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Abstract—Federated learning (FL) systems allow decentralized
data-owning clients to jointly train a global model through
uploading their locally trained updates to a centralized server.
The property of decentralization enables adversaries to craft
carefully designed backdoor updates to make the global model
misclassify only when encountering adversary-chosen triggers.
Existing defense mechanisms mainly rely on post-training detec-
tion after receiving updates. These methods either fail to identify
updates which are deliberately fabricated statistically close to
benign ones, or show inconsistent performance in different
FL training stages. The effect of unfiltered backdoor updates
will accumulate in the global model, and eventually become
functional. Given the difficulty of ruling out every backdoor
update, we propose a backdoor defense paradigm, which focuses
on proactive robustification on the global model against potential
backdoor attacks. We first reveal that the successful launching
of backdoor attacks in FL stems from the lack of conflict
between malicious and benign updates on redundant neurons
of ML models. We proceed to prove the feasibility of activating
redundant neurons utilizing out-of-distribution (OOD) samples
in centralized settings, and migrating to FL settings to propose
a novel backdoor defense mechanism, TrojanDam. The proposed
mechanism has the FL server continuously inject fresh OOD
mappings into the global model to activate redundant neurons,
canceling the effect of backdoor updates during aggregation.
We conduct systematic and extensive experiments to illustrate
the superior performance of TrojanDam, over several SOTA
backdoor defense methods across a wide range of FL settings.

I. INTRODUCTION

The proliferation of personal and corporate data brought
by the booming of computational resources makes proper
exploitation on sensitive data a challenging problem. Federated
learning (FL) [34] offers a privacy-preserving solution through
enabling multiple data owners to jointly train a global model
under the coordination of a central server. For every global
round in FL, the server first broadcasts the global model
to selected local clients. The server proceeds to aggregate
received updates, which are trained by participating clients
on their local datasets, to generate a global model for the next
iteration. During the interaction between the server and clients,
only the model updates, instead of their raw data, are exposed.

Despite respecting participants’ privacy, FL frameworks
are notorious for their vulnerability against various malicious
behaviors [1], [53], [11], [16], [15], [38], [2]. Due to the decen-
tralized nature of the FL, adversaries could easily compromise

participants to launch either untargeted attacks [11], [43], [7],
[20] or backdoor attacks [2], [1]. Different from untargeted
attackers, who aim to compromise the overall performance
of the global model, backdoor adversaries are especially
destructive because of their stealth. Once successfully injected,
the infected model will misclassify into an adversary-chosen
label when encountering predefined triggers, while leaving
other tasks uninfluenced. The feasibility of injecting backdoors
into FL models has been extensively demonstrated in prior
work. Bagdasaryan et al. [1] proposes to upload a poisoned
model, which is scaled up to cancel the effect of other benign
updates during model aggregation, to successfully replace a
backdoor model with the global model. Zheng et al. [53]
identifies parameters which are frequently updated by benign
updates, and excludes them from training the poisoned model
to inject more stealthy and durable backdoors.

The threat posed by backdoor attacks necessitates designs of
backdoor elimination mechanism in practical FL frameworks.
Previous works on defending against backdoor attacks in FL
rely on post-processing techniques. After collecting updates
from clients, the server either tries to limit the influence of
backdoor updates on the global model [47], [5], [35], [37],
[52], or identify and further filter out backdoors through
comparing model parameters[42], [3], [39], [14], [50], [36],
[44], [54], [30], [4], [13], [27], [41]. However, it is widely
believed that influence-reduction-based methods can merely
slow the rate of backdoor success, rather than eliminating
the injected backdoors entirely. For instance, Sun et al. [47]
proposes to clip all received updates to an agreed bound
to limit the influence of scaled backdoor updates. Other
approaches apply differential privacy by injecting random
noise into the aggregated model, aiming to obscure adversar-
ial features. Detect-then-filter methods generally assume that
poisoned updates differ from benign ones in the parameter
space, using statistical metrics to flag anomalies. Updates
exhibiting significant deviations are treated as poisoned and
excluded from aggregation. A recent work, BackdoorIndicator
[31], enhances post-training detection by proactively injecting
pseudo-backdoors into the global model prior to client dis-
tribution. When adversaries later upload malicious updates,
the pre-planted pseudo-backdoors are triggered, allowing the
server to detect and remove compromised updates. While
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Fig. 1: The backdoor task accuracy and the percentage
of detected backdoors of (UPPER) BackdoorIndicator, and
(LOWER) FreqFed.

