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Abstract—Decentralized Autonomous Machines (DAMs)
represent a transformative paradigm in automation econ-
omy, integrating artificial intelligence (AI), blockchain
technology, and Internet of Things (IoT) devices to create
self-governing economic agents participating in Decentral-
ized Physical Infrastructure Networks (DePIN). Capable
of managing both digital and physical assets and un-
like traditional Decentralized Autonomous Organizations
(DAOs), DAMs extend autonomy into the physical world,
enabling trustless systems for Real and Digital World
Assets (RDWAs). In this paper, we explore the technological
foundations, and challenges of DAMs and argue that DAMs
are pivotal in transitioning from trust-based to trustless
economic models, offering scalable, transparent, and eq-
uitable solutions for asset management. The integration
of AI-driven decision-making, IoT-enabled operational au-
tonomy, and blockchain-based governance allows DAMs to
decentralize ownership, optimize resource allocation, and
democratize access to economic opportunities. Therefore,
in this research, we highlight the potential of DAMs to
address inefficiencies in centralized systems, reduce wealth
disparities, and foster a post-labor economy.

Index Terms—Decentralized Physical Infrastructure
Networks, Artificial Intelligence Agents, Blockchain, In-
ternet of Things.

I. INTRODUCTION

Decentralized Physical Infrastructure Networks (De-
PIN) have emerged as a novel paradigm for building and
managing real-world infrastructure using blockchain and
cryptoeconomic incentives [1], [2]. This model enables
individuals and organizations to collectively operate
physical systems – such as wireless networks, energy
grids, and transportation services – while earning token
rewards and ownership stakes for their contributions.
In recent years, the DePIN sector has grown rapidly,
with approximately 300 projects with over 21M devices
active already in 20251, indicating broad interest across
domains from IoT connectivity to energy and mobility.
Parallel to this, AI-driven automation is propelling a

1https://depinscan.io/

wave of autonomous systems in the physical world [3].
Advances in artificial intelligence, sensors, and connec-
tivity have enabled self-driving vehicles, smart factories,
and intelligent devices that are transforming industries,
ranging from transportation and manufacturing to agri-
culture and public services.

However, realizing the fusion of AI systems and
DePIN is challenging, as decentralized networks and
autonomous machines have largely evolved in isolation.
Most autonomous systems today still rely on centralized
control, which introduces single points of failure and
limits transparency and adaptability in complex opera-
tions.

Building on this momentum, we introduce the concept
of Decentralized Autonomous Machines (DAMs) as a
unifying approach to fuse DePIN principles with AI
capabilities. In our vision, a DAM leverages community-
driven networks for distributed data, compute, and gov-
ernance, while employing AI for real-time decision-
making and adaptation, moving beyond traditional de-
centralized organizations [4], [5]. Such machines can
operate as self-governing entities that overcome the
limitations of centralized automation, offering greater
transparency, resilience, and efficiency.

In this paper, we address the current gaps and explore
the synergy between DePIN and AI, offering insights
into developing a new generation of intelligent, decen-
tralized machines. We investigate the theoretical frame-
work, technical architecture, and socio-economic impli-
cations of DAMs. Additionally, we argue that DAMs
are critical in transitioning from trust-based to trustless
economic models, enabling scalable, transparent, and
equitable solutions for managing Real and Digital World
Assets (RDWAs). The integration of AI agents, IoT
devices, and blockchain technologies turns DAMs into a
novel approach to decentralizing ownership, optimizing
resource allocation, and democratizing access to eco-
nomic opportunities.
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The remainder of this paper is structured as follows:
the technological foundations of DAMs are introduced
in Section II, their role in transitioning to trustless eco-
nomic models is discussed in Section III, their technical
realization in Section IV, their socioeconomic implica-
tions are introduced in Section V, and the conclusion in
Section VI.

II. DRIVING FORCES

The emergence of DAMs is rooted in the convergence
of several technological paradigms, including DePIN,
AI, blockchain, and IoT. This section examines devel-
opments that facilitate the advancement of DAMs.

