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Abstract—Measurement-device-independent quantum key dis-
tribution (MDI-QKD), enhances quantum cryptography by mit-
igating detector-side vulnerabilities. This study analyzes MDI-
QKD performance in thermal-loss and phase noise channels,
modeled as depolarizing and dephasing channels to capture
thermal and phase noise effects. Based on this channel frame-
work, we derive analytical expressions for Bell state measure-
ment probabilities, quantum bit error rates (QBER), and secret
key rates (SKR) of MDI-QKD. Our simulations reveal that
SKR decreases exponentially with transmission distance, with
performance further degraded by increasing thermal noise and
phase noise, particularly under high thermal noise conditions.
These findings offer insights into enhancing MDI-QKD’s noise
resilience, supporting secure key generation in practical, noisy
environments.

Index Terms—MDI-QKD, thermal-loss channel, phase noise
channel, secret key rate, quantum bit error rate

I. INTRODUCTION

Quantum key distribution (QKD) enables secure key shar-
ing between two parties, Alice and Bob, ensuring encrypted
communication with total confidentiality guaranteed by the
laws of quantum physics [1], [2]. The first QKD protocol,
BB84, introduced by Bennett and Brassard, utilized discrete
variables (DV) with single-photon states, establishing a ro-
bust framework for secure communications [1]. Subsequent
developments extended QKD to continuous-variable (CV)
protocols, such as the squeezed-state protocol, leveraging
entangled states for enhanced performance [3]–[5]. However,
pratical transmission media, such as optical fibers, introduce
thermal noise and phase noise, which arise from physical
phenomena like random photon scattering due to thermal
fluctuations in the fiber material and phase drifts caused by
environmental pertubations such as temperature variations or
mechanical vibrations. These degrade QKD performance by
reducing secret key rates (SKR) and increasing quantum bit
error rates (QBER), posing significant challenges to practical
deployment [6]–[8]. While studies have explored thermal noise
and phase noise effects on both DV- and CV-QKD protocols,
research indicates that CV-QKD is robust in low-to-moderate
loss regimes, whereas DV-QKD performs better in high-
loss scenarios [9]–[12]. The specific impact of these noise
sources on Measurement-Device-Independent QKD (MDI-

QKD), however, remains underexplored. MDI-QKD, a DV
protocol, eliminates detector-side vulnerabilities, making it a
cornerstone for practical quantum networks where a secure
long-distance key distribution is critical [13]–[17]. Given its
pivotal role in enabling secure quantum communication across
metropolitan or satellite-based networks [18], understanding
MDI-QKD’s behavior under thermal noise and phase noise is
essential.

In this work, we model thermal-loss and phase noise
channels as depolarizing and dephasing channels to capture
thermal (Nth) and phase noise (σθ) effects. The depolarizing
channel captures thermal noise’s uniform state mixing across
all polarization bases, critical for SKR impacts, while the
dephasing channel isolates phase noise’s coherence loss in
the X-basis, vital for eavesropping detection in MDI-QKD,
thus, we chose this combined models. Assuming ideal single-
photon sources and perfect detectors—eliminating dark counts
and other practical imperfections—we derive analytical ex-
pressions for projection probabilities onto Bell states, QBER,
and SKR, focusing on the channel’s impact on system per-
formance. Through numerical simulations under these ideal-
ized conditions, we evaluate MDI-QKD performance across
varying noise levels and transmission distances. Our study
provides a theoretical framework to optimize MDI-QKD’s
noise resilience, addressing key challenges for its deployment
in noisy quantum communication systems and supporting its
application in secure quantum networks.

The paper is structured as follows. In Section II, we estab-
lish the theoretical and modeling framework for the thermal-
loss and phase noise channels. Section III presents the MDI-
QKD analysis in terms of SKR and QBER under the influence
of thermal-loss and phase noise. Section IV presents numerical
simulations evaluating the performance of MDI-QKD in the
presence of these noise effects. Finally, Section V concludes
the paper.