BackdoorIndicator achieves SOTA detection performance, it
struggles to identify poisoned updates during the early stages
of FL training. Consequently, some malicious updates are
aggregated into the global model, allowing the backdoor to
gradually take effect as the adversary continues participating
in training. We empirically evaluate the performance of Back-
doorIndicator and another SOAT backdoor detection scheme,
FreqFed [13], against long-term backdoor injection. Assuming
the adversary continuously attacks throughout training, our
results (Figure 1) show that BackdoorIndicator fails to detect
early-stage attacks, allowing backdoor accuracy to rise to
40% before detection stabilizes. Although FreqFed maintains
an 80% detection rate in the first 100 rounds, unfiltered
malicious updates gradually influence the global model. As
the poisoned models become less distinguishable from be-
nign ones, detection effectiveness declines over time. These
observations highlight the limitations of post-hoc detection
methods and underscore the need for defense mechanisms
that do not rely solely on discriminating between benign and
backdoor updates. Instead, robust defenses must be capable
of withstanding persistent backdoor injection across long FL
training horizons.

In this work, we propose a novel pre-processing backdoor
defense mechanism, TrojanDam, to defend against backdoor
injection by robustifying the FL global model prior to broad-
casting. Unlike exitsing approaches, TrojanDam does not
require the server to identify potential malicious up-
dates from clients. Instead, we propose to have the server
proactively robustify redundant neurons, which are the most
susceptible to backdoor injections. The key observation is
that effective FL backdoor attacks tend to exploit redundant
neurons which are rarely updated by benign training. Fortu-
nately, these neurons could be activated to mitigate backdoors,
by training using a mixture of main task samples and OOD
samples, which we refer to as flood data. TrojanDam operates
by activating redundant neurons at the beginning of every
global round using flood data, thereby reducing their capacity
to encode adversarial triggers. Since the server typically lacks
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Fig. 2: The overview of FL systems with TrojanDam.

access to main task data, we introduce an additional set of
OOD samples-termed shadow data-to approximate the distri-
bution of the main task. The server computes gradients from
a mixture of flood and shadow data, and projects them onto
key kernels identified as influential to redundant neurons. This
targeted gradient projection allows for a more efficient and
lightweight update, reducing the required amount of flood data
and improving deployment practicality. We demonstrate the
overview of FL systems equipped with TrojanDam in Figure
2. At the beginning of every FL global round, the server
activates redundant neurons by introducing OOD mappings
before broadcasting. While adversaries may still attempt to
inject backdoors by exploiting these neurons, their efforts
are mitigated by aggregation with benign updates in which
redundant neurons remain activated

We further conduct extensive experiments on three im-
age datasets: CIFAR10, CIFAR100 [29] and EMNIST [8],
with three model architectures: VGG16 [45], ResNet18 and
ResNet34 [22]. We demonstrate the effectiveness of Trojan-
Dam, by comparing its backdoor suppression performance
with several SOTA defense mechanisms against a powerful
adversary. The adversary could upload different types of
backdoor updates trained using different training algorithms.
We assume that the adversary could continuously participate in
the FL paradigm for a large number of global rounds. We also
provide results to reveal the influence of several key hyper-
parameters, including the source of the flood dataset, flood
dataset size, and the ratio of key kernels, on the performance
of TrojanDam.

