
From Randomized Response to Randomized Index: Answering Subset Counting
Queries with Local Differential Privacy

Qingqing Ye∗, Liantong Yu∗, Kai Huang†, Xiaokui Xiao‡, Weiran Liu§, Haibo Hu∗
∗Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University

Email: qqing.ye@polyu.edu.hk, liantong2001.yu@connect.polyu.hk, haibo.hu@polyu.edu.hk
†Faculty of Information Technology, Macau University of Science and Technology

Email: kylehuangk@gmail.com
‡School of Computing, National University of Singapore

Email: xkxiao@nus.edu.sg
§Alibaba Group

Email: weiran.lwr@alibaba-inc.com

Abstract—Local Differential Privacy (LDP) is the predominant
privacy model for safeguarding individual data privacy. Exist-
ing perturbation mechanisms typically require perturbing the
original values to ensure acceptable privacy, which inevitably
results in value distortion and utility deterioration. In this
work, we propose an alternative approach — instead of per-
turbing values, we apply randomization to indexes of values
while ensuring rigorous LDP guarantees.

Inspired by the deniability of randomized indexes, we
present CRIAD for answering subset counting queries on set-
value data. By integrating a multi-dummy, multi-sample, and
multi-group strategy, CRIAD serves as a fully scalable solu-
tion that offers flexibility across various privacy requirements
and domain sizes, and achieves more accurate query results
than any existing methods. Through comprehensive theoretical
analysis and extensive experimental evaluations, we validate
the effectiveness of CRIAD and demonstrate its superiority
over traditional value-perturbation mechanisms.

1. Introduction

As big data analytics become more prevalent, service
providers are increasingly eager to collect extensive usage
data to improve their services. However, much of this data,
particularly when gathered from individuals, includes sensi-
tive information such as biometrics, personal identification,
health data, financial transactions, and location trajectories.
Directly collecting such data for model training or statistical
analysis raises significant privacy concerns.

To address these privacy challenges, Local Differential
Privacy (LDP) [9], [20] has emerged as the predominant
privacy model in many large-scale distributed systems, used
by tech giants such as Apple [26], Google [15] and Mi-
crosoft [6], to protect end users’ data. Despite its benefits,
LDP has faced criticism for its low utility, as the val-
ues collected must undergo significant or even unbounded
perturbation by noise injection [13], [14], [27] or value
randomization [19], [29], [33] to ensure acceptable privacy.

In the literature, there are many existing works on LDP
for set-value data [7], [25], [28], [31], [32], [36]. Specifi-
cally, each user possesses a set of private items, and the data
collector aims to estimate the frequency of a specific item
or identify the most frequent items among users. However,
in real-world applications, items are often organized into
categories and there is a need to estimate statistics for the
set of items belonging to a specific category. The following
are two examples.

• Amazon sells millions of books, each belonging to a
specific category, e.g., fiction, poetry. To predict sales
and manage inventory effectively, Amazon needs to
obtain the sales volume for a specific category among
thousands of titles.

• To optimize advertising strategies, IMDb needs to de-
termine which movie genre attracts the largest audi-
ence. This involves analyzing the number of users inter-
ested in a specific genre (e.g., thriller) that encompasses
a set of movies.

In this study, we formulate such problem as a subset
counting query, which returns the total count of items
within a subset of the item domain. To answer this query
in the context of LDP, there are two solutions adapted from
existing works. First, each user counts her items belonging
to that subset and then employs a numerical-value perturba-
tion mechanism (e.g., Laplace Mechanism [13] or Piecewise
Mechanism [27]) to inject random noise to the count and
then reports the sanitized count. Alternatively, each user
employs a categorical-value perturbation mechanism (e.g.,
Randomized Response [19], [33]) to perturb her item set
and then reports the perturbed items.

However, both two solutions introduce perturbation er-
rors into the original value. In mission-critical applications,
particularly in medical and financial applications, value
perturbation does not apply as distorted values become
useless or even detrimental. In fact, significant distortion
of values can overshadow the original value and potentially
make it unbounded. In this work, we propose an alternative

ar
X

iv
:2

50
4.

17
52

3v
1

 [
cs

.D
B

]
 2

4
A

pr
 2

02
5

approach: instead of perturbing values, we apply random-
ization to indexes of values, while ensuring a rigorous LDP
guarantee. The following example illustrates how random-
ized index ensures plausible deniability, while the original
values remain intact.

Example. In a ballot with 10 candidates, each voter in-
dependently votes yes/no to each candidate. An interviewer
wants to estimate the average number of “yes” votes of
all voters. To ensure privacy of these votes, each voter
randomly samples a candidate index from {1, 2, ..., 10}, and
then faithfully reports her vote (i.e., yes/no) for the selected
candidate, but without indicating the index she has sampled.

Inspired by the deniability of the above randomized
index, we propose CRI (short for Counting via Randomized
Index) protocol for answering subset counting queries, while
satisfying ϵ-LDP. Although perturbation noise is not neces-
sary in most cases, to ensure an unbiased estimation, CRI
still suffers from utility loss by re-introducing certain pertur-
bation noise in few extreme cases. To address this issue, we
develop a dummy-assisted solution CRIAD (short for CRI
with Augmented Dummies) to eliminate perturbation noise,
which thus achieves significantly higher accuracy. On the
other hand, we further enhance the scalability of CRIAD by
developing a multi-dummy, multi-sample and multi-group
strategy that can support a wide range of privacy require-
ments (specified by ϵ) and domain sizes. Through theoretical
analysis and empirical studies, we show the effectiveness of
CRIAD. To summarize, our contributions are three-folded.

• We formulate the problem of answering subset count-
ing queries under LDP, and design randomized-index-
based solutions that can ensure rigorous LDP guaran-
tees. To the best of our knowledge, this is the first LDP
mechanism based on the deniability of randomized
indexes.

• We develop a scalable solution, CRIAD, which ac-
commodates flexible privacy requirements and domain
sizes. By leveraging augmented dummy items, CRIAD
eliminates perturbation noise injected into the original
value while satisfying ϵ-LDP.

• Through comprehensive theoretical and experimental
analysis, we demonstrate that CRIAD achieves signifi-
cantly higher accuracy than existing value-perturbation
LDP mechanisms.

The rest of the paper is organized as follows. Section 2
introduces preliminaries, problem definition, and existing
solutions. Section 3 presents our baseline solution CRI
via randomized index deniability. Section 4 proposes the
optimized solution CRIAD. Section 5 presents experimental
evaluations. Finally, we review existing work in Section 6
and conclude this paper in Section 7.

2. Preliminaries and Problem Definition

In this section, we introduce preliminaries on LDP,
formulate the problem of answering a subset counting query
under LDP, and then present two naive solutions that are
directly adapted from existing works.

2.1. Local Differential Privacy

Differential privacy (DP) [12], [13] works in both cen-
tralized and local settings. Centralized DP [21] requires the
data curator to be fully trusted to collect all data, while local
DP does not rely on this assumption. In the local setting [9],
[20], each user locally perturbs her data before reporting
them to an untrusted data collector, which makes it more
secure and practical in real-world applications. The formal
definition is as follows.

Definition 2.1. (Local Differential Privacy, LDP) A ran-
domized algorithm A satisfies ϵ-LDP if for any two input
records w and w′, and any set W of possible outputs of
A, the following inequality holds.

Pr[A(w) ∈ W]

Pr[A(w′) ∈ W]
≤ eϵ (1)

In the above definition, ϵ is called the privacy budget,
which controls the deniability of a randomized algorithm
taking w or w′ as its input. As with centralized DP, LDP
also has the property of sequential composition [23] as
below, which guarantees the overall privacy for a sequence
of randomized algorithms.

Theorem 2.2. (Sequential Composition) Given t random-
ized algorithms Ai(1 ≤ i ≤ t), each providing ϵi-
local differential privacy, then the sequence of algo-
rithms Ai(1 ≤ i ≤ t) collectively provides (Σϵi)-local
differential privacy.

2.2. Problem Definition

We assume there are n users U = {u1, u2, ..., un}, and
each user ui possesses a set of private items Ri ⊆ D, where
D = {r1, r2, ..., r|D|} is the item domain. The domain has
some categories {c1, c2, ...}, and each item belongs to one
or more categories. In other words, items belonging to a
category is a subset of the domain. For ease of presentation,
we use d = |ci| to denote the sub-domain size of category
ci, i.e., the number of items in the domain D belonging to
category ci. Now we formally define the subset counting
query as follows.

Definition 2.3. (Subset Counting Query) Denoted by Q(c),
a subset counting query takes as input a category c, and
returns the count of items belonging to c among the user
population. Formally,

Q(c) =

n∑
i=1

∑
r∈Ri

1c(r), (2)

where 1c(r) is an indicator function, which returns 1
if an item r belongs to the category c, and returns 0
otherwise.

