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Abstract—The Onion Router (Tor) is a controversial network
whose utility is constantly under scrutiny. On the one hand,
it allows for anonymous interaction and cooperation of users
seeking untraceable navigation on the Internet. This freedom
also attracts criminals who aim to thwart law enforcement
investigations, e.g., trading illegal products or services such as
drugs or weapons. Tor allows delivering content without revealing
the actual hosting address, by means of .onion (or hidden)
services. Different from regular domains, these services can
not be resolved by traditional name services, are not indexed
by regular search engines, and they frequently change. This
generates uncertainty about the extent and size of the Tor
network and the type of content offered.

In this work, we present a large-scale analysis of the Tor
Network. We leverage our crawler, dubbed Mimir, which au-
tomatically collects and visits content linked within the pages
to collect a dataset of pages from more than 25k sites. We
analyze the topology of the Tor Network, including its depth and
reachability from the surface web. We define a set of heuristics
to detect the presence of replicated content (mirrors) and show
that most of the analyzed content in the Dark Web (≈82%)
is a replica of other content. Also, we train a custom Machine
Learning classifier to understand the type of content the hidden
services offer. Overall, our study provides new insights into
the Tor network, highlighting the importance of initial seeding
for focus on specific topics, and optimize the crawling process.
We show that previous work on large-scale Tor measurements
does not consider the presence of mirrors, which biases their
understanding of the Dark Web topology and the distribution of
content.

Index Terms—Tor Network Measurement, Tor Content Anal-
ysis, Mirror Detection

I. INTRODUCTION

The Onion Router (Tor) has grown considerably since its
emergence in 2002 [21], [6], [42],

and has become a widely used platform for users and
communities seeking privacy and anonymity while navigating
the Internet. For example, it is the main social technology
used for cooperative work for marginal communities, such as
LGTBI+, in countries where their activities are forbidden and
even penalized [13]. Moreover, Tor offers a preferred online
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space for political activists to organize and share informa-
tion [17]. Besides allowing clients to navigate anonymously,
Tor also allows content providers to offer web services without
revealing the actual IP address hosting the server. This is
done using so-called hidden services or .onion sites. To access
these services, users need to establish a connection through
the Tor Network, thus preserving the anonymity of clients
and servers. This neutral technology poses a dilemma since
it can be used both for benign purposes (e.g., censorship
avoidance, whistle-blowing, and activism), and all sorts of
malicious services (e.g., drug dealing, terrorism,, distribution
of child abuse material, or data breaches) [19].

The Tor Network provides the infrastructure to what is
referred to as the Dark Web, i.e., the portion of the Web that
can not be easily accessed by standard tools.

The Dark Web often hosts marketplaces trading digital
goods that are key to conducting cyberattacks [39]. The Dark
Web also hosts online forums where criminals often publish
data leaks from ransomware attacks or data breaches [8].
Consequently, the analysis of the Dark Web is important to
understand modern cyber threats and adversaries. However,
there are several challenges that analysts must face when
collecting and analyzing such information, like the volatility
of the information or the unreliability of the connections.

Various research works have studied the Dark Web in
the past, most of them focusing on specific content (e.g.,
marketplaces [36], [39], [24] or criminal activities [22], [16])

These studies help to understand a niche of the Dark Web
but do not provide a general overview of its size, connectivity,
and overall contents offered. Prior work that provides an
overview of the Tor network dates back several years [28],
[2], [14], [4], [6], [7] and does not consider the prevalence of
replicated hidden services scattered through the Tor network.
Thus, they offer a biased and outdated picture of the prevalence
of content on the Dark Web. As Tor is a volatile network [6],
[10] with duplicated content across the board, there is a need
for a more comprehensive and generic study of the topology
and the prevalence of different types of contents on the Dark
Web.

In this work, we propose a crawling methodology designed
to longitudinally and reliably map second-level domain ser-
vices in Tor. We conduct shallow, but in-breath, crawling, i.e.,
once the crawler visits the landing page of a site, it moves to
different ones — avoiding an in-depth exploration of the site.
Our aim is to maximize the crawling coverage of the Dark Web
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to capture sites related to deviant content (i.e., “actions that
violate social norms, which may include both informal social
rules or more formal societal expectations and laws” [18]),
often linked to cybercrime activities, without overloading the
network with a deeper crawling of the sites we visit. As such,
sites of particular interest can be efficiently detected to conduct
in-depth analysis (as we show in the case study described in
§IV). As a key distinction, our methodology pinpoints Web
pages that are predominantly the same or very similar (namely
mirrors). We thus perform the first mirrorless network analysis
to study the topology and the type of content hosted on the
Dark Web, their language, and the role that mirrors play when
measuring hidden services behind Tor. We present a case study
of how our crawler reaches 159 sites hosting child abuse
content, including live cams with pornographic content for
pedophiles.

Overall, our main contributions are:
• We build a custom crawler (Mimir) that allows us to

efficiently navigate through the Tor Network (§II). The
crawler departs from a set of seeds that are obtained
systematically, by querying, in a novel way, dedicated
.onion search engines for trending topics in underground
surface forums. Our results (§III) show that our crawling
methods are more effective than those in other works
(§VI), reaching a larger portion of the network from a
reduced set of seeds.

• To measure the prevalence of replication, we develop
and validate an effective heuristic-based algorithm for
mirror detection (§II). We notice that most (≈82%) of
the landing pages in our dataset are a replica (§III). This
insight is key when accurately measuring the prevalence
of genuine deviant content (§V) in the Dark Web, which
we conduct in this work by filtering out duplicates for
the first time in the literature.

• Our insight above motivates us to characterize the type
and study the amount of activities potentially linked to
cybercrime on the Dark Web. We source a known dataset
of labeled sites to build a custom content classifier (§II).
We design an efficient learning pipeline that performs
well despite the scarcity of data . The classification allows
us to validate our crawling strategy. We show that a large
proportion of the unique sites of our dataset (74.4%) is
dedicated to cybercrime activities (§III).

• As a case study, we illustrate how Mimir detects 159 Tor
sites related to the distribution of child abuse material,
including a site offering live cams over underage (§IV).
These sites have been reported to our Law Enforcement
agency and are currently under investigation.

II. METHODOLOGY

Our methodology comprises three building blocks (see
Figure 1): a crawler for the data collection, a mirror analysis
algorithm for the identification of replicated (or slightly mod-
ified) sites, and a module for network analysis and content
classification that serves to validate the effectiveness of our
proposed crawling pipeline. It takes as input an initial set of
seeds which, unlike prior work, are extracted systematically.

A. Challenges

Analyzing and comprehensively understanding the Dark
Web presents staggering challenges that have an impact on
the design of our methodology, which we describe next.
Scheduling strategy. Volatility is a well-known characteristic
of the Darknet Tor [6]. Some Hidden Services (HS) may be
up for intermittent periods, and thus it is necessary to attempt
connection to a given site multiple times before discarding the
link for not being online. This increases the overload of the
network. To be compliant with the safety guidelines of the
Tor Research Safety Goals [33], i.e., minimization, we need
to find a trade-off between the coverage of our study, and
the overload caused by the network. Accordingly, one design
requirement of our system is to perform a crawling that aims to
maximize the number of unique websites encountered, even at
the cost of not exploring each site in its entirety. As such, our
system prioritizes breadth over depth in its crawling strategy
and performs what we call a ‘shallow’ crawl. By prioritizing
breadth, our system gains a wider perspective of the Dark Web.
Content analysis. Media content such as images and GIFs are
common ways to deliver information. Images and GIFs are
a common way to convey information. Such media contains
valuable information, and it is frequently used in information
retrieval processes. However, due to legal and ethical advice,
we can not use this information in Tor. As our case study
demonstrates, longitudinal crawling often encounters sites
distributing illegal content like child abuse media. Note that the
download of child abuse content alone is illegal and considered
a serious crime. Thus, we require our crawler to retrieve only
text and our classification systems to perform accurately using
non-media content. Other studies such as the one conducted
by Claudia Peersman et al. [31] have addressed the challenge
of analyzing content in child abuse images through a strict
collaboration with law enforcement and under a very specific
context. The broad nature of our crawling process does not
meet the necessary requirements.