II. THERMAL NOISE AND PHASE NOISE IN MDI-QKD

In MDI-QKD, Alice and Bob transmit single-photon states
through optical fiber channels to an untrusted third party,
Charlie, as shown in Figure. 1. In realistic scenarios, these fiber
channels are subject to thermal-loss and phase noise – two key
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Fig. 1. MDI-QKD protocol, SP-S: Single Photon Source, Pol-M: Polarization
Modulator, BS: Beamsplitter., PBS: Polarization Beamsplitter, SPD: Single
Photon Detector

factors that can compromise security if not properly adressed.
To accurately model these effects, we treat the channels
as a combination of depolarizing and dephasing channels.
These models capture the essential quantum characteristics of
the communication channels and provide a solid theoretical
foundation for analyzing the impact of noise. In the following,
we present the channel models and their derivations in detail.

1. Thermal-loss Channel

Thermal-loss channels are common environmental distur-
bances in QKD, especially in fibre-optic transmission, intro-
duction of background thermal noise denoted by Nth due to
scattering and absorption. To model this effect, we adopt the
approach in [6], treating the thermal-loss channel as equivalent
to a depolarizing channe, as it effectively captures the uniform
randomization of photon polarization states across all bases.
The depolarizing channel acts on a single-qubit density matrix
ρ̂ as follows:

ρ̂′ → (1− λ)ρ̂+
λ

2
I (1)

where I = |H⟩⟨H| + |V ⟩⟨V | is the identity operator in the
polarization basis. The depolarization parameter λ quantifies
the extent of noise-induced mixing. Its derivation stems from
a beamsplitter model, where Alice’s input state is a single
photon |1⟩A, with the environment in a thermal state:

ρ̂th =

∞∑
n=0

Nn
th

(1 +Nth)n+1
|n⟩⟨n|E (2)

with Nth being the average number of thermal noise photons.
For an input state |1, n⟩AE , the output state ρ̂′AF is traced over
the environment mode F , yielding the unnormalized output
ρ̂′A:

ρ̂′A =
η

γ4
ρ̂A +

Nth(1 +Nth)(1− η)2

γ4
I (3)

where η is the channel transmissivity and γ = 1+Nth−Nthη
is the normalization factor dependent on Nth and η.

The single-photon success probability, or the likelihood of
detecting a single photon at Charlie, is:

PS = Tr(ρ̂′A) =
η + 2Nth(1 +Nth)(1− η)2

γ4
(4)

As a consequence, the normalized conditional density matrix
is:

ρ̂′A/PS = (1− λ)ρ̂A +
λ

2
I (5)

with:

λ =
2Nth(1 +Nth)(1− η)2

η + 2Nth(1 +Nth)(1− η)2
(6)

This model illustrates how thermal noise Nth and channel
transmissivity η jointly determine the depolarization and suc-
cess probability of single-photon transmission. Since Alice and
Bob operate through independent channels, with parameters
λA, P

A
S and λB , PBS .

2. Phase Noise Channel

Phase noise arises from environmental perturbations, such
as temperature fluctuations or mechanical vibrations, which
disrupt the phase coherence of quantum states. In MDI-
QKD, this noise particularly impacts the X-basis, where phase
information is critical to detect eavesdropping attempts. We
represent phase noise as a dephasing channel as in [6], which
selectively affects the non-diagonal elements of the density
matrix. The phase noise channel transforms the density matrix
as:

ρ̂→
[
ρ00 r̄2ρ01
r̄2ρ10 ρ11

]
(7)

where r̄2 = e−σ
2
θ , and σθ is the standard deviation of the phase

noise. This effect originates from a random phase rotation,
modeled as:

ρ̂→
∫ π

−π
f(θ)ein̂θρ̂e−in̂θdθ (8)

Here, number operator n̂ is the photon number in the state, θ
is the random phase angle. The phase distribution is a wrapped
normal distribution:

fWN (θ) =
1

σθ
√
2π

∞∑
k=−∞

e−(θ+2πk)2/2σ2
θ (9)

Indeed, the expectation value of the phase shift affects the
off-diagonal terms:

ρ01 → ⟨eiθ⟩ρ01, r̄ =

∫ π

−π
fWN (θ)eiθdθ = e−σ

2
θ/2 (10)