A. Decentralized Physical Infrastructure Networks

DePIN represent a novel approach to managing real-
world infrastructure through blockchain-based incen-
tives and decentralized governance [6]. Projects such
as Helium [7] and Filecoin [8] exemplify this model,
where participants are incentivized to contribute to
physical networks (e.g., wireless connectivity, storage)
in exchange for token rewards. Decentralized incentive
mechanisms, in the context of IoT, have been explored
before [9], which closely overlaps with recent DePIN
models [1], [6], [10].

B. Integration of AI, Blockchain, and IoT

The integration of AI and blockchain within IoT
systems is a pathway for enabling intelligent, secure,
and autonomous operations. AI has already been em-
ployed to enhance the decision-making capabilities of
IoT devices, allowing them to process data and respond
to environmental changes in real-time [11]. Meanwhile,
Blockchain has been used to ensure data integrity and
secure transactions, providing a trustless framework for
machine-to-machine (M2M) interactions [12]. The inter-
section of these technologies has also been examined in
the literature. For instance, Bothra et al. [13] discuss how
AI can optimize blockchain operations in IoT contexts
through real-time data analytics and automated decision-
making.

C. Automation Economy through Smart Contracts

Smart contracts on blockchain platforms enable au-
tomated economic transactions without intermediaries.
In the context of IoT, smart contracts facilitate direct
economic interactions between devices, such as buying
and selling services or data [14]. DeFi platforms, as ex-
plored by Schär [15], exemplify this shift by using smart
contracts to execute transparent and efficient financial
transactions.

D. Case Studies and Prototypes

There exist case studies and prototypes to illustrate the
practical implementation of technologies involving De-
PIN and AI. For example, in [16], the use of blockchain
in autonomous vehicle networks has been examined,
addressing challenges in reliable and verifiable trans-
actions. Another case is decentralized energy trading
platforms that demonstrate how peer-to-peer energy ex-
change can be managed in a decentralized manner [17].

E. Comparative Analysis and Future Directions

A recent comparative analysis of 530 studies shows
a progression from foundational blockchain-IoT inte-
grations [18] to more advanced applications involving
AI and automation [19]. This evolution suggests future
research directions, such as developing standardized
governance protocols to explore M2M models across
industries.

While these technological components form the foun-
dation of DAMs, their transformative potential lies in
how they may fundamentally alter economic relation-
ships and value exchange mechanisms. This shift neces-
sitates a deeper examination of the economic principles
underlying decentralized systems.

III. THE TRANSITION TO TRUSTLESS ECONOMIC
MODELS

The transition from trust-based to trustless frame-
works marks a significant evolution in economic value
creation and exchange. This section examines the limi-
tations of centralized systems — with high costs, high
opacity, and single points of failure — and explores how
blockchain and AI enable trustless alternatives.

A. From Trust-Based to Trustless Systems

Traditional economic systems rely on intermediaries
(e.g., banks, brokerages) to facilitate trust, requiring
participants to have faith in their honesty and efficiency.
Trustless systems, powered by blockchain, a distributed
ledger governed by immutable code, eliminate this need,
as participants trust algorithms and consensus mecha-
nisms rather than institutions [20], [21]. Decentralized fi-
nance (DeFi) exemplifies this shift, using smart contracts
on public blockchains to execute transactions without
intermediaries [21]. These transparent and automated
protocols reduce costs, errors, and counter-party risk,
enabling value exchange without a centralized authority.

B. Inefficiencies of Centralized Finance and Asset Man-
agement

Centralized systems suffer from several inefficiencies
driving the move to trustless models:

• High Costs and Friction: Intermediaries add fees
and delays, whereas trustless DeFi platforms settle
transactions instantly with lower costs [22].



• Lack of Transparency: Opaque processes limit
verification, unlike decentralized systems offering
full on-chain visibility [23].

• Single Points of Failure: Centralized control risks
catastrophic failures, while decentralized protocols
remain resilient [24].

• Limited Inclusivity: Gatekeepers restrict access
and innovation; decentralized networks lower bar-
riers, fostering participation [25].

• Operational Rigidities: Scaling centralized infras-
tructure is resource-intensive and slow, in con-
trast to blockchain-based systems, which can adapt
through modifications to the consensus mechanism,
data sharding, or Layer 2 solutions [26].