B. Crawling Process

The crawling process collects (Dark) Web pages using
several steps. The process starts with the crawling of the
sites obtained from an initial set of seeds (which we describe
below). For each site, the crawler extracts the information
defined in Table I, including links to other pages. These are
added in a TODOLIST for subsequent crawling iterations. After
a link is successfully crawled, Mimir continues with the next
item in the TODOLIST until it is empty. Since sites may
sometimes be offline, and also to ensure that non-availability
is not due to an eventual network error, we revisit (at most
5 times) each URL responding with an HTTP code different
than 200.

If an URL remains unavailable after all 5 attempts, we
remove it from the TODOLIST and flag it as Unreachable.
Next, we detail the crawling process.
Initial seeding.

We use a systematic approach to collect the initial seed of
.onion sites. Specifically, we automatically query three popular
Tor Search Engines (TSE) for hidden services with relevant
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Figure 1: Overview of the methodology followed for our study.

Table I: Attributes extracted for each page crawled.

Attribute Description
URL Full .onion address
Metadata Metadata of the page
Link list A list of the links contained in the page
Referenced List of the pages which has references to this page
HTML The raw HTML code of the page
Timestamp String with the Timestamp in format “dd-MM-yy HH:mm:ss”
Language List A list of the languages contained in the page
Depth The number of links from the seed to this page

keywords: Ahmia [27], Torch [38] and VisiTor [40]. To provide
these keywords, we extract the most relevant words from
the forum titles in underground forums [30] using the Term
Frequency – Inverse Document Frequency (TFIDF) approach,
as we further explained in Section II-E. Our hypothesis is that
discussions in underground forums are a useful source for the
initial seeding of deviant content in Tor. We note that, while
this work focuses on content related to deviant behavior, Mimir
can be used to investigate other topics by using a different
corpus to extract keywords for the seeding process.

Finally, to verify that prominent .onion sites appear in our
initial seed we use:

1) Domain knowledge and references from previous works
(e.g., Hidden Wiki or specific GitHub repositories);

2) Literature search to improve the previous domain knowl-
edge and contextualize the current state of art seeking for
new relevant seeds;

3) Open Source Intelligence (OSINT), i.e., TSE to collect
new seeds or to assess if existing seeds are informative.

All of the tasks mentioned above require some level of manual
effort but result in the inclusion of additional resources that
complement the TSE search.
Page requesting. We use workload windows to run paral-
lel crawling and dynamically allocate links that need to be
crawled by different running threads. This strategy avoids the
use of additional synchronization mechanisms. As depicted in
Figure 2, Each thread has only one link to crawl per window,
as the number of links in each chunk is equal to the number
of threads. Thus, if a given thread finishes with its link, it
crawls Linkk+#threads, where k is the link number. To remove
links from TODOLIST(), all links for the window must be
completed (i.e., either a valid HTTP response was received
or the request timed out). Unsuccessful links are added again
to the TODOLIST if they have been attempted less than 5
times. Otherwise, they are marked as unreachable. If the links

are successfully requested, we run the steps detailed in the
following sections.

...

W1W2W3Wn
Th = 4

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Link 7

Link 8

Link 9

Link 10

Link 11

Link 12

Link 13

Thread 2 Thread 3 To removeThread 1 Thread 4

Figure 2: Dynamic workload algorithm example with 4
threads.

Data extraction. We process all .onion sites we crawl and we
extract the information shown in Table I. As we crawl, we
scrape the list of links to other hidden services and add them
to the TODOLIST. We also scrape the following information,
which is then used for the analysis: i) the language of the site,
by using langdetect library [35], ii) the depth from the seed
which leads to a page being currently crawled, and iii) the
timestamp of the crawl. Finally, we also store the raw HTML,
for further content and mirror analysis.
Page linking. This step uses regular expressions to extract
linked .onion pages in a given site, to further guide the crawler.
The relationship between pages lets us determine the network
topology of Tor. We classify the links we extract into three
categories:

1) Own links: Sub-pages hosted within the same domain.
2) External .onion links: These are links to other hidden

services (i.e., pointing to an external .onion site) ex-
tracted from the raw HTML.

3) Surface links: These are the links that have a Top Level
Domain other than .onion.

Since our goal is to conduct horizontal crawling, only
external .onion links are added to the TODOLIST (after
removing all characters at the right side of the domain), for
being crawled in subsequent iterations. During this process,
we build a link list for each site that allows us to rebuild the
crawling path from the original seed. The path is updated to
build a network graph upon observing new cross-links.

C. Mirror Analysis

To reduce our dataset to a set of singular pages, this step
identifies mirrors. A mirror is an exact or nearly equal copy of
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another .onion site. Our rationale is that the presence of mir-
rors introduces bias to existing Tor content- or topology-driven
analysis. For example, the presence of the same market under
different .onion addresses leads to the false impression that
there are more markets of the same kind. While most of the
mirrors are an exact clone of a site, an exploratory analysis
shows a frequent deployment of sites with minor modifications
(e.g., a market with the same products but with prices in a
different currency — typically cryptocurrencies vs. dollars).
We also see the same site translated into different languages
and we thus consider them as mirrors. This insight informs
the development of a similarity measure robust in the face of
inconsequential modifications as we discuss next.
Web content vs web structure. There are two main elements
of a web page that we compare to understand how similar they
are: 1) the content of the page, and 2) its structure (namely
HTML scheme). Comparing two pages based on their content
alone would not capture situations where the page offers the
same content but in different formats (e.g., translations of the
same content into different languages, or pricing in different
currencies based on the locale of the user). Conversely, relying
only on the HTML scheme would flag as mirrors sites that
use the same underlying framework (e.g., two blogs with the
same WordPress template). The scheme is extracted by using
an algorithm that keeps only HTML tags.

Our methodology distinguishes this casuistry and applies a
custom heuristic-based system that we describe next.
Hybrid hashing. To assess if two pages are mirrors, we apply
a combined approach, using two different hash functions,
as depicted in Figure 3. We first rely on the cryptographic
hashing algorithm MD5 [34] to determine whether two pages
are exact copies. This has a binary outcome, i.e., the pages
are equal or not. In case it is not equal, we use a fuzzy
hashing function that scores how similar two pages are, with
a certain tolerance for changes. Our implementation uses the
CTPH algorithm [23], which breaks down pages into several
components and calculates a fuzzy hash for each one having
as a result a final hash combining them all.
Same language. The next step is to determine if two non-
equal pages are in the same language by comparing the
language information we obtain in the data extraction step (see
Section II-B). If the language is different, we only compare
the scheme structure of the page (since the content inherently
differs). When the language is the same, we rely on the output
of the fuzzy hashing algorithm applied to the whole site (i.e.,
the entire HTML file). If we see that this HTML is the same,
we determine that the two pages are mirrors. Instead, if the
HTML files of the pages are different, we perform a further
step.
Same language and different HTML. We then apply a
method to capture inconspicuous modifications. These mod-
ifications may be attributed to changes in the products offered
in the same market across the period of the crawl of the
mirrors. Thus, we distinguish whether these differences stem
from small changes in the scheme of the HTML (e.g., the CCS
style), or in the content.

As there are different types of reasons justifying incon-
spicuous modifications, we use a modular approach that can

be fine-tuned to different scenarios. For this, we compare
the pages using a weighted sum of the output of the fuzzy
hashing algorithm for their schemes (only the HTML tags),
and for their content (only the text). In particular, we apply
two weights to the content and the scheme of a page (denoted
as Wc and Ws respectively in Figure 3) that capture the relative
importance each of these two elements has in the overall
similarity measure. The value for the weights and the threshold
are established by empirical evaluation of the effectiveness
of the algorithm to detect mirrors. Our implementation also
empirically identifies that a similarity measure above 90%
implies that two pages are the same. When the similarity is
below this threshold, we consider that the two pages have
significant differences.

