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Abstract
In practical settings, differentially private Feder-
ated learning (DP-FL) is the dominant method
for training models from private, on-device client
data. Recent work has suggested that DP-FL
may be enhanced or outperformed by methods
that use DP synthetic data (Wu et al., 2024; Hou
et al., 2024). The primary algorithms for gener-
ating DP synthetic data for FL applications re-
quire careful prompt engineering based on public
information and/or iterative private client feed-
back. Our key insight is that the private client
feedback collected by prior DP synthetic data
methods (Hou et al., 2024; Xie et al., 2024) can
be viewed as a preference ranking. Our algo-
rithm, Preference Optimization for Private Client
Data (POPri) harnesses client feedback using
preference optimization algorithms such as Di-
rect Preference Optimization (DPO) to fine-tune
LLMs to generate high-quality DP synthetic data.
To evaluate POPri, we release LargeFedBench,
a new federated text benchmark for uncontami-
nated LLM evaluations on federated client data.
POPri substantially improves the utility of DP
synthetic data relative to prior work on LargeFed-
Bench datasets and an existing benchmark from
Xie et al. (2024). POPri closes the gap between
next-token prediction accuracy in the fully-private
and non-private settings by up to 68%, compared
to 52% for prior synthetic data methods, and
10% for state-of-the-art DP federated learning
methods. The code and data are available at
https://github.com/meiyuw/POPri.

1. Introduction
Many important machine learning (ML) applications feature
sensitive datasets that are distributed across client devices

*Equal contribution 1Carnegie Mellon University, Pittsburgh,
PA, U. S. A. 2Pittsburgh Supercomputing Center, Pittsburgh, PA,
U. S. A. 3Coldrays. Correspondence to: Mei-Yu Wang, Charlie
Hou <mwang7@psc.edu, hou.charlie2@gmail.com>.

(e.g. mobile devices). Such ML models are often hosted
on client devices. These on-device models offer privacy, la-
tency, and storage benefits relative to centrally-hosted mod-
els. Examples include Google’s GBoard (Hard et al., 2019;
Xu et al., 2023b; Wu et al., 2024) and Apple’s mobile auto-
matic speech recognition system (Paulik et al., 2021). Today,
federated learning (FL) is the most widely-used approach
in practice for learning on-device models; it trains models
locally on user devices and aggregates model updates on a
central server (McMahan et al., 2017b). FL protects the pri-
vacy of client data in part by adopting differentially private
(DP) (Dwork, 2006) optimization techniques, a combination
we refer to as DP-FL (McMahan et al., 2017b; Kairouz et al.,
2021b; Nguyen et al., 2022; Xu et al., 2023a).

With breakthroughs in large language model (LLM) ca-
pabilities (Anil et al., 2023; Team et al., 2023; Achiam
et al., 2023; Guo et al., 2025) several research teams have
used LLMs to better train models on private client data. A
common strategy applies standard optimization algorithms
(e.g., DP stochastic gradient descent, DP-SGD (Abadi et al.,
2016)) to fine-tune models on private client data (Kurakin
et al., 2023; Charles et al., 2024). These approaches have an
important limitation in the on-device setting: most LLMs
today are too large to fit on client devices, let alone train on
them (Radford et al., 2019; Touvron et al., 2023).

To sidestep the size issue, Wu et al. (2024); Hou et al. (2024)
view the problem of learning from distributed, private client
data (partially) as a DP synthetic data problem. These ap-
proaches use LLM-assisted workflows to generate privacy-
preserving synthetic data, similar to client data, at the server;
then they train the on-device model at the server on the syn-
thetic data. This avoids storing the LLM on client devices.

In more detail, Wu et al. (2024) use prior public information
about the clients to create LLM-generated synthetic data for
pretraining. For example, for their Google GBoard virtual
keyboard application, they use prompts like “Imagine you
are a [GENDER] of age [AGE]. Write some examples of
chat messages.” to generate synthetic samples. This prompt
was designed entirely using prior qualitative information
about the data on client devices. However, prior information
may not always be available. Moreover, this prompt was not
refined based on clients’ realized data, which could limit the
relevance of the resulting synthetic data.

1

ar
X

iv
:2

50
4.

16
43

8v
1 

 [
cs

.L
G

] 
 2

3 
A

pr
 2

02
5

https://github.com/meiyuw/POPri


Private Federated Learning using Preference-Optimized Synthetic Data

Figure 1. Left: Private Evolution (PE)-based techniques. Clients generate low-dimensional statistics which summarize the similarity of
the synthetic data to their private samples. These are privately aggregated to refine the synthetic data generation for future iterations.
Traditional PE (brown) uses a prompt-based method. POPri (blue) improves a naive fine-tuning method (PE+SFT, purple) by fine-tuning
the LLM using preference optimization rather than fine-tuning directly on aggregated client feedback. Right: Next-token prediction
accuracy on the bioRxiv dataset at privacy level ϵ = 1. POPri closes the accuracy gap between the fully-private and non-private settings
by 68%, compared to 52% for prior synthetic data methods, and 10% for DP federated learning methods.

PrE-Text (Hou et al., 2024) instead uses Private Evolution
(PE) (Lin et al., 2023; Xie et al., 2024) to learn prompts that
are relevant to client data. PE iteratively sends synthetic
data samples to clients for feedback; each client privately
measures the closeness of synthetic samples to their own
data, discarding irrelevant samples. It returns this feedback
to the central server, which crafts a new prompt based on the
most relevant synthetic samples. Finally, an LLM uses the
generated synthetic data to fine-tune a downstream model.
This method of utilizing LLMs for on-device learning has
some shortcomings: (1) it relies entirely on prompting to
teach the LLM to generate relevant synthetic data, which
may not be as effective as fine-tuning the weights. (2) It
discards irrelevant samples, which may themselves contain
valuable information, as shown in reinforcement learning
with human feedback (RLHF) (Ouyang et al., 2022).

In this paper, we demonstrate how to better utilize LLMs
for on-device learning: we propose POPri (Preference Op-
timization for Private Client Data), an algorithm that re-
formulates synthetic data-based approaches for private on-
device learning as an LLM preference optimization problem.
In POPri, we directly fine-tune an LLM’s weights to im-
prove the (DP-noised) similarity scores between generated
synthetic data and private client samples. The fine-tuned
LLM is used to generate synthetic data, which is used to
train an on-device model.

Contributions. In summary, our contributions are:

(1) We propose POPri, a novel method that casts private
on-device learning under the synthetic data framework as an
LLM preference optimization problem. Prior work in this
space relied on PE, which uses client feedback exclusively
to generate new prompts (Hou et al., 2024; Xie et al., 2024).
We alter this feedback to instead provide client preferences,
and subsequently exploit recent advances in preference op-
timization (Rafailov et al., 2023). This recasting allows
us to more effectively exploit the capabilities of LLMs for

on-device learning problems.

(2) We create and maintain LargeFedBench, a new uncon-
taminated benchmark of federated client data separated by
client for the era of LLMs. The datasets in this benchmark
consist of: (1) congressional records in English-speaking
countries, and (2) abstracts from bioRxiv, collected starting
in April 2023. To our knowledge, this is the first dataset
that provides researchers with both (a) over 1,000 clients
(congressional records contains 134k clients and bioRxiv
contains 57k as of August 2024), and (b) regular updates,
allowing researchers to easily filter data to avoid contam-
inated evaluations (Magar & Schwartz, 2022; Zhou et al.,
2023; Yang et al., 2023; Roberts et al., 2023).

(3) We demonstrate the utility of POPri on this new bench-
mark set of datasets, as well as a dataset collected from
PubMed (Yu et al., 2023; Xie et al., 2024). Across all
datasets, POPri achieves the best downstream metrics. For
example, Figure 1 shows that on our bioRxiv dataset at
a privacy level of ϵ = 1.0, POPri outperforms PE-based
algorithms by 2 full percentage points, and closes the gap
between fully private and non-private baselines by over 68%,
compared to 52% for PE. It outperforms DP-FL-based meth-
ods by even more. Additional experimental details, results,
and ablations are provided in Section 5.