C. AI-Powered Efficiency in Trustless Networks

AI enhances trustless systems with automation and
adaptability. Integrated with blockchain, AI-driven smart
contracts can respond to real-time data (e.g. market
prices), reducing reliance on intermediaries [27]. AI has
also benefited from and contributed to more transpar-
ent operations by logging decisions on-chain, and has
enhanced security by detecting fraud in DeFi or by
optimizing DePIN resources [28], [29]. Furthermore,
blockchain provides AI agents with verifiable identities,
enabling reliable M2M transactions in a trustless envi-
ronment [5].

Nevertheless, the transformation of economic prin-
ciples into functioning systems requires a new tech-
nical architecture that integrates physical operations,
intelligent decision-making, and blockchain-based gov-
ernance. We addressed this in the following section.

IV. TECHNICAL REALIZATIONS

This section presents the technical framework of
DAMs, focusing on their layered architecture, key en-
abling technologies, and solutions for scalability and
interoperability. This framework integrates IoT, AI, and
blockchain to enable autonomous machine operations in
decentralized, trustless systems.

A DAM represents a machine that acts as an au-
tonomous service provider, participating in a market and
executing activities like economic transactions with min-
imal human intervention. In practical terms, this means
that a DAM can manage RDWAs, as both digital assets
(like cryptocurrency, data, or digital services access) and
physical assets, without needing a person in the loop. For
example, an autonomous vehicle functioning as a DAM
could possess a digital wallet, automatically accept pay-
ments for rides, pay for its fuel or maintenance, and
coordinate logistics with other machines – all according
to pre-set AI logic and blockchain-based rules. Such a
machine uses IoT sensors to perceive conditions (traffic,
wear and tear), AI algorithms to make decisions (when
to recharge or where to offer rides), and blockchain

to securely handle identity, data, and payments. By
combining these technologies, DAMs create a bridge
between the physical world of machines and the digital
world of decentralized networks, allowing devices to
autonomously generate value and manage resources on
behalf of their owners or stakeholders. This layered
architecture of DAMs in illustrated in Figure 1.
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Sensors

Artificial
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Decision 
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Control
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Fig. 1. Layered Representation of a DAM

A. Layered Architecture

As a subset of DePIN, preserving part of its core
mechanisms [1], [6], [10], DAMs also operate through
a multi-layered architecture:

• Physical/Operational Layer: This layer consists
of IoT devices (e.g., sensors, actuators, robots) that
collect data and execute actions in the physical
world. In this layer, the integrity of data acquisition
and device authentication is crucial. Secure hard-
ware integration may aid in preventing data tam-
pering and ensuring operational correctness [30],
[31].

• Intelligence & Validation Layer: In this layer, AI
and ML algorithms process sensor data, facilitate
decision-making, and validate operations off-chain.
The AI controlling the DAM performs computing
and real-time analytics, improving system respon-
siveness and optimizing resource allocation [32].

• Blockchain & Governance Layer: The decentral-
ized ledger records transactions and enforces rules



via smart contracts, providing an immutable audit
trail for machine interactions. This layer ensures
trustless coordination among autonomous agents
and supports automated governance mechanisms,
replacing traditional centralized oversight [33].

B. Trustworthy Validation and Verification

Due to the decentralized nature of these interactions,
a trustless mechanism is required for validating and
verifying claims used in interactions with DAMs or
those generated by the DAMs themselves. From this
perspective, oracles serve as intermediaries between off-
chain data and on-chain smart contracts, fetching, verify-
ing, and relaying external information [34]. This enables
DAMs to respond to real-world events and maintain
dynamic interactions with their environment. To achieve
trustless verification, Verifiable Computing techniques,
such as Trusted Execution Environments (TEEs) and
Zero-Knowledge Proofs (ZKPs), are required.

Zero-Knowledge Proofs: These cryptographic mech-
anisms enable a party to prove the validity of a statement
without disclosing sensitive underlying data [35]. This
privacy-preserving approach is important for validating
and verifying off-chain computations and sensor read-
ings while maintaining the confidentiality of proprietary
information. For example, zkSTARKs allow computa-
tions to generate proofs that can be audited in a trustless
manner [36]. Additionally, ZKPs contribute to scalability
by reducing the computational and storage burden on-
chain, enabling more efficient transaction verification
and data integrity checks [35].

