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Abstract

Large Language Models (LLMs) have demonstrated significant capabilities in understand-
ing and analyzing code for security vulnerabilities, such as Common Weakness Enumerations
(CWEs). However, their reliance on cloud infrastructure and substantial computational require-
ments pose challenges for analyzing sensitive or proprietary codebases due to privacy concerns
and inference costs. This work explores the potential of Small Language Models (SLMs) as a
viable alternative for accurate, on-premise vulnerability detection. We investigated whether a
350-million parameter pre-trained code model (codegen-mono) could be effectively fine-tuned
to detect the MITRE Top 25 CWEs specifically within Python code. To facilitate this, we
developed a targeted dataset of 500 examples using a semi-supervised approach involving LLM-
driven synthetic data generation coupled with meticulous human review. Initial tests confirmed
that the base codegen-mono model completely failed to identify CWEs in our samples. How-
ever, after applying instruction-following fine-tuning, the specialized SLM achieved remarkable
performance on our test set, yielding approximately 99% accuracy, 98.08% precision, 100% re-
call, and a 99.04% F1-score. These results strongly suggest that fine-tuned SLMs can serve as
highly accurate and efficient tools for CWE detection, offering a practical and privacy-preserving
solution for integrating advanced security analysis directly into development workflows.

Keywords: Small Language Models (SLMs), Vulnerability Detection, CWE, Fine-tuning,
Python Security, Privacy-Preserving Code Analysis.

1 Introduction

Software security has become an undeniable cornerstone of our interconnected digital world. The
increasing complexity and pervasiveness of software systems have, unfortunately, been paralleled by
a rise in software vulnerabilities, making applications prime targets for malicious exploitation [1].
Among the critical classes of software weaknesses, Common Weakness Enumerations (CWEs) stand
out as fundamental flaws in code that can lead to a cascade of security issues [2]. The ability to
detect and remediate CWEs early in the software development lifecycle is therefore paramount,
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offering significant cost savings by preventing costly breaches and reducing the effort required for
late-stage fixes [3]. Traditionally, approaches to CWE detection have relied on static analysis tools
and manual code reviews [4]. While these methods are valuable, they can be resource-intensive,
prone to false positives and negatives, and may struggle with the nuanced understanding required
to identify complex weakness patterns. The emergence of Large Language Models (LLMs) has
heralded a new era in code analysis and software engineering [5]. These models, with their remark-
able ability to understand and generate code, have shown impressive capabilities in various security
tasks, including vulnerability detection and CWE identification [6]. However, a significant hurdle
remains for organizations handling sensitive or proprietary code, such as in finance, healthcare, or
government sectors. These entities often face stringent data governance policies and security pro-
tocols that restrict or entirely prohibit the transmission of their codebase to external cloud services
for analysis [7]. This creates a critical gap: while LLM-powered security tools offer promising capa-
bilities, their inherent cloud dependency makes them inaccessible for on-premise security analysis
in many contexts, leaving organizations with confidential codebases with limited options for lever-
aging state-of-the-art language model technology for CWE detection. In response to this challenge,
this paper explores the potential of Small Language Models (SLMs) as a viable and effective solu-
tion for on-premise CWE detection. SLMs, with their reduced parameter count and computational
footprint, offer several key advantages. Firstly, and most importantly in this context, they can be
deployed directly within an organization’s infrastructure, ensuring that sensitive code remains secure
and under local control [8]. Secondly, SLMs are significantly less computationally demanding than
their larger counterparts, requiring fewer resources for both deployment and inference, potentially
leading to faster analysis and lower operational costs [9]. This makes them particularly attractive
for environments with limited computational resources or where rapid analysis is critical. In this
work, we hypothesize that a carefully fine-tuned Small Language Model can achieve high accuracy
in CWE detection within Python code, providing a practical and privacy-preserving on-premise se-
curity solution. To validate this hypothesis, we focus on fine-tuning the codegen-mono model (350M
parameters) [24] using a novel, semi-supervised approach. The key contributions of this paper are
as follows:

• We demonstrate the successful instruction-following fine-tuning of codegen-mono for enhanced
CWE detection in Python code, achieving performance comparable to or exceeding more
resource-intensive methods.

