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Abstract. This work presents a joint design of encoding and encryp-
tion procedures for public key encryptions (PKEs) and key encapsulation
mechanism (KEMs) such as Kyber, without relying on the assumption
of independent decoding noise components, achieving reductions in both
communication overhead (CER) and decryption failure rate (DFR). Our
design features two techniques: ciphertext packing and lattice packing.
First, we extend the Peikert-Vaikuntanathan-Waters (PVW) method to
Kyber: ℓ plaintexts are packed into a single ciphertext. This scheme is
referred to as Pℓ-Kyber. We prove that the Pℓ-Kyber is IND-CCA secure
under the M-LWE hardness assumption. We show that the decryption
decoding noise entries across the ℓ plaintexts (also known as layers) are
mutually independent. Second, we propose a cross-layer lattice encoding
scheme for the Pℓ-Kyber, where every ℓ cross-layer information symbols
are encoded to a lattice point. This way we obtain a coded Pℓ-Kyber,
where the decoding noise entries for each lattice point are mutually inde-
pendent. Therefore, the DFR analysis does not require the assumption of
independence among the decryption decoding noise entries. Both DFR
and CER are greatly decreased thanks to ciphertext packing and lattice
packing. We demonstrate that with ℓ = 24 and Leech lattice encoder,
the proposed coded Pℓ-KYBER1024 achieves DFR < 2−281 and CER
= 4.6, i.e., a decrease of CER by 90% compared to KYBER1024. Addi-
tionally, for a fixed plaintext size matching that of standard Kyber (256
bits), we introduce a truncated variant of Pℓ-Kyber that deterministically
removes ciphertext components carrying surplus information bits. Using
ℓ = 8 and E8 lattice encoder, we show that the proposed truncated coded
Pℓ-KYBER1024 achieves a 10.2% reduction in CER and improves DFR
by a factor of 230 relative to KYBER1024. Finally, we demonstrate that
constructing a multi-recipient PKE and a multi-recipient KEM (mKEM)
using the proposed truncated coded Pℓ-KYBER1024 results in a 20% re-
duction in bandwidth consumption compared to the existing schemes.

Keywords: Module leaning with errors · public key encryption · Ci-
phertext packing · Lattice packing · Key Encapsulation Mechanisms ·
Ciphertext expansion · Multi-Recipient
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1 Introduction

In August 2024, National Institute of Standards and Technology (NIST) has
published the final post-quantum cryptography standards for digital-signature,
encryption, and key-encapsulation mechanisms (KEM). CRYSTALS-Kyber is
the only post-quantum KEM standardised by NIST [25]. In February 2024,
Apple has announced that its iMessage is going to use Kyber [3], where sender
devices generate post-quantum encryption keys using the receiver’s public keys.
Kyber is a lattice-based cryptographic algorithm built upon the module-learning
with errors (M-LWE) problem. Unlike traditional KEMs like Elliptic-curve
Diffie–Hellman (ECDH), the Kyber algorithm results in much larger ciphertext
size (e.g., up to 49 times larger), which necessitates more storage, increased
memory usage, and greater demand for network bandwidth. Later, Facebook
reported an increase of about 40% in CPU cycles after implementing Kyber,
compared with its current ECDH [32]. For the upcoming large-scale deployment
phase, it is crucial to enhance Kyber in order to reduce its storage, memory us-
age, and communication bandwidth. In early 2025, NIST announced adaptation
of HQC as another KEM built upon code-based cryptographic assumptions.

Kyber’s encryption and decryption processes can be viewed as a noisy com-
munication channel with binary Pulse Amplitude Modulation (2-PAM) [23]. Re-
cent coding schemes aim to encode more bits, reducing the ciphertext expansion
rate (CER). For instance, [19] replaces 2-PAM with a Leech lattice constellation,
achieving a 32.6% CER reduction. [23] proposes a 5-PAM Q-ary BCH encoding,
cutting CER by 45.6%. To the best of our knowledge, [20] achieves the best re-
sults so far. That is a 54% CER reduction by transforming Kyber’s processes
into a Gaussian channel, encoding a 638-bit secret in a single ciphertext. These
methods rely on an independence assumption for decryption noise, using the
central limit theorem to model noise as Gaussian. While valid for higher dimen-
sions, this assumption may underestimate the decryption failure rate (DFR), as
the noise entries are actually dependent.

Kyber uses a lossy compression (quantization) function to reduce ciphertext
size, increasing decoding noise. Efforts to reduce quantization noise focus on
minimizing channel noise. [2] applied D4-lattice quantization to Ring-LWE (R-
LWE), and [31] extended this to M-LWE with E8-lattice quantization. [18] pro-
posed a lattice quantization framework for Kyber, reducing the CER by 36.47%

and DFR by a factor of 299. [20] showed that Lloyd-Max quantization minimizes
mean squared error (MMSE) for M-LWE samples. However, the DFR analysis
in [18][20] still assumes independence in decoding noise entries.

The independence assumption mentioned above is closely related to the Cen-
tral Limit Theory (CLT): the dominant decoding noise components are assumed
to be i.i.d. Gaussian random variables. The independent/CLT assumption also
appears in the wider literature on (R/M-) LWE based cryptosystem and fully
homomorphic encryption (FHE). In R-LWE, the independent assumption was
applied to the decoding noise entries of NewHope-Simple [15]. In LWE, the
Gaussian approximation was applied to the decoding noise entries of FrodoKEM
[22]. The CLT assumption was also used in the homomorphic encryption (HE)
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schemes [8][24]. An open question is how to create a (R/M-) LWE based coded
cryptosystem that does not depend on the independence assumption on the de-
coding noise entries.

Apart from the coding approach, an alternative way of reducing the CER
is ciphertext packing [26] (also well known as PVW packing), which was origi-
nally proposed for LWE. The authors show that a single LWE ciphertext vector
(i.e., the first part of the ciphertext) can be securely reused to encrypt multiple
ciphertexts (i.e., 1-bit messages) by employing various secret-key vectors. The
resulting cryptosystem is much more efficient than Regev’s scheme [29], since
the CER can be made as small as a constant by packing many plaintexts. This
method has been used to construct LWE based HE schemes [7][6] and KEM
scheme [1]. The downside of ciphertext packing is the increased DFR, due to a
union bound probability of decryption failure for each plaintext. To the best of
the authors’ knowledge, the ciphertext packing has not been introduced to M-
LWE based KEMs like Kyber. It would be interesting to see how the ciphertext
packing method affects the DFR analysis, CER, and security level of Kyber.

Although Kyber is originally specified to encapsulate a 256-bit secret, many
key encapsulation mechanisms—particularly those used in contexts involving
Forward Secrecy (FS) and Key Rotation—frequently exchange raw shared se-
crets exceeding 256 bits. For instance, TLS 1.3 employs P-384 for FS, yielding a
384-bit raw secret prior to key derivation [30]. Apple’s PQ3 protocol employs a
hybrid key exchange scheme that combines ECC and Kyber, producing a con-
catenated raw shared secret of approximately 512 bits prior to input to the key
derivation function (KDF) [3]. From a multi-key derivation perspective, many
protocols require derivation of several symmetric keys (e.g., AES key, HMAC
key, IV) from a single exchange. Even when only a 256-bit AES key is ultimately
used, a larger raw secret enhances KDF resilience and entropy distribution. From
a theoretical perspective, [23] demonstrated that encoding across four standard
Kyber ciphertexts can yield a 2214-bit secret. More recently, [20] showed that it
is feasible to embed two AES keys within a single standard Kyber ciphertext.
These findings suggest the potential for constructing more compact M-LWE-
based KEMs than the current Kyber scheme. Accordingly, we argue that ex-
tending Kyber to support the encapsulation of larger secrets is both practically
meaningful and theoretically significant for modern cryptographic applications.

The standard single-recipient KEM can be generalized to support multiple
recipients (mKEM) by accepting multiple public keys as input [33]. This is useful
in scenarios where the same session key m needs to be securely shared with a
group of recipients. A key advantage of mKEM is its reduced ciphertext overhead
compared to the naive approach of performing individual encryptions for each
recipient. In [17], Kyber-based mPKE and mKEM schemes were introduced,
wherein the session key m is encapsulated using multiple public keys and com-
bined into a single ciphertext. This approach achieves a significant reduction in
ciphertext size relative to the naive method. Moreover, any further reduction
in the ciphertext size of the underlying Kyber scheme directly translates to a
corresponding reduction in the ciphertext size of the Kyber-based mKEM.
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Our main contribution is to develop a M-LWE based KEM with a very low
CER (e.g., CER < 5), where its DFR analysis does not depend on the assump-
tion of independence among the decryption decoding noise entries. Our design
leverages two techniques: ciphertext packing and lattice packing. The former
greatly reduces the CER, while the latter is effective at decreasing the DFR
(i.e., compensating the drawback of ciphertext packing). Below we summarize
the means that we achieve this:

– We first propose a packed version of Kyber: ℓ plaintexts are packed into a
single ciphertext. This scheme is referred to as Pℓ-Kyber. We prove that
the Pℓ-Kyber is IND-CCA secure under the M-LWE hardness assumption.
We show that the decryption decoding noise entries across the ℓ plaintexts
(also known as layers) are mutually independent. We also propose a cross-
layer lattice encoding scheme for the Pℓ-Kyber, where every ℓ cross-layer
information symbols are encoded to a lattice point. This way we obtain a
coded Pℓ-Kyber, which takes the advantages of both ciphertext packing and
lattice packing. An upper bound on the DFR of coded Pℓ-Kyber is derived,
which can be verified numerically. We demonstrate that with ℓ = 24 and
Leech lattice encoder, the proposed coded Pℓ-KYBER1024 achieves DFR
≤ 2−281 and CER = 4.6 (see Table 5).