TABLE 1. NOTATIONS

Symbol Description
ϵ the privacy budget
n the number of users
ui the i-th user in user population, i ∈ {1, ..., n}
D item domain
Ri a set of items possessed by user ui, Ri ⊆ D
ci the i-th category of items in the domain, i ∈ {1, 2, ...}
d the size of category, d = |ci|
m the number of dummy items in CRIAD
g the number of groups in CRIAD
s the number of samples in CRIAD

2.3. Solutions from Existing Work

To answer a subset counting query Q(c) of a category c,
there are two naive solutions adapted from existing works.

Solution 1: Numerical Value Perturbation (NVP).
Each user ui locally counts her items that belong to category
c. Then she perturbs it and reports a sanitized count t∗i by a
numerical-value perturbation mechanism A(·), e.g., Laplace
Mechanism (LM) [13], Piecewise Mechanism (PM) [27] or
Square Wave mechanism (SW) [22]. Formally,

t∗i = A
(∑

r∈Ri

1c(r)
)
,

Then the subset counting query result is the summation of
noisy reports from all users, i.e.,

∑n
i=1 t

∗
i .

Solution 2: Padding-and-Sampling Perturbation
(PSP). Each user first pads (with dummy items) or truncates
the item set in her records that belongs to category c into
a fixed padding length η ≪ |c|. Then she samples one item
from η and perturbs it by a categorical-value perturbation
mechanism, e.g., k-ary Randomized Response (kRR) [19],
Optimized Unary Encoding [29] or Optimal Local Hashing
(OLH) [29]. To compensate the effect of sampling, upon
receiving the sanitized reports from all users, the data col-
lector aggregates the count and scales it up by a factor of η.
Then the subset counting query Q(c) can be estimated by
summing up the counts of all items. This method is adapted
from the padding-and-sampling protocol [31], which has
been proved to achieve good performance when the domain
size is large.

2.4. Pitfalls of Existing Solutions

NVP intuitively treats the local count as a numerical
value and employs a numerical-value perturbation mecha-
nism. However, such perturbation may incur large noise, as
the local count can vary a lot among users, which could
be as low as 0 (i.e., a user has no items belonging to a
specif category c) or as high as |c| (i.e., a user has all items
belonging to the category c). This inherently results in a
large sensitivity for the perturbation mechanism and thus a
low utility of subset counting query result.

PSP applies perturbation to a single item instead of
the local count on item set, which enables users’ reports
more informative. However, the effectiveness depends on an

appropriate padding length η. Generally, a large η reduces
the number of valid items and increases the estimation vari-
ance, whereas a small η underestimates the subset counting
query result [31]. In practice, setting an appropriate value
for η a priori can be challenging, which hinders its practical
application. In addition, for each user it only samples one
item and scales it up by η, which will incur large estimation
variance.

To summarize, both solutions suffer from large utility
loss due to the noise introduced by heavy perturbation.
Additionally, an inappropriate parameter setting further di-
minishes the utility of PSP.

3. Randomized Index for Subset Counting

In this section, we present a novel design for answering
subset counting query under LDP, namely Counting via
Randomized Index (CRI). We first elaborate on its design
rationale, and present a new solution for count aggregation.
Then we show the implementation details, followed by
comprehensive privacy and utility analysis.

3.1. Randomized Response vs. Randomized Index

In general, given a set of items from each user, a subset
counting query returns the total counts of items that belong
to a given category. In the literature, all existing works study
either frequency estimation of a specific item or top-frequent
ones (i.e., heavy hitter identification) [7], [25], [31]. There is
no work in counting a set of items that belong to a category.

The existing methods randomize a user’s real data to
ensure “response-level” deniability, which inevitably incurs
utility loss to the query result. Our key idea is to randomize
the indexes of the items being counted to ensure the “index-
level” deniability, so that the item itself does not need pertur-
bation. The following two examples illustrate the difference
between the traditional response-level deniability (Example
I) and index-level deniability (Example II).

Example I. In a survey there are 10 sensitive yes/no
questions. Each user adopts PSP in Section 2.3. A user
first samples one question from them, randomize her true
response, and then reports the sanitized response and the
question index to which she answers. So the deniability is
guaranteed by the randomized response.

Example II. In the same survey, each user randomly
samples a question, and then sends her true answer to the
data collector, without indicating which question she an-
swers to. So the deniability is guaranteed by the randomized
index.

We observe that Example I exhibits a larger variance
and consequently lower accuracy compared to Example II.
This is because the former involves both sampling and
perturbation error, whereas the latter has the same amount of
sampling error but zero perturbation error. This observation
motivates us to develop a Counting via Randomized Index
(CRI) protocol for answering subset counting queries under
the ϵ-LDP guarantee.

3.2. Overview of CRI Protocol

As shown in Figure 1, the CRI protocol for subset count-
ing queries consists of three steps. Step 1⃝ pre-processes
each user’s item set by filtering items unrelated to category
c and grouping the filtered items. Step 2⃝ produces a bit
vector of values in category c, each bit corresponding to
the existence of one item. Then a bit is sampled from the
vector, and sent to the data collector. Upon receiving the
sampled bits from all users, the collector estimates the subset
counting query result Q(c) in Step 3⃝.

There remains a privacy issue in the above procedure.
Recall that in Figure 1, the subset size of the specified
category c is 4. The user u1 has only one item (i.e., R11)
belonging to c, resulting in the encoded bit vector ‘1000’.
Thus the sampled bit can be either ‘1’ or ‘0’ with some
probability. However, for user u2, who has all the items in
c and an encoded bit vector of ‘1111’, and user u3, who
has none of the items in c and an encoded bit vector of
‘0000’, their sampled bits must be ‘1’ and ‘0’ respectively,
i.e., without any deniability. This absolutely violates ϵ-LDP.
To address this issue, for those all ‘1’ and all ‘0’ cases, we
can randomly flip a bit to ensure there are both bits ‘1’ and
‘0’ in each vector. In Figure 1, the flipped bits are shown
in red.

In what follows, we will elaborate on the CRI protocol,
with a focus on its correctness and privacy analysis.

3.3. CRI: Counting via Randomized Index

Recall that given a subset counting query Q(c) on cat-
egory c, each user ui first filters those unrelated items of
c and then encodes her filtered item set into a bit vector
Vi = {V 1

i , V
2
i , ..., V

d
i } of length d = |c|, where each bit V l

i
(l ∈ {1, 2, ..., d}) is defined as

V l
i =

{
1, if ∃r ∈ Ri,1c(r) = 1,

0, otherwise.
(3)

Table 2 shows different cases of bit vectors according to the
number of bit ‘1’, where πt denotes the proportion of those
cases whose number of bit ‘1’ is t. Note that each case πt

involves up to
(
d
t

)
different bit vectors. For example, π1 is

the proportion of vectors ‘100...0’, ‘010...0’, ‘001...0’, ...,
‘000...1’ among all n users. Thus, we have

∑d
t=0 πt = 1.

TABLE 2. CASES OF USERS’ ENCODED BIT VECTORS

Proportion # of 1 # of 0 Pr[1] Pr[0]
π0 0 d 0 1
π1 1 d− 1 1/d (d− 1)/d
π2 2 d− 2 2/d (d− 2)/d
π3 3 d− 3 3/d (d− 3)/d
...

πd−1 d− 1 1 (d− 1)/d 1/d
πd d 0 1 0

Based on the above d+1 cases, according to Eq. 2, the
counting query result on category c is

Q(c) =
∑d

t=0
nπt · t = n

∑d

t=1
tπt. (4)

In Table 2, we also show Pr[1] (resp. Pr[0]), the prob-
ability when a user randomly samples and reports bit ‘1’
(resp. ‘0’) from the encoded bit vector. Except for the cases
of π0 and πd, all cases have non-zero probabilities to report
either ‘0’ or ‘1’. To satisfy ϵ-LDP, a random ‘0’ (resp. ‘1’)
should be flipped to ‘1’ (resp. ‘0’) in the case of π0 (resp. πd)
before sampling. Let zi denote the sampled index, then the
data collector can derive a noisy count from these sampled
bits as

θ̄ = d
∑n

i=1
V zi
i . (5)

And its expectation is

E[θ̄] = nπ0 · 1 +
∑d−1

t=1
nπt · t+ nπd · (d− 1) (6)

= n

(∑d−1

t=1
tπt + π0 + (d− 1)πd

)
. (7)

The term nπ0 · 1 in Eq. 6 means there is a bit ‘1’ in
the case of π0 after flipping, while the term nπd · (d − 1)
means there are d−1 bit ‘1’ in the case of πd after flipping.
The gap between Eqs. 4 and 7 must be calibrated from θ̄ in
Eq. 5 to ensure an unbiased estimation θ̃:

θ̃ = θ̄ + n(πd − π0). (8)

We are yet to derive πd − π0 = ∆π in Eq. 8, which
is estimated by a privacy budget ϵ′ allocated from the
overall budget ϵ. Each user reports a local status flag yi that
indicates whether her case is πd, π0, or neither of them:

yi =

1, if Vi = {1}d,
−1, if Vi = {0}d,
0, otherwise.

