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Abstract: Using a multi-accented corpus of parallel utterances for use with commercial speech
devices, we present a case study to show that it is possible to quantify a degree of confidence about
a source speaker’s identity in the case of one-to-one voice conversion. Following voice conversion
using a HiFi-GAN vocoder, we compare information leakage for a range speaker characteristics;
assuming a ‘worst-case’ white-box scenario, we quantify our confidence to perform inference and
narrow the pool of likely source speakers, reinforcing the regulatory obligation and moral duty that
providers of synthetic voices have to ensure the privacy of their speakers’ data.
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1 Introduction

There are always at least three speech data involved in voice conversion (VC): the input
source speech, the input target speech, and the output converted speech. The most impor-
tant evaluation criterion for VC is the perceptual similarity between the converted speech
and the target speech [To22, CCL23, De23]. However, it is essential to evaluate the degree
to which the converted speech is also related to the source speech. This is no different to
the objective evaluation of speaker anonymization, which concerns the extent to which the
converted speech can be tied to the source speaker(s); i.e., how exposed a source speaker
is to the risk of a re-identification attack [To22].

We must therefore seek to quantitatively evaluate how a source speaker’s information is
leaking into the converted speech, and develop a VC-adjacent technology to suppress it.
In an ideal VC system, the source speech provides only linguistic information. However,
particularly with commonly-used Self-Supervised Learning (SSL) architectures such as
HuBERT [Hs21] used in present-day VC applications (e.g. [Li21]), the model encodes a
variety of other non-linguistic information which may be used to inform a source speaker’s
identity.

Two recent attempts have been made to identify the source speaker within VC, and both
report that it is possible. One study [CCL23] focused on the deepfake problem used four
different VC algorithms, and proposed a system to verify whether the source speakers of
converted speech, which sounded like different speakers due to the four VC algorithms,
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were the same or not. Another forensic study [De23] proposed a framework for determin-
ing whether the VC source speaker is the voice of the suspect by comparing the converted
voice with the suspect’s natural voice.

The interest of our study is not how to deal with deepfakes and other abuses of VC tech-
nologies, but to consider the source speaker’s information leakage as a metric for evalu-
ating privacy-sensitive VC. This point has not yet been critically considered, but its im-
portance becomes starkly apparent when we think of, for example, personalised synthetic
voices for individuals with impaired speech (e.g. [Cr13,VYK13]). If we consider the case
where the output of a text-to-speech (TTS) system, based on the voice of a healthy person
(the voice donor), is converted to the voice of a patient with speech disabilities using VC,
one can see how the leakage of source speaker information is equivalent to the leakage of
training speaker information in the base TTS model. Data privacy is compromised.

The conversion performance of VC is greatly affected by how much the target and source
speakers differ in speaker characteristics and accents. When considering the information
leakage of the source speaker as an evaluation measure for privacy-sensitive VC, we must
therefore not make any assumptions about the use case. Hence, this research uses an SSL-
based VC system with a neural speaker encoder to investigate how the source speaker’s
information leakage changes when VC is performed under both ideal and adverse condi-
tions, including various mismatches of accents and recording environments.

To measure the information leakage, we extract speaker embedding vectors [DTD20] of
the converted speech and the source speech, and measure the distribution of their cosine
distances. The speaker encoder for this measurement is identical to the speaker encoder uti-
lized in the VC system, hence this is a form a white box testing to analyze the worst-case
scenario. Contra speaker anonymization, which assumes the use of speaker recognition
techniques and standard automatic speaker verification (ASV) metrics, our aim is the as-
sessment of one-to-one VC. Therefore, we use a simple and interpretable measure of Earth
Mover’s Distance (EMD) to measure the similarity between the above distribution, and the
distribution calculated from the source speaker to the target speaker. This metric serves to
quantify the source speaker leakage resulting from one-to-one VC.