The r̄2 factor quantifies the coherence loss, decreasing as
σθ increases, directly impacting the X-basis measurements in
MDI-QKD. Since diagonal terms remain unchanged, phase



TABLE I
MDI-QKD CODING RULE

Alice&Bob Bell State: |ψ−⟩ Bell State: |ψ+⟩
Z-basis Bit flip Bit flip
X-basis Bit flip No Bit flip

noise does not contribute to errors but complicates eavesdrop-
ping detection. Consequentely, the combined channel, which
integrates thermal loss and phase noise, is:

ρ̂→ (1− λ)

[
ρ00 r̄2ρ01
r̄2ρ10 ρ11

]
+
λ

2
I (11)

III. MDI-QKD ANALYSIS: SKR AND QBER

In MDI-QKD, Alice and Bob send single-photon states
through their respective noisy channels to Charlie, who per-
forms a Bell state measurement, projecting onto:

|ψ+⟩ = 1√
2
(|HV ⟩+ |V H⟩), |ψ−⟩ = 1√

2
(|HV ⟩ − |V H⟩)

(12)
Assuming single-photon sources and ideal detectors, with

Z and X bases each chosen with probability 1
2 , we analyze

the channel effects and derive the secret key rate (SKR) and
quantum bit error rate (QBER). We use |H⟩ (i.e., |H⟩|H⟩) as
an illustrative example.

1) State Evolution Through Channels: Alice prepares
|H⟩A, with density matrix:

ρ̂A = |H⟩⟨H|A =

[
1 0
0 0

]
(13)

Bob symmetrically prepares |H⟩B , ρ̂B = |H⟩⟨H|B .
2) After Channel Transmission: After passing through the

thermal-loss and phase noise channels, the state arrives at
Charlie with probability PAS and PBS , and the conditional
density matrix becomes:

ρ̂A′ = (1− λA)ρ̂A +
λA
2
I =

[
1− λA

2 0

0 λA

2

]
(14)

Phase noise does not affect the Z-basis, as it only scales off-
diagonal elements. Bob’s state undergoes a similar transfor-
mation. The joint density matrix: The joint state is:

ρ̂A′B′ = ρ̂A′ ⊗ ρ̂B′ (15)

3) Bell State Measurement: The projection probability is
defined as:

Pψ± = Tr(ρ̂A′B′ |ψ±⟩⟨ψ±|) (16)

Accordingly, the probability of ρ̂A′B′ projecting onto |ψ+⟩ is:

PHHψ+ = ⟨ψ+|ρ̂A′B′ |ψ+⟩

=
1

2

[
(1− λA

2
)
λB
2

+
λA
2
(1− λB

2
)

]
=
λA + λB − λAλB

4
(17)

See Appendix A.1 for derivation. Similarly, projecting onto
|ψ−⟩ is:

PHHψ− = ⟨ψ−|ρ̂A′B′ |ψ−⟩ = 0 (18)

See Appendix A.1 for derivation. This probability reflects er-
roneous detection events due to depolarizing noise, impacting
the Z-basis error rate. The projection probabilities for various
other mixing states can be obtained in the same way.

4) QBER and SKR Derivation: In Table. I outlines the
coding rules for MDI-QKD. The analysis of error rates and
secret key rates is central to evaluating the security of MDI-
QKD. The Z-basis is used for key generation, and the error rate
reflects the probability of erroneous detection from identical
inputs. Accounting for the average gain across all possible
inputs, including both valid and invalid detections:

QZ =
2− 2λA − 2λB + 3λAλB

4
PAS P

B
S (19)

See Appendix A.2 for explicit derivation.
Only different inputs (HAVB and VAHB) contribute to the
key, as they produce usable key bits:

Q1,1
Z =

2− λA − λB + 2λAλB
4

PAS P
B
S (20)

We refer the reader to Appendix A.3 for explicit derivation.
Caused by erroneous detection of identical inputs, the Z-basis
error rate EZ quantifies the probability of projecting onto the
Bell state |ψ+⟩ when Alice and Bob send identical states such
as HAHB or VAVB , which should not contribute to the key,
and is given by:

EZ =
λA + λB − λAλB

2
(
1− λA − λB + 3

2λAλB
) (21)