– Secondly, for a fixed plaintext size equivalent to that of standard Kyber (256
bits), we propose a truncated variant of Pℓ-Kyber that deterministically elim-
inates ciphertext components conveying redundant information bits. Em-
ploying ℓ = 8 in conjunction with the E8 lattice encoder, the proposed trun-
cated coded Pℓ-KYBER1024 achieves a 10.2% reduction in the CER and
yields a DFR improvement by a factor of 230 compared to KYBER1024. Ad-
ditionally, we finally demonstrate that implementing a multi-recipient KEM
(mKEM) based on the proposed truncated coded Pℓ-KYBER1024 achieves
a 20% reduction in bandwidth usage compared to existing mKEM schemes.

A summary of our main results is provided in Table 1 for convenience.

2 Preliminaries

In this section, we set the notations, provide the definitions and background on
coding techniques. We further provide Kyber algorithms and identify the gaps in
analysis regarding the independence assumptions used in central limit theorem
(CLT) in various prior works.

2.1 Notation and Definitions

Rings: Let Rq denote the polynomial ring Zq[X]/(Xn+1), where n = 256 and q =
3329 in this setting. Elements of Rq are represented by regular font letters, while
vectors of coefficients in Rq are denoted by bold lowercase letters. Matrices and
vectors are indicated by bold uppercase and lowercase letters, respectively. The
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Table 1. Variants of KYBER1024 for encrypting τ AES Keys by packing ℓ ciphertexts.
N : total plaintext size (in bytes), M : total ciphertext size (in bytes), δ: DFR, ρ: CER

DFR Analysis CLT Numerical
Scheme [19] [23] [20] [25] This work
Encoder Lattice2 Q-BCH Binary-BCH Uncoded Uncoded Lattice2

MMSE1

Quantizer No No Yes No Yes Yes

τ = 1
(1 AES key)

N = 32
M = 1184
ℓ = 1

δ = 2−213

ρ = 37

N = 58
M = 1568
ℓ = 1

δ < 2−174

ρ = 26.6

-

N = 32
M = 1568
ℓ = 1

δ = 2−174

ρ = 49

N = 32
M = 1568
ℓ = 1

δ = 2−190

ρ = 49

N = 32
M = 1408
ℓ = 8

δ = 2−204

ρ = 44

τ = 2
(2 AES keys) - -

N = 79
M = 1792
ℓ = 1

δ = 2−174

ρ = 22.5

-

N = 64
M = 1728
ℓ = 2

δ = 2−189

ρ = 27

N = 64
M = 1536
ℓ = 8

δ = 2−203

ρ = 24

τ = 8
(8 AES keys) -

N = 276
M = 6272
ℓ = 4

δ < 2−174

ρ = 22.7

- -

N = 256
M = 2688
ℓ = 8

δ = 2−187

ρ = 10.5

N = 256
M = 2688
ℓ = 8

δ = 2−336

ρ = 10.5
1 MMSE quantization is defined in Definition 2.
2 Lattice coding principles are detailed in Section 2.2. The encoding scheme for 1–2

AES keys is described in Section 5, while those for 8–36 AES keys are presented
in Section 4.

transpose of a vector v or a matrix A is represented as vT or AT , respectively.
By default, vectors are treated as column vectors.

Sampling and Distribution: For a set S, we use the notation s ← S to indi-
cate that s is chosen uniformly at random from S. If S represents a probability
distribution, this means s is chosen according to that distribution. This nota-
tion is extended coefficient-wise to a polynomial f(x) ∈ Rq or a vector of such
polynomials. Let x be a bit string and S be a distribution that takes x as in-
put. We express y ∼ S := Sam(x) to mean that the output y generated by the
distribution S using input x can be extended to any desired length. We define
βη = B(2η, 0.5) − η as the central binomial distribution over Z. The Cartesian
product of two sets A and B is represented as A×B. We denote A×A as A2.

Compression and Quantization: Given x ∈ R, the notation ⌈x⌋ refers to round-
ing x to the nearest integer, with ties rounded up. The operations ⌊x⌋ and ⌈x⌉
denote rounding x down and up, respectively. Now, considering x ∈ Zq and d ∈ Z
such that 2d < q, Kyber compression and decompression functions are [25]:

x′ = Compressq(x, d) = ⌈(2
d/q) · x⌋ mod 2d,

x̂ = Decompressq(x
′, d) = ⌈(q/2d) · x′⌋ ∈ C. (1)
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Kyber compression and decompression operations can be interpreted as a map-
ping from a large set Zq to a smaller set C with |C| = 2d < q. In the literature of
signal processing, this mapping is generally known as quantization.

Definition 1 (Scalar Quantization). Given a random variable x ∈ Zq and an
integer L > 0, a scalar quantization QL divides the support of x into L subsets
R1, . . . , RL, referred to as quantization regions TL =

⋃L
i=1Ri. Each region Rj

is associated with a quantizer αj ∈ CL. When x lies within the region Rj, the
quantization QL maps x to the point x̂ = αj. QL can be viewed as a function:

QL : Zq → CL, (2)

where QL(x, CL, TL) := x̂ can be uniquely represented by its index in CL, denoted
as IndexL(x̂), i.e., CL(IndexL(x̂)) = x̂. The communication cost of transmitting x̂
reduces to log2(L) bits.

For consistency, with L = 2d, the Kyber quantization in (1) is redefined as

x̂ = QKyber,2d(x) = Decompressq(Compressq(x, d), d)

x′ = Index2d(x̂) = Compressq(x, d). (3)

Definition 2 (MMSE Quantization). The optimal quantization should min-
imize the mean squared quantization error (MMSE):

(CL, TL) = arg min
C′
L∈Rn,T ′

L⊂Rn
E(∥x−QL(x, C′L, T

′
L)∥

2). (4)

For simplicity of notation, we define the MMSE quantization as

x̂ = QMMSE,L(x). (5)

The MMSE scalar quantization is the Lloyd-Max quantization [21].

Definition 3 (Moment Generating Function). Let X ← D be a random
variable. For θ ∈ R, the moment generating function (MGF) of X is denoted by

MX(θ) = E(exp(θX)). (6)

Definition 4 (Algebraic Expression of a Column Ring Vector). A col-
umn ring vector v ∈ Rℓ

q is defined as:

v = [v0(x), v1(x), . . . , vℓ−1(x)]
T , where vi(x) =

n−1∑
j=0

vi,jx
j ∈ Rq, vi,j ∈ Zq.

Define the mapping function ϕ : Rℓ
q → Zℓ×n

q :

ϕ(v) =


v0,0 v0,1 · · · v0,n−1

v1,0 v1,1 · · · v1,n−1

...
...

. . .
...

vℓ−1,0 vℓ−1,1 · · · vℓ−1,n−1

 .
The function ϕ extracts the coefficients of each ring element vi(x) and arranges
them as the i-th row of ϕ(v) ∈ Zk×n

q . The inverse mapping ϕ−1 : Zℓ×n
q → Rℓ

q

reconstructs the ring vector from its coefficient matrix: v = ϕ−1(ϕ(v)).
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2.2 Lattice Code, Encoder, and Decoder

Definition 5 (Lattice). An ℓ-dimensional lattice Λ is a discrete additive sub-
group of RM with M ≥ ℓ. Given ℓ linearly independent column vectors b1, . . . ,bℓ ∈
RM , the lattice generated by these vectors is defined as:

Λ = L(B) =

{
ℓ∑

i=1

zibi|zi ∈ Z

}
,

where B = [b1, . . . ,bℓ] is referred to as a generator matrix of Λ.

Definition 6 (Lattice Code). A lattice code C(Λ,P) is the finite collection of
points in Λ that fall within the bounded set P:

C(Λ,P) = Λ ∩ P.

If P = Zℓ
p, the code C(Λ,Zℓ

p) is said to be generated from hypercube shaping (HS).

Definition 7 (CVP Decoder). Given y ∈ Rℓ, the Closest Vector Problem
(CVP) decoder returns the nearest lattice vector to y within the lattice L(B):

x = CVP(y,L(B)) = arg min
x′∈L(B)

∥x′ − y∥.

Definition 8 (HS Encoder [22]). Let B = U ·diag(π1, . . . , πℓ) ·U′ be the Smith
Normal Form (SNF) factorization of a lattice basis B, where U and U′ are
unimodular matrices in Zℓ×ℓ. Let the message space be

Mp,ℓ = {0, 1, . . . , p/π1 − 1} × · · · × {0, 1, . . . , p/πℓ − 1} , (7)

where p > 0 is a common multiple of π1, . . . , πℓ. Given an input m ∈ Mp,ℓ and
B̂ = U · diag(π1, . . . , πℓ), a HS encoder produces a codeword x ∈ C(L(B),Zℓ

p):

x = B̂m mod p, (8)

Definition 9 (HS CVP Decoder [22]). Given a lattice L(B) in RM and
an input vector y ∈ RM , the HS CVP decoder outputs an estimated message
m̂ = [m̂1, . . . , m̂ℓ]

T ∈Mp,ℓ:

m̂ = CVPHS(y,L(B))

= B̂−1 · CVP(y,L(B)) mod (p/π1, . . . , p/πℓ), (9)

where m̂i = (B̂−1CVP(y,L(B))i mod p/πi, for i = 1, . . . , ℓ.