(9)

The flag is sanitized into y′i by kRR [19] with the privacy
budget ϵ′ :

Pr[y′i = x] =

{
eϵ

′

2+eϵ′
, if x = yi,

1
2+eϵ′

, if x ∈ {1,−1, 0}\yi.
(10)

Upon receiving the sanitized status flags of all users, we
can estimate ∆π as

∆π =
(2 + eϵ

′
)
∑n

i=1 y
′
i

n(eϵ′ − 1)
. (11)

Therefore, the subset counting query result on the cate-
gory c can be estimated as

Q̃(c) = θ̃ = θ̄ + n∆π. (12)

In Section 3.4, we will provide the proof of Eq. 11 together
with the proof of unbiasedness of Eq. 12.

Algorithm 1 summarizes the workflow of CRI protocol
for answering a subset counting query. Given a query on
category c, each user ui first extracts a filtered record set R∗

i
from her original Ri (Line 2) and then encodes the filtered
item set R∗

i into a bit vector Vi with length d = |c| (Line
3). Subsequently, the user randomly flips a bit if all bits are
1 or 0 (Lines 6 and 9). Meanwhile, the user also sets her

PerturbationPre-processing Aggregation

Subset Counting Aggregation

...

Full Item Set Filtered Item Set Encoding

1 1 0 1

Sampling

1 1 0 1

1

1 0 0111 1

1 1 01 1110 1

1 1 0 11 0 010 0

1 1 0 11 0110 1

1

1

1

1 1 0 1111 1

0 0

...

1

1 0 0111 1

1 1 01 1110 1

1 1 0 11 0 010 1

1 1 1 11 0110 1

1 1 0 1111 1

0 0

1

1

...

1

C
ategory w

ith size

1 2 3

......

Figure 1. Workflow of CRI for Answering Subset Counting Queries.

Algorithm 1 Workflow of CRI Protocol
Input: A category c

All users’ item sets {Ri, Ri, ..., Rn}
Privacy budget ϵ

Output: Estimated subset counting query result Q̃(c)
Procedure:

//User side
1: for each user ui ∈ U do
2: Extract the item set R∗

i from Ri with items belonging to c
3: Encode R∗

i into a bit vector Vi = {V 1
i , V 2

i , ..., V d
i } by Eq. 3,

where d = |c|
4: if Vi = {1}d then
5: Set flag yi = 1
6: Randomly flip a bit to 0
7: else if Vi = {0}d then
8: Set flag yi = −1
9: Randomly flips a bit to 1

10: else
11: Set flag yi = 0
12: Randomly sample an index zi ∈ {1, 2, ..., d}
13: Perturb yi to y′i by Eq. 10 with budget ϵ′ = ϵ− log (d− 1)
14: Send V

zi
i and y′i to the data collector

//Collector side
15: Calculate the noisy count θ̄ by Eq. 5
16: Calculate ∆π by Eq. 11
17: Estimate the counting query result Q̃(c) by Eq. 12
18: return Query result Q̃(c)

local status flag yi according to Eq. 9 (Lines 5, 8 and 11).
Then the user randomly samples an index zi ∈ {1, 2, ..., d}
(Line 12) and perturbs her status flag yi to y′i by Eq. 10 with
privacy budget ϵ′ (Line 13). The computation of ϵ′ will be
elaborated in Theorem 3.1. Finally, the sampled bit and the
sanitized status are sent to the data collector (Line 14). Upon
receiving all reports from users, the collector calculates a
noisy count θ̄ of bit ‘1’ from all sampled bits by Eq. 5,
and calculates ∆π from all status flags by Eq. 11, and then
estimates the counting query result Q̃(c) (Lines 15-17).

3.4. Privacy and Utility Analysis

In this subsection, we establish the privacy and utility
guarantee of our CRI protocol for subset counting query. In
particular, Theorem 3.1 proves that Algorithm 1 satisfies ϵ-
LDP. Theorem 3.2 ensures the estimated result is unbiased,

and Theorems 3.3 and 3.3 provide the error bound of the
estimation variance.
Theorem 3.1. Algorithm 1 satisfies ϵ-LDP, where ϵ = ln(d−

1) + ϵ′, d is the size of query category, and ϵ′ is the
privacy budget for perturbing the status flag by Eq. 10.

PROOF. For a specific category c, each user sends a
sampled bit and her sanitized status flag to the data collector.
For the bit sampling, we know that each user may sample
a bit ’1’ or ’0’. From Table 2, the highest probability to
sample a bit 1 (or 0) is d−1

d , while the lowest probability is
1
d . Therefore, for any two users with filtered item sets R∗

i
and R∗

j regarding to category c, and for any sampled bit
b ∈ {0, 1}, we have

Pr[CRI(R∗
i) = b]

Pr[CRI(R∗
j) = b]

≤ (d− 1)/d

1/d
= eln(d−1).

Therefore, sampling a bit by CRI satisfies ln(d − 1)-LDP.
On the other hand, for any status y′ reported by CRI, we
know from Eq. 10 that

Pr[CRI(R∗
i) = y′]

Pr[CRI(R∗
j) = y′]

≤ eϵ
′
/(2 + eϵ

′
)

1/(2 + eϵ′)
= eϵ

′
.

It means reporting the status flag by CRI satisfies ϵ′-LDP.
Then according to the sequential composition in Theo-
rem 2.2, Algorithm 1 satisfies ϵ-LDP, where ϵ = ln(d −
1) + ϵ′.

Theorem 3.2. The estimated counting query result on any
category c by Eq. 12 is unbiased, i.e., E[Q̃(c)] = Q(c).

PROOF. As for the count estimation, according to Eq. 10,
we know when yi = 1, E[y′i] = eϵ

′

2+eϵ′
· 1 + 1

2+eϵ′
· (−1) +

1
2+eϵ′

· 0 = eϵ
′
−1

2+eϵ′
. Similarly, when yi = −1, E[y′i] = 1−eϵ

′

2+eϵ′
,

and when yi = 0, E[y′i] = 0. Therefore,
n∑

i=1

E[y′i] = c1 ·
eϵ

′ − 1

2 + eϵ′
+ c−1 ·

1− eϵ
′

2 + eϵ′

=
(c1 − c−1)(e

ϵ′ − 1)

2 + eϵ′
,

where c1 and c−1 are the real counts of status flags 1 and
−1 respectively among all users. Then by Eq. 11, we have

E[∆π] =
(2 + eϵ

′
)
∑n

i=1 E[y′i]
n(eϵ′ − 1)

=
c1 − c−1

n

=

∑n
i=1 1(Vi = {1}d)

n
−

∑n
i=1 1(Vi = {0}d)

n
= πd − π0,

which mean ∆π by Eq. 11 is an unbiased estimation of
πd−π0. By substituting the above E[∆π] and E[θ̃] in Eq. 7
to Eq. 12, we have

E[Q̃(c)] = E[θ̄] + n(E[∆π])

= n

(∑d−1

t=1
tπt + π0 + (d− 1)πd

)
+ n(πd − π0)

= n
∑d

t=1
tπt = Q(c).

As such, the estimation of the subset counting query by
Eq. 12 is unbiased.

Theorem 3.3. Given a category c, the number of users n,
and privacy budget ϵ′ for status flag perturbation, the
estimation variance of the counting query result by CRI
in Algorithm 1 is bounded by 1

4nd
2 + 2n(eϵ

′
+2)

(eϵ′−1)2
.

PROOF. According to Eq. 5,

Var[θ̄] = d2 ·Var[
∑n

i=1
V zi
i] = d2 ·

∑n

i=1
Var[V zi

i]

= nd2
(
(π0 + πd)

d− 1

d2
+
∑d−1

t=1
πt

t(d− t)

d2

)
≤ nd2

(
π0 + πd

4
+
∑d−1

t=1

πt

4

)
=

1

4
nd2.

Let c1 and c−1 denote the real counts of status flags 1
and −1 respectively, and c′1 and c′−1 denote observed counts
based on users’ reports. Then we know

Var[c′1] =
2eϵ

′ · c1
(2 + eϵ′)2

+
(1 + eϵ

′
)(n− c1)

(2 + eϵ′)2
,

Var[c′−1] =
2eϵ

′ · c−1

(2 + eϵ′)2
+

(1 + eϵ
′
)(n− c−1)

(2 + eϵ′)2
,

Cov[c′1, c
′
−1] = −eϵ

′
(c1 + c−1)

(2 + eϵ′)2
− n− c1 − c−1

(2 + eϵ′)2
.

Therefore,

Var[

n∑
i=1

y′i] = Var[c′1 − c′−1]

= Var[c′1] + Var[c′−1]− 2Cov[c′1, c
′
−1]

=
n(1 + 5eϵ

′
) + 3(n− c1 − c−1)(1− eϵ

′
)

(2 + eϵ′)2
.