See Appendix A.4 for explicit derivation. Where EZ quantifies
the disturbance due to depolarizing noise in the Z-basis. We
note that λA, λB diminishes QZ by elevating the rate of invalid
detections, which reduces the SKR and the fraction of valid
key bits. In contrast, the X-basis is employed to estimate
eavesdropping, influenced by both depolarization and phase
noise.

e1,1X =
2(1− r̄2)(1 + λAλB)− (1− 2r̄2)(λA + λB)

4(1− λA − λB + 2λAλB)
(22)

R = I(A : B)− χ(B : E) = Q1,1
Z [1−H(e1,1X )]−QZfH(EZ)

=
PAS P

B
S

4

[
(2− λA − λB + 2λAλB)

[
1−H

(
2(1− r̄2)(1 + λAλB)− (1− 2r̄2)(λA + λB)

4(1− λA − λB + 2λAλB)

)]

− (2− 2λA − 2λB + 3λAλB)H

(
λA + λB − λAλB

2
(
1− λA − λB + 3

2λAλB
))] (23)



Fig. 2. SKR as a function of transmission distance under varying thermal noise (Nth) and phase noise (σθ) in the MDI-QKD system, with Nth ranging from
0 to 0.1 and σθ from 0 to 0.3, highlighting the dominant impact of thermal noise on secure distance reduction.

Fig. 3. SKR as a function of transmission distance under varying phase noise (σθ) and thermal noise (Nth) in the MDI-QKD system, with σθ ranging from
0 to 0.3 and Nth from 0 to 0.1, showing the limited impact of phase noise compared to thermal noise.

See Appendix A.5 and A.6 for derivation. A key figure
of merit in quantum security protocols in general, and MDI-
QKD in particular, is the SKR. This quantifies the number
of secure key bits that Alice and Bob can distill from their
correlated measurements, achieved through Charlie’s Bell state
measurement, while accounting for potential information leak-
age to an eavesdropper, Eve. To rigorously formulate this
balance, we employ the Devetak-Winter bound [19] under
reverse reconciliation. Based on Eq. (19), Eq. (20), Eq. (21)
and Eq. (22), the SKR is expressed in Eq. (23). Here, I(A :
B) = Q1,1

Z [1 − H(e1,1X )] represents the mutual information
between Alice (A) and Bob (B), encapsulating the amount of
shared information available for key generation after Charlie’s
measurements. The factor 1 − H(e1,1X ) adjusts the effective
key rate by subtracting the information that could potentially
be leaked to Eve through errors in the X-basis, as she might
exploit these discrepancies to infer key bits, thereby leaving
I(A : B) as the secure information content per valid detection.

The Holevo information, χ(B : E) = QZfH(EZ), quanti-
fies the upper bound on Eve’s knowledge about Bob’s key bits,
representing the information she could theoretically extract
from the system. We set the parameter f = 1 as ideal error
correction efficiency, meaning all Z-basis errors are perfectly

reconciled, a simplifying assumption for this analysis. Thus,
χ(B : E) represents the information leakage Eve could access
by observing all Z-basis outcomes, weighted by the entropy
of errors that must be corrected to ensure key security.

This Devetak-Winter formulation ensures the SKR accounts
for both the usable shared information and Eve’s potential
knowledge, effectively mitigating the impacts of thermal noise
Nth and phase noise r̄2 on the key generation process in MDI-
QKD.

This section has established a theoretical model for MDI-
QKD that incorporates the effects of thermal-loss and phase-
noise channels. By capturing the combined influence of ther-
mal noise (Nth) and phase noise (through r̄2) on the secret key
rate, the model lays the groundwork for the simulation-based
performance analysis presented in the next section.

IV. SIMULATION AND ANALYSIS OF CHANNEL NOISE
EFFECTS ON MDI-QKD PERFORMANCE

In the previous section, we established the MDI-QKD model
under thermal-loss and phase-noise channels, forming the basis
for the simulation framework. A key parameter in the model
is the transmissivity η, which quantifies channel efficiency
and depends on the physical transmission medium. While the



model is general, in our simulations we compute η for a
fiber-optic channel using the standard exponential attenuation
model: η = 10−αL/10, where α = 0.2dB/km, denotes
the fiber attenuation coefficient and L represents the total
transmission distance between Alice, Bob, and Charlie.