In summary, our contribution is four folds: 1) we propose
a novel detection-free backdoor defense paradigm, which
mainly relies on a proactive process on the global model to
robustify the FL model. 2) We reveal that redundant neurons in
neural networks could be robustified in a centralized setting
through injecting OOD samples. 3) Motivated by the above
observation, we migrate such an idea to FL settings, and pro-
pose a novel backdoor suppression mechanism, TrojanDam.
The proposed method has the FL server consistently inject
OOD mappings to robustify redundant neurons in the global
model, canceling backdoors during aggregation. 4) We provide
extensive empirical results to demonstrate the effectiveness
of TrojanDam over several SOTA backdoor defense methods
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across various adversarial and FL scenarios.

II. PRELIMINARIES AND RELATED WORK

A. Federated Learning

In an FL system, multiple data-owning clients jointly train
a global DNN model under the guidance of a central server.
Participating clients interact with the central server through
downloading the global model, and uploading local models
trained on their private data. This training paradigm reduces
the infrastructure cost through offloading computing tasks to
local devices, and also preserves users’ privacy as no raw
data is exchanged throughout the whole training process.
The baseline algorithm for implementing an FL system is
FedAVG [34]. Generally speaking, FedAVG aims to minimize
the summation of the local empirical losses

∑S
i=1 Li(θ) of S

participating clients. Here, we denote Li as the cross-entropy
over the local dataset Di of client i, and θ as the global model.
For global round t of the FL, the server first broadcasts the
current FL global model θt to a subset St of selected clients.
Each local client i in St then initializes its local model θti from
θt, and then trains its local model through computing updates
on Di. The server then aggregates all received local updates
through θt+1 = 1

|St|
∑

i∈St
θti to generate the global model for

global round t+1. In the rest of the paper, we adopt FedAVG
for FL training.

B. Backdoor Attacks in FL

After corrupting local clients, the adversary could in-
corporate poisoned samples into the local training dataset.
The adversary proceeds to train the poisoned model through
computing updates on the constructed training dataset using
mini-batch stochastic gradient descent. Besides the baseline
backdoor injection methods, previous works have proposed
various advanced backdoor training methods, which enjoy
stronger stealth against backdoor defenses. To escape from the
norm-clipping defense, which limits the influence of individual
updates through regularizing the norm of each received update
to a predefined bound, the adversary could adopt projected gra-
dient descend (PGD) to inject the backdoor [47]. Specifically,
the poisoned model is trained and then projected onto an ℓ2
ball around the model of the previous iteration.

Another line of work tries to fabricate backdoor updates to
make them statistically close to benign updates to escape from
backdoor detection. F3BA [12] first identifies a small fraction
of parameters with the lowest movement-based importance
scores computed from the element-wise product between their
weights and gradients. The identified candidate parameters
are the least important to the performance of the main task.
The adversary then compromises these parameters by flipping
their sign to enhance their sensitivity to the trigger. AutoAdapt
proposes to leverage the Augmented Lagrangian-based meth-
ods for automatically evading backdoor detection [28]. The
adversary could first train several benign models to compute
legitimate values for the detection metric used by the known
defense. The extracted values further form a valid range,
which is then transformed into the Lagrangian multipliers.

The backdoor model is then trained under the constraint of
these Lagrangian multipliers to achieve a satisfactory solution.
Several recent works propose to cast the backdoor attack as
a joint optimization problem. While training poisoned local
models, they directly optimize the backdoor trigger to make
models misclassify into the adversarial target label. CerP [32]
formulates the distributed backdoor attack in terms of three
learning objectives, which are the fine-tuning of backdoor trig-
gers, the control over poisoned model bias, and the diversity
of poisoned local models. PFedBA [33] further improves the
trigger optimization procedure through aligning gradients of
the backdoor task with those of the benign task.