According to Eqs. 10 and 11,

Var[∆π] =
(2 + eϵ

′
)2 ·Var[

∑n
i=1 y

′
i]

n2(eϵ′ − 1)2

=
n(1 + 5eϵ

′
) + 3(n− c1 − c−1)(1− eϵ

′
)

n2(eϵ′ − 1)2

≤ n(1 + 5eϵ
′
) + 3n(1− eϵ

′
)

n2(eϵ′ − 1)2

=
2(eϵ

′
+ 2)

n(eϵ′ − 1)2
.

According to Eq. 12, we have

Var[Q̃(c)] = Var[θ̄] + n2 ·Var[∆π]

≤ 1

4
nd2 +

2n(eϵ
′
+ 2)

(eϵ′ − 1)2
,

which proves that the variance of frequency estimation by
CRI is bounded by 1

4nd
2 + 2n(eϵ

′
+2)

(eϵ′−1)2
.

By Theorem 3.3, we observe that the estimation error
of subset counting query by CRI comes from two sources,
namely the sampling and perturbation process. While en-
suring deniability for extreme cases where bits are all ‘1’s
or ‘0’s, the perturbation comes at a price of an estimation
variance of 2n(eϵ

′
+2)

(eϵ′−1)2
. In other words, to derive an estimation

of ∆π in Eq. 11 and thus make the counting query result
unbiased, CRI sacrifices its utility by re-introducing
the perturbation error. In the next section, we find an
alternative way to ensure deniability for extreme cases, and
propose CRIAD which eliminates the perturbation error and
thus enhances the utility.

4. CRIAD: Counting via Randomized Index
with Augmented Dummies

In this section, we present a utility-enhanced CRI so-
lution to counting queries. The main idea is to augment a
user’s encoded bit vector with dummy bits, so the protocol
is called Counting via Randomized Index with Augmented
Dummies (CRIAD). In this section, we first present the
skeleton of CRIAD, followed by its customization to cope
with various privacy requirements and category sizes. Fi-
nally, we summarize its overall procedure, together with the
privacy and utility analysis.

4.1. Randomized Index with Augmented Dummies

To ensure the deniability of two extreme cases (all ‘0’s
and ‘1’s), we augment a user’s bit vector with dummy 0/1
bits, so that either bit can be sampled in both extreme cases
and therefore perturbation is no longer needed. Table 3
illustrates this effect when a bit ‘1’ is added to each bit
vector, so in the case of π0, both Pr[1] and Pr[0] are non-
zero.

Apparently we can add another dummy bit ‘0’ to each
bit vector to fix the case of πd as well. Nonetheless, these

TABLE 3. CASES OF BIT VECTORS WITH AN AUGMENTED BIT ‘1’

Proportion No. of 1 No. of 0 Pr[1] Pr[0]
π0 1 d 1/(d + 1) d/(d + 1)
π1 2 d − 1 2/(d + 1) (d−1)/(d+1)
π2 3 d − 2 3/(d + 1) (d−2)/(d+1)
π3 4 d − 3 4/(d + 1) (d−3)/(d+1)
...

πd−1 d 1 d/(d + 1) 1/(d + 1)
πd d + 1 0 1 0

dummies come at a price of sampling error, because they
dilute the original bit distribution in these vectors. For
example, in the π1 case, the sampling probability of bit ‘1’
changes from 1

d (Table 2) to 2
d+1 (Table 3), and will further

change to 3
d+2 if 2 dummies are added. This obviously

increases the sampling variance. Our key idea is that in real-
world applications, the πd case (i.e., all bits are ‘1’s) is too
rare to contribute to the overall count. This is especially
true when the category size is large. Therefore, we can just
suppress a πd cases to a πd−1 case by randomly flipping
one bit 1 to 0 to refrain from adding a dummy bit ‘0’.

Algorithm 2 Procedure of CRIAD with One Dummy Bit
Input: A category c

All users’ item sets {Ri, Ri, ..., Rn}
Output: A sampled bit V zi

i
Procedure:

//User side
1: for each user ui ∈ U do
2: Extract the item set R∗

i from Ri with items belonging to c
3: Encode R∗

i into a binary vector Vi = {V 1
i , V 2

i , ..., V d
i , 1} by

Eq. 3, where d = |c|
4: if Vi = {1}d+1 then
5: Randomly flip a bit to 0
6: Randomly sample an index zi ∈ {1, 2, ..., d+ 1}
7: Report V zi

i to the data collector

//Collector side
8: Estimate the subset counting query result Q̃(c) by Eq. 13
9: return Query result Q̃(c)

Algorithm 2 shows the pseudo-code of the above proce-
dure, where one dummy bit ‘1’ is appended as the (d+1)-th
bit in each user’s bit vector (Line 3). If all bits in Vi are ‘1’s,
the user randomly flips one of them to 0 (Lines 4-5). Then
each user randomly samples an index zi ∈ {1, 2, ..., d+ 1}
and reports the sampled bit V zi

i to the data collector (Lines
6-7). At the collector side, the impact of added dummy bits
‘1’ on the counting query can be eliminated by subtracting
n from the aggregated bits, as each of n user contributes a
dummy bit ‘1’,

Q̃(c) = (d+ 1)
∑n

i=1
V zi
i − n, (13)

where V zi
i is the reported bit from user ui. The following

two theorems establish the privacy and correctness guarantee
of Algorithm 2, respectively.

Theorem 4.1. Algorithm 2 satisfies ln d-LDP.

PROOF. By Algorithm 2, the case of πd is reduced to
πd−1 by randomly flipping a bit ’1’ to ’0’. So for any two

filtered item sets R∗
i and R∗

j regarding category c from users,
and any bit b ∈ {0, 1} reported, we know

Pr[CRI(R∗
i) = b]

Pr[CRI(R∗
j) = b]

≤ Pr[b = 1|Vi ∈ πd−1]

Pr[b = 1|Vj ∈ π0]

=
d/(d+ 1)

1/(d+ 1)
= eln d.

Therefore, Algorithm 2 satisfies ln d-LDP.

Theorem 4.2. The estimated counting query result Q̃(c) by
Eq. 13 is unbiased if each user’s number of bit ’1’ in
the bit vector does not exceed d− 1, and the estimation
variance is bounded by 1

4n(d+ 1)2.

PROOF. According to Eq. 13, the expectation of the
subset counting query result is

E[Q̃(c)] = (d+ 1) · E[
∑n

i=1
V zi
i]− n

= (d+ 1)

(∑d−1

t=0

t+ 1

d+ 1
· nπt +

d

d+ 1
nπd

)
− n

= n

(∑d

t=1
tπt +

∑d

t=0
πt − πd

)
− n

= Q(c)− nπd.

Since the number of bit ‘1’ does not exceed d− 1, πd = 0.
Therefore, E[Q̃(c)] = Q(c), i.e., Q̃(c) is unbiased.

As for the estimation variance, we have

Var[Q̃(c)] = (d+ 1)2Var[
∑n

i=1
V zi
i]

= (d+ 1)2
∑d

t=0
nπt

(t+ 1)(d− t)

(d+ 1)2

≤ (d+ 1)2
∑d

t=0

nπt

4

=
1

4
n(d+ 1)2.

Therefore, the estimation variance of the subset counting
query is bounded by 1

4n(d+ 1)2.

4.2. Customizing CRIAD

CRIAD is generic in terms of the number of dummies
and samples in each user. In this subsection, we show the
customization of CRIAD to support a wide range of privacy
requirements and category sizes.

4.2.1. Multiple Dummies. In Algorithm 2, only one
dummy bit ‘1’ is added to each user’s bit vector. Table 4
shows the impact of m dummies on the sampling proba-
bilities of bits ‘1’s and ‘0’s respectively. We observe that
for the first d + 1 − m cases (i.e., from π0 to πd−m), the
sampling probability of bit ‘1’ (resp. 0) ranges from m

d+m

to d
d+m (resp. from d

d+m to m
d+m). As more dummy ‘1’s

are added, the sampling probability gradually approaches 1
(resp. 0). This motivates us to confine the number of bit ‘1’s
to d−m. As such, the probability ratio of any two sampled
bits can be bounded by d/m and thus m dummies can satisfy
(ln d

m)-LDP (see Theorem 4.3 for complete proof).

TABLE 4. CASES OF BIT VECTORS WITH m DUMMY BITS ‘1’

Proportion No. of 1 No. of 0 Pr[1] Pr[0]
π0 m d m/(d + m) d/(d + m)
π1 1 + m d − 1 (1 + m)/(d + m) (d−1)/(d+m)
π2 2 + m d − 2 (2 + m)/(d + m) (d−2)/(d+m)
...