Upon completing the simulation setup, we evaluate the
SKR across a range of thermal noise levels Nth and phase
noise parameters σθ, over varying transmission distances. This
section presents and analyzes the simulation results to provide
deeper insight into how these noise sources influence system
performance.

Figure 2 examines the impact of thermal noise Nth on SKR
for several values of phase noise σθ. The results reveal that
SKR is highly sensitive to thermal noise: as Nth increases,
the maximum transmission distance supporting nonzero SKR
significantly decreases. Even small increases in thermal noise
lead to noticeable reductions in both SKR magnitude and
secure distance. In contrast, variations in phase noise within
the considered range have only a marginal effect on SKR,
especially at longer distances. This suggests that the overall
system performance is predominantly constrained by thermal
noise, with phase noise playing a secondary role.

Figure 3 reverses the focus, illustrating how SKR responds
to increasing phase noise σθ across different levels of thermal
noise. While SKR shows slight degradation as σθ increases,
particularly at short to medium distances, the overall sensitivity
remains low within the practical phase noise range. In sce-
narios with negligible thermal noise, increasing σθ leads to a
modest decline in SKR, reflecting increased phase uncertainty.
However, once thermal noise is present at non-negligible
levels, it dominates the SKR decay, rendering the system
relatively insensitive to further phase noise variations.

The underlying reason for this disparity lies in the respective
effects of each noise type on the system’s key rate components.
Phase noise introduces a multiplicative attenuation factor r2 =
exp(−σ2

θ), which affects the X-basis QBER (e11X ). However,
this factor decreases gradually with σθ, resulting in only
moderate increases in error rates. On the other hand, thermal
noise alters the photon-number statistics of the source states,
directly impacting the yields λA and λB , and subsequently
degrading the gain (Q11

Z , QZ) and increasing the bit error rate
EZ . These combined effects substantially reduce the SKR.

Overall, the simulation results clearly demonstrate that
thermal noise is the dominant limiting factor for SKR in MDI-
QKD systems, significantly constraining the achievable secure
transmission distance. In contrast, phase noise within realistic
operating conditions exerts only a limited influence, indicating
a degree of robustness to phase fluctuations in optical fibers.
These findings highlight the importance of minimizing ther-
mal noise in practical implementations to preserve key rate
performance and extend operational range.

V. CONCLUSION

In this work, we investigated the performance of MDI-
QKD over thermal-loss and phase-noise channels, assuming
ideal single-photon sources and perfect detector efficiencies.

Employing the Devetak–Winter bound under reverse recon-
ciliation, we derived the secret key rate (SKR) to assess the
system’s performance. Our findings indicate that thermal noise
has a more pronounced impact on SKR than phase noise,
playing a dominant role in limiting the overall efficiency
of the MDI-QKD protocol. These analytical insights provide
a foundation for future studies aimed at exploring practical
MDI-QKD implementations across a broad range of channel
conditions.
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APPENDIX A

In MDI-QKD, the secure exchange of cryptographic keys
between Alice and Bob relies on Charlie’s Bell state mea-
surements. The precision of these measurements, encapsulated
in projection probabilities, forms the cornerstone to obtain
critical performance metrics such as QBER and SKR, which
collectively quantify the ability of the system. This appendix
provides a detailed derivation of the Z-basis projection proba-
bilities PHHψ+ and PHHψ− and the X-basis projection probability
PDDψ+ as representative examples, illustrating the distinct im-
pacts of depolarizing noise (via λ) and phase noise (via r̄2).
Subsequently, we derive the total count rate QZ , effective key
rate Q1,1

Z , Z-basis error rate EZ , X-basis error rate e1,1X and
R, using these projection probabilities.

