B1; they included

changes to interfaces, e.g. support for Portable Operating

System Interface (POSIX) mqueues and different types for file

descriptors. And while CheriBSD was initially assumed to be

a stable, capability aware operating system, teams identified

multiple instances of OS instability. These ranged from minor

issues like missing man pages and unavailable 3rd party

packages, to more serious issues where CheriBSD ports of

drivers caused kernel panics. These resulted from unhandled

CHERI exceptions caused by pre-existing bugs in FreeBSD.

Finally, build troubleshooting issues included troubleshooting

of CMake errors due to Free/CheriBSD incompatibility, as

well as random segmentation faults in LLVM while running

the CheriBSD cheribuild.py script. In some cases, teams

adopted the practice of porting code to Linux and mainstream

processors as a staging activity before porting to CheriBSD

and Morello.

C. Enablers

Enablers are features of CHERI that teams felt added value

to their work. Three types of enabler were identified.

First, teams found that the CHERI-enabled tools such

as compilers and debuggers were notably more effective at

detecting memory problems than other tools, particularly for

issues that might otherwise be difficult to debug. As suggested

in Section IV-B2, a contributing factor for this might be the

expectations set by the tool authors of what might be useful

diagnostic information for other developers like them. Were

such helpful diagnostic information not identifiable at compile

time, CHERI exceptions could follow at runtime. While the

developers of CHERI tools would know this, application

developers new to this technology might not.

Second, the quality of the code generally improved. This

could be partly attributable to the payment of technical debt

as indicated in Section IV-B4 or porting software to a platform

less tolerant of build-time errors. Another factor was the role

of CHERI as a tool for finding memory bugs at compile

time, rather than runtime or after exploitation of the software.

For example, D5 believed there was a strong argument that

production code intended for non-CHERI enabled hardware

could benefit from running in test mode on the Morello

platform. The benefit of the Morello and an exhaustive test

harness would be to build confidence that issues related to

capability exceptions could be identified and fixed before

entering service in production code, i.e. even if the final code

did not run on CHERI enabled hardware, testing on CHERI

hardware would help identify problems.

Finally, the exercise of porting software was comparatively

trivial, given the sizes of the teams’ respective code bases.

For example, the size of a library ported by D6 was 216650

Lines of Code (LOC) after being configured and built by the

CHERI-specific tool chain. An additional ten lines of code

were needed to create the tool chain, to make the library

compile for CHERI. A further 39 lines were changed to allow

the library, and the library examples, to be built for CHERI.

However, as suggested in Section IV-B4, some assumptions

about pointers could be difficult to unpack, and the time taken

to identify affected code was occasionally lengthy. As such,

measuring ease of migration based on lines changed also does

not reflect the time taken to make the changes. Consequently,

the exercise of porting code at lower-levels of the software

stack might be comparatively less trivial.

D. Security implications

CHERI was designed to potentially remove the memory

attack surface of software. However, novel technology can

introduce complexity with the potential to increase attack

surface. As indicated in Section IV-B4, some of this com-

plexity results from the need for extra exception handling,

but idioms might also arise when specific interaction with

CHERI primitives is required. Some of this complexity also

results from CHERI usage patterns inferred from the docu-

mentation or examples, particularly for compartmentalisation.

For example, D3 resorted to using dynamic loading instead of



dynamic linking for a library they ported. This design pattern

was inherited from some example code from a Software

Development Kit (SDK), where the documentation indicated

that the choice was made to provide greater flexibility and

portability across platforms. It was not, however, obvious to

D3 what the benefits of this approach were.

Five classes of increased attack surface, which constitute

potential vulnerabilities to CHERI, were identified:

• State leak: leakage of state information into library com-

partments through shared object data, particularly through

the use of C++ classes across compartments.

• Memory leak: memory leaks resulting from inappropriate

memory management of compartmentalisation primitives.

• Use after free: reuse of a pointer to a previously deal-

located object [27], but one for which a valid capability

remains.