We detail empirical measures in Section III, but we note
here an important methodological step. We validate mirror
detection using a custom tool that renders the HTML (without
retrieving the media content, i.e., only the text). This lets us
open the page in a browser and visualize potentially sensitive
or even illegal content.

MD5(HTML1) == MD5(HTML2)

Mirror

compare(CTPH(HTML1),CTPH(HTML2))

Same language?

 

score = compare(CTPH(SCHEME1),CTPH(SCHEME2)) * Ws + compare(CTPH(CONTENT1),CTPH(CONTENT2)) * Wc 

  

Yes

Yes

Similarity => 0.9 Similarity < 0.9

No

No

compare(CTPH(SCHEME1),CTPH(SCHEME2))

MD5

Similarity => 0.9

Similarity => 0.9

Mirror

Mirror
Mirror

No Mirror

Similarity < 0.9

No Mirror

Similarity < 0.9

CTPH

Figure 3: Workflow of the mirror detection algorithm. The
output provides a similarity score (1 being the most similar).

D. Network Analysis

To analyze the topology of Tor we use graph theory. For
this, we first create a graph that models the Page Linking
relationship described in Section II-B. In the graph, nodes
represent singular pages and edges the relationship between
pages (i.e., the pages are linked to each other). We next detail
how we build and analyze the graph.

First, we build this graph ensuring that all links between
the pages are added and linked using the same path as the
crawling process. From the seeds to the endpoint pages, each
site is connected based on the links referred between them.

When a new page is crawled, the list of links is updated
accordingly in the graph. Note that mirrors are not added to
the graph to avoid redundant pages. However, we account for
this information by annotating the page node with the mirrors
it has. Several other features are added to each node of the
graph to enrich the analysis: 1) title of the page, 2) language,
3) surface connection (boolean), 4) depth (i.e., number of
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pages to reach a given one), 5) timestamp, 6) category,
7) mirror existence (boolean), 8) mirrors URL’s. Table II
summarizes the features we use to annotate the nodes.

Finally, through a reachability analysis, we compare the
segment of the network we reach through the different seeds
(e.g., OSINT or underground forum sources). This lets us
assess how effective the automatic seeding method is when
compared to the manual one and how informative the different
keywords extracted from underground forums are.

Table II: Features of a node in the Pages Graph.

Feature Description
Title The title of the page if it exists
Language For analysis purposes related to statistics. Indicates
Surface if the page is connected to the Surface Web or not
Depth Minimum path to reach this page from the seed
Timestamp List of timestamps where the page was crawled/attempted
Category The type of content offered by the site
Has Mirror Boolean value indicating whether a given site has mirrors
Mirrors List of mirrors that have not been included in the network

E. Content Analysis

One of the main goals of our study is to determine whether
the type of content of the hidden services reached with
Mimir is related to the seeds provided as input. This is of
great interest to researchers (e.g., to understand the types of
content being delivered in anonymous services) and to Law
Enforcement investigators (e.g., to understand new forms of
cybercrime or to identify sites trading deviant content). To this
end, we build a probabilistic model using Logistic Regression
(LG). We choose LG due to its performance in other text-based
learning tasks in comparison with other well-known algorithms
that are good in this field as Naive Bayes, Random Forest,
Decision Tree, or Support Vector Machines [32]. To corrob-
orate this, we explored the use of more complex algorithms
(see Section §III-E), obtaining similar accuracy at a higher
latency. We use the categories in the Duta-10K dataset [2] as
ground-truth and build a multi-class classification algorithm.

Duta-10K offers about 10K .onion sites labeled with 25
different categories that range from “Counterfeit” or “Drugs”
to “Market” or “Hacking”. The dataset was initially collected
in 2017, and consequently, most of the 10K sites are no longer
reachable. However, we got access to a large subset of raw
HTML files from the authors of the dataset. We observe that
some of the categories were underrepresented, and thus we
rely on the 11 (out of the 25) categories. During training, we
limited the number of samples to 200 per category to achieve
a balanced dataset, using 200 samples when available or fewer
when a category had less. This threshold was experimentally
established to avoid biases from under-represented categories.
We excluded two types of categories: first, those with low
samples count (e.g., Art, with 14 samples or Politics, with 2
samples), which were excluded due to insufficient support for
consistent classification; and second, categories with a larger
number of samples whose content overlaps with that of other
categories, such as Personal (417 samples) and Services (284
samples). Additionally, we removed the Empty category (1,350
samples), as it provided no useful content. Also, due to the

Feature Extraction

Token
Extraction Data

Resampling

K-Fold 
Correlation

Best
Hyperparameter's 

Estimation

Cross-Validation

Data Preparing Best Model Selection

Sanitazing tf-idf 
Calculation

Figure 4: Content classification pipeline.

nature of the ground truth, we limit the content analysis to only
English sites. In total, we removed 2,314 samples (26.8%) and
retained 6,321 samples (73.2%).

The training process of the content classifier is divided into
three tasks as shown in Figure 4: Feature Extraction, Data
Preprocessing, and Best Model Selection.

1) Feature Extraction. To extract features from the raw
documents, the HTML tags are removed and the resulting
content is turned into tokens. These tokens are then
filtered by removing stop words, and the remaining tokens
are lemmatized to convert each word to its inflected form
or “lemma”.

2) Data Preprocessing. This process first calculates the
Term Frequency-Inverse Document Frequency (tf-idf),
which expresses the relevance of a word in a document
from a set of documents, as defined by the following
equation:

tf-idf =
freq(termn, documentm)

log2(
#documents

#documents with termn+1)

. (1)

The tf-idf is calculated using a Sublinear Term Frequency
Scaling. This prevents repeated words from getting un-
necessary relevancy, e.g., due to the existence of a list
in the text or lack of vocabulary in the document. This
means that the frequency is not natural but logarithmic.
Then, we use bootstrapping to balance the training set.
Finally, we shuffle the data and perform a division of the
entire data set by using k-fold with k = 10.

3) Best Model Selection. To estimate the optimal parame-
ters of the Logistic Regression model, we perform a grid
search over the parameters using a fraction of the training
set and measure the penalty and the regulation strength:
• For the penalty, we take into account Lasso regular-

ization (l1) which makes variable coefficients go to
0 in case they do not contribute as others do, ridge
regression (l2) that decreases those coefficients but
never lets them arrive at 0, elasticnet where l1 and
l2 are added, and also we have check models without
any penalty.

• We also use the regulation strength (C) to determine the
impact of the penalty on the coefficients, the stronger
the regulation, the smaller the coefficients.

The three steps above are critical to find a proper trade-
off between obtaining a general model or a fine-tuned model
tailored to our training set. A poor regularization will make
the model take into account non-relevant variables, whereas a
too-strong regulation may weaken the model.
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To assess the influence that the different parameters have
over the performance of the model, we leverage the Fbeta score
(with beta equal to 1), defined by the following equation:

Fβ =
(1 + β2) ∗ Precision ∗Recall

β2 ∗ Precision+Recall
. (2)

Our best setting uses a logistic regression with an all vs all
strategy.

F. Ethics

This research requires data collection from public sites.
The researchers have experience dealing with the crawling of
online underground communities hosted both on the surface
and the Dark Web. We follow due precautions to minimize
potential risks and harm to online users. First, the information
we gather is obtained from public sources, which we reach by
means of automatic navigation. The crawler is instrumented
to gather textual content, and thus, we mitigate the risk
of downloading illegal material such as indecent images of
minors. Also, our analysis does not target specific groups or
individuals and is conducted over aggregated data. Data is
stored in an encrypted disk on our servers, and it is only
accessible to the researchers involved in this project. Finally,
following high ethical and legal standards, every evidence of
illegal activities, especially those related to child pornography,
is reported to the authorities. Overall, the benefits of our
research outweigh the risks. We have obtained approval from
our IRB and carefully considered Tor safety guidelines [33].