Adversaries could also choose to inject different types of
backdoors into the global model. BadNets [19] proposes to
directly modify pixels in the original image, and considers the
overlaid pixel-pattern as the backdoor trigger. Targeted con-
tamination attack (TaCT) [48] further strengthens the stealth
of the injected pixel-pattern backdoor by only assigning the
target label to trigger-carrying samples from the specific class.
Blended backdoors [6] sample a random image or a fixed
noise mask from uniform distribution as backdoor triggers,
and construct backdoor images by mixing up triggers with
original images. This renders the constructed poisoned images
visually indistinguishable from benign ones, evading potential
human inspection. While aforementioned backdoors choose
manually created features as backdoor triggers, triggers for
semantic backdoors [1] could be selected as any naturally
occurring feature of the physical world. The adversary could
also construct a special type of semantic backdoors, termed as
the edge-case backdoors [49]. This kind of backdoors adopts
data that lives in the tail of the input distribution as poisoned
images. Such injected backdoors are less likely to conflict with
benign updates. This equips injected backdoors with stronger
durability against the vanishing backdoor effect [9], [53] and
stealth against backdoor detection mechanisms.

C. Backdoor Defenses in FL

Most existing backdoor defense mechanisms require the
central server to process received updates after clients finish
local training. The server could try to limit the influence of in-
dividual updates by either clipping them to a predefined bound
[47], or adding random noises to the aggregated model to
interfere with potentially injected backdoors [35]. However, it
is generally believed that solely applying influence-reduction-
based methods can only slow down the backdoor injection
rate, but disable from eliminating backdoors. Another line of
work tries to have the server identify backdoor updates among
benign updates by comparing model parameters. Identified
anomaly updates are filtered out from aggregation for the
next global round. We then elaborate on introducing several
SOTA detect-then-filter-based methods in the following. Also,
we select these detection methods as baseline algorithms
to demonstrate the effectiveness of the proposed method in
defending against long-term backdoor injections.

The server could equip the FL system with the byzantine-
robust aggregation protocol to filter out backdoor updates.
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The baseline algorithm, Multi-Krum [3], could ensure the
convergence of the distributed training with n participants and
at most f malicious clients. For every received update, the
server identifies n− f − 1 updates which are the closest in ℓ2
norm. The summation of the computed n− f − 1 distances is
assigned to every update, and the one with the smallest value
is selected iteratively until m updates are selected. The server
then aggregates all selected updates as the global model for
the next round.

A major line of detection-based methods tries to isolate
backdoor updates from benign updates by computing statistical
metrics on received model parameters. These methods gen-
erally build upon the assumption that introducing backdoors
makes poisoned models distinguishable from benign updates
in the parameter space. Deepsight [42] detects backdoor
attacks by measuring differences in model updates using
two metrics: Division Differences (DDifs) and Normalized
Energy Updates (NEUPs). DDifs compare prediction scores
between local and global models on random inputs, with
deviations indicating poisoned models. NEUPs analyze pa-
rameter updates to infer label distributions. Local updates are
classified as benign or poisoned based on NEUP thresholds
and then clustered using NEUPs, DDifs, and cosine similarity.
Clusters with a high ratio of benign models are accepted for
aggregation. Foolsgold [14] focuses on securing FL in the sybil
setting, where multiple clients could be controlled by a single
adversary. The defense mechanism is built upon that benign
updates are more diverse than poisoned ones, as they share
the same training objective. Different from directly ruling out
potential backdoors, Foolsgold assigns low aggregation weight
to updates with large cosine similarity with others to mitigate
backdoor injections. FLAME [39] first rules out suspicious
updates through clustering based on cosine similarity. All
accepted updates are then clipped to the median of the norm
of all accepted models m. Finally, the server adds a sufficient
amount of Gaussian noise N (0, σ2) to the aggregated model
to eliminate the injected backdoors, where σ = m

ϵ ·
√
2 ln 1.25

δ

for privacy budget ϵ and δ.
However, a recent work, Backdoorindicator, reveals the

inherent weakness of methods that relies on statistically exam-
ining received model parameters [31]. That is, these detection
methods fail to identify backdoor updates, which are fabricated
statistically close to benign ones. This work further combines
proactive processing on the global model with post-training
detection to enhance the detection success rate. This method
has the server first inject a pseudo-backdoor task, termed as
the indicator task, into the global model utilizing OOD data
before broadcasting to local clients. Once adversaries upload
poisoned models, the indicator task will be triggered and help
the server rule out backdoor updates from aggregation.