2.3 Cryptographic Definitions

Definition 10 (M-LWE Problem [5]). The M-LWE samples (ai, bi = aTi s +

ei) are drawn from the M-LWE distribution As,β over Rk
q × Rq. Here, ai ←

Rk
q is chosen uniformly, s ← βkη is common to all samples, and ei ← βη is

independent for each sample. Given m M-LWE samples, the decision-M-LWE
problem involves distinguishing As,β from the uniform distribution on Rk

q × Rq,
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while the search-M-LWE problem seeks to recover the secret s. For an algorithm
A, we define the advantage of an adversary as AdvM−LWE

m,k,η (A) =∣∣∣∣∣Pr
(
b′ = 1 :

A← Rm×k
q ; (s, e)← βkη × βmη

b = As+ e; b′ ← A(A,b)

)
− Pr

(
b′ = 1 :

A← Rm×k
q ;

b← Rm
q ; b′ ← A(A,b)

)∣∣∣∣∣
Definition 11 (Public-Key Encryption (PKE) [5]). A public-key encryp-
tion scheme PKE = (KeyGen,Enc,Dec) consists of a triple of probabilistic algo-
rithms along with a message space M. The key-generation algorithm KeyGen

produces a pair (pk, sk), which includes a public key and a secret key. The en-
cryption algorithm Enc takes the public key pk and a message m ∈ M to gener-
ate a ciphertext c. Finally, the deterministic decryption algorithm Dec uses the
secret key sk and the ciphertext c to output either a message m ∈ M or a spe-
cial symbol ⊥ to indicate rejection. We say that the scheme is (1 − δ)-correct if
E[maxm∈M Pr[Dec(sk,Enc(pk,m)) = m]] ≥ 1 − δ, where the expectation is taken
over (pk, sk) and the probability is taken over the random coins of Enc.

Definition 12 (IND-CPA and IND-CCA [5]). We revisit the standard se-
curity notions for public-key encryption, specifically indistinguishability under
chosen-ciphertext attacks (IND-CCA) and chosen-plaintext attacks (IND-CPA).
The advantage of an adversary A is defined as

AdvCCAPKE(A) =

∣∣∣∣∣∣∣∣∣Pr
b = b′ :

(pk, sk)← KeyGen();

(m0,m1, s)← ADEC(·)(pk);

b← {0, 1}; c∗ ← Enc(pk,mb);

b′ ← ADEC(·)(s, c∗);

− 1/2

∣∣∣∣∣∣∣∣∣ (10)

where the decryption oracle is defined as DEC(·) = Dec(sk, ·). We also require that
|m0| = |m1| and that in the second phase, the adversary A is not permitted to
query DEC(·) with the challenge ciphertext c∗. The advantage AdvCPAPKE(A) of an
adversary A is defined as AdvCCAPKE(A), provided that A cannot query DEC(·).

Definition 13 (DFR and CER). Given a message m ∈ M, the Decryption
Failure Rate (DFR) is denoted as δ ≜ Pr(m̂ ̸= m), where m̂ is the decryption of c
where c = Enc(pk,m). The communication cost refers to the ciphertext expansion
rate (CER):

ρ =
# of bits in c

# of bits in m
, (11)

i.e., the ratio of the ciphertext size to the plaintext size.

2.4 Kyber’s IND-CPA-Secure Encryption

Each message m ∈ {0, 1}n can be viewed as a polynomial in R with coefficients
in {0, 1}. We recall Kyber.CPA = (KeyGen; Enc; Dec) [4] as described in Al-
gorithms 2.4.1 to 2.4.3. The values of δ, CER, and (q, k, η1, η2, du, dv) are given
in Table 2. Note that the parameters (q, k, η1, η2) determine the security level of
Kyber, while the parameters (du, dv) describe the ciphertext compression rate.
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Algorithm 2.4.1 Kyber.CPA.KeyGen(): key generation
1: ψ, σ ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ψ)
3: (s, e) ∼ βk

η1 × β
k
η1 := Sam(σ)

4: t := As + e
5: return (pk := (t, ψ), sk := s)

Algorithm 2.4.2 Kyber.CPA.Enc (pk = (t, ψ),m ∈ {0, 1}n)
1: r ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ψ)
3: (r, e1, e2) ∼ βk

η1 × β
k
η2 × βη2 := Sam(r)

4: u := QKyber,2du (A
T r+ e1)

5: v := QKyber,2dv (t
T r+ e2 + ⌈q/2⌋ ·m)

6: return c := (Index2du (u), Index2dv (v))

Algorithm 2.4.3 Kyber.CPA.Dec(sk = s, c = (u, v))

1: u := C2du (Index2du (u))
2: v := C2dv (Index2dv (v))
3: return Compressq(v − sTu, 1)

Table 2. Parameters of Kyber [25]
k q η1 η2 du dv DFR CER Plaintext Size

KYBER512 2 3329 3 2 10 4 2−138 24 256 bits
KYBER768 3 3329 2 2 10 4 2−164 34 256 bits
KYBER1024 4 3329 2 2 11 5 2−174 49 256 bits

2.5 Kyber with Optimal Quantization

The choice of quantization affects the distribution of (cv, cu) and thus the de-
coding noise. [20] shows that Kyber’s quantizer QKyber is suboptimal, as it does
not minimize the mean squared values of (cv, cu). Replacing it with the MMSE-
optimal Lloyd-Max quantizer QMMSE improves the DFR without affecting Ky-
ber’s security, which is independent of the quantization method and noise level.

Table 3 presents DFR bounds under different quantizers. Using code from
[14] and the Lloyd-Max noise distribution, we compute the DFR numerically.
A noticeable gap emerges between our results and the CLT-based asymptotic
bound in [20], indicating that CLT-based analyses may underestimate DFR.
Still, both bounds confirm that improved quantization reduces DFR.

2.6 Coded Kyber and CLT Assumption

Kyber decryption decoding problem can be expressed as [4]

y = v − sTu = ⌈q/2⌋ ·m+ ne, (12)

9



Table 3. DFR bounds: Kyber Compression QKyber vs. Lloyd-Max QMMSE

Source [25] [20] This work
Quantization QKyber QMMSE QMMSE

Bound type Numerical CLT Numerical
KYBER512 2−138 2−150 2−142

KYBER768 2−164 2−177 2−169

KYBER1024 2−174 2−196 2−190

where ne is the decryption decoding noise

ne = v − sTu− ⌈q/2⌋ ·m = eT r+ e2 + cv − sT (e1 + cu) , (13)

where (cv, cu) refers to the quantization noises produced by the quantization
QKyber in Algorithm 2.4.2. Due to ne, Kyber decryption has a failure rate.

From the information theory perspective, (12) can be viewed as an uncoded
2-PAM [28], which has been generalized to the coded cases [19][20][23]:

y = ⌈q/p⌋ · ENC(m) + ne, (14)

where p ∈ Z, m ← {0, 1}K , and ENC(m) : {0, 1}K → Zn
p represents an encoder.

For example, [19] uses a lattice encoder, [20] uses a binary BCH encoder, and
[23] uses a Q-ary BCH encoder. The advantage of coded Kyber is the reduced
CER, since more information bits can be encrypted to a single ciphertext.

Independence/CLT Assumption in [19][20][23]: To estimate the DFR of
coded Kyber, existing schemes assume that the entries in ne are mutually inde-
pendent. This assumption relies on the CLT, i.e., for a certain variance σ2e ,

eT r− sT (e1 + cu)→ N (0, σ2eIn), as k · n→∞ (15)

An open question is whether we can develop a coded Kyber scheme without
relying on the CLT assumption on ne. We will address this question in the
remainder of the paper.

3 Uncoded Pℓ-Kyber: Kyber with Packed Ciphertexts

In this section, we first present an ℓ-layer Kyber following PVW approach [26].
We then turn this into an IND-CCA KEM and analyze its key and ciphertext
sizes as well as its DFR and CER compared to original Kyber.

3.1 IND-CPA-Secure Encryption

We consider the idea of packed ciphertexts in [26], where a ciphertext c encrypts
a vector of ℓ plaintext ring elements m = [m1, . . . ,mℓ]

T ∈ Rℓ
2, not just a single

ring element m ∈ R2. In details, the same matrix A and encryption randomness
r in Algorithm 2.4.2 can be securely reused to encrypt m, by having ℓ secret-key
vectors S = [s1, . . . , sℓ]. The key generation, encryption and decryption functions
of Kyber with ℓ-packed ciphertexts (Pℓ-Kyber PKE) is given below.
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Algorithm 3.1.1 Kyber.Packed.CPA.KeyGen(): key generation
1: ψ, σ ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ψ)
3: (S,E) ∼ βk×ℓ

η1 × β
k×ℓ
η1 := Sam(σ)

4: T := AS + E
5: return (pk := (T, ψ), sk := S)

Algorithm 3.1.2 Kyber.Packed.CPA.Enc (pk = (T, ψ),m ∈ {0, 1}ℓ×n)
1: r ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ψ)
3: (r, e1, e2) ∼ βk

η1 × β
k
η2 × β

ℓ
η2 := Sam(r)

4: u := QMMSE,2du (A
T r+ e1)

5: v := QMMSE,2dv (T
T r+ e2 + ⌈q/2⌋ ·m)

6: return c := (Index2du (u), Index2dv (v))

Algorithm 3.1.3 Kyber.Packed.CPA.Dec(sk = S, c = (u,v))

1: u := C2du (Index2du (u))
2: v := C2dv (Index2du (v))
3: return Compressq(v − STu, 1)

Correctness. Let δℓ be the DFR of Pℓ-Kyber PKE. We show below the cor-
rectness of the encryption scheme described in Algorithms 3.1.1 to 3.1.3.