πd−m d m d/(d + m) m/(d + m)
πd−m+1 d + 1 m − 1 (d + 1)/(d + m) (m−1)/(d+m)

...
πd−1 d+m−1 1 (d+m−1)/(d+m) 1/(d + m)
πd d + m 0 1 0

Then each user ui randomly samples an index zi ∈
{1, 2, ..., d+m} and reports the bit V zi

i to the data collector.
Based on the reports from all users, the estimated subset
counting query result Q̃(c) can be derived as

Q̃(c) = (d+m)
∑n

i=1
V zi
i −mn,

where the second term mn is the number of dummy ‘1’s
added by all users.

4.2.2. Multiple Samples. In Algorithm 2, each user ran-
domly samples and reports one bit to the data collector, and
the overall algorithm satisfies ln d-LDP (see Theorem 4.1).
However, this becomes a privacy bottleneck when the pri-
vacy budget ϵ > ln d, as the extra budget has to be wasted.
CRIAD can benefit from a large privacy budget by having
users report multiple samples. Note that this is different from
directly applying sequential composition (i.e., Theorem 2.2)
to repeatedly perform one-bit sampling multiple times, as
in CRIAD, bits are sampled without replacement to cover
as many data bits as possible. Table 5 shows the impact of
number of samples s on the probabilities of bits ‘1’s and ‘0’s
respectively, where m (m ≥ s) dummies are added. Note
that the table only shows the first d−m+1 cases (i.e., from
π0 to πd−m), as the others are reduced to the case of πd−m

before sampling, in the same way as in Section 4.2.1.

TABLE 5. CASES OF BIT VECTORS WITH m DUMMY BITS ‘1’ AND s
SAMPLES

Proportion No. of 1 No. of 0 Pr[{1}s] Pr[{0}s]

π0 m d
(m

s

)/(d+m
s

) (d
s

)/(d+m
s

)
π1 1 + m d − 1

(m+1
s

)/(d+m
s

) (d−1
s

)/(d+m
s

)
π2 2 + m d − 2

(m+2
s

)/(d+m
s

) (d−2
s

)/(d+m
s

)
...

πd−m d m
(d
s

)/(d+m
s

) (m
s

)/(d+m
s

)
Let zi = {zi[1], zi[2], ..., zi[s]} denote the s indexes

sampled by user ui. Based on all users’ reports, the esti-
mated counting query result Q̃(c) can be derived as

Q̃(c) =
d+m

s

∑n

i=1

∑s

x=1
V

zi[x]
i −mn.

4.2.3. Multiple Groups. Although m dummies can satisfy
(ln d

m)-LDP, when the category size d is large, it is difficult
to satisfy a small privacy budget. To address this issue, we
further propose a grouping strategy to divide a large category
over {1, 2, ..., d} into g disjoint and equal-sized groups

{G1, G2, ..., Gg}, i.e., |Gr| = d
g and ∪g

r=1Gr = {1, 2, ..., d}.
Each group becomes a new (sub)category and thus the above
multi-dummy and multi-sample strategies can still work in
each group. The users are also divided into g equal-sized
groups {U1, U2, ..., Ug}, i.e., n

g users for each group, and
each user reports s samples drawn from her bit vector with
m dummy ‘1’s in her corresponding group.

Upon receiving reports from all users, the data collector
first counts bit ‘1’s in each group, and then collectively
derives the estimated counting query result based on the
counts from g groups. Specifically, for group Gr, the count
in user group Ur can be estimated as

γr =
d+ gm

gs

|Ur|∑
i=1

s∑
x=1

V
zi[x]
Ur[i]

−m · |Ur|,

where Ur[i] denotes the i-th user in Ur, and∑|Ur|
i=1

∑s
x=1 V

zi[x]
Ur[i]

is the sum of all returned samples
in group Ur. Finally, the estimated counting query result
becomes

Q̃(c) =

g∑
r=1

γr · g =
d+ gm

s

n∑
i=1

s∑
x=1

V
zi[x]
i − nmg. (14)

4.3. CRIAD: Putting Things Together

Algorithm 3 shows the complete CRIAD procedure with
a multi-dummy, multi-sample, and multi-group strategy. As
such, Algorithm 2 can be considered as a special case where
m = s = g = 1. Given a subset counting query on the
category c, the data collector first derives three parameters,
namely, the number of dummies m, samples s and groups
g, based on the given privacy budget ϵ and category size
d = |c| (Line 1), which will be elaborated by Theorem 4.7
in Section 4.4. The collector then broadcasts m, s and g to
all users (Line 2). At the user side, the domain {1, 2, ..., d}
of category c is first divided into g groups {G1, G2, ..., Gg}
uniformly at random (Line 3), then each user samples a
group Gr for reporting (Line 5). Each user extracts a filtered
record set R∗

i from Ri with items belonging to Gr (Line 6),
and then encodes it into a bit vector with length |Gr| (Line
7). Then m dummy bits 1 are added to the encoded bit
vector (Line 8). If the number of bit ‘0’s is fewer than m,
the user needs to randomly flip some ‘1’s to ensure at least
m ‘0’s (Lines 9-11). Then s indexes are randomly sampled
from {1, 2, ..., d + m} and the user sends these sampled
bits to the data collector (Lines 12-13). Finally, based on
all the reports from users, the collector estimates the subset
counting query result by Eq. 14.

4.4. Privacy and Utility Analysis of CRIAD

In this subsection, we will address the pending problem
of choosing parameters m, s and g, given category c and
privacy budget ϵ. We will first provide privacy and utility
analysis in Theorems 4.3 to 4.6, based on which we derive
the optimal setting for three parameters in Theorem 4.7.

Algorithm 3 Workflow of CRIAD
Input: A category c

All users’ item set {Ri, Ri, ..., Rn}
Privacy budgets ϵ1 and ϵ2 for count and mean estimation

Output: Estimated subset counting query result Q̃(c)
Procedure:

//Collector side
1: Set parameters: m, s, g ← ParaSelect(d, ϵ) by Theorem 4.7
2: Broadcast m, s and g to all users

//User side
3: Divide the full domain {1, 2, ..., d} of category c into g groups
{G1, G2, ..., Gg} uniformly at random

4: for each user ui (1 ≤ i ≤ n) do
5: Randomly sample a group Gr for r ∈ {1, 2, ..., g}
6: Extract the item set R∗

i from Ri with items belonging to Gr

7: Encode R∗
i into a binary vector Vi = {0, 1}|Gr| by Eq. 3

8: Add m dummy bits (i.e., {1}m) to Vi

9: Set c′ as the number of bit ‘0’s in Vi

10: if c′ < m then
11: Randomly flip m− c′ bits ‘1’ in Vi

12: Randomly sample s indices zi = {zi[1], ..., zi[s]} from
{1, 2, ..., d+m}

13: Send V
zi
i to the data collector

//Collector side
14: Estimate the counting query result Q̃(c) by Eq. 14
15: return Query result Q̃(c)

Theorem 4.3. With m dummies, s samples and g groups,
CRIAD satisfies ln

((
d/g
s

)/(
m
s

))
-LDP.

PROOF. Recall that in Table 4, the last m cases (i.e.,
πd−m+1, πd−m+2, ..., πd) are reduced to πd−m by suppress-
ing the number of bit ‘1’s in the encoded bit vector. There-
fore, for any two filtered item sets R∗

i and R∗
j regarding a

subset, and any bit b ∈ {0, 1} reported by CRIAD, we have

Pr[CRIAD(R∗
i) = b]

Pr[CRIAD(R∗
j) = b]

≤ Pr[CRIAD(Vi ∈ πd−m) = 1]

Pr[CRIAD(Vj ∈ π0) = 1]

=
d/(d+m)

m/(d+m)
=

d

m
.

Then with increasing s > 1, let b = {0, 1}s denote a bit
vector of length s reported by a user. Recall that in Table 5,
the above ratio further becomes
Pr[CRIAD(R∗

i) = b]

Pr[CRIAD(R∗
j) = b]

≤ Pr[CRIAD(Vi ∈ πd−m) = {1}s]
Pr[CRIAD(Vj ∈ π0) = {1}s]

=

(
d
s

)
/
(
d+m
s

)(
m
s

)
/
(
d+m
s

) =

(
d
s

)(
m
s

) .
Then with increasing g > 1, the group size changes

from d + m to d
g + m. So the above ratio becomes(

d/g
s

)/(
m
s

)
. Therefore, CRIAD satisfies ϵ-LDP, where ϵ =

ln
((

d/g
s

)/(
m
s

))
.

Theorem 4.4. The estimated count Q̃(c) by Algorithm 3 is
unbiased if the number of bits ‘1’s in the encoded bit
vector does not exceed d/g −m.