III. ANALYSIS

In this section, we report our findings as a result of
applying the methodology described above. First, we describe
our experimental setup, including the description of the dataset
collected. Second, we present the network analysis, and finally,
the content analysis.

A. Experimental Setup

The dataset we use in this paper has been collected for
a period of 8 months. We use a server with 24 cores and
47 GB of RAM. The crawler runs uninterruptedly except for
some infrequent events (e.g., due to electricity cuts or server
overloads).

The crawl starts after feeding the seeds to Mimir. We collect
nearly 7k seeds, out of which about 2% stem from manual
seeds (using OSINT searches), and the remaining are seeds
collected automatically (using systematic queries to TSE using
keywords from underground surface forums). We see that
83% of the .onion addresses in the initial set of seeds
are unreachable. This highlights that the search engines and
OSINT might provide outdated results, and motivates the use
of online collection tools such as Mimir. As a result, we
discard unreachable .onion addresses and start the crawling
process by visiting 1,157 seeds (17% of the initial set).

Departing from the initial seeding, we reach 24.9k different
sites. Table III offers a characterization of our datasets. We

note also that the crawling workload grows almost exponen-
tially as most of the content of the site includes a link to other
sites.

At the end of the 8-month crawl, the crawler has made
a connection attempt to 34% of the sites (5,002) in the
TODOLIST. Likewise, we see that the crawler has gone
through more attempts for a smaller proportion of URLs. Once
the number of attempts reaches the maximum value set (i.e.,
5), those URLs are appended to the Unreachable list. In total,
around 8K (21.4%) of the URLs we attempt to connect to are
currently unreachable, the large majority stemming from the
set of living seeds.

Table III: Dataset characterization. Seeds and sites (left to
right) reached from the seeds.

Seeds Sites attempted/reached
Base 4,1216,816 Accessible 24,911 Mirrors 20,790

Accessible Unreach. Unreachable 8,381 (sites)
4 attempts 0
3 attempts 5
2 attempts 796
1 attempts 5,002

1,157 5,659 (seeds)

Total 39,095

B. Network analysis

We first analyze the network topology. Concretely, we
study the connectivity of the network, looking for Dark Web
“bubbles”, namely subgraphs — i.e., a set of sites directly or
indirectly connected to each other while being unconnected to
the others.

In particular, we see 1,040 subgraphs inside the network.
We find that 99 of the subgraphs have 10 or fewer nodes,
which shows that the Dark Web is highly fragmented and
“bubbles” generally have a small size. Instead, we see that
a small number of subgraphs have a large number of nodes
that are all deeply connected. This shows that the topology
of the Dark Web follows a power-law distribution much like
the Surface on the advent of the Web [15]. Table IV shows
the top 5 subgraphs judging by the number of nodes, together
with the number of edges. We also show how many nodes
have direct access to the surface web. All the subgraphs are
weakly connected (i.e., not all pages link to all other pages).

An interesting finding is that the largest subgraph represents
≈66% of the total share of Tor that we reach, being the Top 5
at 69% of the network. Also, we observe that 9% of the sites
are directly connected from links on the surface. Our crawler
only visits surface links when they are given as seeds. This
means that our systematic extraction of seeds lets us reach 1K
subgraphs, with our crawler discovering most (91%) of the
Dark Web.

Subgraphs of order 1 (i.e., just one node) represent the seeds
that are unreachable. We can not confirm that these seeds will

Table IV: Size of the network and its top 3 largest subgraphs.
#LS is the number of nodes linked from the surface web.

#Nodes #Edges #LS
Full network (1k subgraphs) 4,121 3,360 412
Subgraph 1 2,757 3,011 411
Subgraph 2 43 50 0
Subgraph 3 27 27 0
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become available at a later stage, the same way that it is hard
to get a static snapshot of the network due to the volatility of
Tor. However, our results in terms of the coverage show that
our methodology produces a more effective mapping of the
Dark Web when compared to prior work (see Section VI for
a detailed comparison with the related work).

C. Contribution of the seeding process
We measure how our systematic seeding process improves

the coverage of the network in terms of nodes found (i.e.,
onion sites). For this, we rely on the network analysis de-
scribed above and perform an ablation study of the sources
that seed our crawler. Recall that our seeding process stems
from two sources: queries in Tor-focused search engines using
keywords systematically extracted from underground surface
forums and manual entries obtained from OSINT.

We initially look at the .onion sites we reach from the
manual seeding and take this set as a baseline. We then study
the contribution that a keyword has to the coverage of the
crawl over the baseline. For this, we first extract the subgraph
of Tor sites that we visit because of all the manual seeds,
namely Manual Seeds Subgraph (MSS). We then extract the
subgraph that stems from each keyword seed k and name
it the Keyword Subgraph (KSk). We finally compute the
set difference (SD) as SD = KS − MSS, which retains
only novel .onion sites attributed to the keyword k, i.e., we
remove all sites we reach through manual seeding (including
the intersection).

Table V shows the top 10 keywords that contribute the
most to our crawl of the Dark Web. We observe that a
single keyword like “drugs” or “hosting” leads the crawler to
reach as much as 10.05% and 9.29% respectively of the total
gathered pages. This shows that crawling TSE with targeted
keywords allows Mimir to obtain sizable improvements in
terms of coverage when compared to the manual seeds. Table
V provides the contribution of each keyword individually
with respect to the MSS. Since there is an overlap in the
contributions of various keywords, the percentages in Table V
are non-accumulative.

To understand the contribution of all the keywords as a
whole, we repeat this process with k = k1 ∪ k2 ∪ ...kn, where
n is the total number of keywords. We denote this subgraph as
All-Keywords Subgraph (AKS). As shown in the bottom row
of Table V, the contribution to the coverage of all keywords
together over the manual baseline is 81.85%. In practice, this
means that the number of .onion sites reached increases a
177.55% when compared to manual seeding. Furthermore, the
set difference between AKS and MSS is the empty set. This
means that MSS is a subset of AKS, and thus, all the .onion
sites we reach using the manual seeding method are covered by
the automatic seeding approach. Plus, the automatic seeding
approach covers a significantly larger portion of the Dark
Web. All in all, this shows that our proposed automatic
approach is an effective mechanism to avoid the cumbersome
task of manually looking and entering a set of initial seeds or
keywords. As all prior works require manual seeding, we see
how our crawling strategy offers a competitive advantage in
terms of scalability.

Table V: Individual systematic seeding keyword nodes contri-
bution per category.

drugs free hosting software hacking forum carding counter services service TCC
Counterfeit 2.69% 1.70% 2.14% 1.70% 2.06% 2.35% 2.06% 2.26% 1.63% 1.33% 19.92%

Crypto 1.75% 2.48% 1.55% 1.99% 1.46% 1.50% 1.63% 1.43% 0.51% 1.09% 15.38%
Down 0.73% 0.61% 0.63% 0.73% 0.44% 0.41% 0.58% 0.27% 0.46% 0.46% 5.31%
Drugs 1.16% 0.53% 0.49% 0.58% 0.41% 0.41% 0.44% 0.39% 0.34% 0.39% 5.14%
Forum 0.29% 0.46% 0.41% 0.41% 0.36% 0.66% 0.05% 0.34% 0.32% 0.36% 3.66%

Hacking 0.49% 0.53% 0.68% 0.68% 1.24% 0.56% 0.49% 0.46% 0.78% 0.68% 6.58%
Hosting 0.95% 1.29% 1.89% 1.12% 1.04% 0.99% 0.56% 0.41% 1.41% 1.12% 10.77%
Locked 0.78% 0.56% 0.41% 0.49% 0.39% 0.53% 0.66% 0.29% 0.39% 0.41% 4.90%
Market 0.70% 0.49% 0.39% 0.39% 0.34% 0.41% 0.34% 0.46% 0.53% 0.39% 4.44%
Porn 0.12% 0.78% 0.12% 0.10% 0.22% 0.12% 0.05% 0.39% 0.12% 0.22% 2.23%
SN 0.39% 0.44% 0.58% 0.53% 0.39% 0.27% 0.15% 0.24% 0.27% 0.24% 3.49%

AKS 10.05% 9.85% 9.29% 8.71% 8.35% 8.23% 6.99% 6.94% 6.75% 6.70% 81.85%

Similarly, we analyze how influential keywords contribute to
the crawling of the different categories within the network. The
rows in Table V indicate the sub-graph of MSS considering
only nodes of the given category (the last row being the full
AKS graph). It can be observed that all the keywords primar-
ily improve reachability to Counterfeit services, which is the
most prevalent category in our dataset. After that, we observe
interesting patterns since each individual keyword reaches the
specific category related to it (e.g., drugs or hosting).