Lemma 1 (Correctness of Pℓ-Kyber PKE). The DFR is bounded by

δℓ ≤ ℓ · δ, (16)

where δ is the DFR of the unpacked Kyber in Table 3.

Proof. Let ne = [n0, . . . , nℓ−1]
T ∈ Rℓ

q be the decoding noise of Pℓ-Kyber. Similar
to (13), we can write ne as

ne = v − STu− ⌈q/2⌋ ·m = ET r+ e2 + cv − ST (e1 + cu) , (17)

where (cv, cu) are the quantization noises. Using the union bound, we obtain

δℓ = Pr(∥ne∥∞ ≥ ⌈q/4⌋) ≤
ℓ−1∑
i=0

Pr(∥ni∥∞ ≥ ⌈q/4⌋) = ℓ · δ. (18)

Remark 1. The DFR of Pℓ-Kyber increases with ℓ but can be reduced using
QMMSE. Its key benefit is the low CER, denoted as ρℓ:

ρℓ =
kndu + ℓndv

N
=
kdu
ℓ

+ dv. (19)

where N = n · ℓ is the plaintext size (in bits). Table 1 shows (δ = δℓ, ρ = ρℓ)

as a function of ℓ (refer to the column labeled “This Work – Uncoded”). P8-
KYBER1024 reduces CER by 79% and DFR by 213, relative to KYBER1024.

Security. We will prove that the encryption scheme defined above is IND-CPA
secure under the M-LWE hardness assumption.
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Lemma 2 (IND-CPA Security of Pℓ-Kyber PKE). For any adversary A,
there exists an adversary B such that AdvCPAPℓ−Kyber(A) ≤ (ℓ+ 1) · AdvM−LWE

k+ℓ,k,η(B).

Proof. Let A be an adversary that is executed in the IND-CPA security experi-
ment which we call game G0, i.e., AdvCPAPℓ−Kyber = |Pr(b = b′ in game G0)− 1/2|.

In game G1, the ℓ column vectors in the public key T are simultaneously
substituted with ℓ uniform random vectors. It is possible to verify that there
exists an adversary B with the same running time as that of A such that

|Pr(b = b′ in game G0)− Pr(b = b′ in game G1)| ≤ ℓAdvM−LWE
k,k,η (B) ≤ ℓAdvM−LWE

k+ℓ,k,η(B),

(20)

where the second inequality holds since the adversary B will have access to more
samples, in particular from k to k + ℓ.

In game G2, the vectors u and v used in the generation of the challenge
ciphertext are simultaneously substituted with uniform random vectors. Again,
there exists an adversary B with the same running time as that of A with

|Pr(b = b′ in game G1)− Pr(b = b′ in game G2)| ≤ AdvM−LWE
k+ℓ,k,η(B). (21)

Note that in game G2, the value v from the challenge ciphertext is independent
of bit b and therefore Pr(b = b′ in game G2) = 1/2. Collecting the probabilities
in (20) and (21) yields the required bound.

3.2 The CCA-Secure KEM

Let G : {0, 1}∗ → {0, 1}(ℓ+1)×256 and H : {0, 1}∗ → {0, 1}ℓ×256 be hash functions.
Given z ← {0, 1}ℓ×256, along the same line as [5], a KEM is obtained by applying
a KEM variant of the Fujisaki–Okamoto (FO) transform [16] to the Pℓ-Kyber
encryption scheme. We make explicit the randomness r in the Enc algorithm.

Algorithm 3.2.1 Kyber.Packed.Encaps(pk = (T, ψ))
1: m← {0, 1}256×ℓ

2: (K̂, r) := G(H(pk),m)
3: (u,v) := Kyber.Packed.CPA.Enc (pk = (T, ψ),m; r)
4: c := (u,v)
5: K := H(K̂,H(c))3

6: return (c,K)

3 H(c) was used in [4][5] to simplify the implementation with non-incremental hash
APIs. We can use c in place of H(c), as referenced in [16][25]. Another difference
between [5] and [4] [25] is that a third hash function, Key Derivation Function (KDF),
is used to compute K, i.e., K := KDF(K̂,H(c)) in [4]. Since these small tweaks don’t
affect the security and DFR analysis of Kyber, we follow the original design in [5].
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Algorithm 3.2.2 Kyber.Packed.Decaps(sk = (S, z,T, ψ), c = (u,v))

1: m′ := Kyber.Packed.CPA.Dec(S, (u,v))
2: (K̂′, r′) := G(H(pk),m′)
3: (u′,v′) := Kyber.Packed.CPA.Enc (pk = (T, ψ),m′; r′)
4: if (u′,v′) = (u,v) then
5: return K := H(K̂′, H(c))
6: else
7: return K := H(z,H(c))
8: end if

Correctness. If Kyber.Packed.CPA is (1−δℓ)-correct and G is a random oracle,
then Pℓ-Kyber is (1− δℓ)-correct [16].

Security. We provide the concrete security bounds from [5][16] which proves
Pℓ-Kyber KEM’s CCA-security, when G and H are modelled as random oracles.

Lemma 3 (IND-CCA Secure KEM [16, Theo. 3.2 and 3.4]). For any
classical adversary A that makes at most qRO queries to the random oracles H
and G, as well as qD queries to the decryption oracle, there exists an adversary
B such that

AdvCCAPℓ−Kyber(A) ≤ 3AdvCPAPℓ−Kyber(B) + qRO · δℓ +
3qRO

2256×ℓ
. (22)

Lemma 4 (IND-CCA Secure KEM [4, Theo. 3][5, Theo. 4]). For any
quantum adversary A that makes at most qRO queries to the quantum random
oracles H and G, as well as at most qD (classical) queries to the decryption
oracle, there exists a quantum adversary B such that

AdvCCAPℓ−Kyber(A) ≤ 8q2RO · δℓ + 4qRO

√
(ℓ+ 1) · AdvM−LWE

k+ℓ,k,η(B). (23)

3.3 Parameter Sets

Pℓ-Kyber KEM adopts the same parameters (q, k, η1, η2, du, dv) as Kyber KEM
[25], shown in Table 2. Key and ciphertext sizes are summarized in Table 4, along-
side Kyber KEM parameters for encapsulating ℓ messages. Pℓ-Kyber achieves
smaller sizes, especially for large ℓ. Its computational cost is also lower, as u (or
u′) is computed only once in Algorithms 3.2.1 and 3.2.2.

Table 4. Sizes (in bytes) of keys and ciphertexts: Pℓ-Kyber KEM vs. Kyber KEM
m pk sk c

Pℓ-Kyber KEM nℓ/8 12knℓ/8 + 321 24knℓ/8 + 32ℓ+ 321 dukn/8 + dvnℓ/8

Kyber KEM nℓ/8 12knℓ/8 + 32ℓ 24knℓ/8 + 64ℓ duknℓ/8 + dvnℓ/8
1 In Pℓ-Kyber, the random seed ψ only need to be transmitted once.

In summary, the Pℓ-Kyber KEM is a natural extension of the original Ky-
ber KEM [4][25], supporting the encapsulation of ℓ ≥ 1 secrets and a MMSE
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quantization QMMSE. With ℓ = 1 and a non-MMSE quantization QKyber, the Pℓ-
Kyber KEM reduces to the original Kyber KEM. The advantages of Pℓ-Kyber
KEM are twofold: its CER approaching a constant value, dv, as ℓ increases, while
its DFR can be evaluated numerically. Note that the DFR analysis of current
CER-oriented approaches [23][19][20] relies on the CLT assumption. However,
the downside of Pℓ-Kyber is its DFR increases linearly with the value of ℓ. Since
a high DFR will impact the security bounds in Lemmas 3 and 4, the value of
ℓ is bounded, e.g., ℓ ≤ 16 in Pℓ-KYBER512. In the next section, we will show
how to reduce the DFR of the Pℓ-Kyber KEM by employing lattice codes, which
enables the packing of significantly more plaintexts than the uncoded version.

4 Lattice-Coded Pℓ-Kyber

We now propose our lattice packing approaches to further reduce the DFR of
multi-layer Kyber introduced in the previous section. The additional complexi-
ties of lattice encoding techniques are provided at the end of this section too.

4.1 Lattice Vertical Encoding and Lattice Packing

The decoding model of uncoded Pℓ-Kyber can be expressed as

Y = ⌈q/2⌋ ·m+ ne, where (24)

ne = ET r+ e2 + cv − ST (e1 + cu) . (25)

Let ne = [n0, . . . , nℓ−1]
T ∈ Rℓ

q be the decoding noise, where each ring element ni
can be further interpreted as a row vector of integer coefficients ni,j , i.e.,

ni = [ni,0, ni,1, . . . , ni,n−1], 0 ≤ i ≤ ℓ− 1.