A.1 Derivation of Bell State Projection Probabilities

Charlie’s Bell state measurements project the joint state
ρ̂A′B′ onto the Bell states |ψ+⟩ or |ψ−⟩. These probabilities
are pivotal, as they reflect how thermal noise (via λ) and
phase noise (via r̄2) alter the quantum state, influencing key
generation and error rates. As examples, we derive PHHψ+ and
PHHψ− for the identical input of the Z-basis |H⟩A|H⟩B , and
PDDψ+ for the identical input of the X-basis |D⟩A|D⟩B , while
summarizing the remaining probabilities in A.1.3 to provide a
complete overview.

A.1.1 Z-basis: PHHψ+ and PHHψ− : For the input |H⟩A|H⟩B ,
Alice and Bob prepare horizontally polarized photons, forming
the initial state ρ̂A ⊗ ρ̂B . After transmission through inde-
pendent noisy channels the indivudual states in Eq. (11), this
evolves into outcoming states states ρ̂A′ and ρ̂B′ . According
to Eq. (15), the joint density matrix ρ̂A′B′ = ρ̂A′ ⊗ ρ̂B′ in the
Z-basis is:

ρ̂A′B′ = ρ̂A′ ⊗ ρ̂B′

=


(
1 − λA

2

)(
1 − λB

2

)
0 0 0

0
(
1 − λA

2

)
λB
2 0 0

0 0
λA
2

(
1 − λB

2

)
0

0 0 0
λA
2

λB
2


(24)

This diagonal form reflects the Z-basis input’s lack of su-
perposition, rendering phase noise (r̄2) ineffective here, as it
only affects off-diagonal terms. Depolarizing noise (λA, λB),
however, mixes polarizations, potentially causing errors in

detection. The Bell state |ψ+⟩ and |ψ−⟩ are expressed in vector
form:

|ψ+⟩ = 1√
2


0
1
1
0

 , ⟨ψ+| = 1√
2

[
0 1 1 0

]
(25)

|ψ−⟩ = 1√
2


0
1
−1
0

 , ⟨ψ−| = 1√
2

[
0 1 −1 0

]
(26)

The projection probability onto |ψ+⟩, as given by Eq.(17),
can be formulated using the vector representation of Eq.(25)
as follows:

PHHψ+ =
1

2
[0 1 1 0]ρ̂A′B′


0
1
1
0


Matrix operations with the given Eq. (24) produce the result
given in Eq. (17) as:

PHHψ+ =
λA + λB − λAλB

4

This non-zero probability signifies an erroneous detection
event where identical inputs |H⟩A|H⟩B are mistaken for |ψ+⟩,
a state typically associated with different inputs. This error,
induced by depolarizing noise, increases with λA and λB ,
directly contributing to the error rate on the Z-basis and
necessitating error correction, which reduces the yield of the
secure key. Similarly, the projection probability onto |ψ−⟩ in
Eq. (18) is expressed as:

PHHψ− =
1

2
[0 1 − 1 0]ρ̂A′B′


0
1
−1
0


Matrix operations with the given Eq. (24) produce the result
given in Eq. (18) as:

PHHψ− =
1

2

[(
1− λA

2

)
λB
2

− λA
2

(
1− λB

2

)]
= 0

The zero outcome reflects the absence of coherence required
for |ψ−⟩, distinguishing it from |ψ+⟩. This contrasts with
PHHψ+ , emphasizing the distinct roles of Bell states in error
generation under thermal noise.

A.1.2 X-Basis: PDDψ+ : For the X-basis input |D⟩A|D⟩B ,
the joint density matrix after transmission through both
channels, as described in Eq. (11), is expressed as:

ρ̂A′B′ = ρ̂A′ ⊗ ρ̂B′

=


(1−λA)(1−λB)

4
(1−λA)(1−λB)r̄2

4
(1−λA)(1−λB)r̄2

4
1−λB

4
(1−λA)(1−λB)r̄2

4
1−λA

4
1−λB

4
(1−λA)(1−λB)r̄2

4
(1−λA)(1−λB)r̄2

4
1−λB

4
1−λA

4
(1−λA)(1−λB)r̄2

4
1−λA

4
(1−λA)(1−λB)r̄2

4
(1−λA)(1−λB)r̄2

4
1
4

 (27)



This matrix, derived from the tensor product of individual
states ρ̂A′ and ρ̂B′ , exhibits off-diagonal terms scaled by r̄2,
reflecting phase noise’s impact on the initial superposition,
alongside depolarizing noise’s mixing effects parameterized
by λA and λB . Similarly, performing matrix operations, pro-
jecting onto |ψ+⟩ yields:

PDDψ+ =
(1 + r̄2) + (1− r̄2)(λA + λB − λAλB)

4
(28)

We note that Phase noise (r̄2 < 1) reduces the off-diagonal
contribution, lowering PDDψ+ and increasing X-basis errors,
critical for eavesdropping detection.