PROOF. By the grouping strategy, each encoded bit vector
is split into g sub-vectors. Therefore, for an encoded vector

Vi which contains t bit ‘1’s, the length of each sub-vector
is d/g and the expected count of bit 1 is t/g. In Eq. 14,∑s

x=1 V
zi[x]
i is the count of bit ‘1’s in s samples reported

by the user ui in a group. Similar to Theorem 4.2, if the
number of bit ‘1’s in that group does not exceed d/g−m, the
count

∑s
x=1 V

zi[x]
i from each user is an unbiased estimation

of the true count in that group. Hence, in the case of πt, the
expectation of the count

∑s
x=1 V

zi[x]
i is

E[
∑s

x=1
V

zi[x]
i |πt] =

s(t/g +m)

d/g +m
.

Therefore,

E[
∑s

x=1
V

zi[x]
i] =

∑d

t=0
πt · E[

∑s

x=1
V

zi[x]
i |πt]

=
∑d

t=0

s(t/g +m)

d/g +m
πt.

By Eq. 14, the expectation of the estimated count is

E[Q̃(c)] =
d+ gm

s

∑n

i=1
E[
∑s

x=1
V

zi[x]
i]− nmg

=
d+ gm

s

∑n

i=1

∑d

t=0

s(t/g +m)

d/g +m
πt − nmg

= n
∑d

t=0
tπt = Q(c).

Therefore, E[Q̃(c)] = Q(c).

Theorem 4.5. The expected bias error for Q̃(c) by Algo-
rithm 3 is n

∑d
t=d−mg πtf(t), where f(t) = t−d+mg.

PROOF. By the grouping strategy, each encoded bit vector
is split into g sub-vectors. Therefore, for an encoded vector
Vi which contains t bit ‘1’s, the length of each sub-vector
is d/g and the expected count of bit 1 is t/g.

For the case where t > d−mg, since we suppress πt/g

cases to πd/g−m case by randomly flipping one bit 1 to 0
to refrain from adding a dummy bit ‘0’, the expected bias
error after aggregation is

n
∑d

t=d−mg
πt(

t

g
− d

g
+m)g = n

∑d

t=d−mg
πtf(t),

where f(t) = t − d +mg. Conversely, when t ≤ d −mg,
the expected bias error after aggregation is 0. In sum-
mary, the expected bias error for Q̃(c) by Algorithm 3 is
n
∑d

t=d−mg πtf(t).

Theorem 4.6. With m dummies, s samples and g groups, the
variance of the estimated count by CRIAD is bounded
by n(d+gm)2

4s .

PROOF. With g groups, m dummies and s samples, each
user first selects a group uniformly at random, and then
selects s sample bits in that group. From the perspective
of sampling variance, this is equivalent to directly selecting
s samples from the whole domain of length d + gm. For
any encoded bit vector belonging to the case of πt ∈
{π0, π1, ..., πd−m}, the whole domain consists of t + gm

bit ‘1’s and d − t bit ‘0’s. As such, the variance of the
estimated count Q̃(c) by Eq. 14 is

Var[Q̃(c)] =
(d+ gm)2

s2
Var[

∑n

i=1

∑s

x=1
V

zi[x]
i]

=
n(d+ gm)2

s2

∑d

t=0
πtVar[

∑s

x=1
V

zi[x]
i |πt]

≲
n(d+ gm)2

s
· (t+ gm)(d− t)

(d+ gm)2

<
n(d+ gm)2

4s
.

Therefore, the variance of the estimated count by
CRIAD is bounded by n(d+gm)2

4s .

Finally, Theorem 4.7 below derives an optimal approx-
imation of m, s and g in terms of the estimation variance.
Theorem 4.7. Given privacy budget ϵ, the optimal m, s, and

g ∈ Z+ of CRIAD can be approximated by

m, s, g = argmin
m,s,g

E[(Q̃(c)−Q(c))2]

= argmin
m,s,g

n
(d+gm)2

4s
+ (n

d∑
t=d−mg

πtf(t))
2

 (15)

s.t., ϵ ≥ ln
((

d/g
s

)/(
m
s

))
,

1 < s ≤ m ≤ d/g.

PROOF. The optimal parameter setting of m, s and g can
be derived by minimizing the expected squared error, i.e.,
argminm,s,g E[(Q̃(c)−Q(c))2]. Note that the first term in
Eq. 15 is the overall variance derived from Theorem 4.6,
and the second term is the expected bias error due to
suppression derived from Theorem 4.5. As for the two
conditions, the first is due to Theorem 4.3, where CRIAD
satisfies ln

((
d/g
s

)/(
m
s

))
-LDP. The second is because even

when the true bit vector has all bit ‘0’s, the number of bit
‘1’ is still m as m dummy ‘1’s are added. And m ≤ d/g is
because in each group we confine the number of bit ‘1’s to
d/g −m .

As for πt, we can randomly allocate a portion of users
to estimate the distribution, where each user only needs
to report an integer. Then we conduct a greedy search to
enumerate all combinations of m, s and g, calculate their
resulted variance by Eq. 15, and select the optimal one with
the lowest variance. Note that m, s, g ∈ Z+, and s and g are
typically small integers even for a large domain. As such,
the number of combinations will not be too large, resulting
in an efficient search.

5. Experimental Evaluation

In this section, we evaluate the performance of our
proposed solution CRIAD to validate its effectiveness in
answering subset counting queries.

5.1. Experiment Setup

Datasets. We conduct experiments on three real datasets.
• Kosarak 1 contains click-stream dataset from a Hungar-

ian on-line news portal, which contains 990, 002 users.
The item domain size is 41, 270.

• OnlineRetail 2 is transformed from the Online Retail
dataset, which contains 541, 909 users. The item do-
main is 2, 603.

• POS [38] is a dataset on merchant transactions, which
contains 515, 595 users. The item domain is 1, 657.

Competitors. We compare our proposed solution CRIAD
with existing value-perturbation LDP solutions, namely
Numerical Value Perturbation (NVP) and Padding-and-
Sampling Perturbation (PSP) introduced in Section 2.3.
Additionally, to demonstrate the superiority of randomized
index over randomized response (RR), we also implement
RR, which replaces Step 2⃝ of Figure 1 by sampling a bit
from the encoded vector produced by Eq. 3, perturbing it
by RR [33], and reporting the sanitized bit for aggregation.
Parameter Setting. For NVP, we implement it by integrat-
ing three state-of-the-art perturbation mechanisms, namely
Laplace Mechanism (LM), Piecewise Mechanism (PM) and
Square Wave mechanism (SW), which are denoted by NVP-
LM, NVP-PM, and NVP-SW, respectively. For PSP, we
follow the existing work [31] and use the 90th percentile
of the users’ itemset sizes of the query category as the
padding length η. To estimate this value, 10% of users report
the length through Optimal Local Hashing (OLH) [29] in
advance. For CRIAD, to derive the optimal parameter setting
of m, s and g by Theorem 4.7, we allocate 10% of the
users randomly to estimate the distribution of πt via SW
mechanism [22]. Note that this is for parameter selection
only, and will not inject any noise to the original data.
Experiment Design. We design three sets of experiments
to evaluate different methods. The first set compares the
overall performance of CRIAD and its competitors across
three datasets by varying the privacy budget. The second set
studies the impact of category sizes on the performance of
different methods. The third set validates the effectiveness
of Theorem 4.7 for setting the optimal parameters for the
numbers of dummies m, samples s and groups g.
Metrics. To evaluate the result accuracy, we employ the
Mean Relative Error [24], which quantifies the average
difference between the estimated result Q̃(c) and the ground
truth Q(c). Formally,

MRE(c) =
1

N

∑
N

∣∣∣Q̃(c)−Q(c)
∣∣∣

Q(c)
(16)

where N represents the number of trials for each experi-
ment. In our study, N is set to 100.

We conduct experiments using Python 3.11.5 and the
Numpy 1.24.3 library on a desktop equipped with an Intel
Core i5-13400F 1.50 GHz CPU and 64GB of RAM, running
Windows 11.

1. http://fimi.uantwerpen.be/data/
2. https://archive.ics.uci.edu/ml/datasets/

NVP-LM NVP-PM NVP-SW PSP RR CRIAD

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.05

0.1

0.15

0.2
M

ea
n

Re
la

tiv
e

Er
ro

r

(a) Kosarak, [1, 100]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(b) OnlineRetail, [1, 100]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.05

0.1

0.15

0.2

M
ea

n
Re

la
tiv

e
Er

ro
r

(c) POS, [1, 100]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Re

la
tiv

e
Er

ro
r

(d) Kosarak, [1, 400]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(e) OnlineRetail, [1, 400]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Re

la
tiv

e
Er

ro
r

(f) POS, [1, 400]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(g) Kosarak, [1, 1600]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(h) OnlineRetail, [1, 1600]

0.4 0.8 1.2 1.6 2
Privacy Budget

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(i) POS, [1, 1600]

Figure 2. Overall performance on real-world datasets with varying privacy budgets.