It is more convenient to represent ne in matrix form:

ϕ(ne) =


n0,0 n0,1 · · · n0,n−1

n1,0 n1,1 · · · n1,n−1

...
... · · ·

...
nℓ−1,0 nℓ−1,1 · · · nℓ−1,n−1

. (26)

where ϕ is given in Definition 4. We can also represent m in matrix form:

ϕ(m) =


m0,0 m0,1 · · · m0,n−1

m1,0 m1,1 · · · m1,n−1

...
... · · ·

...
mℓ−1,0 mℓ−1,1 · · · mℓ−1,n−1

, (27)

where m = [m0, . . . ,mℓ−1]
T ∈ Rℓ

q is the ℓ messages, and mi can be further inter-
preted as a row vector of coefficients mi,j ∈ Z2, i.e., mi = [mi,0,mi,1, . . . ,mi,n−1].

By substituting (26) and (27) to (24), the decoding model Y can be conve-
niently expressed in matrix form ϕ(Y):
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⌈ q
2

⌋
·



∈ {0, 1}ℓ

m0,0 m0,1 · · · m0,n−1

m1,0 m1,1 · · · m1,n−1

...
... · · ·

...
mℓ−1,0 mℓ−1,1 · · · mℓ−1,n−1


︸ ︷︷ ︸

ϕ(m)

+



i.i.d. RVs

n0,0 n0,1 · · · n0,n−1

n1,0 n1,1 · · · n1,n−1

...
... · · ·

...
nℓ−1,0 nℓ−1,1 · · · nℓ−1,n−1


︸ ︷︷ ︸

ϕ(ne)

depend.

RVs

(28)

Lemma 5 (Vertical Decoding Noise). In (28), the entries within each col-
umn of ne are independent and identically distributed (i.i.d.) random variables.

Proof. Recalling that ne = ET r+e2+cv−ST (e1 + cu) . Without loss of generality,
we study the distribution of the first column in ϕ(ne), i.e., Pr(n0,0, . . . , nℓ−1,0).
For 0 ≤ i ≤ ℓ − 1, we observe that ni,0 is generated by the same realization of
(r, e1 + cu), denoted as (a,b). We can interpret ni,0 as a deterministic function
of random variables with fixed parameters (a,b):

ni,0 = g(a,b)(Ei, si, e2,i, cv,i), (29)

where Ei and si are the i-th columns in E and S, receptively. And e2,i and cv,i
represent the i-th elements in e2 and cv, respectively. Since (Ei, si, e2,i, cv,i) are
mutually independent for 0 ≤ i ≤ ℓ− 1, {ni,0}ℓ−1

i=0 are i.i.d. random variables.

Remark 2. The current encoding schemes for (R/M-)LWE can be viewed as Hor-
izontal Encoding(H-Enc) [23][19][22][15], where the rows of ϕ(m) are encoded.
The major issue of H-Enc is that the elements in each row of ϕ(ne) are depen-
dent. The DFR analysis has to assume that the noise coefficients in each row
are mutually independent (CLT), which may result in an underestimated DFR.
Given that each column of ϕ(ne) consists of i.i.d. RVs, it is natural to encode
ϕ(m) column-wise, thereby circumventing reliance on the CLT assumption.

Definition 14 (Lattice-Based Vertical Encoding (LV-Enc)). Given m←
Mn

p,ℓ, the lattice encoder and decoder are defined by

EncΛ :Mn
p,ℓ → (L(B̂) ∩ Zℓ

p)
n

DecΛ : (L(B̂) ∩ Zℓ
p)

n →Mn
p,ℓ (30)

where EncΛ(ϕ(m)) := ϕ(m̂) = B̂ϕ(m) mod p encodes the n columns of ϕ(m) into
n lattice points ϕ(m̂) in a column-wise manner, and DecΛ(ϕ(m̂)) := ϕ(m) =

CVPHS(ϕ(m̂)) takes the input of ϕ(m̂) and returns ϕ(m). The notations of the
lattice L(B̂), the matrix B̂ ∈ Zℓ×ℓ, the message spaceMp,ℓ, the decoder CVPHS(·),
and the hypercube shaping L(B̂) ∩ Zℓ

p are given in Section 2.2.

To gain more insight, the coded version of (28) is described by ϕ(Y) =
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⌈
q

p

⌋
· B̂ ·



∈ Mp,ℓ

m0,0 m0,1 · · · m0,n−1

m1,0 m1,1 · · · m1,n−1

...
... · · ·

...
mℓ−1,0 mℓ−1,1 · · · mℓ−1,n−1

 mod p

︸ ︷︷ ︸
ϕ(m̂)

+



i.i.d. RVs

n0,0 n0,1 · · · n0,n−1

n1,0 n1,1 · · · n1,n−1

...
... · · ·

...
nℓ−1,0 nℓ−1,1 · · · nℓ−1,n−1


︸ ︷︷ ︸

ϕ(ne)

(31)

Lattice packing. The distribution of the noise vectors in LV-Enc is bounded by
a hypersphere with high probability (We will show this in Lemma 6). Since the
addition in (28) is over the modulo q domain, the LV-Enc problem in Pℓ-Kyber
can be viewed as a lattice packing problem: an arrangement of non-overlapping
spheres within a hypercube Zℓ

q. The model in (28) uses the integer lattice codes
⌊q/2⌉Zℓ

2 for packing purposes, which is far from optimal. Even for very small
dimensions ℓ, there exists much denser lattice packings than cubic ones.

Definition 15 (Coded Pℓ-Kyber PKE). The encryption and decryption of
the uncode Pℓ-Kyber PKE can be easily adapted for the coded version by imple-
menting the following modifications.

– Coded version of Algorithm 3.1.2
• input message space: replace {0, 1}ℓ×n by Mn

p,ℓ

• Step 5: replace m by ϕ−1(EncΛ(ϕ(m)))

– Coded version of Algorithm 3.1.3
• Step 3: replace Compressq(v − STu, 1) by DecΛ(ϕ(v − STu))

For the choice of L(B̂), in this work, we consider E8 lattice with ℓ = 8,
Barnes–Wall lattice with ℓ = 16 (BW16), and Leech lattice with ℓ = 24

(Leech24)[12]. These lattices provides the best known sphere packing in their
dimension ℓ. Since the coefficients in Kyber are integers, we will scale the
original generator matrix to an integer matrix and utilize the corresponding B̂.

Correctness. Let λ(p) be the length of a shortest non-zero vector in the lattice
L(⌊q/p⌉B̂). The correct decoding radius of HS-CVP decoder (i.e., packing radius
of L(⌊q/p⌉B̂) is λ(p)/2. We show below the correctness of coded Pℓ-Kyber PKE.

Lemma 6 (DFR of Coded Pℓ-Kyber PKE).

δℓ ≤ n exp
(
−θλ(p)2/4 + ℓ log(Mn2

0,0
(θ))

)
, (32)

where MX(θ) is the moment generating function of X, defined in Section 2.1.

Proof. We first study the DFR for the first lattice point (the first column in m̂).

δ(1) = Pr

(
ℓ−1∑
i=0

n2i,0 ≥ λ(p)
2/4

)
(33)
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Since ni,0, for 0 ≤ i ≤ ℓ− 1 are i.i.d., we have

M∑ℓ−1
i=0 n2

i,0
(θ) =Mn2

0,0
(θ)ℓ (34)

Using Chernoff bound and union bound, we obtain (32).

Remark 3. We numerically search the optimal θ which satisfies

θ = arg min
θ′∈R

exp
(
−θ′λ(p)2/4 + ℓ log(Mn2

0,0
(θ′))

)
. (35)

The distribution of n20,0 can be obtained from the Python code in [14]. For
demonstration purposes, we plot the distribution of n20,0 for Pℓ-KYBER1024 in
Fig. 1. For different choices of L(B̂), the values of λ(p) are listed in Table 5.

Plaintext size and CER. Let Kp,ℓ = log2(|Mp,ℓ|) denote the information bit
length per lattice codeword in (31). According to Definition 8, the plaintext size
of coded Pℓ-Kyber, N (in bits), can be computed by

N = n ·Kp,ℓ = n ·
∑ℓ

i=1 log2(p/πi), (36)

where πi is given in (8), for i = 1, . . . , ℓ. The CER of coded Pℓ-Kyber is

ρℓ =
kndu + ℓndv

N
=
kdu + ℓdv
Kp,ℓ

. (37)

Table 5 lists the (δℓ, ρℓ) values for various lattice encoders. In comparison to
the values of ρℓ for uncoded Pℓ-Kyber, we notice that the coded version has a
smaller ρℓ. This can be explained by Kp,ℓ ≥ ℓ, i.e., the uncoded Pℓ-Kyber embeds
ℓ secret bits in each column of ϕ(m) in (28), while the coded version encodes
Kp,ℓ secret bits in each column of ϕ(m̂) in (31). Coded P24-KYBER1024 reduces
CER by 90% and DFR by 2107, relative to KYBER1024.

Security. The security proofs of coded Pℓ-Kyber PKE and KEM are the same
as the uncoded versions and thus omitted.

4.2 Side-Channel Attack, Constant-Time Decoder, and Complexity

The implementation of the lattice decoder may be susceptible to side-channel
attacks. In [13], The authors note that the decoding process typically recovers
valid codewords more quickly than those containing errors. This timing infor-
mation can be exploited to differentiate between valid ciphertexts and failing
ciphertexts. However, this attack can be mitigated by employing a constant-
time decoder. The fundamental idea is to partition the lattice Λ into the cosets
of a specific sublattice Λ′. The constant-time decoding problem for Λ can be re-
duced to the constant-time decoding problem for Λ′. by exhaustively searching
through all cosets of Λ′.