• We introduce a semi-supervised dataset generation methodology, leveraging a reasoning-
focused LLM (Gemini-2.0-flash-thinking-exp-01-21) and rigorous manual verification, to create
a targeted dataset for security-specific fine-tuning, addressing the challenge of data scarcity
in this domain.

• Our experiments showcase the capability of a relatively small model to achieve demonstrably
high performance in CWE detection, reaching near-perfect accuracy, precision, recall, and
F1-score, highlighting the potential of SLMs for resource-constrained environments.

• This research addresses the critical need for on-premise security solutions by providing a
practical and effective approach to leveraging language model technology for CWE detection
in environments where data confidentiality is paramount.

The remainder of this paper is structured as follows: Section 2 will delve into related work in CWE
detection and the application of language models in software security. Section 3 will detail our
methodology for dataset creation and model fine-tuning. Section 4 will present and analyze the
experimental results, demonstrating the performance of our approach. Section 5 will discuss the
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implications, limitations, and potential future directions of this research. Finally, Section 6 will
conclude the paper, summarizing our key findings and their contribution to the field of software
security.

2 Related Works

Our research intersects with several areas within software engineering and artificial intelligence, pri-
marily Static Analysis Security Testing (SAST), the application of Large Language Models (LLMs)
to code security, the use of Small Language Models (SLMs) for code tasks, and synthetic data
generation for software engineering.

2.1 Traditional Tools

Traditional Static Analysis Security Testing (SAST) tools form a baseline for Python code secu-
rity, utilizing methods like Abstract Syntax Tree (AST) parsing (e.g., Bandit [11]), flexible pattern
matching (e.g., Semgrep [12]), and data/control flow analysis [13]. Beyond static analysis, other
techniques contribute, including dynamic analysis frameworks like DynaPyt for runtime checks [14]
and specialized machine learning models like BiLSTMs trained for vulnerability detection [15].
However, traditional SAST approaches, in particular, often face challenges with high false posi-
tive/negative rates [16] and require continuous, expert-driven maintenance of explicit rules to keep
pace with evolving threats. Our work contrasts with these methods by leveraging the emergent
pattern-recognition capabilities of a language model fine-tuned on specific vulnerability examples,
aiming for high accuracy without reliance on predefined, manually curated rules.

2.2 Large Language Models for Code Security

The impressive performance of LLMs, such as OpenAI’s Codex [17], Google’s PaLM variants [18],
and GPT-4 [19], has spurred significant interest in their application to software security. Research
has shown their potential in tasks like automatically detecting vulnerabilities from code descriptions
or raw snippets [20, 21], suggesting fixes for identified issues [22], and even generating security
test cases [23]. These studies often highlight the models’ ability to understand code context and
semantics better than traditional methods. However, as noted earlier, these powerful models are
typically large (billions or trillions of parameters), computationally expensive, and often accessed
via APIs, posing practical barriers related to cost, latency, and data privacy for security scanning
of proprietary code. Our work specifically addresses these limitations by exploring the capabilities
of significantly smaller models.

2.3 Small Language Models for Code Tasks

While LLMs grab headlines, there is a growing body of work focusing on Small Language Models
(SLMs) models typically under 1 billion parameters tailored for code. Models like CodeGen [24],
CodeT5 [25], and smaller variants of StarCoder [26] have demonstrated competence in tasks such as
code completion, code summarization, and code translation. These models offer advantages in terms
of deployment feasibility and reduced computational cost. However, their application to fine-grained
security vulnerability detection, particularly through targeted fine-tuning for specific CWEs, has
been less explored compared to their larger counterparts. Our research directly investigates this gap,
assessing the extent to Gwhich a pre-trained SLM can be specialized for high-accuracy vulnerability
detection post-fine-tuning.
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2.4 Synthetic Data Generation for Code and Security

The performance of data-driven models heavily relies on the quality and quantity of training data. In
specialized domains like software security, obtaining large, labelled datasets of real-world vulnerabil-
ities can be challenging. Consequently, researchers have explored using generative models, including
LLMs, to create synthetic data. Efforts exist in generating code for general software engineering
tasks [27], augmenting existing datasets [28], and specifically generating examples for security train-
ing or testing [29]. Our approach aligns with this trend by using an LLM (Gemini-Flash-Exp) to
generate paired vulnerable and fixed code snippets. We contribute a specific methodology focused
on generating data for targeted CWEs, emphasizing the role of a reasoning-focused generator model
and subsequent human validation to ensure data quality for fine-tuning a security-focused SLM.

