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University of Zurich

Rudjer Boskovic Institute
matija.piskorec@irb.hr

3rd Yu Zhang
UZH Blockchain Center

University of Zurich
zhangyu@ifi.uzh.ch

4th Nicolò Vallarano
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Abstract—The Monero blockchain enables anonymous transac-
tions through advanced cryptography in its peer-to-peer network,
which underpins decentralization, security, and trustless inter-
actions. However, privacy measures obscure peer connections,
complicating network analysis. This study proposes a method
to infer peer connections in Monero’s latest protocol version,
where timestamp data is unavailable. We collect peerlist data
from TCP flows, validate our inference algorithm, and map the
network structure. Our results show high accuracy, improving
with longer observation periods. This work is the first to reveal
connectivity patterns in Monero’s updated protocol, providing
visualizations and insights into its topology. Our findings enhance
the understanding of Monero’s P2P network, including the role
of supernodes, and highlight potential protocol and security
improvements.

Index Terms—Monero P2P Protocol, Monero P2P Network
Mapping, Robustness in Monero P2P network

I. INTRODUCTION

The peer-to-peer (P2P) network is the foundational layer of
decentralized ledger technology (DLT) systems, ensuring de-
centralization, consensus, and network security through broad-
cast of transactions and blocks [1], [2]. Although different
DLT systems vary in design, all rely on the P2P network
as the backbone for decentralization, security, and trustless
interactions [3]–[5]. The P2P network consists of independent
nodes (peers) that connect through an overlay structure to share
resources. Each peer plays an equal role in sending messages
and sharing resources [6]. The introduction of consensus and
synchronization mechanisms adds complexity, affecting the
network’s security, consensus, and smart contract vulnerabili-
ties.

A key feature of P2P networks in DLT is dynamic discov-
ery and interaction between nodes, forming a decentralized
network structure governed by the P2P protocol [7], [8]. This
eliminates the need for central authority management, making
the network resilient and scalable, driven by autonomous
nodes. However, this self-organizing capability complicates the
study of the network, requiring experimental measurements
and tools such as ”traceroute” to map the structure of the
system [9], [10].

Monero, an open-source blockchain, uses advanced cryp-
tographic techniques such as ring signatures, stealth ad-
dresses, and ring confidential transactions to ensure transac-
tion anonymity on its permissionless P2P network. Monero

employs Proof of Work (PoW) as its consensus mechanism
but distinguishes itself by ensuring untraceable transactions.
Although DLT research spans smart contracts [11], [12],
consensus mechanisms [13], and decentralized finance [14],
research on Monero’s P2P network remains scarce, with
studies focusing more on transaction traceability [15], [16].
However, the decentralized nature of Monero’s network has
also made it a target for cryptojacking [9], [10], an illicit
practice in which attackers exploit the computing power of
users to mine Monero without consent. This issue not only
challenges user privacy, but also poses security risks to the
integrity of the network, highlighting the need for stronger
safeguards in Monero’s P2P ecosystem.

Few studies investigate Monero’s P2P network, the most
notable being Cao et al. [17], which notes an update of the
protocol to hide the time stamp field in peer lists. This update
removes the timestamp information, making it harder to infer
peer connections. Existing studies on Monero focus mainly on
traceability [15], highlighting the need for more research on
its P2P network.

In this paper, we analyze Monero’s P2P network by collect-
ing peer lists extracted from the TCP data exchanged between
our Monero node and its peers. To overcome the absence of
timestamps, we propose an algorithm that infers peer connec-
tions using timestamp-free TCP packet analysis. We validate
this approach by comparing the inferred connections with the
actual neighbors, achieving high accuracy. Our analysis of
Monero’s network topology provides insights into the structure
of the system, potential vulnerabilities, and areas for future
improvements in protocol design.

II. MONERO PEER-TO-PEER PROTOCOL

By default, a Monero node establishes 8 outgoing connec-
tions. At least one outgoing connection is required to join
the network (no such requirement for incoming connections).
When a new node joins, it connects to the public seed nodes to
discover other active nodes. Through a handshake protocol, the
node establishes connections, validates them, and synchronizes
data such as blocks and peer lists, while maintaining and
updating its peer list, managing connection requests, and
ensuring network stability.