2 VC system and measurement of source speaker leakage

Our VC system is similar in design to related studies [Ni22, Mi22], comprised of content
extraction via an SSL model, F0 extraction, a speaker encoder, and a waveform genera-
tion module. The content encoder is based on a HuBERT base model [Hs21] released by
Fairseq toolkit3 and fine-tuned using LibriTTS-train-clean-100 [Ze19]. The speaker en-
coder is based on an ECAPA model [DTD20] trained on the Voxceleb2 dev set [CNZ18],
which uses 80-dimensional FBank as inputs. The YAAPT algorithm [KZ02] is used to ex-
tract F0. Using the above disentangled features as inputs, the HiFi-GAN vocoder [KKB20]
trained using LibriTTS-train-clean-100 is used to generate waveforms. For one-to-one VC
between these two speakers, the disentangled speech content and F0 are extracted from the

3 https://github.com/pytorch/fairseq/

https://github.com/pytorch/fairseq/
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Fig. 1: An illustration of the pipeline used in this research. Audio from source speaker D and target
speaker P are disentangled into speaker embeddings, F0 and speech content for each. The speaker
embeddings of source speaker D are replaced with those from target speaker P. Remaining disen-
tangled representations are discarded. A HiFi-GAN trained on the LibriSpeech corpus is used to
produce the voice-converted (VC) speech P′. Cosine similarities are computed between all utter-
ances of P, D and P′, forming the basis of our calculations for Earth Mover’s Distance (EMD) and
distributional similarities.

source speaker and the speaker embedding is extracted from the target speaker to generate
converted speech, as shown in Figure 1.

For the measurement of the source speaker leakage in mismatched VC conditions, we use
two data corpora: Speech Databases for Consumer Devices (SPEECON) [Is02] is a speech
database with utterances and recording environments selected to represent realistic data
for use with everyday commercial speech devices, and the Voice Cloning Toolkit (VCTK)
[VYM17] is a speech database with utterances of read speech in full sentences. Between
these two corpora, we cover realistic data for VC in adverse conditions (SPEECON), as
well as data recorded in ideal conditions commonly-used to train TTS systems (VCTK).
For both, we use all data that comprise speakers from the United Kingdom; this focuses
the scope of investigation while still affording analysis of accent mismatch from various
regions of the British isles.

SPEECON provides rich metadata for each speaker, comprising gender, accent, age and
recording environment. VCTK provides metadata for gender and accent. For each corpus,
we first identify the largest suitable subset where these variables are the same: this re-
sults in our subset of target speakers. For each experiment, we change one variable: this
results in our subset of source speakers. We generate converted speech from these two
speaker subsets. For each target and source subset, we calculate the cosine distances be-
tween all speaker embeddings: the speaker embedding with the lowest summed cosine
distance is identified as the proximal speaker for that subset. As illustrated in Figure 1, we
then perform VC between these two proximal speakers. We take the disentangled speech
content and F0 from the source proximal speaker (D) and the speaker embedding from
the target proximal speaker (P), to generate converted speech (i.e. this is our proximal
voice-converted speaker, P′), which is expected to be perceptually similar to P.
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Fig. 2: Three example scenarios, evaluated through our inference framework. Scenario 1 (top): it
is not possible to confidently infer source speaker characteristics from the evidence distribution;
information leakage is present, but more data are required to meet the confidence threshold. Scenario
2 (middle): no source speaker characteristics can be inferred; there is no interpretable data leakage.
Scenario 3 (bottom): source speaker characteristics can be inferred; there is information leakage.

We calculate our metrics for distributional comparisons between P, D and P′ to quantify
the degree of information leakage that results from such one-to-one VC. The cosine sim-
ilarity between each speaker is calculated at the utterance level using the same speaker
encoder as the VC system [DTD20], which results in data that are approximately normally
distributed. There are many established and robust metrics shared between audio and im-
age processing for security and privatisation of data, of which the Wasserstein distance
is interpretable for quantifying the similarity between such distributions. Our pairings of
cosine similarities are binned into 50 fixed-width intervals, generating three histograms
of distributions: COS(P,D), COS(P′ ,D) and COS(P′ ,P). We borrow from the domain of
privacy within image processing to calculate the Wasserstein distance between histograms
of frequency distributions [Xi15], and use the EMD to quantify the similarity between
distributions. EMD is a robust and intuitive metric that expresses the minimum cost of
transforming one distribution into another: the higher the Wasserstein distance between
two distributions, the higher the EMD.

We follow others [De23, No22, No23] in assuming terminology and concepts from the
well-known Shannon’s perfect secrecy [Sh49], to refer to the ‘evidence’ distribution of
cosine similarities, against which we evaluate our ‘prior belief’ distribution of cosine sim-
ilarities. The farther that our evidence distribution is from our prior belief distribution
within the spatial domain, the greater the information leakage from source speaker D.