In Table 6, we recall the time complexity of existing constant-time lattice
decoders in [19]. We count the total numbers of additional-equivalent opera-
tions as in [10]. Let L(Dℓ) be the ℓ-dimensional checkerboard lattice [12], and
L(Q24) be the Leech quarter lattice [34]. From an engineering perspective, the
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Fig. 1. Pℓ-KYBER1024: distribution of n2
0,0 from the Python code in [14]

energy consumption associated with communication significantly exceeds that
of computation. We believe that lattice codes can help reduce the overall energy
consumption.

In summary, we demonstrate that lattice-based vertical encoding via cipher-
text packing effectively reduces both DFR and CER of the orginal Kyber, by
increasing the plaintext size N , without relying on the CLT assumption for de-
coding noise.

5 Truncated Lattice-Coded Pℓ-Kyber: N = 256 bits

In practical scenarios, the plaintext size is commonly fixed (ℓ = 1 or ℓ = 2), e.g.,
N = 256 bits as opposed to having large ℓ > 2 in Section 4. In this section, we
will show that plaintext and ciphertext size of coded Pℓ-Kyber can be naturally
adapted by truncation.

5.1 Coded Pℓ-Kyber with Truncated Ciphertext

Let us start by providing the definition of truncation.

Definition 16 (Truncation Function). Let A ∈ Fℓ×n be a matrix over a field
F, where A = [ai,j ] and each entry ai,j ∈ F for 0 ≤ i ≤ ℓ − 1, 0 ≤ j ≤ n − 1. Let
t ∈ N be such that 1 ≤ t ≤ n. The truncation function Trunct is defined as:

Trunct(A) :=
[
ai,j
]
0≤i≤ℓ−1, 0≤j≤t−1

.

That is, Trunct(A) returns a matrix consisting of the first t columns of A, by
removing its last n− t columns.
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Table 5. Lattice Codes for Pℓ-Kyber: using Kyber’s (k, q, η1, η2, du, dv)

Uncoded Coded
Lattice Z8 E8 BW16 Leech24

ℓ 8 8 16 24

p 2 4 4 8

λ(p)/(2 ⌊q/2⌉) 0.5 0.7067 0.7067 0.7067

Kp,ℓ 8 8 20 36

N (in bits) 8n
(8 AES keys)

8n
(8 AES keys)

20n
(20 AES keys)

36n
(36 AES keys)

Pℓ-KYBER512 δℓ = 2−139

ρℓ = 6.5

δℓ = 2−225

θ = 1.4× 10−4

ρℓ = 6.5

δℓ = 2−184

θ = 1.3× 10−4

ρℓ = 4.2

δℓ = 2−155

θ = 1.2× 10−4

ρℓ = 3.2

Pℓ-KYBER768 δℓ = 2−166

ρℓ = 7.8

δℓ = 2−267

θ = 1.7× 10−4

ρℓ = 7.8

δℓ = 2−217

θ = 1.53× 10−4

ρℓ = 4.7

δℓ = 2−183

θ = 1.4× 10−4

ρℓ = 3.5

Pℓ-KYBER1024 δℓ = 2−187

ρℓ = 10.5

δℓ = 2−336

θ = 1.88× 10−4

ρℓ = 10.5

δℓ = 2−306

θ = 1.85× 10−4

ρℓ = 6.2

δℓ = 2−281

θ = 1.79× 10−4

ρℓ = 4.6

Table 6. Constant-time lattice decoders: time complexity
Lattice decoder Z [4] E8 [9] [12] BW16 [12][22] Leech24 [11][10] Leech24 [27]

Lattice dimension 1 8 16 24 24

Λ′ Z L(D8) L(D16) L(D24) L(Q24)

# of operations 1 64 2048 786432 ≈ 3974

The plaintext and ciphertext size of coded/uncoded Pℓ-Kyber can be easily
adjusted according to a given plaintext size, e.g., N = 256 bits. The basic idea
is to truncate the ciphertext v = QMMSE,2dv (T

T r + e2 + ⌈q/2⌋ · EncΛ(m)). Let
v = [v0, . . . , vℓ−1]

T ∈ Rℓ
q, where each ring element vi can be further interpreted

as a row vector of integer coefficients vi,j , i.e.,

vi = [vi,0, ni,1, . . . , vi,n−1], 0 ≤ i ≤ ℓ− 1.

The vector v can be equivalently expressed in matrix form:

ϕ(v) =


v0,0 v0,1 · · · v0,n−1

v1,0 v1,1 · · · v1,n−1

...
... · · ·

...
vℓ−1,0 vℓ−1,1 · · · vℓ−1,n−1

. (38)

Due to Pℓ-Kyber’s column-wise decoding structure, i.e., DecΛ(ϕ(v − STu)),
the last n− t columns of ϕ(v) can be removed, resulting in a truncated vector v̂,
whose matrix representation is given by:

ϕ(v̂) = Trunct(ϕ(v)) =


v0,0 v0,1 · · · v0,t−1

v1,0 v1,1 · · · v1,t−1

... · · ·
...

vℓ−1,0 vℓ−1,1 · · · vℓ−1,t−1

. (39)
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The corresponding decoding model, i.e., ϕ(Y) = Trunct(ϕ(v − STu)), is given by

⌈
q

p

⌋
· B̂ ·



∈ Mp,ℓ

m0,0 m0,1 · · · m0,t−1

m1,0 m1,1 · · · m1,t−1

...
... · · ·

...
mℓ−1,0 mℓ−1,1 · · · mℓ−1,t−1

 mod p

︸ ︷︷ ︸
ϕ(m̂)

+



i.i.d. RVs

n0,0 n0,1 · · · n0,t−1

n1,0 n1,1 · · · n1,t−1

...
... · · ·

...
nℓ−1,0 nℓ−1,1 · · · nℓ−1,t−1


︸ ︷︷ ︸

ϕ(ne)

(40)

The plaintext size is reduced to N = tKp,ℓ, where Kp,ℓ is given in Table 5. The
time complexity of truncation is O(ℓ(n− t)).

Definition 17 (Pt,ℓ-Kyber PKE). The encryption and decryption of the un-
code Pℓ-Kyber PKE can be easily adapted for the truncated coded version, denoted
by Pt,ℓ-Kyber, by implementing the following modifications.

– Truncated coded version of Algorithm 3.1.2

• input message space: replace {0, 1}256 by Mt
p,ℓ

• Step 5: v := QMMSE,2dv (ϕ
−1(Trunct(ϕ(T

T r+ e2)) + ⌈q/2⌋ · EncΛ(ϕ(m))))

– Truncated coded version of Algorithm 3.1.3

• Step 3: replace Compressq(v − STu, 1) by DecΛ(ϕ(v)− Trunct(ϕ(S
Tu)))

Correctness. Using Lemma 6 with n = t, the DFR of Pt,ℓ-Kyber is given by

δt,ℓ ≤ t exp
(
−θλ(p)2/4 + ℓ log(Mn2

0,0
(θ))

)
, (41)

where MX(θ) is the moment generating function of X, defined in Section 2.1.

Plaintext and ciphertext size. For a fixed plaintext size N (in bits), e.g.,
N = 256, one can select the number of packed codewords as t = N/Kp,ℓ, where
Kp,ℓ = log2(|Mp,ℓ|) is the information bit length per lattice codeword in Table 5.
The resulting ciphertext size M , corresponding to the pair (u,v), is given by:

M = kndu + tKp,ℓdv = kndu +Ndv. (42)

Given N = 256 bits and same (k, du, dv), the ciphertext size of Pt,ℓ-Kyber is the
same as that of standard Kyber. The CER of Pt,ℓ-Kyber is given by

ρt,ℓ =
M

N
=
kndu + tKp,ℓdv

N
. (43)

Security. The ciphertext of Pt,ℓ-Kyber is derived by deterministically discarding
(n − t)ℓ coefficients from the coded Pℓ-Kyber ciphertext, thereby preserving at
least the same level of security as coded Pℓ-Kyber.
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5.2 CER Reduction Through Tighter Compression Parameters

Since δt,ℓ ≤ δℓ, and the values of δℓ are significantly lower than that of standard
Kyber (see Table 5), the CER can be reduced by selecting smaller compression
parameters (du, dv).

In Table 7, we evaluate the performance of Pt,ℓ-Kyber with parameters (N =

32 bytes, t = 32, ℓ = 8), employing the E8 lattice encoder. The table reports
DFR and CER values for various (du, dv) configurations. Relative to the original
KYBER1024, coded Pt,ℓ-KYBER1024 achieves a 10.2% reduction in CER and a
DFR reduction by a factor of 230, using (du = 10, dv = 4). If a DFR of 2−128 is
deemed sufficient, the CER can be further reduced by 16.3% with (du = 9, dv = 5).