While a keyword is not confined to influencing only its
related category, it exerts the greatest impact within it. Note
that multiple keywords can contribute to the same node.

D. Mirror analysis

As Section III-B analyzes the topology of singular pages in
the Dark Web, we next evaluate our method to detect mirrors
and provide a characterization. First, we perform an empirical
analysis to set the scores Ws and Wc (introduced in Section 3)
and we establish Ws = 0.3 and Wc = 0.7.

We manually analyze English pages with at least one mirror
(450 and 53.38% in total) using a custom tool to render HTML
sites without media content, thus preventing the exposition of
the validator to indecent content. During this step, we remove
some (43) sites for several reasons, including wrong language
detection and isolated problems rendering some of the HTML
with the tool we develop for the validation. All in all, we
validate 408 (48%) sites, of which only 22 are miss-classified,
leading to a precision of 97%. Out of the 48% sites, our
algorithm detects 801 mirrors (355 identified with CTPH and
424 with MD5). Since hash match means that pages are exactly
the same, we only need to manually evaluate the remaining
355.

Our crawler collects a total of 24,911 sites, out of which
83% (20,790) are mirrors, 16% (4,008) are unique .onion
sites and 0.4% (113) are ‘unique’ surface links wrongly
provided as seeds at the beginning of the crawling process.
Note that these unique sites are merely representatives of their
respective mirrors. Thus, we define a unique site as the first
intance of replicated site that we crawled, being the rest the
mirrors. Note that the large majority of the links we see in
our dataset are mirrors. Only 19% of the unique sites have
mirrors, and most of them (54%) have only a single pair-wise
match. There are also 11% with 2 mirrors and 6% with 3. The
remaining 29% have four mirrors or more. Interestingly, we
spot 57 sites with more than 100 mirrors, with 2 sites having
1,126 and 1,203 mirrors respectively.

More than half of the mirrors are exact copies (54.4%),
i.e., they have the same MD5 hash. The remainder (45.6%)
contains some minor modifications. Understanding the exact



8

reasons for mirroring would require dedicated tools, and
it is out of the scope of this paper. However, during our
empirical evaluation of the mirror detection algorithm, we
carried out manual validations over samples, which allow us
to understand the differences. Most of the changes among
the mirrors are minor and involve either the content, such as
titles, or the HTML schema, such as updates in the design
framework. Accordingly, we analyze two types of changes:
one for easy-comparing content fields and another to analyze
the modifications in the raw HTML.

We first run an automated analysis over sites detected as
mirrors with CTPH to count changes in the language and
also identify information (i.e., cryptowallet addresses and
email addresses). We find 15 pages in English that are also
mirrored in other languages, mostly Italian, German, and
French. There are 1,409 mirrors that have modifications in
at least 1 Bitcoin address and one of them with at least one
different Monero address. Regarding emails, there are 1,486
mirrors with at least one different email from one another.
We hypothesize that minor changes may occur due to various
reasons. First, some modifications may have occurred within
the time lapse between the crawls of these mirrored sites.
Second, it is possible that an unauthorized entity impersonated
the legitimate site with malicious intent, potentially engaging
in phishing or scams [5]. And third, in cases where mirrors are
legitimately managed by the same operator, there might not be
an automatic synchronization process, causing some pages to
remain outdated until the administrator updates them (if any).
However, confirming these hypotheses is left for future work.

Second, we analyze differences in raw HTML files flagged
as mirrors. Specifically, we manually analyze 216 pages in
English that have at least one mirror, together with their corre-
sponding 335 CTPH-detected mirrors. The main modifications
are seen in the HTML structure (content not included) as de-
picted in Figure 5. The second most frequent difference relates
to pages with changes in links of the site, followed by content
modifications (only the text of the site). In some sites dedicated
to trading, we see that the physical currency (e.g., dollar or
euro) remains the same, but the equivalent price in currencies
changes. We also see some pages with modifications in their
cryptowallets. We see some sites generating one address per
each purchase, and such changes should be studied carefully.
Finally, we only see a few pages with modifications in the
physical currency (FIAT money). Considering that pages are
often crawled on different days, we see that some of the sites
do not propagate changes to all mirrors automatically.

The .onion addresses can be separated by versions, being
their difference in length: v2 addresses are 16 characters, while
v3 is 56 characters.1 In the 4,008 unique .onion sites, there
are 1,061 which are v2 (26.4%) and 2,795 v3 (69.7%). There
are also 152 URLs (3.8%) that do not belong to either v2 or
v3 and correspond to malformed URLs that, while resembling
.onion addresses, link to a surface website. As for mirrors,
there are 1,065 which are v2 (5.1%) and 19,680 v3 (94.9%),
i.e., a larger proportion of the mirrors belong to the newest

1We note that, by the time our crawling started, v2 .onion addresses were
not yet deprecated.
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Figure 5: Minor modifications in the HTML of mirrored pages.

version.
Regarding connectivity, even though only 9% (440) has

direct access from the surface (according to our initial seeds),
44% of the sites reference a link to the surface web. The
longest path from a seed to a site crawled, i.e., the maximum
depth, is 6. However, this is just one exceptional case, and
most of the pages are spread between the depths of 1 to 5.
Specifically, there are 28% (1,157) sites of depth 0 (i.e., seeds),
17% (706) sites of depth 1, 8.2% (340) sites of depth 2, 19.5%
(803) sites of depth 3, 21.8% (902) sites of depth 4, (5.1%)
212 of depth 5, and the one mentioned site in depth 6 (<1%).

Mirror detection benchmark. We build up a benchmark
for comparing our algorithm with two of the most well-
known state-of-the-art approaches, namely MinHash [9] and
SimHash. We first determine the optimal thresholds for each
algorithm to conduct a fair benchmarking. To this end, we
randomly choose 2,000 samples: 1,000 real unique-mirror
pairs and 1,000 pairs of pages that are not mirrors. We
then calculate the number of correctly detected mirrors and
non-mirrors for both methods across 10 different thresholds,
ranging from 0 to 1 in increments of 0.1. This experiment
indicates the optimal threshold score for each method, i.e.,
0.8 for SimHash, and 0.4 for MinHash.

Table VI: Duplication Algorithms Benchmark

Method TP FP FN Precision Recall F1-Score Repetitions
Mimir 10,498 9 3 0.99 0.99 0.99 0

SimHash 10,495 15,440 6 0.40 0.99 0.57 15,336
MinHash 10,499 6,634 2 0.61 0.99 0.75 6,579

Table VI summarizes the results of the benchmark. The
three methods obtain similar True Positive (TP) and Recall
rates. However, a key issue arises with the False Positive
(FP) rate. SimHash and MinHash frequently identify the same
site as a mirror for multiple representative pages, significantly
reducing their precision. In contrast, Mimir stands out for
its robustness in avoiding this issue, demonstrating greater
resistance to incorrectly matching the same page as a mirror
for different representatives.

Overall Mimir is particularly effective for measuring HTML
document similarity. While SimHash and MinHash are good
approaches, they have limitations with non-nearly identical
pages. SimHash uses hamming distance for detecting near-
duplicate detection small changes that may affect the similarity
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score. MinHash’s reliance on text tokenization may introduce
excessive noise due to HTML redundancy, reducing its effec-
tiveness when using Jaccard similarity as a metric.