Figure 1: Semi-Supervised Dataset Creation and Fine-Tuning Pipeline

In summary, while extensive research exists on traditional static analysis, machine learning, and
large language models for CWE detection, our work uniquely explores fine-tuning small language
models for this task. This approach offers a novel, privacy-preserving, and computationally efficient
solution, addressing a critical gap in the literature, particularly concerning on-premise deployment
for confidential codebases and achieving remarkable performance with a significantly smaller model.

3 Methodology

Our approach focuses on fine-tuning a Small Language Model (SLM) to specialize in detecting
specific Common Weakness Enumerations (CWEs) within Python code snippets. The methodology
encompasses target selection, dataset creation, model selection, and the fine-tuning strategy. The
whole process can be visualized in figure 1.

3.1 Target Vulnerabilities (CWE Selection)

To ensure practical relevance and focus on high-impact issues, we selected the MITRE Top 25 Most
Dangerous Software Weaknesses list [30] as the target for our detection model. This list represents
common and critical vulnerabilities encountered in real-world systems, making it a suitable starting
point for evaluating the feasibility of SLM-based detection.
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3.2 Dataset Curation: Semi-Supervised Synthetic Data Generation

Creating a sufficiently large and accurately labelled dataset for vulnerability detection is often
a bottleneck. To address this, we employed a semi-supervised approach combining automated
generation with human oversight:

• Generation Tool: We utilized Google’s gemini-2.0-flash-thinking-exp-01-21 model via its API
. This model was chosen for its reported reasoning capabilities, which we deemed beneficial
for generating plausible code exhibiting specific logical flaws corresponding to CWEs.

• Generation Process: For each of the 25 selected CWEs, we iteratively refined prompts to in-
struct the Gemini model to generate: (a) Five distinct Python code snippets, each realistically
demonstrating the specific CWE vulnerability. (b) For each vulnerable snippet, a correspond-
ing "counter-example" snippet where the underlying issue causing the CWE was addressed
and fixed.

• Prompt Engineering: Significant effort was invested in prompt engineering to guide the gen-
erator model towards producing code that reflects plausible real-world programming patterns,
rather than trivial or overly simplistic examples.

• Human Review: Crucially, all generated code snippets (both vulnerable and secure) were man-
ually reviewed by the authors to verify: (a) The correctness of the vulnerability classification
(i.e., the vulnerable code actually exhibits the intended CWE). (b) The validity of the fix
(i.e., the counter-example correctly addresses the vulnerability without introducing others).
(c) The overall realism and relevance of the code examples. This human validation step was
essential to ensure the quality and reliability of the training data.

• Final Dataset: This process resulted in a dataset of 500 labelled instances (25 CWEs × 10
examples × [1 vulnerable + 1 fixed]). Each instance was formatted according to a standard
instruction-following structure: Instruction, Input, Output.

Figure 2: Dataset Example

3.3 Model Selection

We selected the codegen-mono 350M model [24] as our base SLM. This model was chosen because:
(a) It is a publicly available, pre-trained model specifically designed for code-related tasks. (b) Its
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Table 1: Summary of Prior Works on Vulnerability Detection (ML/LLM Focus)

Reference Technique Used Reported
Performance

Remarks

Farasat & Posegga [15] ML (BiLSTM) Python: Avg
Acc=98.6%, F1=94.7%,
Prec=96.2%,
Rec=93.3%,
ROC=99.3%.

High performance on
specific Python
vulnerability detection
task using ML.

Bagheri et al. [31] Hybrid ML (Self-
attention + CNN -
Conformer)

F1 score of 99%
reported

High F1 reported,
potentially
domain-specific.

Singh et al. [32] ML (Logistic Re-
gression)

CWE Prediction:
Acc=0.66, Prec=0.65,
Rec=0.66, F1=0.64.