Unlike Bitcoin-based P2P protocols, Monero uses its unique
protocol. Each peer has two lists: white list (1000 slots) for
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recent handshakes and grey list (5000 slots) for unresponsive
peers or those with lower timestamp rankings. Under the new
Monero protocol, a peer returns 120% of peers from its top 300
last seen peers in the white list during the TCP flow process1.

III. PEER LIST COLLECTION AND NEIGHBOR INFERENCE

In P2P networks within DLT systems, it is important to
differentiate between “active neighbors” and “potential peers”.

A. Definition of “Neighbor” and “Interaction”

To formalize this distinction, we define a “connection” and
an “interaction” as follows:

Neighbor/Connection: A connection is a persistent, active
communication channel between peers, allowing the exchange
of data. Active neighbors are peers with ongoing, direct
connections, essential for maintaining network integrity and
performance as peers join and leave over time.

Interaction: An interaction refers to a temporary relation-
ship between peers, including: (1) Temporary connections,
such as during initial handshakes, without forming a persistent
channel. (2) Potential peers listed in a node peer list, based
on discovery protocols, without established communication or
validation. This distinction helps to accurately represent and
manage the network topology, ensuring that only meaningful
interactions are considered active neighbors.

To infer P2P connections between Monero nodes, we first
set up a peer list data collection pipeline, as outlined in [17],
and then develop a new inference algorithm. Due to changes in
Monero’s peer list sharing protocol, which no longer includes
the last seen timestamp, we propose a modified algorithm that
works without these data.

B. Peer list data collection

Our data collection pipeline (Figure 1) consists of three
machines deployed in the United States, Europe, and Singa-
pore. Geographical dispersion is crucial to capturing a broad
view of the Monero P2P network, while the controlled nodes
allow for validation of the P2P inference. Peer list data is
collected by running a Monero node and monitoring TCP
traffic with the tcpflow2 program, listening on port 18080,
through which communication with other nodes occurs. Peer
lists are extracted from the binary dump of the traffic data, as
they are not exposed through the node’s RPC interface.

The connection data from our three nodes is used to validate
the P2P network inference. Data for this paper were collected
over three weeks, from 21.12.2024 to 10.1.2025.

1) Identifying Real Neighbors: To identify real neighbors,
we analyze peer list data based on the P2P protocol, where
each peer shares up to 250 entries from its top 300 whitelist
peers. Real neighbors, which maintain frequent handshakes,
appear more often in shared peer lists than non-neighbors.
The nodes belong to one of two categories:

• Highly connected nodes: for example, public seed nodes
with numerous connections.

1Monero GitHub Repository
2https://github.com/simsong/tcpflow

Fig. 1: Data collection pipeline.

• Typical nodes: default 8 outgoing neighbors.
The challenge is to set a frequency threshold to distinguish

real neighbors. Since peer selection is bidirectional and is
governed by the IDLE_HANDSHAKE protocol, real neighbors
are expected to appear consistently in updated whitelists.

For a node i, we define the relative presence of an observed
address a as:

pi(a) =

∑ni

j=1 χ(a ∈ Pj)

ni

where P (i) represents i’s received TCP packets and χ is an
indicator function.

A node with 8 neighbors, receiving 250 peer addresses per
handshake, selects a neighbor with probability Pneighbour ≈
0.833. For non-neighbors, selection follows two stages:

1) Entering the top 300 with probability Penter ≈ 0.302.
2) Being chosen within the top 300 with Pselected ≈ 0.833.

Thus, the overall probability for random nodes is: Prandom =
Penter · Pselected ≈ 0.252.

This structural bias results in real neighbors appearing
three times more frequently than random nodes, making them
distinguishable through cumulative frequency analysis.

C. Neighbor identification by k-means

The simple method above intuitively identifies high-
frequency peer interactions compared to low-frequency ones.
This observation led us to apply k-means clustering to separate
high- and low-frequency links.

To identify real neighbors, we first collect the frequency of
each peer’s connections in shared peer lists or TCP flows, then
use the k-means clustering algorithm to differentiate between
high-frequency and low-frequency links.

The dataset consists of triplets (ip1,ip2,count), where
ip1 and ip2 are IP addresses, and count is the interac-
tion frequency between them. We excluded rows where ip1
corresponds to Singapore, the US, or the EU, since our nodes
perform frequent handshakes. To identify relevant connections
and infer real neighbors, we applied the following steps:

First, we remove the rows where count ≤ 1, as these likely
represent noise, leaving the dataset Dfiltered with meaningful
interactions.