Example scenarios under this inference framework are illustrated in Figure 2: when it is
impossible to infer attributes from source speaker D, given the converted speaker P′, the
distribution COS(P′ ,D) increasingly resembles COS(P,D) as shown in Figure 2 (middle).
Conversely, when it is as easy to guess the attributes of the source speaker D as it is to
guess the attributes of the target speaker P, given the converted speaker P′, the distribution
COS(P′,D) resembles COS(P′ ,P) as shown in Figure 2 (bottom). Consequently, to use
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Fig. 3: Six distributions from SPEECON, with the cosine similarities between the proximal target P,
proximal source D, and the voice converted speech P′ (replacing the speaker embeddings of P with
those of D) binned into 50 fixed-width intervals. The BLACK distributions are COS(P,D); the RED
distributions are COS(P′ ,D) and the GREEN distributions are COS(P′ ,P). Plots show the resulting
distributional shifts following changes to speaker characteristic variables. Read left-to-right and top-
to-bottom, we see RED increasingly move from GREEN towards BLACK: a ‘sliding scale‘ of how
the choice of source speaker characteristics results in greater (or lesser) interpretable data leakage.

our evaluation metric, the lower the score of EMD(COS(P′,D),COS(P′,P)), the higher the
confidence to infer the attributes of source speaker D. We also need to consider the degree
to which the attributes of the target speaker P are originally similar to those of the source
speaker D, which is reflected in EMD(COS(P,D),COS(P′ ,P)).

3 Results

Table 1 provides the EMD of cosine similarities between speakers’ utterances for proximal
target P, proximal source D and VC-generated P′, binned into 50 fixed-width intervals. For
ease of reading, we will refer to distributions by the colors assigned to them in Figures 1,
2 and 3: BLACK, B, is COS(P,D), RED, R, is COS(P′,D), and GREEN, G, is COS(P′,P).

Note that the difference between EMD(B,R) and EMD(R,G) should be viewed proportional
to EMD(B,G) , since B and G circumscribe the similarity between target speaker P and
source speaker D. Thus, we may define leakage L as (EMD(B,G)/EMD(R,G)), with higher
values of L indicating greater leakage of source speaker information (Table 1).
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Tab. 1: EMD of cosine similarities between proximal speakers’ utterances, binned into 50
fixed-width intervals, where P is the proximal target speaker, D is the proximal source speaker,
B is COS(P,D), R is COS(P′ ,D) and G is COS(P′ ,P). Results provided to 4 d.p. for improved
interpretability. n is the size of the subset. The speaker characteristics of the proximal target P are:

SPEECON: Gender= male, Age = 21–49, Accent = S. England, Environment = office (n = 30)
VCTK: Gender = male, Accent = S. England (n = 7)

SPEECON Prox. source D mismatch EMD(B,R) EMD(R,G) EMD(B,G) L

Gender female (n = 38) 0.1233 0.0223 0.1456 6.5291
Age 15–20 (n = 9) 0.0184 0.0709 0.0893 1.2595
Age 50–56 (n = 9) 0.0806 0.0467 0.1271 2.7216
Accent Midlands (n = 10) 0.0220 0.0935 0.0718 0.7679
Accent Wales (n = 4) 0.0311 0.1158 0.1470 1.2694
Accent N. England (n = 12) 0.0625 0.0764 0.1389 1.8181
Accent Scotland (n = 13) 0.0581 0.0284 0.0861 3.0317
Accent N. Ireland (n = 2) 0.0698 0.1184 0.1882 1.5895
Environment entertainment (n = 14) 0.0852 0.0855 0.1707 1.9965
Environment car (n = 22) 0.0872 0.0806 0.1677 2.0806
Environment public place (n = 16) 0.0661 0.0928 0.1589 1.7123
Matched to P N/A (matched to P; n = 15) 0.0348 0.0595 0.0654 1.0992

VCTK Prox. source D mismatch EMD(B,R) EMD(R,G) EMD(B,G) L

Gender female (n = 10) 0.1028 0.5882 0.6902 1.1734
Accent Midlands (n = 3) 0.0132 0.6660 0.6563 0.9854
Accent N. England (n = 5) 0.0141 0.7914 0.6511 0.8227
Accent Scotland (n = 14) 0.0742 0.6186 0.6923 1.1191
Matched to P N/A (matched to P; n = 4) 0.2771 0.6438 0.3664 0.5691