Moderate performance
using simpler ML for
CWE prediction.

Mechri et al. [33] LLM Prompting
(Chain-of-Thought)

Qualitative increase in
F1 mentioned for CoT
prompts on real vulns;
no specific Python
metrics.

Highlights prompt
engineering benefits,
lacks quantitative
Python data.

Dozono et al. [6] LLM Prompting
(Various strategies)

Python F1:
GPT-4o=0.80,
GPT-4T=0.76, Gemini
1.5 Pro=0.75,
CodeLlama-7b=0.72,
GPT-3.5T=0.70,
CodeLlama-13b=0.35.

Compares various
LLMs for Python,
shows GPT-4 variants
leading.

Steenhoek et al. [34] LLM Prompting
(zero/n-shot, CoT
variants)

Evaluated on C/C++:
Low Balanced Accuracy
(54.5%); Python N/A.

Concludes current
LLMs perform poorly;
common prompting
strategies ineffective (on
C/C++).

Shestov et al. [35] LLM Fine Tuning
for JAVA CWE de-
tection

Best F1 @ .86 for
binary classification
using WizardCoder

N/A

Li et al. [36] LoRa and IA3 Fine
tuning approach for
LLMs

5-6% improvement over
base model

9 CWE was tested
using a 2.7b model,
codegen.

Jiang et al. [37] LLM Fine Tuning
using LoRa ap-
proach

Best F1 achieved using
Llama 2-7b model @
87%

N/A

This Work Instruction Follow-
ing Fine Tuning,
350m parameters
model

Accuracy: 99%,
Precision: 98.08%,
Recall: 100%, F1 score:
99.04%

High performance on
Python CWEs with
SLM fine-tuning.
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350 million parameter size places it firmly in the "small" language model category, making it suitable
for exploring feasibility for on-premise deployment and efficient fine-tuning. (c) Its focus on code
generation/understanding provides a relevant foundation for the downstream task of vulnerability
detection.

3.4 Fine-tuning Strategy: Instruction Following

We employed an Instruction-Following Fine-tuning approach to adapt the pre-trained codegen-mono
model to our specific CWE detection task.

• Data Format: The dataset was structured with three fields per instance: Instruction: A
directive telling the model what task to perform. Input: The Python code snippet to be
analyzed. Output: The expected label (e.g., "Vulnerable - CWE-XXX" or "Secure"). An
example of data instance is presented in figure 2.

• Consistent Instruction: Through experimentation with various instruction phrasings and
strategies (including varying instructions per row), we found that using a single, consistent in-
struction across all training examples yielded the best performance. This same instruction was
subsequently used during the evaluation/inference phase. In our case we kept the instruction
depicted in figure 2 for all the rows as well as during interface.

• Training Process: The model was fine-tuned using this structured dataset. We iterated
through different hyperparameters (learning rate, batch size, epochs) and instruction for-
mats to optimize performance, leading to the final configuration reported in Section 4. The
objective was to train the model to accurately predict the Output label given the Instruction
and Input code snippet.

4 Results and Discussion

4.1 Baseline Performance: Un-tuned Codegen-Mono

Prior to fine-tuning, we assessed the zero-shot performance of the base codegen-mono model on
a randomly selected subset of 100 examples from our CWE dataset. Strikingly, in this baseline
evaluation, the un-tuned codegen-mono model failed to detect a single CWE within any of the
code snippets presented. This indicates that while pre-trained on a large corpus of code, the base
model lacks the specific knowledge and instruction-following capabilities necessary for accurate
CWE identification, at least in a zero-shot setting and without task-specific fine-tuning. This
starkly underscores the need for targeted fine-tuning to adapt such models for specialized security
tasks like CWE detection.