5.2. Overall Results

In this subsection, we investigate the overall perfor-
mance of different methods across three real-world datasets
with varying privacy budgets. On each dataset, we eval-
uate three subset counting queries with categories set to
[1, 100], [1, 400], and [1, 1600], respectively. The privacy
budget varies from 0.2 to 2.0, with a step size of 0.2.
Figure 2 shows the results, where MRE of all methods
decreases as the privacy budget increases. Overall, CRIAD
performs the best, followed by RR, NVP and finally PSP.
The gap between CRIAD and the competitors is particularly
significant for smaller privacy budget (e.g., ϵ < 1.2). This is
because, a small privacy budget potentially leads to larger
estimation variance, resulting in higher MRE. However,
CRIAD is capable of selecting optimal parameters (e.g.,
by reducing the number of dummy items) to minimize the
variance according to the given privacy budget, thanks to
Theorem 4.7. In particular, with a small privacy budget of
ϵ = 0.1, CRIAD outperforms the second-best method (i.e.,
RR) by a factor of at least 5. On the other hand, we found
PSP is much less effective compared to other methods. This
is because, in each dataset, despite the large size of the
category, the number of items owned by each user is small,
which can lead to a large η and ultimately result in large
estimation error.

5.3. Impact of Category Size

In this subsection, we study the impact of the category
size on the performance of different methods, while fixing
the privacy budget at ϵ = 1. Specifically, the category size
varies from 100 from 1600, resulting in the category domain
from [1, 100] to [1, 1600] respectively. Figure 3 presents
the results across various category sizes, where CRIAD
consistently delivers the best performance in all cases, while
PSP always exhibits the highest MRE, which even exceeds
1 in some cases, especially on OnlineRetail dataset.

On the other hand, as shown in Figures 3(a) and 3(c),
we observe that the MRE of different methods increases
with the category size on both Kosarak and POS datasets.
This can be attributed to the distribution of items in both
datasets, where the majority of items are concentrated in
smaller category indexes. Consequently, as the category size
increases, the number of items owned by users within the
query category remains relatively stable, which ultimately
leads to worse results. In OnlineRetail dataset, the items are
more evenly distributed across users, resulting in a relatively
consistent MRE across different category sizes. Overall, the
performance gap between CRIAD and the other methods
becomes more pronounced as the category size increases,
which suggests that CRIAD scales effectively with larger
category sizes.

NVP-LM NVP-PM NVP-SW PSP RR CRIAD

100 200 400 800 1600
Category Size

0

0.05

0.1

0.15

0.2
M

ea
n

Re
la

tiv
e

Er
ro

r

(a) Kosarak

100 200 400 800 1600
Category Size

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(b) OnlineRetail

100 200 400 800 1600
Category Size

0

0.2

0.4

0.6

0.8

1

M
ea

n
Re

la
tiv

e
Er

ro
r

(c) POS

Figure 3. MRE of different methods with varying category size (ϵ = 1).

5.4. Effectiveness of the Optimal Parameter Setting

In this subsection, we validate the effectiveness of The-
orem 4.7 for determining the optimal parameters, in terms
of the numbers of dummies m, samples s and groups g. For
this study, we fix the privacy budget at ϵ = 1 and set the
category size d = 400. Note that the estimation of πt in
Theorem 4.7 introduces variability in parameter selection.
Therefore, we conduct 100 independent experiments across
three datasets. Table 6 presents the three most frequent
(m, s, g) combinations and their occurrences out of 100.
We observe that, under the condition of ϵ = 1 and d = 400,
our strategy consistently sets (m, s, g) = (148, 1, 1) with the
highest probability.

TABLE 6. OCCURRENCES OF THE THREE MOST FREQUENT PARAMETER
COMBINATIONS OUT OF 100 EXPERIMENTS

(m,s, g) Kosarak OnlineRetail POS
(148,1,1) 60 63 58
(244,2,1) 9 4 3
(288,3,1) 2 2 5

Then we fix m at 148, 244, and 288 respectively, and
enumerate all feasible (m, s, g) combinations that satisfy
the given privacy budget. The results of MRE of each
combination over three datasets are presented in Table 7,
where the results of the selected parameter combinations by
Theorem 4.7 is shown as bold (i.e., parameter combinations
in Table 6). Overall, we observe that those selected (m, s, g)
combinations yield a relatively lower relative error than most
of the cases. Although the combination (148, 3, 2) yields
the smallest relative error, the difference is not substantial
compared to the (148, 1, 1) case, particularly on the Kosarak
and OnlineRetail datasets. It is also noteworthy that when
g = 2, the computational cost almost doubles. Additionally,
we observe that for fixed values of m and g, a larger
s results in a decreasing MRE. This trend is explained
by Theorem 4.7 that, while satisfying ϵ-LDP, a larger s
corresponds to a smaller expected squared error.

To further investigate the effectiveness of parameter
setting, we then fix s = 1 or g = 1 respectively, and
randomly select 100 combinations of (m, s, g) that satisfy
the given privacy budget ϵ = 1. The results are presented in
Figure 4, where combinations with larger MRE than the case

TABLE 7. RESULTS OF MRE OF PARAMETER COMBINATIONS OVER
THREE DATASET, WITH d = 400, ϵ = 1.

m (s, g) Kosarak OnlineRetail POS

m = 148

(1,1) 0.052 0.343 0.060
(1,2) 0.078 0.593 0.074
(2,2) 0.052 0.341 0.045
(3,2) 0.050 0.337 0.043

m = 244
(1,1) 0.093 0.596 0.072
(2,1) 0.369 0.593 0.070

m = 288
(1,1) 0.109 0.468 0.082
(2,1) 0.067 0.273 0.074
(3,1) 0.040 0.199 0.048

of (148, 1, 1) are marked in red, while those with smaller
MRE are in blue.

As shown in Figures 4(a), (c), and (e), we find that when
fixing the number of samples at s = 1, setting a smaller
number of groups g tends to achieve a lower MRE. This
is to ensure more valid samples for the estimation within
each group. As g increases, the number of dummy items
m is significantly reduced, since it is constrained by the
decreasing group size. Nevertheless, the case of (148, 1, 1)
selected by Theorem 4.7 still achieves lower MRE than most
of parameter combinations.

Figure 4(b) shows that when m > 300 and s <
16, the corresponding parameter combinations outperform
(148, 1, 1) on Kosarak dataset. Additionally, as evidenced by
Table 6, besides the (148, 1, 1) combination, Theorem 4.7
also frequently sets parameters within this range with a
high probability on Kosarak. Figures 4(d) and (f) demon-
strate that on OnlineRetail and POS datasets, parameter
combinations with m > 350 and s < 40 also achieve
lower MRE than (148, 1, 1). Similarly, Table 6 indicates that,
besides the combination(148, 1, 1), Theorem 4.7 frequently
sets parameters within this specified range with considerable
probability. Overall, although Theorem 4.7 does not always
determine the optimal setting when g is fixed, it reliably
suggests better-than-average parameter configurations and
frequently identifies optimal combinations.

6. Related Work

Differential privacy was first proposed in the central-
ized setting [13], [14], [16]. To avoid relying on a trusted
data collector, local differential privacy (LDP) was pro-
posed to let each user perturb her data locally [9]. In

m

80
160

240
320g

80 160 240 320

M
ea

n
Re

la
tiv

e
Er

ro
r

0.6
1.2

1.8

2.4

(a) Kosarak, ϵ = 1, s = 1

m

200
250

300
350s

8 16 24 32 40

M
ea

n
Re

la
tiv

e
Er

ro
r

0.05

0.10

0.15

0.20

(b) Kosarak, ϵ = 1, g = 1

m

80
160

240
320g

80 160 240 320

M
ea

n
Re

la
tiv

e
Er

ro
r

4

8

12

16

(c) OnlineRetail, ϵ = 1, s = 1

m

200
250

300
350s

8 16 24 32 40

M
ea

n
Re

la
tiv

e
Er

ro
r

0.3

0.6

0.9

1.2

(d) OnlineRetail, ϵ = 1, g = 1

m

80
160

240
320g

80 160 240 320

M
ea

n
Re

la
tiv

e
Er

ro
r

0.4
0.8
1.2

1.6

(e) POS, ϵ = 1, s = 1

m

200
250

300
350s

8 16 24 32 40

M
ea

n
Re

la
tiv

e
Er

ro
r

0.04

0.08

0.12

0.16

(f) POS, ϵ = 1, g = 1

Figure 4. MRE of 100 random parameter combinations of (m, s, g).

the literature, many LDP techniques have been proposed
for various statistical collection tasks, such as frequency
of categorical values [2], [15], [19], [29], and mean of
numerical values [6], [27]. Recently, the research focus in
LDP has been shifted to more complex tasks, such as heavy
hitter identification [3], [4], itemset mining [31], marginal
release [5], [37], time series data analysis [1], [30], [35],
and data poisoning attacks [8], [18]. In what follows, we
review existing LDP works that are relevant to ours, namely
LDP mechanisms for categorical data, numerical data and
set-value data, respectively.