2. Problem Statement and Background
2.1. Problem Statement

We consider a set S of clients, S = {S1, . . . , Sn}, where
Si = {s(i)1 , . . . , s

(i)
mi} denotes the private text data of client

i ∈ [n], and mi denotes the number of text samples held by
client i. We consider the partial participation setting, where
only a subset of clients can participate in communication
with the server at any point in time (Kairouz et al., 2021a;
McMahan et al., 2017b), which is consistent with practi-
cal private on-device learning deployments. We assume L
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clients participate in each round t ≤ T and denote this set
St. We do not assume an a priori upper bound on mi. A
central server is given a pre-trained downstream model Φ,
which it wants to align with the private client data S. We
call the aligned downstream model Φ̃. In the process of
learning Φ̃, the server may make use of a pre-trained public
LLM Ψ. We observe that Ψ and Φ are different models in
general; we will assume the server has access to the weights
of both Φ and Ψ. The server is subject to two restrictions:
(1) client data cannot leave client devices, and (2) the final
model Φ̃ must protect user-level differential privacy (DP):

User-level (distributed) differential privacy (DP). We say
two datasets S and S ′ are neighboring if they differ in at
most one client’s data. That is, there exists an i ∈ [n] such
that for all j ̸= i, Sj = S′

j . A randomized mechanism M
is (ϵ, δ)-DP if, for any pair of neighboring datasets S, S ′

that differ by one sample and any possible output set E, it
holds that Pr[M(S) ∈ E] ≤ eϵPr[M(S ′

) ∈ E] + δ. The
post-processing property of a DP mechanism ensures that
any data-independent transformation applied to its output
preserves the same DP guarantees. (Dwork, 2006; Dwork &
Roth, 2014).

Goal. The server seeks an algorithm to optimize the down-
stream next-word prediction performance of Φ̃ on a test set
of private client data, subject to an (ϵ, δ)-DP constraint.

2.2. Related Work

There are two main approaches for learning on private data.

DP optimization-based approaches. In natural language
processing (NLP) tasks with privacy constraints, DP opti-
mization algorithms (e.g., DP-SGD (Abadi et al., 2016)) are
often used to fine-tune massively pretrained LLMs on pri-
vate data (Bommasani, 2019; Kurakin et al., 2023; Charles
et al., 2024). However, in settings where client data cannot
leave client devices due to privacy concerns, central servers
cannot conduct this private fine-tuning.

An alternative approach is to train models directly on client
devices, using a server to coordinate information exchange
between clients; in DP federated learning (DP-FL) (McMa-
han et al., 2017b; Kairouz et al., 2021a), (small) model
weights are iteratively sent to clients for on-device DP opti-
mization. DP-FL has struggled to keep up with the growing
size of LLMs; many LLMs cannot be stored or trained
on client devices (Collins et al., 2023). Recent work ex-
plores how to train LLMs in the DP-FL framework. Pro-
posed approaches include training only subsets of param-
eters (Charles et al., 2023), as well as memory-efficient
zero-order optimization (Zhang et al., 2024; Malladi et al.,
2023). However, these methods still require the storage of
the entire model on-device, limiting their practicality.

Synthetic data-based approaches. An alternative ap-
proach to DP optimization involves generating private syn-
thetic data using LLMs, followed by directly fine-tuning
downstream models. Synthetic data can be generated on the
server side, which bypasses client-side hardware constraints.
The post-processing property of DP also implies that DP
synthetic data can be used repeatedly without incurring addi-
tional privacy loss (Yue et al., 2023a). In the centralized DP
setting (where the server is trusted to gather all the data, as
opposed to our private on-device setting), prior studies have
shown that training downstream models on DP synthetic
text achieves performance comparable to privately training
on real data (Yue et al., 2023a; Mattern et al., 2022; Xie
et al., 2024). In the private on-device setting, Hou et al.
(2024) show that fine-tuning a small model on user-level
DP synthetic text data on the server side can actually outper-
form DP-FL, with a significant reduction in communication
and computation cost. Similarly, Wu et al. (2024) show
that pretraining an FL model on private synthetic data can
improve the final outcome of DP-FL.

One approach for generating synthetic text data is to fine-
tune an LLM (with DP-SGD) on private data (Kurakin et al.,
2023; Yu et al., 2024) and then using the LLM to generate
synthetic data. However, client hardware constraints render
this approach infeasible on-device. Recent works have relied
instead on privacy-aware prompt engineering to generate
synthetic data (Wu et al., 2024; Xie et al., 2018; Hou et al.,
2024). An important framework by Lin et al. (2023) called
Private Evolution (PE) is the basis for several competitive
DP synthetic text algorithms, including Aug-PE (Xie et al.,
2024) and PrE-Text (Hou et al., 2024). Roughly, these
algorithms use the public LLM Ψ to generate synthetic data,
score each synthetic data according to its closeness to the
client data, and discard synthetic data with low scores. The
surviving synthetic data are used as in-context examples for
Ψ to generate synthetic data. Private Evolution may sacrifice
data quality in two ways: First, it uses in-context learning,
which is often less effective than fine-tuning (Mosbach et al.,
2023). Second, discarding low-score synthetic data may
lose useful information (Ouyang et al., 2022). We address
both by turning the DP synthetic generation problem into
an LLM preference optimization problem.

3. POPri
The core idea of POPri (Preference Optimization for Private
Client Data) is a natural reformulation of private on-device
learning from synthetic data as an LLM preference opti-
mization problem, which enables the use of powerful LLM
alignment methods like DPO (Rafailov et al., 2023). In this
section, we detail the POPri design principles and algorithm.
POPri’s design is based on two related questions.
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1. What client feedback should we collect for fine-
tuning? Three natural options arise:

(1) DP Data. Clients could directly transmit DP synthetic
data samples for fine-tuning, e.g., using a method like DP-
Prompt (Utpala et al., 2023). DP-Prompt uses an LLM to
summarize text at a temperature specified by the desired
DP ϵ level. However, DP text cannot be aggregated into a
single statistic, which prevents the use of secure aggregation
(Bonawitz et al., 2016); this increases the noise needed
to reach a given DP guarantee. As such, prior work has
shown that DP-Prompt is not competitive with other private
on-device learning methods (Hou et al., 2024). We favor
aggregation-compatible representations of client data, such
as summary statistics or model parameters.

(2) DP Model Parameters. A second alternative is to send
the parameters of either the LLM Ψ or the downstream
model Φ to the client and train on the private samples with
DP-SGD (Abadi et al., 2016). These parameters are compat-
ible with secure aggregation (Bonawitz et al., 2016), which
makes more efficient use of DP budget. However, Ψ cannot
be sent to clients because of client storage constraints. Send-
ing Φ is the DP-FL approach, which is one of our baselines.

(3) DP Statistics. Finally, we could collect low-dimensional
statistics capturing the quality of synthetic data samples.
In PE, the server generates K synthetic data samples (Xie
et al., 2024; Hou et al., 2024), and each client computes a
histogram counting how often each of the private samples
is closest to one of the K samples. This K-dimensional
histogram can be made DP by adding (comparatively) little
noise, and it is amenable to secure aggregation (Xie et al.,
2024; Hou et al., 2024). We view such low-dimensional
statistics as the most promising option, as they have lower
communication and storage costs, and they make better
use of the privacy budget. In a departure from PE, we
design the low-dimensional statistics collected by POPri to
enable building a preference dataset. We ask the server to
generate J samples from each of K prompts; each client
then scores the K × J samples according to how well they
represent the client’s data, and the server aggregates the
scores for all the synthetic samples. Using these scores, the
server can construct a “higher scoring response” and “lower
scoring response” pair (a “preference pair”) for each of the
K prompts. The benefit of this new design ties directly to
the next question.

2. How should we use client feedback?

Given a vector summarizing the quality of synthetic data
samples, how should we use it? A few options arise:

(1) In-Context Learning. We could use the highest-scoring
synthetic samples as in-context examples to prompt the
LLM Ψ. This is the PE approach (Hou et al., 2024; Xie et al.,
2024). However, in-context learning typically performs

worse than finetuning-based approaches (Mosbach et al.,
2023), and we find experimentally that POPri outperforms
Private Evolution (PE) (Figure 1, Table 1).