Table 7. Parameters of Pt,ℓ-Kyber with (ℓ = 8, t = 32)

k q η1 η2 du dv DFR CER Plaintext Size Ciphertext Size
KYBER1024 [25] 4 3329 2 2 11 5 2−174 49 32 bytes 1568 bytes
Pt,ℓ-KYBER1024 4 3329 2 2 10 4 2−204 44 32 bytes 1408 bytes
Pt,ℓ-KYBER1024 4 3329 2 2 9 6 2−138 42 32 bytes 1344 bytes
Pt,ℓ-KYBER1024 4 3329 2 2 9 5 2−128 41 32 bytes 1312 bytes

For completeness, Table 1 lists the (δ = δt,ℓ, ρ = ρt,ℓ) values for Pt,ℓ-Kyber,
as shown in the column titled “This Work-Lattice” and the rows labeled “1 − 2

AES keys”. Specifically, for the case of one AES key, we consider parameters (t =

32, ℓ = 8, du = 10, dv = 4), and for two AES keys, (t = 64, ℓ = 8, du = 10, dv = 4).
In both configurations, the E8 lattice encoder is utilized. Notably, we observe
that Pt,ℓ-Kyber achieves the encryption of two AES keys using a ciphertext size
of 1536 bytes, whereas KYBER1024 requires 1568 bytes to encapsulate a single
AES key. This highlights the inefficiency of the original Kyber encoding and
suggests significant room for optimization.

In summary, for a fixed plaintext size of N = 256 bits, the proposed Pt,ℓ-
Kyber scheme achieves lower CER and DFR compared to the original Kyber,
at the cost of an increased public key size of 12knℓ/8 + 32 bytes, as detailed in
Table 4. However, since many cryptographic protocols—including Kyber—allow
the public key to be pre-stored and reused across multiple encapsulations, the
communication overhead introduced by the larger public key becomes negligible
as the number of encapsulations grows.

6 Application to Multi-Recipient KEM

We consider the Multi-Recipient Key Encapsulation Mechanism (mKEM) in
[17], which securely sends the same session key m to a group of L recipients. For
definitions, syntaxes, and security models of mKEM and mPKE, please refer to
Appendix. The construction of an IND-CPA secure mPKE is in most cases a
simple modification of an IND-CPA secure PKE to the multi-recipient setting.

The mPKE scheme based on Pt,ℓ-Kyber (Pt,ℓ-mPKE) is detailed in Algo-
rithms 6.0.1–6.0.3. A global public matrix A ∼ Rk×k

q := Sam(ψ) is sampled and
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made available to both the sender and all recipients. Each recipient i executes
Algorithm 6.0.1 to generate a key pair (pki = Ti, ski = Si), and forwards pki to
the sender. The sender aggregates the public keys {pki = Ti}L−1

i=0 and employs
Algorithm 6.0.2 to encrypt a session key m, producing a ciphertext c, which
is then distributed to all recipients. Upon receiving c, each recipient i applies
Algorithm 6.0.3 with their secret key ski = Si to recover the session key m.

Algorithm 6.0.1 Pt,ℓ −mPKE.CPA.KeyGen(): key generation at Recipient i
1: ψ, σ ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ψ)
3: (Si,E) ∼ βk×ℓ

η1 × β
k×ℓ
η1 := Sam(σ)

4: Ti := ASi + E
5: return (pki := (Ti, ψ), ski := Si)

Algorithm 6.0.2 Pt,ℓ −mPKE.CPA.Enc (pk = ({Ti}L−1
i=0 , ψ),m ∈ {0, 1}

ℓ×t)
1: r ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ψ)
3: (r, e1, e2) ∼ βk

η1 × β
k
η2 × β

ℓ
η2 := Sam(r)

4: u := QMMSE,2du (A
T r+ e1)

5: for i← 0 to L− 1 do
6: vi := QMMSE,2dv (ϕ

−1(Trunct(ϕ(Ti
T r+ e2)) + ⌈q/2⌋ · EncΛ(ϕ(m))))

7: end for
8: return c := (Index2du (u), Index2dv (v0), . . . , Index2dv (vL−1))

Algorithm 6.0.3 Pt,ℓ −mPKE.CPA.Dec(ski = Si, c = (u,vi))

1: u := C2du (Index2du (u))
2: vi := C2dv (Index2du (vi))
3: return DecΛ(ϕ(vi)− Trunct(ϕ(S

T
i u)))

Correctness. The DFR of Pt,ℓ-mPKE is same as the Pt,ℓ-Kyber in Table 7.

Compact Ratio. We recall the notation of compact ratio (CR) defined in [17]:

µ =
L · size of u+ L · size of vi

size of u+ L · size of vi
≈ 1 +

size of u
size of vi

(44)

which measures asymptotically how much more compact mPKE is compared
to L instances of the original PKE, for a large L. Table 8 presents the values
of (δ, µ,N,M) for the proposed Pt,ℓ-mPKE scheme and those reported in [17].
It can be observed that Pt,ℓ-mPKE achieves a higher µ, implying improved
communication efficiency compared to the scheme in [17]. For a large L, the
ciphertext size of Pt,ℓ-mPKE is about 80% of the scheme in [17].

Security. We will prove that the encryption scheme defined above is IND-CPA
secure under the M-LWE hardness assumption.
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Table 8. Parameters of Pt,ℓ-Kyber mPKE with (ℓ = 8, t = 32) and L Recipients
k q η1 η2 du dv DFR CR Ciphertext Size

KYBER1024-mPKE [17] 4 3329 2 2 11 5 2−174 9.8 1408 + 160L bytes
Pt,ℓ-KYBER1024-mPKE 4 3329 2 2 10 4 2−204 11 1280 + 128L bytes

Definition 18 (IND-CPA and IND-CCA of mPKE [17]). We revisit the
security notions for mPKE encryption, specifically indistinguishability under
chosen-ciphertext attacks (IND-CCA) and chosen-plaintext attacks (IND-CPA).
The advantage of an adversary A is defined as

AdvCCAmPKE,L(A) =

∣∣∣∣∣∣∣∣∣Pr
b = b′ :

{pki, ski}i∈[L] ← KeyGen();

(m0,m1, s)← ADEC(·)({pki}i∈[L]);

b← {0, 1}; c∗ ← Enc({pki}i∈[L],mb);

b′ ← ADEC(·)(s, c∗);

− 1/2

∣∣∣∣∣∣∣∣∣ (45)

where the decryption oracle is defined as DEC(·) = Dec(sk, ·). We also require that
|m0| = |m1| and that in the second phase, the adversary A is not permitted to
query DEC(·) with the challenge ciphertext c∗. The advantage AdvCPAmPKE,L(A) of an
adversary A is defined as AdvCCAmPKE,L(A), provided that A cannot query DEC(·).

Lemma 7 (IND-CPA Security of Pt,ℓ-mPKE). For any adversary A, there
exists an adversary B such that AdvCPAPt,ℓ−mPKE,L(A) ≤ L(ℓ+ 1) · AdvM−LWE

k+ℓ,k,η(B).

Proof. Let A be an adversary that is executed in the IND-CPA security experi-
ment which we call game G0, i.e., AdvCPAPt,ℓ−mPKE,L = |Pr(b = b′ in game G0)−1/2|.

In game G1, the ℓ column vectors in each public key Ti are simultaneously
substituted with ℓ uniform random vectors. It is possible to verify that there
exists an adversary B with the same running time as that of A such that

|Pr(b = b′ in game G0)− Pr(b = b′ in game G1)| ≤ Lℓ · AdvM−LWE
k,k,η (B). (46)

In game G2, the vectors u and vi used in the generation of the challenge
ciphertext are simultaneously substituted with uniform random vectors. Again,
there exists an adversary B with the same running time as that of A with

|Pr(b = b′ in game G1)− Pr(b = b′ in game G2)| ≤ L · AdvM−LWE
k+ℓ,k,η(B). (47)

Note that in game G2, the value vi from the challenge ciphertext is independent
of bit b and therefore Pr(b = b′ in game G2) = 1/2. Collecting the probabilities
in (46) and (47) yields the required bound.

Pt,ℓ-mKEM. An IND-CPA secure Pt,ℓ-mPKE can be converted into an IND-
CCA secure Pt,ℓ-mKEM via the (generalized) FO transform described in [17];
therefore, the transformation details are omitted.

7 Conclusion

In this paper, we have investigated the effects of ciphertext packing on M-LWE
based KEMs like Kyber. We have also demonstrated that by utilizing packed
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ciphertexts, the CER of Kyber can be decreased by over 90%, while still main-
taining IND-CCA secure. However, a general challenge with ciphertext packing
is that the DFR increases linearly with the number of packed ciphertexts. To
address this issue, we introduced a coded version of packed Kyber that reduces
the DFR to a negligible level. The DFR analysis can be verified numerically
and does not rely on independent assumptions about the decoding noise entries.
Our findings suggest that M-LWE based cryptosystems can be significantly en-
hanced in sizes and communication efficiency through advanced techniques in
quantization, ciphertext packing, and coding.
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8 Definitions, Syntaxes, and Security Models for
Multi-Recipient PKE and KEM, adapted from [17]

In this Appendix, we first provide definitions of mKEM and mPKE. We then
provide a generic transformation from mPKE to mKEM.