E. Content analysis

One of our key goals is to analyze the content hosted in
the Tor network in order to localize cybercrime-related HS.
For such purpose, we first look at the language used. Then,
we categorize the content, and finally, we detect the mirrors.
Overall, there are 44 languages. We see that 88% of the pages
are written in English. The remaining 12% are widespread
in terms of language since each one accounts for less than
1%. These results are consistent with previous studies on the
Tor network [4], and confirm that most of the content is still
offered in English.

Model Benchmark: For comparison, we trained various
machine learning models using the same training set. Apart
from Logistic Regression (LR), we select state-of-the-art
algorithms for text classification, i.e., Convolutional Neural
Networks (CNN), Bidirectional Encoder Representations from
Transformers (BERT), and a recent variant focused on Dark
Web content, DarkBERT [20].

Table VII: Duplication Algorithms Benchmark

Model Accuracy Precision Recall F1 F2 Time
LG 0.863 0.757 0.864 0.798 0.833 0.0169

CNN 0.834 0.699 0.690 0.691 0.689 1.2637
BERT 0.847 0.682 0.697 0.685 0.690 15.3399

DarkBERT 0.862 0.704 0.712 0.704 0.708 46.0361

Table VII shows the results of our benchmark experiment.
The CNN, BERT, and DarkBERT achieve similar accuracy
to that of LG. However, the three models have suboptimal
precision and recall. Additionally, the time required to classify
the test set increases significantly in comparison with Logistic
Regression. Simple models like Logistic Regression and Naı̈ve
Bayes often outperform complex models like BERT or CNNs
in text classification when data is limited. These traditional
models, relying on hand-crafted features like TF-IDF and word
n-grams, excel in specific tasks without needing long-term de-
pendency understanding [11], [3], [25]. In contrast, deep mod-
els tend to overfit without large datasets, learning irrelevant
patterns or missing the correct ones. Overall, for our specific
task and dataset size, Logistic Regression outperforms the rest
of the models.

Categories. We built a custom ML classifier (see Section II-E).
The training has been performed with the set of labeled pages
from the Duta-10K dataset [2]. From the total list of 10,367
URLs, only 1,099 (10%) were still available, leading to an
imbalanced dataset. After balancing the data and removing
under-represented categories, the final training set accounts
for 2,200 sites and 11 categories (200 samples per category).
The final test set contains 5,628 pages, offering an accuracy
of 86% (75% precision and 86% recall). Overall, we get 79%
F1 and 83% F2 scores.

The trained model is used to classify all sites. In addition
to that, we also measure the reliability of the classifier by
using conformal evaluation to calculate the percentage of

the unreliability of a given classification, i.e., the difference
between the most probable class and the second one, which
can be expressed as: 1− (P (C1st)− P (C2nd)).

According to this metric, we find that the reliability of more
than half (52.52%) of the pages was higher than 90%, with
≈21% being reliable at 99%. Only 8.6% of the pages were
below the 10% of reliability, followed by a ≈12% that are
between 11% and 20%. Therefore, it shows the classifier is
not only efficient but also reliable.

Using the trained model, we infer the category for all the
English sites in our dataset. Figure 6 shows the resulting
categories. For a better understanding, these are described in
Table IX. We indicate which categories might be related to
deviant activities (e.g., Drugs or Locked). We note, however,
that some of the others can also contain cybercrime-related
content, e.g., crypto, market, forum, or porn (as we show
in §IV). We see that the predominant class is “Counterfeit”,
which mainly aims to sell stolen credit cards. It is followed
by the “Hosting” category which is related to Servers, File
Sharing, and Links Directories. The third category with more
matches is “Porn” which provides explicit sexual content. In
total, we see 1,571 (38.12%) unique pages whose categories
inherently define deviant content (i.e., Counterfeit, Drugs,
Hacking, and Locked). However, we see 18,474 (74.4%) if we
take into account the mirrors. Table VIII offers a breakdown
of the prevalence of cybercrime in our dataset per category.
We note that these figures only offer a lower bound as other
HS may have deviant content also (e.g., “Porn” or “Markets”).

Table VIII: Detailed cybercrime related sites numbers.
Counterfeit Drugs Hacking Locked TOTAL

Unique 866 (55.2%) 179 (11.4%) 303 (19.3%) 223 (14.2%) 1,571 (38.1%)
Mirrors 13,972 (82.9%) 132 (0.8%) 2,652 (15.7%) 84 (0.5%) 16,840 (81.3%)
TOTAL 14,839 (80.3%) 319 (1.7%) 2,966 (16.1%) 350 (1.9%) 18,474 (74.4%)
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Figure 6: Histogram representing the distribution of sites per
categories with and without filtering out mirrors.

Mirrors. Figure 6 shows with the orange bar the number
of pages (including mirrors) per category. If we were not to
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Table IX: Classifier categories description, with (*) denoting
cybercrime-related activities.

CATEGORY DESCRIPTION
Counterfeit* Carding (i.e. credit card), Fakes ID and Money sales.

Crypto Cryptocurrency buying, selling and mining
Drugs* Drug marketplaces or other related sites
Forum Discussion forums of any type.

Hacking* Hacking services or pages related to hacking.
Locked* Log in, sites closed by the authorities and so on.

Down Pages that are not available anymore.
Market Different marketplaces as virtual items, weapons, pharmacy...

Porn Pages related to pornography.
Soc.-Network (SN) Blog, Chat, Email.

Hosting File-Sharing, Folders, Search-Engine, Server, Directory.

filter mirrors out, we may observe some important differences.
First, some classes are really over-represented as “Counterfeit”
which the number of pages appears to be 1,713% higher if we
do not identify which of those sites are mirrors. Second, if we
want to understand which content represents the cybercrime
in the Tor Dark Net better at some point in time, this over-
representation may lead to misunderstanding the real picture of
the network. For example, the category “Hacking” may look
like it is the second service more extended in the network,
but in reality, it holds the 5th position, and which is more
interesting as well as “Forum” which seems to be fourth when
actually is the last one. This shows that accounting for mirrors
when analyzing the Dark Web is important to avoid biases
in the interpretation of the results, and it can also help law
enforcement to make diligences more effective. For example,
in the case of Counterfeit, only 5.8% of the sites require in-
depth inspection (i.e., the unique ones), 10% in the case of
Hacking sites, or 56.11% in terms of Drugs. n Our results
also open new research questions on the type of pages that
are being mirrored, and for what purpose. A deeper analysis
looking at the raw HTML of the most mirrored Top-10 unique
pages shows that 70% of them were “Counterfeit”.

IV. USE CASE: DISTRIBUTION OF CHILD ABUSE MATERIAL

A staggering type of abusive content that finds shelter in the
Dark Web is the distribution of child abuse material. We next
see how our contribution has been helpful in the process of
finding child abuse-related .onion sites, all of which have
been reported to our national Law Enforcement contact.

During the manual validation in Section III-D, we identified
20 sites hosting child abuse content from the samples cate-
gorized as Porn using our ML classifier. We note that our
manual inspection is restricted to text only. Our crawler does
not download media content, and thus our manual validation
went only through the text we extract offline from the HTML
files we collected, and never through images or videos. The
size of this set (20 sites) is too small to include child abuse
as a category of the ML classifier used for content analysis
(c.f. Section III-E). Thus, we developed a custom keyword
search algorithm for this. Our algorithm flags .onion sites
that contain child abuse-related keywords. We extract these
keywords from the 20 manually detected child abuse sites that
capture the jargon used by pedophiles and that it is exclusive
to child abuse. For ethical reasons, we do not disclose such
keywords since these would facilitate miscreants to reach these
pages using a keyword search with Tor search engines.

Many forums and collaborative sites on the Dark Web
explicitly prohibit child abuse content. In general, site ad-
ministrators and moderators that forbid this type of content
use short and clear statements. We identify these cases using
formal language modeling and use it to avoid false positives. In
particular, we model every sentence and extract the structures
for adjectives and verbs. We then model negative words around
our keywords or explicit forbids following the structure we
define in Table X.