POPri PE + SFT Evaluation Data

Figure 2. 2-PCA visualization of synthetic data from POPri and
PE+SFT, and evaluation data. We see that POPri’s synthetic data
distribution (left) is much closer to the evaluation data distribu-
tion (right) than the PE+SFT synthetic data distribution (middle).
Naively fine-tuning with SFT on PE-generated synthetic data does
not make best use of client feedback.

(2) Supervised Fine-Tuning (SFT). One could directly fine-
tune the LLM Ψ on the highest scoring samples using next-
word-prediction loss. This is analogous to the SFT baseline
evaluated in the RLHF (Ouyang et al., 2022) and DPO
(Rafailov et al., 2023) papers, which showed that RLHF and
DPO outperform SFT. The reason is that the highest scoring
samples–while better than the low-scoring samples–are not
perfect responses to the prompt. The SFT loss trains the
LLM to treat high-scoring samples as perfect responses,
which is misaligned with the LLM’s task. Empirically, we
see that this approach (PE+SFT) produces synthetic data
that is not representative of the private data (Figure 2) and
has poor downstream performance (Table 1).

(3) Preference Optimization (PO). Preference optimization-
based methods like DPO (Rafailov et al., 2023) instead di-
rectly optimize the LLM to produce higher-scoring samples
(where the score can be defined by the user of the algorithm)
using preference pairs. In other words, they are designed to
directly make use of the low-dimensional scores we collect
from client feedback. Hence, we expect such methods to
produce higher quality synthetic data, as evaluated on down-
stream tasks. Other choices for similar methods included
RLHF (Ouyang et al., 2022), which we avoided due to the
high computational requirements of training a reward model,
and IPO (Gheshlaghi Azar et al., 2024) which we did not
choose as a result of an ablation in Appendix E.4.

3.1. POPri Algorithm

Pseudocode can be found in Algorithm 1. We highlight the
algorithmically new steps (that differ from PE) in blue .

1. Initial sample population. We start with an initial set
of samples Ω, which come from a publicly available source.
This source may be text that is publicly available on the
internet or text generated by a publicly available LLM.
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Algorithm 1 POPri
1: Input: Clients private data {Si}i∈[n], Number of rounds T ,

Number of generated samples Nsyn, Noise multiplier σ, LLM
Ψ, embedding model Γ, base prompt η, participating clients in
each round St, “rejected” index ℓ, initial sample set Ω, number
of clients sampled L

2: Output: Synthetic data Ssyn,T+1

3:
4: All clients i ∈ [n] embed private samples, Ei = Γ(Si)
5: Server initializes LLM Ψ1 = Ψ
6: for t← 1 ... T do
7: Server:
8: Initialize the response vector R = ∅
9: for k ← 1 . . .K do

10: Generate prompt ηk = Ψ(η,Ω),
11: Generate J responses Rkj = Ψt(ηk), j ∈ [J ]

12: end for
13: Send embeddings Esyn,t = {Γ(Rkj)}k∈[K],j∈[J] to all

clients in St

14:
15: Client i ∈ St:
16: Scoresi,t ← SIMILARITY(Esyn,t, Ei)

17: Send Scoresi,t +N (0, σ2I/L) to Server
18:
19: Server:
20: Secure aggregate client scores: Scorest = 1

n

∑
i Scoresi,t

21: Set P [k, j] as the j-th highest score response for prompt
ηk, according to Scorest

22: Initialize preference dataset Pt = ∅
23: for k ← 1 . . .K do
24: Select positive synthetic sample: Pt[k, 1] = Pt[k, 1]

25: Select negative synthetic sample: Pt[k, 2] = Pt[k, ℓ]

26: end for
27: Fine-tune: Ψt+1 ← DPO(Ψt, {ηk}k∈[K],Pt)

28: end for
29: Server:
30: Output final synthetic data Ssyn,T+1 from ΨT

2. Synthetic sample generation. We create K prompts.
A prompt is generated by randomly sampling three samples
from Ω and prompting LLaMA-3-8B (Touvron et al., 2023)
to generate a fourth sample given the first three samples as
examples. The exact prompt is given in Appendix B. For
each of the K prompts, we generate J synthetic samples
(by running the prompt independently J times). In total, the
server generates K × J synthetic samples and sends them
to every client in St, i.e., the clients sampled in round t.

3. Scoring synthetic data using DP client feedback.
Next, each client in St scores the synthetic samples.
Specifically, each client calculates the average cosine
similarity between each of the K ×J synthetic samples and
the entire client dataset (Algorithm 2). The use of cosine
similarity differs from PE, which uses a nearest neighbors
histogram (Lin et al., 2023; Hou et al., 2024; Xie et al.,
2024)–using cosine similarity is critical to the performance

of POPri as we found in our ablations (see Section 5.2).
These similarities for every synthetic sample are arranged
into a vector. We clip this vector to a norm of 1, which
caps the contribution of each client (similar to how gradient
updates are clipped per client in DP-FL (McMahan et al.,
2017b)). Clipping is done primarily for privacy reasons,
as we will elaborate later. Clipping also ensures that the
contribution of clients with large amounts of data does not
overwhelm the contribution of clients with small amounts
of data. We then add N (0, σ2I/L) (where I is the identity
matrix of size KJ ×KJ) noise to the resulting vector to
ensure DP (σ2 controls the (ϵ, δ)). Finally, we aggregate
scores via secure aggregation (Bonawitz et al., 2016),
yielding a DP score for each synthetic sample that reflects
its relevance to client data.
4. LLM Preference Optimization. The key insight of

our paper is that by generating J synthetic samples from K
prompts and scoring all of them using DP client feedback,
we can create a preference dataset where for each of the
K prompts, we can assemble a “good sample” and a “bad
sample”. This design choice allows the usage of powerful
LLM preference optimization algorithms (we choose DPO
(Rafailov et al., 2023)) to finetune the LLM Ψ. In detail,
each of the K prompts have J synthetic samples which are
ranked according to the scores we gathered. Then for each
of the K prompts, we set the highest scoring sample as the
“chosen sample” and the ℓ-th highest scoring sample as the
“rejected sample”. This resulting preference dataset can then
be passed, along with the LLM Ψ, into the DPO preference
optimization loss (Rafailov et al., 2023):

min
Ψ

E
x,yω
yr

[
− log s

(
τ log(

Ψ(yω|x)
Ψ(yr|x)

)− τ log(
Ψref(yω|x)
Ψref(yr|x)

)

)]

where Ψref a fixed checkpoint for the LLM (we use the pub-
lic checkpoint of the LLM), τ is a parameter controlling
deviation of Ψ from Ψref, x is the prompt, yω is the chosen
sample, yr is the rejected sample, Ψ(y|x) is the probability
of generating y given x for Ψ, and s is the sigmoid func-
tion. The expectation is taken with respect to the empirical
distribution (i.e. real samples). The DPO loss will be used
to finetune Ψ to generate more samples similar to the cho-
sen sample and fewer like the rejected sample. To reduce
GPU memory use, we use LoRA (Hu et al., 2021) on all the
attention matrices and up/down projection matrices with a
rank of 4, α = 8. After fine-tuning over the K prompts and
preference pairs, we return back to step (2) and generate
new synthetic data using the newly fine-tuned Ψ.

5. Synthetic data generation for downstream tasks. Us-
ing the final version of Ψ, we generate a large set of syn-
thetic data Ssyn,T+1 which is used to fine-tune Φ into Φ̃. Φ̃
is then sent to all the client devices, where they can perform
inference without communicating information to the server.
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Table 1. Next-token prediction accuracy (%, ↑) of different algorithms. The highest accuracy across all methods is in bold. All standard
deviation error bars are less than 0.5.