8.1 Decomposable Multi-Recipient Public Key Encryption

Definition 19 (Decomposable Multi-Recipient Public Key Encryp-
tion). A (single-message) decomposable multi-recipient public key encryption
(mPKE) over a message space M and ciphertext spaces C and Csingle consists of
the following five algorithms mPKE = (mSetup,mGen,mEnc,mExt,mDec) :

– mSetup(1κ) → pp : The setup algorithm on input the security parameter 1κ

outputs a public parameter pp.
– mGen(pp)→ (pk, sk) : The key generation algorithm on input a public param-

eter pp outputs a pair of public key and secret key (pk, sk).
– mEnc(pp, (pki)i∈[N ],M; r0, r1, · · · , rN ) → ct = (ct0, (ĉti)i∈[N ]) : The (decompos-

able) encryption algorithm running with randomness (r0, r1, · · · , rN ), splits
into a pair of algorithms (mEnci,mEncd) :

• mEnci(pp; r0)→ ct0 : On input a public parameter pp and randomness r0,
it outputs a (public key Independent) ciphertext ct0.
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• mEncd(pp, pki,M; r0, ri) → ĉti : On input a public parameter pp, a public
key pki, a message M ∈ M, and randomness (r0, ri), it outputs a (public
key Dependent) ciphertext ĉti.

– mExt(i, ct)→ cti = (ct0, ĉti) or ⊥ : The deterministic extraction algorithm on
input an index i ∈ N and a (multi-recipient) ciphertext ct ∈ C, outputs either
a (single-recipient) ciphertext cti = (ct0, ĉti) ∈ Csingle or a special symbol ⊥Ext

indicating extraction failure.
– mDec(sk, cti) → M or ⊥ : The deterministic decryption algorithm on input a

secret key sk and a ciphertext cti ∈ Csingle, outputs either M ∈M or a special
symbol ⊥ ̸∈ M.

Definition 20 (Correctness). A mPKE is δ-correct if

δ ≥ E

[
max
M∈M

Pr
r0,r

[
ct0 ← mEnci(pp; r0), ĉt← mEncd(pp, pk,M; r0, r) :

M ̸= mDec(sk, (ct0, ĉt))

]]
, (48)

where the expectation is also taken over pp← mSetup(1κ) and (pk, sk)← mGen(pp).

Definition 21 (γ-Spreadness). Let mPKE be a decomposable multi-recipient
PKE with message space M and ciphertext spaces C and Csingle. For all pp ∈
Setup(1κ), and (pk, sk) ∈ Gen(pp), define

γ(pp, pk) := − log2

(
max

ct∈Csingle,M∈M
Pr
r0,r

[
ct =

(
mEnci(pp; r0),mEncd(pp, pk,M; r0, r)

)])
.

We call mPKE γ-spread if E[γ(pp, pk)] ≥ γ, where the expectation is taken over
pp← mSetup(1κ) and (pk, sk)← mGen(pp).

Definition 22 (IND-CPA). Let mPKE be a decomposable multi-recipient PKE

with message space M and ciphertext space C. We define IND-CPA by a game
illustrated in 2 and say the (possibly quantum) adversary A = (A1,A2) wins if
the game outputs 1. We define the advantage of A against IND-CPA security of
mPKE parameterized by N ∈ N as

AdvIND-CPA
mPKE,N (A) = |Pr[A wins]− 1/2| .

8.2 Multi-Recipient Key Encapsulation Mechanism

Definition 23 (Multi-Recipient Key Encapsulation Mechanism). A
(single-message) multi-recipient key encapsulation mechanism (mKEM) over
a key space K and ciphertext space C consists of the following five algorithms
mKEM = (mSetup,mGen,mEncaps,mExt,mDecaps) :

– mSetup(1κ) → pp : The setup algorithm on input the security parameter 1κ

outputs a public parameter pp.
– mGen(pp)→ (pk, sk) : The key generation algorithm on input a public param-

eter pp outputs a pair of public key and secret key (pk, sk).
– mEncaps(pp, (pki)i∈[N ]) → (K, ct) : The encapsulation algorithm on input a

public parameter pp, and Npublic keys (pki)i∈[N ], outputs a key K and a
ciphertext ct.
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GAME IND-CPA
1: pp← mSetup(1κ)
2: for i ∈ [N ] do
3: (pki, ski)← mGen(pp)
4: end for
5: (M∗

0,M
∗
1, state)← A1(pp, (pki)i∈[N ])

6: b← {0, 1}
7: ct∗ ← mEnc(pp, (pki)i∈[N ],M

∗
b)

8: b′ ← A2(pp, (pki)i∈[N ], ct
∗, state)

9: return [b = b′]

GAME IND-CCA
1: pp← mSetup(1κ)
2: for i ∈ [N ] do
3: (pki, ski)← mGen(pp)
4: end for
5: (K∗

0, ct
∗)← mEncaps(pp, (pki)i∈[N ])

6: K∗
1 ← K

7: b← {0, 1}
8: b′ ← AD(pp, (pki)i∈[N ], ct

∗,K∗
b)

9: return [b = b′]

Decapsulation Oracle D(i, ct)
1: ct∗i := mExt(i, ct∗)
2: if ct = ct∗i then
3: return ⊥
4: end if
5: K := mDecaps(ski, ct)
6: return K

Fig. 2. IND-CPA of mPKE and IND-CCA of mKEM.

– mExt(i, ct) → cti : The deterministic extraction algorithm on input an index
i ∈ N and a ciphertext ct, outputs either cti or a special symbol ⊥Ext indicating
extraction failure.

– mDecaps(sk, cti)→ K or ⊥ : The deterministic decryption algorithm on input
a secret key sk and a ciphertext cti, outputs either K ∈ K or a special symbol
⊥ ̸∈ K.

Definition 24 (Correctness). A mKEM is δN -correct if

δN ≥ Pr

[
(K, ct)← mEnc(pp, (pki)i∈[N ]), (cti ← mExt(i, ct))i∈[N ];

∃i ∈ [N ] s.t. K ̸= mDec(sk, cti)

]
,

where the probability is also taken over pp ← mSetup and (pki, ski) ← mGen(pp)

for all i ∈ [N ].

Definition 25 (IND-CCA). Let mKEM be a multi-recipient KEM. We define
IND-CCA by a game illustrated in 2 and say the (possibly quantum) adversary A
(making only classical decapsulation queries to D) wins if the game outputs 1.
We define the advantage of A against IND-CCA security of mKEM parameterized
by N ∈ N as

AdvIND-CCA
mKEM,N (A) = |Pr[A wins]− 1/2| .

Generic Construction via FO Transform The authors of [17] provided a
generic transformation of an IND-CPA secure mPKE to an IND-CCA secure mKEM

using a generalized Fujisaki-Okamoto transform, see Fig. 3.
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mSetup(1κ)

1: pp← mSetupp(1κ)
2: return pp

mGen(pp)

1: (pk, skp)← mGenp(pp)
2: seed← {0, 1}ℓ
3: sk := (skp, seed)
4: return (pk, sk)

mExt(i, ct)

1: cti ← mExtp(i, ct)
2: return cti

mEncaps(pp, (pki)i∈[N ])

1: M←M
2: ct0 := mEnci(pp;G1(M))
3: for i ∈ [N ] do
4: ĉti :=

mEncd(pp, pki,M;G1(M),G2(pki,M))
5: end for
6: K := H(M)
7: return (K, ct := (ct0, (ĉti)i∈[N ]))

mDecaps(sk, ct)

1: sk := (skp, seed)
2: M := mDec(skp, ct)
3: if M = ⊥ then
4: return K := H′(seed, ct)
5: end if
6: ct0 := mEnci(pp;G1(M))
7: ĉt := mEncd(pp, pk,M;G1(M),G2(pk,M))
8: if ct ̸= (ct0, ĉt) then
9: return K := H′(seed, ct)

10: else
11: return K := H(M)
12: end if

Fig. 3. An IND-CCA secure mKEM from a decomposable IND-CPA secure mPKE =
(mSetupp,mGenp,mEnc = (mEnci,mEncd),mExtp,mDec). We include the superscript p

to make the code more readable.

Theorem 1 (IND-CPA mPKE⇒ IND-CCA mKEM, adapted from [17]). Assume
mPKE with message space M is δ-correct and γ-spread. Then, for any classical
PPT IND-CCA adversary A issuing at most qD queries to the decapsulation oracle
D, a total of at most qG queries to G1 and G2, and at most qH and q′H queries to
H and H′, there exists a classical PPT adversary BIND such that

AdvIND-CCA
mKEM,N (A) ≤ 2 · AdvIND-CPA

mPKE,N (BIND) + (2qG + qD + 2) · δ

+ qD · 2−γ +
(qG + qH)

|M| + q′H ·N · 2
−ℓ.

where the running time of BIND is about that of A, and ℓ is bit-length of the seed
included in the private key.

Theorem 2 (IND-CPA mPKE⇒ IND-CCA mKEM, adapted from [17]). Assume
mPKE with message space M is δ-correct and γ-spread. Then, for any quantum
PT IND-CCA adversary A issuing at most qD classical queries to the decapsulation
oracle D, a total of at most qG quantum queries to G1 and G2, and at most qH
and q′H quantum queries to H and H′, there exists a quantum PT adversary BIND
such that

AdvIND-CCA
mKEM,N (A) ≤

√
8 · (qG + 1) · AdvIND-CPA

mPKE,N (BIND) +
8 · (qG + 1)√

|M|

+ 12 · (qG + qD + 1)2 · δN + qD · 9
√
2−γ + 9 · 2

−µ
2 + q′H ·N · 2

−ℓ+1
2 ,
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where the running time of BIND is about that of A, ℓ is bit-length of the seed
included in the private key, and µ = |r0| + |r| for (r0, r) ∈ R where R is the
randomness space of mPKE for a single ciphertext.
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