Trusted Execution Environments: They establish
a secure enclave within a device’s processor, ensuring
that critical computations, such as data processing and
cryptographic signing, remain isolated from potential
system compromises. This hardware-based security is
important for preserving the integrity of operations,
particularly in secure oracle implementations [31], [37].
For instance, Intel TDX enables attestation quotes to
be directly linked to a specific binary image, providing
verifiable proof of the executed code [38].

Software Validation: Another challenge is ensur-
ing the trustworthiness of the software running in the
DAMs, especially in trustless environments where both
humans and machines must verify and validate security
properties, operational features, or compliance mea-
sures. Software validation is key, as vulnerabilities can
stem from external dependencies, unverified updates, or
misconfigurations. Risks include software supply chain
attacks [39], such as compromised libraries, and op-
erational negligence [40], including misconfigured cir-
cuits or faulty firmware updates, which threaten system
integrity and trust. To mitigate these threats, method-
ologies like DevSecOps, VeriDevOps, and TrustOps
show how to integrate security, verification, and trust

mechanisms throughout the software life cycle [41].
These frameworks adopt a holistic approach, combining
automation, continuous verification, and policy enforce-
ment to enhance trustworthiness in decentralized and
adversarial contexts.

C. AI and IoT for self-managed RDWAs
Real and Digital World Assets (RDWAs), nodes from

the DePIN perspective, typically require managers to
perform specific activities for their upkeep and oper-
ation [42]. With the integration AI and IoT, DAMs
can autonomously handle these activities, significantly
reducing the need for human intervention. DAMs can
assume various management tasks for RDWAs, includ-
ing:

• Gathering and interpreting information: Infor-
mation related to the asset can be obtained through
sensors. Information can be interpreted by AI algo-
rithms, e.g., large language models or classification
models [43].

• Quantifying asset health: The health of an asset
is crucial for its proper operation. Health checks
can be performed using existing models tailored to
each asset, but AI can also enhance this process by
enabling predictive maintenance strategies that help
preserve the asset’s functionality [44].

• Coordinating: Handling the course of actions with
other service providers for refurbishment, replace-
ment, inspection or testing in case it is required.
This can be performed with NLP capabilities using
the information gathered from the machine’s sen-
sors [45].

• Operating: Certain assets require operation to
generate revenue, unlike passive or store-of-value
assets, which may appreciate in value without
requiring active operation. Some basic operations
of these assets can already be automated, e.g., a
vending machine or electrical vehicle (EV) charger,
or be automated using AI, e.g., an autonomous
vehicle [46].

Autonomous interactions within a DAM network can
occur between DAMs or with external entities, as shown
in Figure 2. For instance, an EV might independently
charge at a station, while a robotic assistant handles
household tasks, all facilitated by blockchain for secure
transactions and verifications. Additionally, DAMs en-
able self-organization and reorganization depending on
the available infrastructure [47], allowing them to adapt
their operations and network structure dynamically to
optimize efficiency and resource use. This flexibility
ensures that DAMs remain effective even as their en-
vironment or available resources change.

D. Scalability and Interoperability
As autonomous machine networks expand, ensuring

scalability and integration across diverse systems be-
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Fig. 2. Interactions within a DAM Network, with internal M2M and
external interactions

comes a critical consideration. Emerging blockchain
scalability solutions can be explored to support the
expansion of DAM and RDWA applications:

• Layer-2 Solutions: Techniques such as state chan-
nels, sidechains, and rollups process transactions
outside of the main blockchain, reducing latency
and increasing throughput. These solutions have
been shown to significantly scale blockchain per-
formance [48], and may become essential for sup-
porting high-volume interactions, typical to IoT
environments.

• Cross-Chain Interoperability: Protocols enabling
cross-chain communication (e.g., atomic swaps and
relay chains) allow different blockchain networks
to interact. This interoperability ensures that DAMs
operating on different ledgers can share information
and value without centralized coordination. Such
factor is critical for applications spanning multiple
sectors like energy management and robotics [10].

Overall, this baseline framework enables DAMs to
autonomously bridge physical and digital domains, fa-
cilitating applications in decentralized economies. These
applications may have broader socio-economic impli-
cations, which we examine in more depth in the next
section.