• Unsafe defaults: default compiler flags provide lower

levels of assurance to maintain compatibility.

• Tool chain instability: as indicated in Section IV-B1, un-

expected instability could lead to insecure code changes

to ensure applications remain running. For example, one

team encountered a link-time problem but was unsure

about whether it was a bug that could be worked around,

or an intentional security feature.

Given its effectiveness at providing spatial safety, such

vulnerabilities could contribute to a false sense of security.

Decision makers may not appreciate that CHERI is unable

to prevent attacks due to flawed logic and improper access

control [28]. Moreover, while CHERI guards against attacks

on memory misuse, it does so at the cost of potential denials

of service. This could constitute a safety hazard depending on

the role of the software being protected.

E. Competing Technology

Teams perceived three competing approaches for achieving

similar levels of protection to CHERI:

• Memory safe languages: languages such as Rust claim

to offer the performance advantages of C with improved

memory handling. CHERI does, however, facilitate hard-

ware guarantees for unsafe code blocks, although de-

velopers are starting to focus on the security of such

blocks [29].

• Software memory protection: many operating systems

support techniques like Address Space Layout Random-

ization (ASLR), and compilers such as gcc support

memory sanitisation to detect out-of-bounds and use after

free vulnerabilities.

• Hypervisors: hypervisors implement compartmentalisa-

tion at a higher level of abstraction than CHERI but

with greater ease of use. However, like memory safe

languages, hypervisors could be supplemented by CHERI

to obtain stronger levels of assurance. The use of cer-

tain compartmentalisation patterns, such as library-based

compartmentalisation or compartmentalisation based on

policy, could lead to precise control of software bound-

aries without unduly sacrificing developer user experi-

ence.

The performance impact described in Section IV-B5 fed

this perception. So too did the potential non-applicability

of compartmentalisation, e.g. in applications where privilege

separation cannot be usefully applied, and where memory

attacks are not a significant feature of threat models. Market

adoption uncertainty also played a role in perceptions about

competing technology.

Each approach assumes a software and hardware footprint

similar to Morello. However, many teams expressed an interest

in using CHERI on embedded targets that lack the resources

of conventional hardware, and may not support the current

generation of memory safe language and hypervisors. For

example, D8 plans to continue monitoring CHERI technology.

They are keen to evaluate CHERIoT-based FPGAs with a

view to converting to low level OSes, and attempting to

add temporal memory safety at the hardware level; this was

considered more achievable on hardware smaller than Morello.

What appeared not to influence team perceptions about

competing technology were the challenges of migrating an

existing system, e.g. re-writing software in a memory safe

language, or re-architecting an application to use container-

based compartmentalisation.

V. DISCUSSION

A. Contestable compatibility and security claims

A claimed key benefit of CHERI is its application to legacy

C or C++ programs with minimal changes [30]. Most teams

achieved some level of success porting their respective code

bases, and the team effort employed may have been less than

porting their respective code bases to a memory safe language.

Nonetheless, the technical debt associated with porting soft-

ware to CHERI described in Section IV-B4 suggests this key

benefit claim is contestable.

Claims that the majority of operating system vulnerabilities

are due to memory safety issues that CHERI could address

are also contestable. CHERI appears only to mitigate 2 of the

current Top 10 CWEs [31] by default. While the top CWE

(Use after Free) could be mitigated by CHERI based on re-

cently improved capability revocation performance [32], doing

so would likely entail breaking compatibility - a key benefit of

CHERI. As indicated by Section IV-B4, this could potentially

lead to additional technical debt that broadly increases the

attack surface.

B. Documentation and tooling as reverse salients

As an experimental platform, CHERI/Morello is not fully

formed, so instability and immaturity is to be expected.

However, as an industry demonstrator, it is also reasonable

to examine how ready for adoption the different components

of this technology are.

Seminal work in technology innovation [33] found that

innovative system growth relies on correcting reverse salients:

imbalances that occur when some parts of a system develop

faster than others. The results from Section IV suggest that,



while the CHERI architecture and compiler technology con-

tinues to advance at pace, documentation and supplemental

tooling that supports software engineering remains left behind.