Second, we grouped the data by ip1, creating groups Gs

for each source IP. For each group:

https://github.com/monero-project/monero/blob/960c2158010d30a375207310a36a7a942b9285d2/src/p2p/net_peerlist.h
https://github.com/simsong/tcpflow


Algorithm 1 Data Filtering and Neighbor Inference Process
Require: Raw dataset D with columns ip1, ip2, count.

1: Cmin ← 2, threshold of minimum connection count.
2: Nmin ← 8, threshold of minimum number of out-going neigh-

bors.
3: Dfiltered = {row ∈ D : row[count] ≥ Cmin}
4: for each unique source IP s in Dfiltered do
5: Gs = {row ∈ Dfiltered : row[ip1] = s}
6: if |Gs| ≥ Nmin then
7: Perform k-means clustering on the unique count values

in Gs with k = 2. Greater count values’ labels are set
as 1 and as 0 otherwise.

8: end if
9: end for

10: D′ = {row ∈ Dfiltered : row[label] = 1}
11: return D′

- We discarded groups with fewer than two interactions.
- We applied k-means clustering with k = 2 on the unique
count values, which distinguishes true connections from non-
true connections based on frequency.

Finally, we retained all connections labeled as true neigh-
bors (for example, those clustered as 1), forming the dataset
D′, which includes the most relevant inferred connections.

By clustering the frequency data, we identified high-
frequency peers as likely true neighbors, with the k-means
method offering computational efficiency and revealing mean-
ingful patterns in large-scale interaction datasets.

D. Neighbor inference validation

We compare the inferred neighbors of our Singapore, EU,
and US nodes with the real connection lists obtained using
Monero’s monero-daemon-rpc. These real connection lists
serve as a benchmark for validating the neighbor inference.

Classifier quality measures like precision and recall help
assess our method’s performance. Precision is the ratio of true
positives to all detected positives (true + false positives), rep-
resenting the proportion of real neighbors correctly identified.
Recall is the ratio of true positives to all actual neighbors, in-
dicating the proportion of real neighbors successfully detected.

Since peers dynamically connect and disconnect over time,
even real connection lists capture only a transient snapshot
of the network. To validate our approach, we first identify
neighbors of our node in the inferred network and then check
how many of these inferred neighbors appear in the real
connection lists during data collection.

We measure precision as the ratio of “our node’s neighbors
in the inferred network” to “neighbors identified from real
connections over one week of data.” The following tables
present the validation results.

Without incorporating the last seen timestamps, the predic-
tion accuracy of our inference method is already relatively
high. This result in Table I is based on only one week of
listening data, excluding the last seen timestamps in the peer
lists under the current protocol. When the data collection
period was extended, the accuracy of the EU node improved
by approximately 10% (check Table II), highlighting the

TABLE I: One-week data neighbor inference accuracy

Benchmark comparison for one week data
Location Singapore US EU

Inferred network neighbors 489 534 534
Neighbors in connection list 388 367 371

Neighbor identification Precision 79.35% 68.73% 69.48%

TABLE II: Three weeks data neighbor inference accuracy

Benchmark comparison for three weeks data
Location Singapore US EU

Inferred network neighbors 394 437 713
Neighbors in connection list 327 319 572

Neighbor identification Precision 82.99% 73.00% 80.22%

significant impact of a larger dataset collected over a longer
period on the prediction accuracy. This improvement aligns
with the theoretical expectation that longer TCP listening times
enhance accuracy.

IV. MONERO P2P NETWORK TOPOLOGY ANALYSIS

After applying k-means clustering to filter the links, we
obtained the “high-frequency clusters” edge list and mapped
it into a network.

1) Network Topology Analysis: P2P networks in DLT sys-
tems, defined by their decentralized architecture, present both
challenges and opportunities that require a thorough analysis.
Network Science, grounded in graph theory and statistical
physics, offers a solid framework for studying the structural
and functional properties of networks [18], [19]. By represent-
ing a complex system as a graph, we can analyze topological
features, develop network models, and evaluate robustness.