Dataset Method Data Type On-device Model ϵ = ∞ ϵ = 7 ϵ = 1 ϵ = 0

bioRxiv

DP-FedAvg Original

DistilGPT2 72.2

61.7 61.7

60.6
DP-FTRL Original 61.8 61.8

PE Synthetic 66.2 66.3
PE + SFT Synthetic 64.8 64.6

POPri (ours) Synthetic 68.6 68.6

Congress

DP-FedAvg Original

DistilGPT2 74.5

69.2 69.2

68.4
DP-FTRL Original 69.1 69.1

PE Synthetic 70.3 70.4
PE + SFT Synthetic 70.0 70.2

POPri (ours) Synthetic 71.3 71.3

Dataset Method Data Type On-device Model ϵ = ∞ ϵ = 4 ϵ = 1

PubMed (Yue et al., 2023b)
PE GPT-2-Large, Synthetic (2000)

BERTsmall 47.6
27.9 27.2

PE Llama-2-7b-chat-hf, Synthetic (2000) — 27.5
PE Opt-6.7b, Synthetic (2000) — 27.9

POPri (ours) Synthetic (2000) 29.2 29.4

Privacy guarantees. Because each client’s vector is
clipped to 1, and the only information revealed to the server
(or any other party) is the aggregated vector, the sensitivity
of the algorithm is 1. We add N (0, σ2I/L) noise to each
client’s vector, so the vector given to the server has noise
N (0, σ2I), satisfying the Gaussian Mechanism with sensi-
tivity 1. To calculate privacy, we can use a privacy accoun-
tant like OPACUS.ACCOUNTANTS.ANALYSIS.RDP
(Yousefpour et al., 2021), and input T (the number of
rounds we run the algorithm, q (the fraction of clients
sampled per round), δ, and set σ to get the desired ϵ value.

4. LargeFedBench: A Federated Benchmark
for LLM Evaluation

Today, the most widely-used evaluation datasets for feder-
ated learning of text models come from the work of Reddi
et al. (2020); they include text from StackOverflow posts
and Shakespeare plays. These datasets pose two evaluation
challenges: (1) They pre-tokenize inputs in a non-invertible
way, which prevents researchers from using custom tok-
enizers adopted by several LLMs. (2) The datasets may
lead to contaminated evaluations. As state-of-the-art LLMs
have been trained on large swaths of the public internet, old
public benchmark datasets may be in the training data of
many LLMs (Magar & Schwartz, 2022; Zhou et al., 2023;
Yang et al., 2023; Roberts et al., 2023). To our knowledge,
one work proposes a benchmark dataset for federated LLMs
(Ye et al., 2024). The datasets in this paper have at most
747 clients, which may be insufficient for simulating pro-
duction use cases. Further, they do not explicitly avoid
contamination.

We release LargeFedBench, a benchmark comprising two
new datasets, Congressional Speeches and bioRxiv, for ex-
periments over federated client data. These datasets (a)
allow researchers to easily avoid contamination, and (b) pro-

vide enough distinct clients to simulate production settings.

Congressional Speeches (“Congress”)1 is a dataset of 134k
speeches or debates scraped from congressional or parlia-
mentary transcripts in the US, UK, and Canada. We treat
each speech as a separate client, and samples are created as
successive 64-token spans within the speech. bioRxiv2 is a
dataset of 57k abstracts, each of which we consider a client
dataset of strings, scraped from biology papers. Samples are
64-token spans of the abstract. More details on the datasets
are included in Appendix F.

A key feature of our datasets is that they are updated every
6 months and sorted by date. Hence, researchers can eas-
ily select datasets that were generated after their model’s
knowledge cutoff date. In this paper, we use data from
LargeFedBench published between the dates of April 2023
to August 2024 to avoid contamination with the latest LLM
we evaluate our algorithms with, LLaMA-3-8B (AI@Meta,
2024)–which has a knowledge cutoff of March 2023.

5. Experiments
Datasets. We evaluate POPri on the LargeFedBench
datasets (Congress and bioRxiv), as well as the PubMed
(Yu et al., 2023; Xie et al., 2024) used in the evaluation of
Private Evolution (Aug-PE) (Xie et al., 2024). PubMed con-
tains abstracts of medical papers published between August
1-7, 2023 (details in Appendix D.2.2).

Models. For the LLM Ψ, we use LLaMA-3-8B, which
has a knowledge cutoff date of March 2023 (AI@Meta,
2024). For embedding models (used in measuring semantic

1https://huggingface.co/datasets/
hazylavender/CongressionalDataset

2https://huggingface.co/datasets/
hazylavender/biorxiv-abstract
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Figure 3. Next-token prediction accuracy performance of four methods as a function of the fraction of clients used per round of training.
POPri improves performance and decreases sensitivity to the fraction of clients used in each round. The left panels have a different number
of clients per round with the same total number of clients, and the right panels have a different total number of clients with the same
number of clients per round. The top and bottom use different datasets and all methods have a privacy budget (ϵ, δ)-DP = (1, 3× 10−6).

distance between text samples), we use ‘all-MiniLM-L6-v2’
sentence transformer (Reimers & Gurevych, 2019). We
choose DistilGPT2 (Sanh et al., 2019) as the downstream
on-device language model, which has only 82M parameters.
For synthetic text generation (using the LLM Ψ), we set
the maximum sequence length to 64 for the bioRxiv and
Congressional Speeches evaluations and 512 for PubMed,
unless otherwise specified. During training, we evaluate the
models on the validation dataset and select the checkpoint
that achieves the best validation performance as the model
that is evaluated on the test set.

Metrics. We primarily evaluate each method under next-
token prediction accuracy of the final downstream on-device
model Φ̃. In some ablations we also measure the distance of
the synthetic dataset to the private dataset using the Fréchet
Inception Distance (FID) (Heusel et al., 2017).

Baselines. We compare POPri with several baselines:
(1) DP-FedAvg (McMahan et al., 2017a) (2) DP-FTRL
(Kairouz et al., 2021a) (3) Private Evolution (PrE-Text (Hou
et al., 2024) and Aug-PE (Xie et al., 2024)). DP-FedAvg
and DP-FTRL directly privately fine-tune the downstream
model Φ on the client data. Private Evolution (PrE-Text
and Aug-PE) generates synthetic data on which the down-
stream on-device model Φ is finetuned. Note that on the
PubMed dataset, we compare to Aug-PE results obtained
with models of similar size to the model we use (around

8B parameters).3 We also include ϵ = 0 (fully private) and
ϵ = ∞ (fully non-private) baselines. The ϵ = 0 baseline
evaluates the public DistilGPT2 checkpoint on the test sets
with no further fine-tuning. The ϵ = ∞ baseline is Dis-
tilGPT2 fine-tuned on the private training set directly and
evaluated directly on the private test set. More details about
the setup can be found in Appendices C and D.2.

Privacy Analysis. All baselines use a privacy guarantee
of (ϵ, δ)-DP where δ=3×10−6 and ϵ=1 or ϵ=7 for each of the
bioRxiv and Congressional Speeches datasets. For PubMed,
we set δ = 1/[Npriv · log(Npriv)] (Npriv is the number of
private samples) and ϵ=1 or ϵ=4 and fine-tune BERTsmall

for fair comparison to the results from Xie et al. (2024). We
follow the privacy accounting method detailed in Section 3
for POPri. Details for all baselines are in Appendix D.1.

5.1. Main Results

Table 1 lists the next-token prediction accuracy achieved by
baseline models (DP-FedAv, DP-FTRL, Private Evolution)
and POPri. In this table, we assume full participation (no
client sampling) for fair comparison to baselines, some of
which do not have client sampling versions. We find that
POPri outperforms all the baseline algorithms. Furthermore,
POPri closes the gap between fully private learning (ϵ = 0)
and fully non-private learning (ϵ = ∞) by 48-69%, depend-

3This comparison is somewhat unfair, as the models they use
are older. They obtain better results using GPT-3.5, a 175B param-
eter LLM, 20× larger than the one we use.
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Figure 4. PCA visualization of POPri synthetic data embeddings over rounds. Right (6) Panels: PCA-2 plots for synthetic data and
evaluation data embeddings from the best checkpoint each round for 20 iterations. The orange (round 7) and maroon point clouds
represent the round with the lowest FID score and the validation dataset, respectively. Top Left Panel: FID score vs. rounds. Bottom
Left Panel: Median distance to the medoid vs rounds. Running POPri for too many rounds appears to cause overfitting.