A.1.3 Summary of all projection probabilities: With similar
derivation methods, the remaining probabilities are provided
for direct use:

PHHψ+ = PV Vψ+ =
λA + λB − λAλB

4
PHHψ− = PV Vψ− = 0

PHVψ+ = PV Hψ+ =
2− 2λA − λB + λAλB

4

PHVψ− = PV Hψ− =
λAλB

4

PAAψ+ = PDDψ+ =
(1 + r̄2) + (1− r̄2)(λA + λB − λAλB)

4

PAAψ− = PDDψ− =
(1− λA)(1− λB)(1− r̄2) + λAλB

4

PADψ+ = PDAψ+ =
(1− λA)(1− r̄2 − r̄2λB + λB) + λA

4

PADψ− = PDAψ− =
(1− λA)(1− λB)(1 + r̄2) + λAλB

4

A.2 Derivation of Z-basis total count rate QZ
The total count rate QZ quantifies the average probability

that Charlie detects a Bell state on the Z-basis across all
possible input combinations (HAHB , VAVB , HAVB , VAHB).
This metric encompasses both valid key-generating events
(e.g., HAVB and VAHB) and invalid detections (e.g., HAHB

and VAVB) that contribute to errors. In MDI-QKD, Charlie’s
measurement projections onto |ψ+⟩ or |ψ−⟩ as valid re-
sponses, regardless of whether they correspond to the intended
key bits, reflecting the overall detection performance of the
system. Influenced primarily by depolarizing noise (λA, λB),
QZ is crucial for assessing the measurement efficiency and
noise impact:

QZ =
1

2
PAS P

B
S(

PHHψ+ + PV Vψ+ + PHVψ+ + PHVψ− + PV Hψ+ + PV Hψ−

) (29)

Here, the factor 1
2 averages over the equal probabilities of

Alice and Bob selecting |H⟩ or |V ⟩, and PAS P
B
S represents

the joint success probability of photon transmission through
the noisy channels. By including projections in both Bell
states, |ψ+⟩ and |ψ−⟩, QZ accounts for all detection events,
whether valid key-generating outcomes or erroneous detec-
tions, shaping the system performance under depolarizing

noise. Substituting the probabilities listed in A.1.3 into Eq.
(29), the result reflects the interplay between successful photon
transmissions (PAS P

B
S ) and noise-induced detections, which

produces Eq. (19) :

QZ =
2− 2λA − 2λB + 3λAλB

4
PAS P

B
S

An increase in QZ with rising λA and λB signifies a greater
proportion of invalid detections, requiring robust error correc-
tion to maintain security.

A.3 Derivation of Z-basis effective key rate Q1,1
Z

The effective key rate Q1,1
Z isolates the probability of detect-

ing Bell states from different inputs (HAVB , VAHB), which
generate usable key bits critical for the secure keys in MDI-
QKD. Unlike the total count rate, this metric focuses solely
on valid events that align with the protocol’s coding rules
in Table. I, directly contributing to the mutual information
I(A : B) in the SKR. It is expressed as:

Q1,1
Z =

1

2

(
PHVψ+ + PHVψ− + PV Hψ+ + PV Hψ−

)
PAS P

B
S (30)

Here, the factor 1
2 averages over the equal probabilities of Al-

ice and Bob selecting opposite polarization states (|H⟩A|V ⟩B
or |V ⟩A|H⟩B). Substituting the probabilities from A.1.3 into
Eq. (30), the result captures only valid detection events,
sensitive to the effect of depolarizing noise on reducing the
state distinguishability, which produces Eq. (20) :

Q1,1
Z =

2− λA − λB + 2λAλB
4

PAS P
B
S

A decrease in Q1,1
Z with increasing λA and λB highlights the

adverse impact of thermal noise on key generation efficiency.