LDP Mechanisms for Categorical Data. There are a
line of LDP work developed for categorical value perturba-
tion. Randomized Response (RR) [33] is the most straight-
forward mechanism for binary value, and a generalized
form of RR (a.k.a., kRR) [19] is then proposed to deal
with a value with domain size d > 2. To alleviate large
perturbation noise along with the increasing domain size,
Wang et al. propose Optimized Unary Encoding (OUE) [29]
which achieves better utility. Besides, several perturbation
protocols are also proposed in the literature, including RAP-
POR [15], SHist [2] and subset selection [34].

LDP Mechanisms for Numerical Data. Designing LDP
protocols for numerical values also attracts great attention

from the researchers. As with centralized DP, Laplace Mech-
anism [13] can be adopted in the local setting. On the other
hand, Duchi et al. propose a solution for mean estima-
tion over numerical values [10]. To address computation
and space complexity of it, an improved method [11] is
then proposed to perturb any numerical input into a binary
output according to a certain probability. Ding et al. [6]
also propose mechanisms to continuously collect telemetry
data. More recently, Wang et al. [27] propose Piecewise
Mechanism (PM) to improve estimation accuracy, and Li et
al. [22] propose Square-wave (SW) mechanism to support
numerical distribution estimation.

Frequency Estimation over Set-value Data. As a
relevant problem to this paper, frequency estimation over
set-value data has been widely studies in the context of
LDP. LDPMiner [25], together with a padding-and-sampling
protocol, is the first solution for this problem. Wang et
al. [31] further study the privacy amplification effect of
padding-and-sampling protocol with kRR, and use it for
frequent itemset mining. Wang et al. [28] propose PrivSet
to estimate both item distribution and set size distribution
over set-value data. Besides, some other work also consider
the setting where each user possesses a set of key-value
pairs [17], [36]. Nevertheless, existing work over set-value
setting all consider a full-domain item distribution or heavy
hitter identification [7], [32], both of which are different
from the problem studied in this work.

7. Conclusion

In this work, we study the problem of answering subset
counting queries on set-value data. Unlike existing studies
that perturb the original values to ensure an LDP guaran-
tee, we propose an alternative approach that leverages the
deniability of randomized indexes without perturbing the
values. Our design, named CRIAD, satisfies a rigorous LDP
guarantee while achieving higher accuracy than all existing
methods. Furthermore, by integrating a multi-dummy, multi-
sample, and multi-group strategy, CRIAD is optimized into
a fully scalable solution that offers flexibility across various
privacy requirements and domain sizes.

As for further work, we plan to extend CRIAD to more
complex scenarios, such as the federated setting, where
queries involve users across multiple parties, and item ex-
hibit heterogeneity.

References

[1] E. Bao, Y. Yang, X. Xiao, and B. Ding. CGM: an enhanced mech-
anism for streaming data collection with local differential privacy.
PVLDB, 14(11):2258–2270, 2021.

[2] R. Bassily and A. Smith. Local, private, efficient protocols for
succinct histograms. In STOC, pages 127–135. ACM, 2015.

[3] R. Bassily, U. Stemmer, A. G. Thakurta, et al. Practical locally private
heavy hitters. In NIPS, pages 2285–2293, 2017.

[4] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the structure
of local privacy. In PODS, pages 435–447. ACM, 2018.

[5] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal release under
local differential privacy. In SIGMOD, pages 131–146. ACM, 2018.

[6] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In NIPS, pages 3574–3583, 2017.

[7] R. Du, Q. Ye, Y. Fu, H. Hu, and K. Huang. Top-k discovery under
local differential privacy: An adaptive sampling approach. IEEE
Transactions on Dependable and Secure Computing, 2024.

[8] R. Du, Q. Ye, Y. Fu, H. Hu, J. Li, C. Fang, and J. Shi. Differential
aggregation against general colluding attackers. In ICDE, pages
2180–2193. IEEE, 2023.

[9] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429–438. IEEE, 2013.

[10] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Privacy aware
learning. Journal of the ACM, 61(6):1–57, 2014.

[11] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal
procedures for locally private estimation. Journal of the American
Statistical Association, 113(521):182–201, 2018.

[12] C. Dwork. Differential privacy. In ICALP, pages 1–12. Springer,
2006.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284. Springer,
2006.

[14] C. Dwork, A. Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends® in Theoretical Computer Science,
9(3–4):211–407, 2014.

[15] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In CCS, pages
1054–1067. ACM, 2014.

[16] J. Fu, Q. Ye, H. Hu, Z. Chen, L. Wang, K. Wang, and X. Ran. Dpsur:
accelerating differentially private stochastic gradient descent using
selective update and release. Proceedings of the VLDB Endowment,
17(6):1200–1213, 2024.

[17] X. Gu, M. Li, Y. Cheng, L. Xiong, and Y. Cao. PCKV: locally dif-
ferentially private correlated key-value data collection with optimized
utility. In USENIX Security, 2020.

[18] K. Huang, G. Ouyang, Q. Ye, H. Hu, B. Zheng, X. Zhao, R. Zhang,
and X. Zhou. LDPGuard: Defenses against data poisoning attacks to
local differential privacy protocols. IEEE Transactions on Knowledge
and Data Engineering, 36(7):3195–3209, 2024.

[19] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local
differential privacy. In NIPS, pages 2879–2887, 2014.

[20] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith. What can we learn privately? SIAM Journal on Computing,
40(3):793–826, 2011.

[21] N. Li, M. Lyu, D. Su, and W. Yang. Differential privacy: From theory
to practice. Synthesis Lectures on Information Security, Privacy, &
Trust, 8(4):1–138, 2016.

[22] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, N. Li, and B. Škoric.
Estimating numerical distributions under local differential privacy. In
SIGMOD, pages 621–635, 2020.

[23] F. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD, pages 19–30. ACM,
2009.

[24] A. M. Mood. Introduction to the theory of statistics. 1950.

[25] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter
estimation over set-valued data with local differential privacy. In CCS,
pages 192–203. ACM, 2016.

[26] A. G. Thakurta, A. H. Vyrros, U. S. Vaishampayan, G. Kapoor,
J. Freudiger, V. R. Sridhar, and D. Davidson. Learning new words,
Mar. 14 2017. US Patent 9,594,741.

[27] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and
G. Yu. Collecting and analyzing multidimensional data with local
differential privacy. In ICDE, 2019.

[28] S. Wang, L. Huang, Y. Nie, P. Wang, H. Xu, and W. Yang. PrivSet:
Set-valued data analyses with locale differential privacy. In INFO-
COM, pages 1088–1096. IEEE, 2018.

[29] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private
protocols for frequency estimation. In USENIX Security, pages 729–
745, 2017.

[30] T. Wang, J. Q. Chen, Z. Zhang, D. Su, Y. Cheng, Z. Li, N. Li, and
S. Jha. Continuous release of data streams under both centralized and
local differential privacy. In CCS, pages 1237–1253, 2021.

[31] T. Wang, N. Li, and S. Jha. Locally differentially private frequent
itemset mining. In S&P, pages 127–143. IEEE, 2018.

[32] T. Wang, N. Li, and S. Jha. Locally differentially private heavy
hitter identification. IEEE Transactions on Dependable and Secure
Computing, 18(2):982–993, 2019.

[33] S. L. Warner. Randomized response: A survey technique for elim-
inating evasive answer bias. Journal of the American Statistical
Association, 60(309):63–69, 1965.

[34] M. Ye and A. Barg. Optimal schemes for discrete distribution
estimation under locally differential privacy. IEEE Transactions on
Information Theory, 64(8):5662–5676, 2018.

[35] Q. Ye, H. Hu, K. Huang, M. H. Au, and Q. Xue. Stateful switch:
Optimized time series release with local differential privacy. In
INFOCOM. IEEE, 2023.

[36] Q. Ye, H. Hu, X. Meng, and H. Zheng. PrivKV: Key-value data
collection with local differential privacy. In S&P, pages 317–331.
IEEE, 2019.

[37] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen. CALM: Consistent
adaptive local marginal for marginal release under local differential
privacy. In CCS, pages 212–229. ACM, 2018.

[38] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of
association rule algorithms. In SIGKDD, pages 401–406, 2001.

	Introduction
	Preliminaries and Problem Definition
	Local Differential Privacy
	Problem Definition
	Solutions from Existing Work
	Pitfalls of Existing Solutions

	Randomized Index for Subset Counting
	Randomized Response vs. Randomized Index
	Overview of CRI Protocol
	CRI: Counting via Randomized Index
	Privacy and Utility Analysis

	CRIAD: Counting via Randomized Index with Augmented Dummies
	Randomized Index with Augmented Dummies
	Customizing CRIAD
	Multiple Dummies
	Multiple Samples
	Multiple Groups

	CRIAD: Putting Things Together
	Privacy and Utility Analysis of CRIAD

	Experimental Evaluation
	Experiment Setup
	Overall Results
	Impact of Category Size
	Effectiveness of the Optimal Parameter Setting

	Related Work
	Conclusion
	References