Table 2: Performance Metrics of Fine-tuned Model
Metric Value

Accuracy 99%
Precision ≈ 98.08%
Recall 100%
F1-Score ≈ 99.04%
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4.2 Performance of Fine-tuned Codegen-Mono

After instruction-following fine-tuning on our CWE dataset, the performance of codegen-mono
underwent a dramatic transformation. We evaluated the fine-tuned model on a held-out test set
comprising 100 instances, and the results demonstrate a remarkable level of accuracy in CWE
detection. Table 2 summarizes the key performance metrics achieved by the fine-tuned model. As
evident from Table 2, the fine-tuned codegen-mono model achieved near-perfect accuracy of 99% on
the CWE detection task. This high accuracy is further reinforced by a precision of approximately
98.08%, indicating that out of all instances identified as containing CWEs, the model was correct
in the vast majority of cases. Furthermore, the model achieved a perfect recall of 100%, signifying
that it successfully detected all instances of CWEs present in the test set. The resulting F1-score
of approximately 99.04%, which harmonically balances precision and recall, confirms the overall
exceptional performance of the fine-tuned model.

4.3 Hardware performance metrics

Performance metrics were evaluated on a desktop system equipped with a 13th Gen Intel(R)
Core(TM) i5-13500 CPU (2.5 GHz, 14 Cores, 20 Threads) and 15.6 GB RAM, without GPU accel-
eration. Key inference timing results for the fine-tuned 350M model are summarized in Table 3. The
model performed reasonably well for real-time application on a moderate hardware. These results
represent a substantial and statistically significant improvement compared to the baseline perfor-
mance of the un-tuned model. The fine-tuned codegen-mono has demonstrably acquired a strong
capability for accurately identifying CWEs in Python code through instruction-following fine-tuning
using our specifically curated dataset. This highlights the effectiveness of our approach and the po-
tential of even small language models, when appropriately fine-tuned, to deliver high-performance
solutions for specialized security tasks like on-premise CWE detection. Table 1 summarizes the
current trends among the researchers for CWE detection.

Table 3: CPU Inference Timing Metrics (codegen-mono 350M)
Metric Value

Time to First Token (TTFT) 0.253 seconds
Tokens per Second (TPS) 6.01 tokens/sec
Median Latency (P50) 0.165 seconds
P95 Latency 0.182 seconds
P99 Latency 0.239 seconds

5 Limitations and Future Work

Our study, while demonstrating the potential of fine-tuned SLMs for CWE detection, has limitations.
Its scope was confined to the MITRE Top 25 CWEs in Python, using a modest-sized dataset of
synthetic snippets. This restricts known applicability and raises questions about generalization to
real-world code complexity, other vulnerabilities, different languages, or vulnerabilities spanning
multiple files. The model’s performance on independent benchmarks and its inherent explainability
also remain open questions.

Future work should directly address these limitations. Key priorities include expanding the scope
to more CWEs and languages, enriching datasets with real-world examples, and improving model
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functionality towards localization and fix suggestions. Exploring alternative SLM architectures,
advanced fine-tuning methods, and conducting rigorous comparative benchmarks against SAST
tools and LLMs are also crucial next steps.

Furthermore, investigating model explainability techniques and piloting the integration into real-
world development environments will be vital for assessing practical utility and fostering adoption.
These efforts will help determine the true extent to which fine-tuned SLMs can serve as robust,
trustworthy components in the software security toolkit.

6 Conclusion

In this paper, we have demonstrated the successful application of instruction-following fine-tuning
to adapt a small language model, codegen-mono, for high-accuracy Common Weakness Enumera-
tion (CWE) detection in Python code in a reasonable hardware. Our results show a remarkable
transformation from a baseline model incapable of detecting CWEs to a fine-tuned model achieving
near-perfect performance metrics. This research underscores the significant potential of fine-tuned
Small Language Models as a practical, resource-efficient, and privacy-preserving solution for on-
premise code security analysis, particularly for organizations handling confidential codebases. By
providing a viable alternative to cloud-dependent LLM security tools, our work paves the way for
broader adoption of advanced language model technology in security-sensitive environments, con-
tributing to more secure software development practices and reduced vulnerability risks in critical
applications. We encourage future research to build upon these findings by exploring larger and
more diverse datasets, extending the approach to other programming languages, and developing
robust, real-world CWE detection tools based on fine-tuned Small Language Models.

Data Availability

The dataset can be found at https://huggingface.co/datasets/floxihunter/synthetic_python_
cwe The tuned model can be found at https://huggingface.co/floxihunter/codegen-mono-CWEdetect
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