Method Download Upload Client Runtime Server Runtime
(floats) (floats) (GPU sec) (GPU sec)

FedAvg 82 million 82 million 4.8 –
PE 700,000 1,800 0.0027 326.25
POPri 7 million 18,000 0.01 13,547.84

Reduction factor (FedAvg / POPri) 11.71× 4555× 480.0× –
Reduction factor (PE / POPri) 0.100× 0.100× 0.270× 0.024×

Table 2. Table setting. Communication and compute cost comparison per round (and per-client for download/upload/client runtime cost)
across methods on the bioRxiv dataset with 1000 clients sampled per round. Download and upload are measured in floats; runtimes are
measured in GPU seconds (lower is better). “Reduction factor (X / POPri)” is the cost of method X divided by the cost of POPri for the
given resource. Server runtime for FedAvg is left blank as it is negligible compared to other methods. Overall, we view POPri as suitable
when server compute is relatively cheap, and improved sample quality is important enough to justify higher on-device communication and
computation costs relative to PE (Table 1).

ing on the setting. In contrast, PE closes the gap by between
31-49%, and PE+SFT does similarly or worse than PE. For
all methods tested, the measured accuracy values do not de-
pend strongly on ϵ. This has been observed in prior work on
DP synthetic data using LLMs (Xie et al., 2024; Hou et al.,
2024). POPri outperforms Private Evolution (Aug-PE) even
when holding our synthetic sample budget to 2000. Note
that synthetic samples are cheap in POPri (we could gener-
ate many more) because we have access to the full model,
while Xie et al. (2024) only assume access to a model API.

Cost analysis case study. In Table 2 we analyze the per-
round communication and computation costs (and per-client,
for download/upload/client runtime costs) of FedAvg (a
representative and cheap method among the DP-FL-based
methods), PE, and POPri on the bioRxiv dataset experiment
with 1000 clients sampled per round.

For FedAvg, each round the sampled clients download and
upload the downstream model, which in our case is Dis-
tilGPT2. This is an 82M (82 million) parameter model
leading to a download and upload cost of 82M floats. The
client runtime cost comes from local gradient computation,

and server runtime is negligible because the server only
needs to average model deltas from the clients. For PE, the
communication cost comes from each client downloading
K = 1800 sentence embeddings of size 384 resulting in a
download cost of 700K (700,000) floats, and uploading a
histogram of size 1800 resulting in an upload cost of 1800
floats. The client runtime cost comes from calculating a
nearest neighbors histogram and the server runtime cost for
PE comes mainly from using the LLM Ψ to generate syn-
thetic samples each round. In POPri each client downloads
K × J = 1800× 10 sentence embeddings for a download
cost of 7M floats and uploads a vector of size 18,000 for
an upload cost of 18,000 floats. The client runtime cost
of POPri comes from calculating the cosine similarities,
and the server runtime mainly comes from both using Ψ
to generate synthetic samples and running DPO preference
optimization.

Interpretation. In summary, POPri is much more
communication-efficient and client compute-efficient than
FedAvg, while using much more server compute. On
the other hand, POPri is generally more communication-
and computationally-expensive than PE. At the same time,
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POPri has the best downstream performance among all three
methods, as seen in Table 1. Hence, POPri can be a suitable
method when (1) server compute is cheap and powerful, and
(2) getting the best synthetic data/downstream model quality
is important.

5.2. Ablations

Cosine similarity vs. Nearest neighbors histogram. Pri-
vate Evolution (Lin et al., 2023; Hou et al., 2024; Xie et al.,
2024) uses a DP nearest neighbors histogram calculation
to score the quality of synthetic samples. The DP nearest
neighbors histogram sets the score of a particular synthetic
sample to the number of private samples that are closest
to that particular synthetic sample (under some text em-
bedding function). In POPri, we instead set the score of a
particular synthetic sample to the average cosine similarity
between that particular synthetic sample and all private sam-
ples (under some text embedding function). We find that
cosine similarity works much better than a nearest neighbors
histogram (Figure 6), possibly because nearest neighbor his-
tograms produce sparser scores, often assigning zero to all
synthetic samples associated with a given prompt. In this
setting, the chosen and rejected samples for preference op-
timization end up being essentially random. In contrast,
cosine similarity provides denser scoring that allows the
construction of meaningful preference pairs for all prompts.

Partial client participation. In each round a fixed number
of clients is subsampled uniformly at random for feedback
generation. Figure 3 shows the next-token prediction ac-
curacy (%) of four algorithms, both for different numbers
of clients per round with the same total number of clients
and with different total number of clients while keeping
the same number of clients per round. POPri consistently
outperforms all of the baselines, regardless of the number of
clients per round or total clients in the experiments. More-
over, POPri’s accuracy is not sensitive to the number of total
clients or clients per round, unlike most baselines.

Data Distribution Evolution. Synthetic datasets are often
generated using a language model distinct from the one
being aligned (Guo et al., 2024), making the alignment
phase inherently off-policy as the model evolves during
training. This is reflected in the synthetic data, where the
FID score (relative to a held-out evaluation set) worsens after
improving. Figure 4 shows PCA visualizations of synthetic
data embeddings across alignment iterations, while the left
panels plot the FID score and median distance to the medoid
in the PCA space. The data distribution transitions from
being initially clustered to (roughly) matching the true data
distribution, back to being clustered, likely due to overfitting.
Early stopping based on validation metrics can help avoid
this.

Preference optimization algorithms. The POPri algo-
rithm constructs a preference dataset out of DP scored syn-
thetic data for model alignment. We explore two popular
alignment methods: DPO and IPO. IPO (Gheshlaghi Azar
et al., 2024) is proposed to address the over-fitting to the
preference dataset that is common for DPO. As shown in
Fig 4, over-fitting problems exist in our setting and lead to
clustering of the data distributions that don’t represent the
true distribution. However, empirically, we find that DPO
outperforms IPO in our setting (details in Appendix E.4).

How to select rejected samples. Unlike vanilla DPO, we
can select the “chosen” and “rejected” sample pair from
the J samples for each of the K prompts. We consistently
choose the highest-scoring sample (rank 1) as the “chosen”
sample, but there are different options for the “rejected”
sample. We found that the middle-ranked sample (e.g.,
ℓ = 5th-ranked out of J = 10) yields the best results, rather
than using the last-ranked sample. If the rejected sample
is too dissimilar to client data, then the preference pair is
uninformative. However, choosing a sample that is too
similar to client data (e.g., rank 2) for the rejected sample
could lead to incorrect preference pairs due to DP noise
swapping rankings. We use the 5th-ranked sample, and
justify it experimentally in Appendix E.5.

6. Conclusion
Private on-device learning is important when data is stored
on edge devices with hardware, storage, and privacy con-
straints. We propose POPri, which recasts synthetic data-
based approaches for private on-device learning as an LLM
preference optimization problem. POPri makes several
novel design choices in how it gathers and utilizes client
feedback to generate DP synthetic data, which is used to
finetune a downstream on-device model. POPri outperforms
DP-FL and synthetic data baselines on the downstream next-
word-prediction task, including on a large-scale LargeFed-
Bench, a new federated benchmark we have curated.

Impact Statement
In this paper, we train synthetic data models satisfying differ-
ential privacy guarantees. When using differential privacy
as a tool for protecting user data, it is important to commu-
nicate to users what the privacy guarantees mean to be able
to obtain informed consent. The algorithms in this paper
also use LLMs, which were trained on large scale public
text data. While this data was public, explicit consent may
not have been given for its use in training the models. The
algorithms using LLMs in the paper make no claims about
the privacy guarantees of data used in the pretraining of the
LLMs. While our work aims to show how synthetic data can
be useful for federated learning, it also poses a number of
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ethical risks, including the generation of biased or harmful
content. In particular, our method (and all variants of private
evolution) inherits the biases and undesirable aspects of the
public LLM. For example, suppose the public LLM only
generates text in English, but some clients’ private data is all
in Spanish. In these settings, clients would be forced to vote
on synthetic samples, even if potentially none of them are
relevant to the client. This may cause the client to contribute
data reinforcing a model that is actively not useful (or even
harmful) to the client. In contrast, DP-SGD methods do not
suffer from this shortcoming, because they do not rely on a
public LLM. This problem raises an important point—how
can we design DP synthetic data algorithms in which clients
can stem the biases or failures of the public LLM, based on
their own data? This important question is beyond the scope
of the current paper.
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Hughes, D., Javidbakht, O., Dong, F., Rishi, R., and
Hung, S. Federated evaluation and tuning for on-device
personalization: System design and applications, 2021.
URL https://arxiv.org/abs/2102.08503.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 53728–53741. Cur-
ran Associates, Inc., 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
embeddings using Siamese BERT-networks. In Inui,
K., Jiang, J., Ng, V., and Wan, X. (eds.), Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing

11

https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2203.08242
https://aclanthology.org/2022.emnlp-main.323
https://aclanthology.org/2022.emnlp-main.323
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/2102.08503


Private Federated Learning using Preference-Optimized Synthetic Data

(EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1410. URL https:
//aclanthology.org/D19-1410/.