V. SOCIO-ECONOMIC IMPLICATIONS OF DAMS

The transformative potential of DAMs extends beyond
technical innovation, promising also socio-economic im-
pacts, as shown in Figure 3. The automation of decision-
making, financial transactions, and even entire oper-
ational workflows, may lead DAMs to redefine how
wealth is generated and distributed. Their continuous,
real-time operation has the potential to drive significant
efficiency gains, eliminating intermediaries, reducing
costs, and enabling direct peer-to-peer exchanges via
DeFi protocols.

On the one hand, DAMs facilitate a rethinking of
ownership through tokenization. The representation of
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Fig. 3. Venn Diagram illustrating the Spectrum of the Impact of DAMs

tangible RWAs (e.g., real estate, infrastructure, industrial
equipment) as digital tokens enables fractional own-
ership, lowering entry barriers for individual investors
and democratizing access to capital markets [49]. Early
DAO initiatives illustrate how community-driven models
can transform traditional asset ownership into a shared,
decentralized establishment [50]. Potentially, this dis-
tributed ownership can lead to a more inclusive wealth
creation process, where even small stakeholders benefit
from the income generated by tokenized assets.

On the other hand, the widespread deployment of
DAMs may accelerate automation to a degree that dis-
rupts existing labor markets. It is projected by recent
research [51] that the accelerated pace of automation
will demand retraining for 6 out of 10 jobs by 2027. If
DAMs start extending automation into service and man-
agement sectors, there is a tangible risk that similar job
losses could occur, raising important questions about the
future role of human labor in an increasingly automated
economy.

Moreover, while decentralized networks promise to
distribute economic power more equitably, they also
carry the risk of wealth concentration. Early adopters
or those with significant technical expertise may accu-
mulate a disproportionate share of tokens and mining
rewards, thereby reinforcing or even exacerbating exist-
ing inequalities. Additionally, decentralized governance
models, despite their potential to empower communities,
may face challenges such as low voter participation and
the outsized influence of whale stakeholders, potentially
leading to decision-making that favors a small group
over the broader community [52].

The rise of DAMs could reshape the insurance in-
dustry, a key pillar of social and economic stability. As
DAMs autonomously manage assets, they shift risk dy-
namics, demanding new insurance models. Blockchain-
based smart contracts can optimize underwriting, pre-
mium collection, and claims processing, reducing costs
and enhancing transparency [53]. AI-driven risk assess-
ments further refine pricing and policy customization,
expanding accessibility [54]. However, the decentralized
nature of DAMs complicates liability assignment in
system failures or accidents [55]. Developing adaptive
regulations and insurance solutions will be important to
mitigating socio-economic risks while fostering financial
inclusion.



In summary, we see DAMs as a convergence of
robotics, AI, and blockchain that challenge conventional
business models by redistributing ownership and deci-
sion power. While they offer the promise of increased
efficiency and democratized asset ownership, we ac-
knowledge that their socio-economic benefits may de-
pend on carefully designed tokenomics and governance
structures. Ensuring that these systems foster inclusive
growth rather than replicating traditional power imbal-
ances remains a critical challenge as society navigates
this new digital-physical frontier.

VI. CONCLUSION

In this paper, we introduce Decentralized Autonomous
Machines (DAMs) as a transformative integration of
AI, blockchain, and IoT. We have explored how the
combination of these technologies enables emerging
capabilities: machines that can autonomously manage
RDWAs, execute financial transactions, and participate
in decentralized marketplaces without human interven-
tion. This shift from centralized to decentralized con-
trol mechanisms addresses fundamental inefficiencies in
current systems by reducing reliance on intermediaries,
increasing operational transparency, and enhancing eco-
nomic inclusion through fractional ownership models.

However, we recognize that the widespread adop-
tion of DAMs presents substantial challenges that must
be addressed. From a technical perspective, scalability
limitations, interoperability barriers, and security vul-
nerabilities require ongoing research and development.
From a socio-economic standpoint, the potential dis-
placement of labor, risks of wealth concentration among
early adopters, and governance complexities necessitate
careful consideration and proactive policy responses.

The ultimate impact of DAMs will depend on how we
navigate these challenges. Effective implementation will
require governance frameworks, equitable tokenomics
models, regulatory approaches, education and workforce
transition programs. If these considerations are ad-
dressed, we believe that DAMs may have the potential to
democratize access to economic infrastructure, optimize
resource allocation, and create new forms of value that
bridge the physical and digital realms.
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