Figure 3 illustrates the distributional shift of evidence distribution R from ground truth G
towards prior belief B. In other words, following one-to-one VC, we are able to rank our
mismatched speaker characteristics in terms of the proportional difference of EMD(B,R)
and EMD(R,G) to EMD(B,G): the more that a mismatch results in information leakage, the
more that our speaker encoder is able to differentiate between speakers. Here, this ‘sliding
scale’ effect can be observed, with more ‘leaky’ mismatched source speaker characteris-
tics (e.g. changing gender; Figure 3 top-left) resulting in greater interpretable information
leakage, and less leaky mismatches (e.g. changing the age bracket from 21–49 to 15–20;
Figure 3 bottom-right) resulting in lesser interpretable information leakage.

4 Discussion

Our results for intra-group and inter-group VC are similar to the findings of Deng et
al. [De23], who report that their speaker identification system is able to determine the gen-
der of the source speaker (gender→same, or gender→different) with comparatively equal
accuracies in either case. With the highest information leakage, gender appears to be a
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highly-discriminatory speaker characteristic; however, others have noted that inter-gender
VC contributes to higher distortion artifacts [To22, Eb21], so more research is required to
determine whether the information leakage is a result of supra-segmental features from the
source, or decreased naturalness in the output audio.

In terms of demographics, it notable that for SPEECON and VCTK the speaker character-
istic mismatch of Accent→Midlands (and to a lesser extent Accent→Wales for SPEECON)
for source speaker D results in low EMD between the evidence and prior belief distribu-
tions (when viewed proportionally to EMDs with G). In other words, there is little infor-
mation leakage from source speaker D stemming from these accent characteristics. This
result is surprising in the light of SPEECON and VCTK results for Accent→Scotland,
where both exhibit higher source speaker information leakage L. In other words, informa-
tion leakage from source speaker D is quantifiably more or less with particular mismatched
accents. However, it should be noted that the accent metadata in SPEECON are too im-
precise to glean any further insights from these results (we may ask, for instance, what is
a ‘Scotland’ accent?), and while the accent metadata in VCTK are more fine-grained (for
instance, ‘Fife, Scotland’), the size n of the subsets may be too small for fair comparison.

For demographic age brackets, we can observe how the confidence to infer source speaker
characteristics weakens (Figure 3; top-right and bottom-right) as the age of the proximal
source speaker D closer aligns with that of the proximal target speaker P (whose spe-
cific age is 26, though embeddings remain proximal within the subset of target speakers,
ages 21–49). While differences between inter-group information leakage of demographic
characteristics such as age and accent is cursorily mentioned in the literature [Sr20], there
appear to be limited efforts to quantify these differences in a systematic way, and no ex-
plorations at all concerning intra-group differences. More research is required in this area.

Our results from changing the environmental variable with SPEECON are interesting: all
three indicate a degree of information leakage, which can be counter-intuitive in the light
of shared speaker demographic characteristics. Information leakage that stems from identi-
fiable features of different recording environments is often overlooked within VC. Nautsch
et al. [Na19] note in passing that environmental voice features, as well as a speaker’s bi-
ological features, are a consideration for unlinkability efforts, but this is not the focus of
their study and not considered further. Noe et al. [No21] explore information leakage using
an adversarial autoencoder, reporting that the disentanglement of speaker characteristics
can be reliably used to determine gender; however, although they note that noise informa-
tion disentanglement (from different recording environments) may also be used to identify
speakers in a similar manner, this also not the focus of their study and not explored further.

Bäckström [Bä27] notes not only that different recording environments can encode identi-
fying information (speaker linkability based on ambient noise, as well as reverberation and
additive background voices), but that attempts to isolate the speaker’s voice from the envi-
ronment can introduce extra signal information that may counter-productively provide ad-
ditional insights concerning the the source speaker. Our results reinforce this observation
that environmental voice features can encode information that increases source speaker
linkability. As previously noted, SSL features encompass not only textual information but
also various other features; when disentanglement necessarily carries environmental noise
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from the source speaker’s audio, informative signal features from mismatched recording
environments may supplement conclusions drawn from inference performed using speaker
demographic characteristics.