Roberts, M., Thakur, H., Herlihy, C., White, C., and Dooley,
S. Data contamination through the lens of time, 2023.
URL https://arxiv.org/abs/2310.10628.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K.
Well-read students learn better: On the importance of
pre-training compact models, 2019. URL https://
arxiv.org/abs/1908.08962.

Utpala, S., Hooker, S., and Chen, P.-Y. Locally differ-
entially private document generation using zero shot
prompting. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 8442–8457, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
566. URL https://aclanthology.org/2023.
findings-emnlp.566/.

Wu, S., Xu, Z., Zhang, Y., Zhang, Y., and Ramage,
D. Prompt public large language models to synthesize
data for private on-device applications. arXiv preprint
arXiv:2404.04360, 2024.

Xie, C., Lin, Z., Backurs, A., Gopi, S., Yu, D., Inan, H. A.,
Nori, H., Jiang, H., Zhang, H., Lee, Y. T., Li, B., and
Yekhanin, S. Differentially private synthetic data via foun-
dation model APIs 2: Text. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=LWD7upg1ob.

Xie, L., Lin, K., Wang, S., Wang, F., and Zhou, J. Dif-
ferentially private generative adversarial network. arXiv
preprint arXiv:1802.06739, 2018.

Xu, Z., Collins, M., Wang, Y., Panait, L., Oh, S., Augenstein,
S., Liu, T., Schroff, F., and McMahan, H. B. Learning to
generate image embeddings with user-level differential
privacy. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 7969–
7980, 2023a.

Xu, Z., Zhang, Y., Andrew, G., Choquette-Choo, C. A.,
Kairouz, P., McMahan, H. B., Rosenstock, J., and Zhang,
Y. Federated learning of gboard language models with
differential privacy, 2023b. URL https://arxiv.
org/abs/2305.18465.

Yang, S., Chiang, W.-L., Zheng, L., Gonzalez, J. E., and
Stoica, I. Rethinking benchmark and contamination for
language models with rephrased samples, 2023. URL
https://arxiv.org/abs/2311.04850.

Ye, R., Ge, R., Zhu, X., Chai, J., Du, Y., Liu, Y., Wang,
Y., and Chen, S. Fedllm-bench: Realistic benchmarks
for federated learning of large language models. arXiv
preprint arXiv:2406.04845, 2024.

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D.,
Prasad, K., Malek, M., Nguyen, J., Ghosh, S., Bharadwaj,
A., Zhao, J., Cormode, G., and Mironov, I. Opacus:
User-friendly differential privacy library in pytorch. In
NeurIPS 2021 Workshop Privacy in Machine Learning,
2021. URL https://openreview.net/forum?
id=EopKEYBoI-.

Yu, D., Backurs, A., Gopi, S., Inan, H., Kulkarni, J., Lin, Z.,
Xie, C., Zhang, H., and Zhang, W. Training private and
efficient language models with synthetic data from LLMs.
In Socially Responsible Language Modelling Research,
2023. URL https://openreview.net/forum?
id=FKwtKzglFb.

Yu, D., Kairouz, P., Oh, S., and Xu, Z. Privacy-preserving
instructions for aligning large language models, 2024.
URL https://arxiv.org/abs/2402.13659.

Yue, X., Inan, H., Li, X., Kumar, G., McAnallen, J., Sha-
jari, H., Sun, H., Levitan, D., and Sim, R. Synthetic
text generation with differential privacy: A simple and
practical recipe. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1321–1342, Toronto, Canada,
July 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.74. URL https://
aclanthology.org/2023.acl-long.74.

Yue, X., Inan, H. A., Li, X., Kumar, G., McAnallen, J.,
Shajari, H., Sun, H., Levitan, D., and Sim, R. Synthetic
text generation with differential privacy: A simple and
practical recipe, 2023b. URL https://arxiv.org/
abs/2210.14348.

12

https://aclanthology.org/D19-1410/
https://aclanthology.org/D19-1410/
https://arxiv.org/abs/2310.10628
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962
https://aclanthology.org/2023.findings-emnlp.566/
https://aclanthology.org/2023.findings-emnlp.566/
https://openreview.net/forum?id=LWD7upg1ob
https://openreview.net/forum?id=LWD7upg1ob
https://arxiv.org/abs/2305.18465
https://arxiv.org/abs/2305.18465
https://arxiv.org/abs/2311.04850
https://openreview.net/forum?id=EopKEYBoI-
https://openreview.net/forum?id=EopKEYBoI-
https://openreview.net/forum?id=FKwtKzglFb
https://openreview.net/forum?id=FKwtKzglFb
https://arxiv.org/abs/2402.13659
https://aclanthology.org/2023.acl-long.74
https://aclanthology.org/2023.acl-long.74
https://arxiv.org/abs/2210.14348
https://arxiv.org/abs/2210.14348


Private Federated Learning using Preference-Optimized Synthetic Data

Zhang, L., Li, B., Thekumparampil, K. K., Oh, S., and
He, N. Dpzero: Private fine-tuning of language mod-
els without backpropagation. In Forty-first International
Conference on Machine Learning, 2024.

Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W. X., Chen,
X., Lin, Y., Wen, J.-R., and Han, J. Don’t make your llm
an evaluation benchmark cheater, 2023. URL https:
//arxiv.org/abs/2311.01964.

13

https://arxiv.org/abs/2311.01964
https://arxiv.org/abs/2311.01964


Private Federated Learning using Preference-Optimized Synthetic Data

A. Algorithmic Details

Algorithm 2 SIMILARITY
1: Input: Embeddings of private client data Ei for i ∈ St, embeddings of synthetic data Esyn, total synthetic samples M = K × J

Scores← 0M

2: Scores[j] = (1/|Ei|)
∑

epri∈Ei

⟨epri,ej⟩
∥epri∥∥ej∥

for ej ∈ Esyn

3: return Scores

B. Implementation Details of POPri
B.1. Model and Hyperparameters

We choose LLaMA-3-8B as the data generator in POPri and we fine-tune it iteratively during the course of the algorithm. To
fine-tune the LLaMA-3-8B model, we use LoRA fine-tuning with rank 4, α = 8, applied to all the projection matrices in
LLaMA-3-8B. We adapt the AdamW optimizer with a cosine learning rate scheduler with the learning rate ranging from
3 · 10−7 to 8 · 10−7. In the Congress and bioRxiv evaluations, the sample set Ω is a subset of the c4 dataset (Raffel et al.,
2019), which is a large scale dataset from 2019, which we use for fair comparison with Private Evolution (PrE-Text), though
we do not know their exact initial sample set because they did not release it. For the PubMed evaluation, the sample set Ω
is a set of 2000 samples generated using the PubMed generation prompt in Table 16 of the Aug-PE paper, generated by
LLaMA-3-8B-Instruct (which has a knowledge cutoff of March 2023), for comparison with Aug-PE (Xie et al., 2024). For
each iteration, we fine-tune the models for 2 epochs and select the best checkpoint with the lowest FID score relative to the
validation dataset. This checkpoint is used for synthetic data generation and as the starting point for the next iteration. The
batch size is set to 24.