We use four general rules to model adjectives and verbs
around the keywords of interest. Sentences can be positive
or negative. In the case of verbs, negative means that they
express prohibition, and positive verbs express the opposite.
As prohibition can be manifested as positive and negative
sentences, we model both cases and account for the meaning
given by the adjective/verb as well as for negative abbreviated
forms like “n’t”.

Table X: Structures to detect child abuse content allowance.
KEY: Keywords, VBZ: Infinitive verb, VBN: Past participle
verb, JJ: Adjective, WILL, NOT/N’T: Specific words. The
symbols ”+” and ”-” denote positive and negative words, with
verbs indicating allowance or prohibition.

Structure Example
KEY + VBZ + NOT/N’T + (+)VBN [keyword] is not allowed

KEY + WILL + VB + (-)VBN [keyword] will be removed
KEY + VBZ + NOT/N’T + (+)JJ [keyword] is not welcome

KEY + VBZ + (-)VBN [keyword] is censored
KEY + VBZ + (-)JJ [keyword] is forbidden

We apply the algorithm to the sites that have been clas-
sified in the category ‘Porn’, and find 180 pages potentially
distributing child abuse material. We perform a validation of
all 180 hits (again, only judging the text), and confirm that 165
unique sites (91,66% accuracy) claim to allow the distribution
of indecent images or videos with minors. We attribute the
errors to some expressions that were not modeled and to
the lack of some keywords in the child pornography lingo.
Notably, after the validation process, we examined additional
mirror sites identified by Mimir, increasing the detection count
to 505 pages (a 306% increase).

Whereas we rely on a dataset collected up until April’22
(c.f., Section III-A), we observe that 78 of these sites (49%)
were operative in December’23, and that 45 are still operative
by March’25 — at the time of this writing. Alarmingly, we
found a hidden service (which was mirrored in 4 .onion sites)
that provides interactive pornographic content with minors
through live cams which, if confirmed, would pose systematic
aggression and possible child trafficking. Unfortunately, this
site is still online in 2 out of the 4 mirrored sites in March’25,
almost three years after we first observed it. This suggest that,
even if Law Enforcement is able to take down some of these
sites, the service remain operative as it is mirrored in other
sites. This highlights the importance of considering mirrors
when analysing the Dark Web. Accordingly, all these sites have
been reported to our national Law Enforcement contact point
and are currently under investigation. Preliminary feedback
confirmed that many of them actually offer illegal content.
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V. DISCUSSIONS

This work provides new insights into the Tor Network.
In this section, we discuss the main limitations of our work
together with key takeaways.

A. Limitations

Measuring the topology and contents of Tor is challenging
and requires dedicated tools that have limitations.
Coverage. Our analysis is bounded by the coverage of our
crawler. This is a limitation prevalent in previous work,
although our crawling methodology is more exhaustive. In
particular, we crawl 233% more reachable sites than M.
Bernaschi et al. [6] for as twice as long (see §VI).

The novel systematic extraction of seeds offers a key advan-
tage with respect to prior work in terms of scalability, which
translate into larger coverage without the need for manual
seeds crafted by experts.

We note that our dataset represents a static snapshot of the
network (i.e., the one we got in our crawling period). Having
dynamic information requires living systems to continuously
conduct crawls, a capability that the proposed crawler Mimir
contains. However, we opted to stop the crawling after one
snapshot was retrieved following Ethical advice. Our goal is to
provide a singular content and network characterization of Tor,
and not study its temporal evolution. Thus, our research effort
focuses on performing a single crawl and does not require a
production system that performs a continuous crawl. This way
we avoid increasing the overall workload on the Tor network.
Ground-truth.

Another important limitation stems from the lack of ground
truth to build a content classifier.

Our work relies on the annotations made as part of the Duta
project [1], [2].

However, some categories were underrepresented in the
data set and we thus remove them. We showed that for the
categories we retain we are able to obtain reliable performance.
The lack of good quality ground truth is a prevalent problem
in cybersecurity.

As part of our future work, we aim to expand the number of
categories used in content characterization. However, manually
labeling content is both time-consuming and raises important
ethical and legal concerns. It is important to note that content
analysis is not a primary contribution of this paper. Rather, it
is used to validate the effectiveness of Mimir in discovering
pages related to the provided keywords. In fact, since Mimir
is a modular architecture, integrating other machine learning
models is straightforward.
Rich- and media-content. Our work primarily uses text to
identify mirrors and classify the content of the sites. Ethical
and legal concerns have prevented us from downloading mul-
timedia content from Dark Web sites that may contain deviant
content (e.g., child abuse material, actionable exploits for de-
anonymization[12], or malware [37]). We leave for future work
the use of ethical and legal methodologies to analyze this
content without harming researchers, e.g., automatic image
processing. Different from the clearnet [29], our study entails
a higher risk of downloading illegal content, which brings

unique challenges that require careful consideration and active
cooperation with law enforcement agencies for this task.
Landing page scope. While vertical crawling may offer
more in-depth insights, since our main goal is to discover
as many hidden services as possible, we set a horizontal
crawling approach, not only to limit the cost in time but also
the bandwidth exposed to the Tor network, which is quite
important when using the Tor protocol. Our results in category
classification and mirror assessment have shown that data
beyond landing pages is not essential in this task except for
cases where the landing page is a login page or has a Captcha
due to the limited textual content available for classification
and the structural similarity of the data. Such cases require
tailored efforts, which are out of our scope. Furthermore, our
ethics protocol steems us to sign in to sites that may offer child
abuse content, which limits our ability to further explore this
conclusion. We see that there are not many such cases, two
(0.48%) captchas and four (0.97%) cases with a Login form.
Vertical crawling would introduce an important overhead to
the Tor network, jeopardizing the objectives of this work.
Mirror detection algorithm and copycat sites. We correctly
identify the 97% of Mirrors. The 3% misclassification is
primarily due to two reasons: small HTML files with minimal
content and sites that use the same framework but in different
configurations (e.g., a personal email server). However, dif-
ferentiating between original sources and copycat mirrors is
challenging, especially given Tor’s anonymity features. Minor
differences between mirrors are insufficient for attribution.
Reliable attribution requires a deeper analysis beyond the
scope of our contribution.

B. Key Findings

While our study presents some limitations as discussed
above, we offer a unique analysis of singular services on the
Dark Web, with a special focus on the impact of duplicate
content in the network.

Our findings constitute a large longitudinal crawl that
requires a comparatively small number of seeds. We next
summarize the key takeaways of our work and discuss their
implications for research.
By leveraging an innovative method for seeding and
crawling, we were able to reach a larger proportion of the
Tor Network. Using trending topics in underground surface
forums is a promising direction when seeking deviant content
in Tor. This method reaches over twice the number of onion
sites compared to manual seeding without missing any. Fur-
thermore, by making our crawler aware of the network context,
we reduce the impact of Tor’s volatility, leading to further
increased page reach. As a result, Mimir significantly reduces
the time required to reach hidden services. Additionally, our
horizontal crawling strategy shows better network coverage
with a higher number of sites per URL visited compared to
prior work. In particular, Mimir has discovered 25k pages from
1k seeds, achieving an amplification factor of 2.2.
Our analysis confirms that Tor needs to be studied as a
dynamic network, due to the high volatility of its content.
Depending on the crawling period (and even the time when a
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page is visited), the connectivity patterns change. Our crawler
makes an important contribution to the study of Tor. We can
not claim robustness on our network analyses since we ig-
nore whether the connections observed during our crawling
period will remain available in the near future. However, our
crawling methodology is an important stepping stone toward
understanding the dynamics of the Dark Web, exchanging the
limitation that this entails for an advantage.
Mirror matter when analyzing .onion sites content.
A remarkable takeaway from our study, achieved by the
proposed detection algorithm, is the amount of replicated
content (mirrors) present in Tor. Around 82% of the landing
pages accessed through our crawler are replicated content. We
emphasize that this figure includes exact copies, and also pages
with minor modifications in the landing pages. Our results
comparing Hacking against Porn or Cryptocurrencies pages
show the limitations after not considering mirrors. Without
mirror detection, hacking-related pages appear as the most
prevalent category (inflating their importance over personal-
related sites by ≈2,966%). When looking at singular pages
instead, Porn pages are a more prevalent category followed
by Cryptocurrencies.