A.4 Derivation of Z-basis error rate EZ
The Z-basis error rate EZ quantifies the fraction of erro-

neous detections where identical inputs (HAHB , VAVB) are
mistaken for valid Bell states, a consequence of the random-
ization of the polarization states by thermal noise. This metric
is pivotal for determining error correction costs, as it measures
the noise-induced deviations that must be reconciled to ensure
key consistency:

EZ =
PHHψ+ + PV Vψ+

PHHψ+ + PV Vψ+ + PHVψ+ + PHVψ− + PV Hψ+ + PV Hψ−

(31)

Here, the numerator sums the probabilities of incorrect projec-
tions onto |ψ+⟩ from identical inputs, while the denominator,
equivalent to QZ Eq. (19), represents the total detection prob-
ability in all input combinations of the Z-basis. Substituting
the probabilities from A.1.3 into Eq. (31), the result reflects
the impact of depolarizing noise, which yields Eq. (21) from
the main text:

EZ =
λA + λB − λAλB

2
(
1− λA − λB + 3

2λAλB
)

The dependence on λA and λB underscores the role of thermal
noise in increasing error rates, thus reducing the yield of secure
keys by increasing the resources needed for error correction.



A.5 Derivation of X-basis error rate e1,1X
The X-basis error rate e1,1X assesses the potential for eaves-

dropping by measuring the frequency of incorrect detections
in the X-basis, influenced by both depolarizing noise (λA, λB)
and phase noise (r̄2). This metric is essential for security
analysis, as it indicates deviations from expected coherent
outcomes that an eavesdropper might exploit:

e1,1X =
PDDψ− + PDAψ+

PDDψ+ + PDDψ− + PDAψ+ + PDAψ−

(32)

Align with the protocol’s coding rules in Table. I, the nu-
merator captures error events where |D⟩A|D⟩B projects onto
|ψ−⟩ or |D⟩A|A⟩B onto |ψ+⟩, while the denominator sums
all possible X-basis detection probabilities.

Using the probabilities from A.1.3 in Eq. (32), resulting in
Eq. (22) :

e1,1X =
2(1− r̄2)(1 + λAλB)− (1− 2r̄2)(λA + λB)

4(1− λA − λB + 2λAλB)

An increase in e1,1X with a decrease in r̄2 indicates the
critical role of phase noise in security analysis.

A.6 Derivation of SKR R

The SKR: R quantifies secure key bits, balancing key
generation with leakage via the Devetak-Winter bound in:

R = I(A : B)−χ(B : E) = Q1,1
Z [1−H(e1,1X )]−QZfH(EZ)

(33)
Here, Q1,1

Z [1 − H(e1,1X )] represents the secure key fraction
after accounting for potential eavesdropping losses in the
X basis, while QZH(EZ) quantifies the information lost to
error correction in the Z-basis. The binary entropy function
H(x) = −x log2(x) − (1 − x) log2(1 − x) (for 0 < x < 1,
with H(0) = H(1) = 0) measures the uncertainty of the error
probabilities e1,1X and EZ , reflecting the amount of information
Eve could gain or must be corrected for.

Combining the results of A.2, A.3, A.4 and
A.5 into Eq. (33), the final expression reflects the
interplay of noise effects, which produces Eq. (23):

R = I(A : B)− χ(B : E) = Q1,1
Z [1−H(e1,1X )]−QZfH(EZ)

=
PAS P

B
S

4

[
(2− λA − λB + 2λAλB)

[
1−H

(
2(1− r̄2)(1 + λAλB)− (1− 2r̄2)(λA + λB)

4(1− λA − λB + 2λAλB)

)]

− (2− 2λA − 2λB + 3λAλB)H

(
λA + λB − λAλB

2
(
1− λA − λB + 3

2λAλB
))]

We highlight that , thermal noise dominates SKR reduction
via QZ and EZ , while phase noise affects e1,1X , shaping
security trade-offs, as is detailed in the text.
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