In each round we generate 18000 synthetic data samples for the clients to evaluate. This is accomplished with 1800 prompts,
each generating 10 samples for clients to rank. We select the 1st and 5th ranked sample for a given prompt for the “selected”
and “rejected” data samples in the DPO preference dataset. We describe the experiments regarding which rank to use for
constructing the preference dataset in detail in Appendix Section E.5. To test the scaling relation with the number of clients
per round and the total number of clients participating in the training, we set up the parameters and privacy budget shown
in Table 3. The ‘all-MiniLM-L6-v2’ sentence transformer model is used as the embedding model in POPri. We note that
we adopt “sentence-t5-base” sentence transformer for PubMed during the step of fine-tuning BERTsmall, which follows
the setting in AUG-PE. We ensure POPri follows privacy guarantee of (ϵ, δ)-DP = (1, 3× 10−6) or (7, 3× 10−6) for both
the bioRxiv and the Congressional Speeches datasets and run with 20 iterations for DP-FedAv, DP-FTRL, PrE-Text for
comparison. For AUG-PE, we set (ϵ, δ)-DP = (1, 2.72× 10−6) or (4, 2.72× 10−6). PubMed experiments are run with 10
iterations.

In terms of models for downstream tasks:

• For BioRxiv & Congressional Speeches, we fine-tuned the pre-trained DistillGPT2 for next-token prediction. We set
the max sequence length as 64, number of generated synthetic data as 1,000,000, the batch size as 160, the learning
rate as 2e−4, and the number of epochs as 80.

• For PubMed, to compare with (Yue et al., 2023b), we follow their procedure to leverage pre-trained BERTsmall

(Turc et al., 2019). We set the max sequence length as 512, number of generated synthetic data as 2000, batch
size as 32, learning rate as 3e-4, the weight decay as 0.01, and the number of epochs as 10. To compare with (Xie
et al., 2024), we set up the (ϵ, δ)-DP value and hypterparameter according to their choice. For example, they set
δ = 1/[Npriv · log(Npriv)] following (Yue et al., 2023b). To achieve δ = {1,4}, we use noise multiplier σ = {13.7,
3.87} for 10 iterations under DP on all PubMed data. Note that our noise multiplier values are slightly different than
(Xie et al., 2024) due to different methods for calculating differential privacy.

B.2. Prompt Design

To compare with other data generator methods, we adopt the prompts used in the baseline models against which we compare.
We generate the synthetic data using an approach similar to that in PrE-Text (Hou et al., 2024). Figure 5 shows an example
of the prompt we use for prompting Llama-3B for generating synthetic data. For PubMed, while running POPri, we still
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List of 6 diverse original text samples:

Original Text Sample 1
The observations showed that the object is four million times more massive than the sun and is the
size of one astronomical unit (AU), a span equal to Earth's distance from the sun. Sgr A* has a mass
density at least a trillion times greater than any known cosmic object.

Original Text Sample 2
In response to the general question, they need to study self-protection away from their marital
baggage. They need to learn about home security, mobile security, the nature of crime, de-escalation,
the law, escape tactics, awareness, and on and on. When it

Original Text Sample 3
Under the Patriot Act of 2001, the government significantly expanded its authority in regards to
electronic surveillance (Henderson, 2002). One of the chief complaints is that the government can
investigate anything that is considered “significant.” The problem here is that there is

Original Text Sample 4
The life history advance program shall be funded from any of the following: monies provided by the
general fund; amounts in the presidential family partnership fund; or monies provided by the
revolving fund.

Original Text Sample 5
As you meet with employers this summer, get in touch with the team....

Figure 5. The synthetic data generation prompt for POPri. The black text marks the input prompt, and the brown text after “Original Text
Sample 4” is generated. The generated text between “Original Text Sample 4” and “Original Text Sample 5” is collected and used as a
synthetic sample.

adopt the prompt shown in Figure 5 but reduce the number of examples to two in order to accommodate longer sequence
lengths.

C. Implementation Details of Baseline Models
In this section we provide implementation details for the baseline algorithms. We use two DP-FL baselines: DP-FedAvg
and DP-FTRL. For the PE baseline, we implement PrE-Text (Hou et al., 2024) for the evaluations on the bioRxiv and
Congressional Speeches datasets. Because the PrE-Text evaluation is focused on datasets with samples with max sequence
length of 64 and the PubMed dataset has samples with longer sequence lengths, for the PE baselines on the PubMed dataset
we directly compare against the Aug-PE results from Xie et al. (2024).

C.1. DP-FedAvg

We employ the FedAvg federated optimization algorithm (McMahan et al., 2017b) to fully fine-tune DistilGPT2, avoiding
linear probing due to its poor performance in DP language models (Lin et al., 2021). Our training configuration includes
a batch size of 2, a sequence length of 64, 20 communication rounds, and either full or partial client participation. For
differential privacy (DP), we utilize secure aggregation (Bonawitz et al., 2016) and introduce Gaussian noise (McMahan
et al., 2017b). We evaluate the model using next-token prediction accuracy across various numbers of training epochs on the
clients. We tune the learning rate within the range [0.01, 0.06] and the clipping threshold between [0.01, 0.4], selecting the
model with the best performance on the evaluation set for reporting. The noise is scaled to ensure a privacy guarantee of
(ϵ, δ)-DP where δ = 3·10−6 and ϵ = {1,7}, representing two distinct privacy regimes. The noise multipliers are σ = {19.3,
3.35} when considering all the data, and the settings for partial participation experiments are shown in Table 3.

C.2. DP-FTRL

We also use the DP variant of Follow-The-Regularized-Leader (DP-FTRL) algorithm (McMahan et al., 2017b), which
shows amplified results comparing to FedAvg without using privacy amplification, to fully fine-tune DistilGPT2. The
hyperparameter settings are similar to DP-FedAvg other than the noise multipliers. The noise multipliers are σ = {19.5,
3.35} when considering all the data, and the settings for partial participation experiments are shown in Table 3.
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Table 3. Experiment privacy budget settings.

Total # of # of clients
σ1

a, ϵ = 7 σ1
a, ϵ = 1 σ2

b, ϵ = 7 σ2
b, ϵ = 1clients per round

10000 500 0.67 1.6 7.5 43
10000 1000 0.82 2.5 6.7 39
10000 2000 1.09 4.3 5.8 34
10000 2500 1.23 5.2 5.8 34
10000 5000 1.92 9.9 4.8 28
10000 7500 2.63 14.7 3.35 19.5
10000 10000 3.35 19.3 3.35 19.5

1000 1000 3.35 19.3 3.35 19.5
2000 1000 1.92 9.9 4.8 28
4000 1000 1.23 5.2 5.8 34
17000 1000 0.7 1.8 7.5 44
72000 1000 0.52 1.14 8.9 52

133000 1000 0.475 1.05 9.5 55

72000 72000 3.35 19.3 3.35 19.5
133000 133000 3.35 19.3 3.35 19.5

a For DP-FedAvg, PrE-Text, POPri.
b For DP-FTRL

C.3. PrE-Text

We follow similar settings as Hou et al. (2024) with some modifications. The privacy budget is similar to DP-FedAvg and
POPri, with a privacy guarantee of (ϵ, δ)-DP where δ = 3·10−6 and ϵ = {1,7} with σ = {19.3, 3.35} for full participation
and partial participation in Table 3. We set the thresholds H = 0.1626, T = 20, and Nsyn = 1024. We adopt the “all-MiniLM-
L6-v2” sentence transformer model for text embedding generation.

D. Experimental Details
D.1. Privacy Accounting

The precise privacy settings we use and their corresponding ϵ values, as calculated by their corresponding privacy budget
computation methods, are reported in Table 3. DP-FedAvg (McMahan et al., 2017b) and Private Evolution (PrE-Text)
(Hou et al., 2024) both use the Gaussian mechanism, and thus use similar computations. In both cases, we use the privacy
accountant of the Opacus library (Yousefpour et al., 2021). For DP-FedAvg, we calculate privacy by inputting the number of
rounds, the client sampling ratio, setting the noise multiplier to be the product of σ and the clipping threshold, choosing a
δ ≪ 1/|S|, and setting σ for the desired ϵ. Private Evolution (PrE-Text) (Hou et al., 2024) also uses the Gaussian mechanism,
so we use the same accounting except the noise multiplier is the product of σ and the maximum number of samples per
client. For DP-FTRL, we follow the privacy accounting methods from their implementation. For Private Evolution (Aug-PE)
(Xie et al., 2024), we report their reported ϵ directly.

D.2. Evaluation Details for Different Datasets

D.2.1. LARGEFEDBENCH EVALUATION

For the bioRxiv and Congressional Speeches datasets, we use the PrE-Text version of Private Evolution because the PrE-Text
evaluation focused on datasets with samples with max sequence length of 64.