Thus, confirming that factoring in mirrors is essential, which
was a common gap in the existing literature. Accounting
for mirrors can also help make informed decisions when
prioritizing actions designed to thwart these activities, making
prosecution more effective.
Our experimental work lets Mimir focus the search on
cybercrime. Our analysis reveals that more than 74% of the
sites in our dataset relate to cybercrime or deviant activities.
The remaining sites may or may not contain such activities, but
by itself, it demonstrates that Mimir focuses on cybercrime.
There is a significant presence of “Counterfeit” and “Porn”
sites. The former provides trading material for various illegal
activities such as carding, fake IDs, and money counterfeiting,
while the latter offers both licit and illicit pornographic con-
tent. Together with counterfeit, hacking services stand out to
be the most replicated HS for victimizing individuals through
means such as credential theft or Denial of Service (DoS)
attacks. It is worth noting that if we consider only unique
sites, the percentage of cybercrime-related sites decreases to
approximately 38%. However, the fact that 81.32% of the
mirrors are related to cybercrime highlights the substantial
effort that cybercriminals put into expanding their reach and
attracting more clients. This suggests that the primary purpose
of mirrors is to increase their visibility in the network, and
hence, gain more market share.

Moreover, we conducted a use case focused on detecting
child abuse material, achieving an accuracy of 88.33% in their
detection. Specifically, we departed from an especially scarce
dataset of just 20 manually detected child abuse sites and we
devised a method to reliably identify child abuse material.
We were able to detect 159 unique sites (and 505 mirrors)
pages containing such material with an accuracy of 91.66%,
out of which 45 (28.3%) were still operative from the same
.onion address at the time of this writing. These sites have
been reported to Law Enforcement and are currently being
investigated.

Applications: A key contribution of our study is that we
show that guiding a Tor crawler from the beginning, using a set
of keywords, amplifies its efficiency to reach sites from areas
of interest. Mimir enhances the search on specific topics or
threats and enables research in the desired specific domain.
This approach helps to prioritize the discovery of relevant
sites, ensuring that critical targets can be identified quickly
and comprehensively. Besides the mentioned benefits for Law
Enforcement when prosecuting illegal activities, Mimir can
assist in informing appropriate cybersecurity policies, e.g.,
facilitating studies on current cybersecurity threats, vulnerabil-
ities, and attack trends. In this regard, mirror detection plays
a crucial role in enhancing threat intelligence and stakeholder
analysis. By identifying multiple mirrors of a site, investigators
can ensure continuous monitoring of deviant activities, even
if some of the domains are taken down or moved.

While mirror sites amplify the detection coverage, they can
create challenges when interpreting data. Indeed, we believe
that our study should drive researchers to get more accurate
insights by considering the noise and nuances of mirrors in Tor
measurements. Without considering mirror effects, analysis
may result in a distorted view of the dark web ecosystem. This,
in turn, may lead to incorrect conclusions (e.g., an increase in
a specific type of malware or a surge in demand for a particular
illegal item), causing necessary actions to be overlooked due
to decision fatigue or cognitive overload.

VI. RELATED WORK

Previous work on Tor has focused on understanding criminal
activities, though often looking at particular sites, e.g., forums
or markets [36], [26], [39], [24]. Other works have also studied
the entire network ecosystem, focusing on particular activities
and looking at the topology of Tor and its content. We next
provide an overview of the most relevant ones, which we
summarize in Table XI.

Table XI: Related work compared for crawling period, #seeds,
crawl depth, URLs seen, Hidden URLs (# HS), Hidden
Second-Level Domains (# HSLD) analyzed, reachable (200),
and categories analyzed (# Cat). Symbol – indicates unavail-
able or unclear information.

Period (until) #Seeds Depth #URL #HS #HSLD 200 #Cat
[14] 1 month (m) – 1 – – 26K 2,125 31
[4] 1 week 20K max 7-67M 34K 7,566 30
[1] 2m (07/’16) – 2 – 250K 7,931 26
[2] 2m (07/’17) – 2 – [1] + 125K 10,367 25
[7] 4m (05/’17) – – – 3M 30K 10,685 –
[6] [1]

[42] 1m (07/’18) 20K 4 1.2M 40K 1,766 7,782 9
[10] 4m (01/’19) - - 144.5k 20.4k - 7,831 6
Us 8m (05/’22) 6,816 1 n/a n/a 50,294 24,911 12

Crawling. Al-Nabki et al. crawled in 2017 over 250k sites [1].
Then, they manually labeled sites into 24 classes, leading to
the DUTA dataset with 7k sites available, which we use in our
study. DUTA was later updated in 2019 [2] — leading to 3k
new addresses — and used recently in 2022 [7], [6]. However,
these works do not account for mirrors, as evidenced in our
paper, which are a prevalent phenomenon in Tor.
Mirrors. Our work is motivated by prior work observing
mirrors in Tor [10], [41] in just 7.8k .onion services
collected in 105 days [10]. Authors in [41] use edit distances
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to detect phishing and mirror websites, finding the latter in the
links of the original HS or in those so-called “yellow pages”
services.

However, their contribution differs from our research. First,
the way they account for mirrors (cryptographic hashes,
screenshots) can not effectively capture mirror modifications
as we do (cf. Figure 5). In particular, they rely on hashes
of the HTML content and hashes of the screenshots of the
pages for their detection using Jaccard Similarity or Hamming
distance, which have been proven to not be as effective as our
approach in our benchmark on §III-D. For instance, the latest
work is DarkBERT [20] . Authors conducted mirror detection
using MinHash, achieving a duplication rate of 18.69% [9].
However, they do not specify the similarity threshold or how
they fine-tuned the algorithm. Furthermore, since it relies
on text tokenization into sets, redundancy in HTML might
introduce noise, reducing its effectiveness when using Jaccard
similarity. Second, they do not measure the impact mirrors
have on the network topology.
Our work. Overall, our work differs from related work
on three main axes. First, we offer a novel and systematic
mechanism to discover seeds that prove to be more effective in
discovering hidden services. Second, we consider for the first
time the role of mirrors in the measurement of the Dark Web.
Finally, our system provides a more persistent method to crawl
Tor services that is more suitable when dealing with volatile
content. Table XI shows a comparison in terms of coverage of
our work with existing works in the literature. Since our work
does not consider URLs, we do not report these figures (both
surface and Hidden Services) seen. Our seeding, however, led
to nearly 50k Hidden Second-Level Domains (25k available).
This shows that our crawler sees more sites than previous
works, even with a shallow-crawling strategy.

VII. CONCLUSIONS

In this paper, we presented the first mirrorless and the largest
measurement study of the Tor Network to date. We developed
a crawler that, together with an innovative seeding method,
allows us to study nearly 25k hidden services visited over a
period of eight months. While only visiting landing pages, we
were able to cover a similar or higher number of sites as in
previous works digging further. We showed that the topology
of the Dark Web is highly fragmented, with thousands of
interconnected independent networks (namely, “bubbles”) of
varying sizes, with a small number of networks having a large
number of nodes all highly connected.

We designed a custom algorithm to detect mirrors and
showed that a large proportion of our dataset (83% according
to our estimates) consists of replicated content. Together with
an analysis categorizing the content of the different hidden
services, we showed the importance of taking into account
mirrors when analyzing the Dark Web. We found that a large
proportion of the network (67.33% unique sites and 74.4%
counting also mirrors) was related to cybercrime activities.
Also, we showed the benefits of our methodology to law
enforcement and cybercrime researchers through a case study
analyzing sites that potentially distribute child abuse material.

Overall, our study offers new insights into the content and
structure of Tor, highlighting the importance of using tools that
account for duplicate content and paving the way for future
research in this area.
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