Although visualizing the network provides an initial insight,
this approach becomes limited for larger networks. Therefore,
a qualitative analysis of the network features using statistical
data is essential. We define centrality and betweenness cen-
trality as follows [18]:

Degree Centrality: Measures the number of direct connec-
tions (edges) a node has. The degree ki of the node i is defined
as: ki =

∑n
j=1 Aij , where Aij is the adjacency matrix of

the network. Degree centrality is useful for analyzing network
centralization and structure.

Betweenness Centrality: Quantifies how often a node lies
on the shortest paths between pairs of nodes, indicating its
influence on network interactions. The betweenness centrality
bi of node i is given by: bi =

∑
st

ni
st

gst
, where ni

st is the
number of shortest paths from s to t passing through i, and
gst is the total number of shortest paths between s and t.

Fig. 2 visualizes the LCC of the Monero P2P network,
where node color represents betweenness centrality and
size reflects degree centrality. Warmer-colored nodes indicate
higher betweenness, highlighting their role in connecting dif-
ferent parts of the network, while larger nodes signify high-
degree peers. The network consists of 4,837 nodes, with
3,153 directly linked to the 14 top-degree nodes, collectively

https://www.getmonero.org/resources/developer-guides/daemon-rpc.html#get_connections


covering 82.1% of the network. These core nodes—primarily
public seed nodes or supernodes—maintain multiple connec-
tions, facilitating efficient data exchange and ensuring network
integrity.

Fig. 2: Visualization of the LCC, with node colors representing
betweenness centrality and node sizes proportional to their
degree centrality.

2) Interconnection Analysis Among Supernodes: To explore
the interconnections among these supernodes, we examine the
overlap of their direct neighbors. The heatmap in Fig. 3 shows
the overlap rate of direct neighbors among the 14 top-degree
nodes. The value in each cell represents the overlap rate of the
one-hop neighbors between the nodes indexed by the X and
Y ticks, calculated as: r =

noverlap

min(nx,ny)
, where nx and ny are

the number of neighbors of nodes x and y, and noverlap is the
number of shared neighbors. The heatmap reveals that over
91% of each top-degree node’s direct neighbors are connected
to other top-degree nodes, with this proportion nearing 100%
for 9 out of the 14 nodes. This suggests a strong level of
interconnectivity and resilience within the core of the network.
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Fig. 3: One-hop neighbor overlap rate among the 14 top-degree
nodes. The value in each cell represents the overlap rate of the
one-hop neighbors between the nodes indexed by the X and
Y ticks.

3) Robustness of the Monero P2P Network: The absence of
a central node is a defining feature of DLT systems. However,
this does not preclude the existence of supernodes within the
network. In an unstructured DLT P2P network, if small-world
characteristics emerge from user social relationships, nodes
with significantly higher degrees can exert disproportionate
influence on the network structure, introducing potential risks
such as Eclipse attacks [20], [21], Sybil attacks [22], [23], and
DoS attacks [24].

To assess the network robustness, we focus on high-
degree and high-betweenness centrality nodes and evaluate
how quickly the largest connected component (LCC) disin-
tegrates. As shown in Fig. 4, the network demonstrates strong
resilience. After removing the first 14 supernodes, the LCC
size decreases by 20%. In particular, the LCC collapses to
nearly zero when around 9.4% and 12% of nodes are removed
based on betweenness and degree centrality, respectively. This
suggests that compromising these nodes or their neighbors
would significantly disrupt the network, highlighting its in-
herent robustness.

Fig. 4: LCC attack by removing high betweenness and degree
centrality nodes, where the turning point of LCC ≈ 0 are 0.094
and 0.12 for betweenness centrality and degree centrality.

V. CONCLUSION

In conclusion, this study introduces a novel method for
mapping the Monero peer-to-peer network by identifying real
neighbors between nodes. Our approach accurately uncovers
the network’s structure and provides an intuitive visualization
of its topology. The findings offer the first comprehensive
insights into connectivity patterns within the Monero P2P
network under the new peer protocol.

Our results show that the network is highly centralized
around several super nodes with significant betweenness cen-
trality and high degrees. While this centralization strengthens
security and robustness, it also introduces potential vulnera-
bilities. This study provides a foundation for future improve-
ments to the Monero peer protocol, enhancing security and
decentralization.
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