Failing to address these reverse salients could have two neg-

ative security implications.

First, delays delivering documentation and tooling of ac-

ceptable quality shifts an additional security burden to devel-

opers, who - as suggested in Section V-A - may already be

paying indirect costs for adopting CHERI. The burden docu-

mentation and tooling causes has also been corroborated by

work commissioned by Discribe (the Digital Security by De-

sign Social Science Hub+) [34]. In such circumstances, Herley

[35] indicates that it would then be rational for developers to

seek knowledge from sources where the cost-benefit pay-off

is in their favour. This could push developers to potentially

untrusted sources of knowledge like Stack Overflow [36] for

advice and code samples of unknown provenance; such advice

and samples could harbour vulnerabilities [37].

Second, if the technology readiness of CHERI continues to

advance at the cost of the reverse salients, pre-existing chal-

lenges with knowledge asymmetries, where knowledge and

ignorance is spread unequally across the software development

ecosystem [38], could become malignant. Asymmetric infor-

mation about CHERI could grow a market for professional

services, but it could also grow a security “market for lemons”

[39] where prospective consumers are unable to effectively

evaluate security knowledge about CHERI [40]. This could

lead to the market failures that government initiatives hoped

to address.

C. Risks to Software Certification

Software certification is a barrier for technology exploitation

in Defence. Engineering for CHERI effectively, particularly

for compartmentalising software, without increasing a sys-

tem’s certification surface, appears to be a complex system

integration problem. For example, CHERI has open-source

dependencies where certification evidence, such as require-

ments, architectural models, and Validation & Verification

plans, are absent. The lack of this evidence is prohibitive to

standards such as the Software Considerations in Airborne

Systems and Equipment Certification (DO-178C) [41], and

restrict the ability of assessors to assure soundness of the

development process [42]. Moreover, some of the platform

stability issues described in Section IV-B6 such as unhandled

CHERI exceptions and unexplained board behaviour make

both hardware and software certification problematic.

VI. CONCLUSION

In this paper, we presented the results from a 12 month

evaluation of CHERI by 15 independent teams working with

Defence applicable software. As such, this work constitutes

the first-long term study of CHERI readiness.

The role of this paper is not to propose recommendations

based on these results; there is no certainty of successful adop-

tion across industry even if all the blockers were addressed,

and all enablers exploited. Moreover, as indicated in Section V,

adopting CHERI does not come without risk. We do, however,

suggest two future directions for reducing these risks, and

advancing the adoption of CHERI, particularly for Defence

contexts.

First, claims that CHERI can address the majority of secu-

rity vulnerabilities at minimal cost fails to acknowledge a key

tension between security and maintainability. To address this

tension, permissive but potentially insecure defaults should be

removed, so memory protection is “by default and by design”.

While this will increase the cost of adoption, these costs may

be comparatively small given the other costs incurred. The

costs may also be acceptable for Defence systems, particularly

those running on embedded platforms. This change will also

expose problems and opportunities that may otherwise be

missed when prospective users are shielded from the conse-

quences of full memory protection.

Second, to further shed light on CHERI knowledge asym-

metries, a range of education and training material is needed

on the productive design, development, and maintenance of

CHERI-enabled software. This material should also be explicit

about the pre-existing knowledge expected of those wishing

the join the CHERI community. Doing so will not only address

pre-existing knowledge asymmetries, and potentially identify

missing knowledge gaps, it will make an agreed CHERI body

of knowledge as open and accessible as its source code.

Such a body of knowledge should be accessible not only

to professional developers, but also for undergraduate and

postgraduate students. This ensures that CHERI foundations

are embedded into the education of the next generation of

software and security engineers. Such a body of knowledge

will also aid software certification by indicating the knowledge

needed by suitably qualified and experience personnel required

to build, operate, and maintain CHERI-enabled systems.
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