Our results should be additionally viewed through the lens of model mismatch: the HiFi-
GAN vocoder [KKB20] used in this investigation was trained using the LibriTTS-train-
clean-100 subset of the LibriSpeech corpus, which comprises US speakers. When the
model is less able to differentiate between speakers (lower scores for EMD(B,R)) this may
be an artefact of the model; in other words, the model’s training data is the inhibiting factor,
rather than less information leakage stemming from less ‘leaky’ source speaker character-
istics. A similar observation is also noted by Cai et al. [CCL23], who also note that, for
GAN-based models, the ‘cycle consistency mechanism’ may constrain the generated out-
put in ways that retain speaker-irrelevant features; scores for EMD(B,R) may therefore be
biased lower as a result, rather than as a consequence of less information leakage. We
acknowledge that we have used a single HiFi-GAN model in this work as a case study:
future research with other variations of HiFi-GANs will illuminate further the role of these
models in contributing to source speaker leakage.

We note that such artefacts originating from the VC process motivated our use of the
‘proximal’ speaker within candidate speaker pools. Preliminary investigations to create a
‘representative’ source speaker by calculating an average speaker embedding (and using
the F0 and content from the proximal target speaker) introduced artefacts into the generated
P′ samples that resulted in our distributions for R exhibiting lower cosine similarity than
those of B. Despite these observations, Deng et al. [De23] note that, while high-fidelity VC
systems feature less information leakage from the source speaker, there regardless exist no
techniques presently to disentangle linguistic, supra-segmental and segmental data from
audio that perfectly isolate all features without information leakage.

A similar effect was also reported by Cai et al. [CCL23], who note that speaker identifi-
cation can be improved by having utterances (here, those of P′) generated from multiple
vocoders, as this helps to better generalize outside the bias or artefacts introduced from
a single model. A natural point of future investigation is to therefore examine the extent
to which EMD(B,R) is sensitive to information leakage originating from the model itself,
since there may be interaction effects between the choice of model to generate P′, and the
speaker demographic and environmental characteristics explored here.

5 Conclusion

In this work, we have presented a case study to show that it is possible to quantify a degree
of confidence in identifying a source speaker in the case of one-to-one voice conversion,
using an interpretable measure of Earth Mover’s Distance. We find this is possible due to
information leakage, despite simple one-to-one mapping used between source and target.
The identity of the source speaker can therefore be compromised. Since providers of syn-
thetic voices must fulfil legal and moral obligations to protect the identities of their source
speakers, methodologies to dampen information leakage or obfuscate those identifying
features must be pursued.
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Carmen Paz, Hrsg.): Proceedings of the Third International Conference on Language Re-
sources and Evaluation (LREC’02). European Language Resources Association (ELRA),
Las Palmas, Canary Islands - Spain, Mai 2002.

[KKB20] Kong, Jungil; Kim, Jaehyeon; Bae, Jaekyoung: Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis. Advances in Neural Information Process-
ing Systems, 33:17022–17033, 2020.

[KZ02] Kasi, Kavita; Zahorian, Stephen A: Yet another algorithm for pitch tracking. In: Proc.
ICASSP. Jgg. 1, S. I–361, 2002.

[Li21] Lin, Jheng-hao; Lin, Yist Y.; Chien, Chung-Ming; Lee, Hung-yi: S2VC: A Framework
for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In:
Proc. Interspeech 2021. S. 836–840, 2021.



Scott Wellington, Xuechen Liu and Junichi Yamagishi

[Mi22] Miao, Xiaoxiao; Wang, Xin; Cooper, Erica; Yamagishi, Junichi; Tomashenko, Natalia:
Language-Independent Speaker Anonymization Approach Using Self-Supervised Pre-
Trained Models. In: Proc. The Speaker and Language Recognition Workshop (Odyssey
2022). S. 279–286, 2022.
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[No23] Noé, Paul-Gauthier; Miao, Xiaoxiao; Wang, Xin; Yamagishi, Junichi; Bonastre, Jean-
François; Matrouf, Driss: Hiding Speaker’s Sex in Speech Using Zero-Evidence Speaker
Representation in an Analysis/Synthesis Pipeline. In: ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 1–5,
2023.

[Sh49] Shannon, Claude E: Communication theory of secrecy systems. The Bell system techni-
cal journal, 28(4):656–715, 1949.

[Sr20] Srivastava, Brij Mohan Lal; Vauquier, Nathalie; Sahidullah, Md; Bellet, Aurélien; Tom-
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