D.2.2. PUBMED EVALUATION

For PubMed, our Private Evolution baseline compares to Aug-PE, which has already been evaluated on PubMed (Xie et al.,
2024). Note that PubMed was used by Xie et al. (2024) to evaluate central DP algorithms. In the central DP setting, there
are no clients; all private data is held at the server and the goal is to release a model with DP guarantees. The notion of
neighboring dataset in central DP is a centrally held dataset that is the same except for a single data sample. To compare our
algorithm directly with results reported for Private Evolution (Aug-PE) (Xie et al., 2024), we replicate the central DP setting
for this dataset by having one PubMed abstract per client and sampling all clients every iteration (or “round”, in our case).
We do not compare directly with the results reported in the PrE-Text paper (Hou et al., 2024) because they did not release
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Table 4. Ablation results including varying which client ranked-data is chosen as the ‘rejected’ sample for DPO, varying the temperature
for the text synthesis process, and varying the preference optimization method.

Rank Temperature Alignment Algorithm

Rank Accuracy (%) Temperature Accuracy (%) Algorithm Accuracy (%)

5th 68.6 0.5 68.1 DPO 68.6
7th 67.7 1.0 68.6 IPO 67.1

10th 66.4 2.0 68.4

the precise datasets used.

E. Ablation Studies
E.1. Cosine similarity vs Nearest neighbors histogram

In this section we perform an ablation justifying the choice of cosine similarity as a scoring function over the nearest
neighbor histogram employed by Private Evolution. We find that using cosine similarity works much better than nearest
neighbors histogram for our use case, because nearest neighbors histogram is too sparse to ensure the construction of
meaningful preference pairs for POPri.

Figure 6. Left: FID scores of POPri using NN histogram scoring vs. POPri using cosine similarity. Right: After the client feedback stage,
we measure the percentage of the time the non-noised and non-clipped score (nearest neighbor histogram scoring or cosine similarity
scoring) of the chosen sample is higher than the rejected sample. For cosine similarity, this “recovery rate” is much higher (nearly 100%)
than in nearest neighbors histogram. Interpretation. Nearest neighbors histogram is much sparser than cosine similarity, often assigning
zero to all synthetic samples associated with a given prompt in POPri. This leads to preference pairs often being completely noisy. Cosine
similarity provides denser scoring that allows the construction of meaningful preference pairs for all prompts.

E.2. Client selection strategies

Figure 7 shows the effect of changing the number of clients per round and the number of total clients when ϵ = 7.0. We find
that POPri outperforms the baseline across the board. We also find that POPri is significantly less sensitive to the fraction
of clients used per round than the baseline methods. This makes POPri especially useful in settings in which baseline
performance may suffer, such as very high client participation regimes.

E.3. Temperature

Temperature is a key parameter for controlling the diversity of LLM-generated outputs. Increasing the temperature
encourages the model to produce less frequent tokens, enhancing diversity. Here we explore the effects of changing
temperature in the POPri process and list the results in Table 4. Low temperatures leads to clustering of the text embedding
in some regions which does not represent the overall data distribution. However, setting the temperature too high can lead to
overly random and potentially incoherent results. Therefore they both lead to lower model accuracy. We therefore choose
temperature = 1.0 as our default setting.
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Figure 7. Next-token prediction accuracy (%) of four methods with privacy budget (ϵ, δ)-DP = (7, 3 × 10−6) for different number of
clients per round with the same total number of clients (left panel) and different total number of clients with the same number of clients
per round (right panel). Top two panels are generated with Biorxiv data, and the bottom two panels are generated with the Congressional
Speeches dataset.

E.4. Alignment methods

We also explore IPO (Identity Preference Optimization) (Gheshlaghi Azar et al., 2024), another preference optimization
method, to see if it improves algorithm performance. This may help training by alleviating over-fitting, which is a common
problem for the DPO algorithm and which affects POPri as well. We show the comparison of next-token prediction accuracy
reported by running DPO and IPO algorithm in Table 4. In our case, IPO does not seem to address the overfitting issues and
results in worse performance. We therefore choose DPO as our alignment method for finetuning the LLM.

E.5. Rejected sample selection

We construct the DPO preference data via client feedback by generating ten samples from the same prompt and then picking
the “selected” and the “rejected” samples. The samples with the highest scores among the ten examples are picked as the
“selected” sample in the DPO preference dataset. We experiment on which rank should be utilized as the “rejected” sample
in the DPO preference dataset. In Table 4 we show the results of varying which rank is selected for the “rejected” sample.
Perhaps surprisingly we find that the 10th rank is not favored. In Fig 8 we further explore the effects by examining the
“rejected” and “selected” sample FID scores as a function of round. In the left panel where the “selected” sample FID values
are shown, their magnitude and trends behave similarly before they reach the best results (marked by colored dashed vertical
lines). For the “rejected” sample FID shown in the right panel, the 5th rank “rejected” samples yield the lowest FID score
and therefore smaller gap between the preference sample pairs. However, we also find that higher rank does not always yield
better results. This may result from the boundary between the “rejected” and “selected” samples becoming undistinguishable
for rank < 5th due to DP noise. We therefore select 5th rank samples as our “rejected” DPO preference samples.

F. Datasets
bioRxiv. This dataset consists of abstracts from bioRxiv papers with appropriate copyright permission from April 2023 to
August 2024. This was done by using the bioRxiv public API to retrieve the abstracts of the paper with permitted licenses
(i.e. ‘CC BY NC ND’, ‘CC BY ND’, ‘CC BY NC’, ‘CC BY’, ‘CC0’). This dataset consists of 72k abstracts (clients), each
of which we split into chunks of 64 tokens to form samples.
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Figure 8. Ablation study for selecting rejected samples in the preference data. Here we generate 10 samples for each prompt and select
Nth ranked data as the rejected sample, where N is 5, 7, or 10. The vertical lines indicate the round at which the best next-word-prediction
accuracy was achieved for each choice of rank. Note that the model that produces the lowest overall FID (not the lowest selected sample
FID or the lowest rejected sample FID) is the best synthetic data generation model, since on the final round all generated samples are
utilized to form the synthetic dataset. We hypothesize that round 7 corresponds to the highest accuracy for the rank 5 model because
after that point, the selected sample FID is higher than the rejected sample FID, which would mean the preference dataset has become
mis-aligned with the objective of generating good synthetic data.

bioRxiv Congressional  Speeches

Figure 9. The distribution of how many tokens are in each client’s dataset for the bioRxiv and Congressional Speeches datasets.

Congressional Speeches. This dataset consists of speeches from US, UK and Canada congressional/parliamentary
transcripts from April 2023 to August 2024. All speeches are published under a permissive license which allows for
third-party use (as detailed in the dataset cards). There are 134k speeches (clients) in total, and 1930 unique speakers. We
collected this dataset by using public APIs to retrieve data from each country’s official congressional/parliamentary library
website. Then we sanitized the data by removing (1) boilerplate procedural language, (2) sentences with more than 30%
of the characters not being letters, and (3) some written notation that does not correspond to spoken words. We split each
speech into chunks of 64 tokens each. We believe that this dataset is a major contribution because spoken language may
be more resistant to contamination (especially for the UK and Canada parliamentary debates). Because they are more
conversational and have a large degree of improvisation (many debates are off-the-cuff), they are less likely to be generated
by LLMs. Because Congressional Speeches contains a diverse collection of speeches across speakers and also countries, the
dataset forms many distinct clusters, reflecting the diversity of the dataset (Figure 10).

We are committed to update the dataset periodically with the latest data to allow future researchers to test their algorithms or
ideas against an uncontaminated dataset.
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Table 5. Dataset details.

Dataset # Train Samples # Validation Samples # Test Samples Max Sequence Length Average # of samples per client

bioRxiv 72000 2000 1584 64 6.6 ± 2.6
Congressional Speeches 133000 4200 1547 64 5.0 ± 16.3
PubMed 75316 14423 4453 512 1

Figure 10. A t-SNE clustering of the Congressional Speeches dataset. US data is colored in purple, UK data is colored in orange, and
Canada data is colored in green. We find that the three datasets form distinct clusters and also distinct sub-clusters.
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