Despite being the SOTA backdoor detection theme, Back-
doorIndicator has relatively poor performance when identify-
ing backdoor updates in earlier training stages. The undetected
backdoor updates could still be incorporated into the global
model, rendering eliminating backdoors impossible. Consid-

ering the difficulty of identifying every backdoor update for a
long term, we propose a novel backdoor defense mechanism,
TrojanDam, which relies on robustifying the FL global model
leveraging OOD data before broadcasting to clients. We then
elaborate on the details in the following.

III. TROJANDAM

In this section, we illustrate the rationale and detailed
methodology of the proposed method. We start by describing
the threat model in terms of the goal and capability of both
the adversary and the defender. We proceed to reveal the
key intuition behind our method through considering why
backdoors could be planted into the FL global model. Through
carefully designed experiments, we find the decisive role of
redundant neurons in successfully planting backdoors, and
further explore ways to robustify these neurons in a centralized
machine learning (ML) model leveraging OOD samples. Due
to the privacy requirement of the FL paradigm, we describe
challenges when migrating the method to decentralized set-
tings and their corresponding solutions. Finally, we present
the detailed methodology of TrojanDam.

A. Threat Model

Adversary’s goal and capability. The adversary tries to plant
backdoors into the FL global model by corrupting participating
clients. Successfully injected backdoors will make the FL
model misclassify into an adversary-chosen label, termed the
target label, when encountering predefined backdoor triggers,
while leaving the main task accuracy uninfluenced. Once a
local client is corrupted, the adversary has access to its local
dataset, and gains full control of the model training and up-
loading process. The adversary could continuously participate
in the FL training process starting from any global round for
a long range of global rounds. We do not make constraints
on types of injected backdoors. We assume a benign majority,
where in each global round, the adversary could compromise
up to 50% of all participating clients.
Defender’s goal and capability. The defender (also the
FL server) aims to learn a global model on the main task
{(xm, ym)|ym ∈ Ym}, where Ym is the label space of
the main task data, through iteratively broadcasting to a
selected number of clients, and aggregating received updates.
Meanwhile, the defender will try to protect the global model
from backdoor injections. We assume that the defender has no
access to data that is in the same distribution as the raw data of
participating clients, which adheres to the privacy requirement
of the FL framework. We further assume that the defender
could collect a number of OOD samples {(xo, yro)|yro ∈ Yro}
from the public dataset. The collected OOD samples have
distinct real label space with the main task data, which means
Ym ∩ Yro = ∅.

B. Effective Backdoor Injection via Poisoning Redundant Neu-
rons

We first illustrate the key intuition behind our proposed
defense through exploring the reason why backdoors can be
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planted into the FL global model, and how it could be utilized
to launch more powerful attacks.

In centralized settings, it is generally believed that the over-
parameterization of deep neural networks renders adversaries
the ability to plant backdoors into the machine learning model
[40], [19], [6]. Specifically, previous studies [10], [21], [18],
[17] revealed that only a limited number of parameters are
closely related to the main task, while pruning the rest param-
eters (considered to be redundant neurons) has minimal impact
on the accuracy of the main task. Adversaries could thus
inject backdoors on these redundant neurons by incorporating
poisoned samples into the training dataset. The described
over-parameterization assumption also accounts for the sparse
nature of gradients in stochastic gradient descent (SGD),
which further sheds light on why backdoors can be injected
into the FL global model, even if adversaries control only
a single participant. Relevant studies [46], [26] empirically
show that the majority of the ℓ2 norm of the aggregated benign
updates is concentrated in a very small number of coordinates,
while leaving most redundant parameters largely unchanged.
Backdoors planted on these redundant parameters are then
aggregated into the global model without interference from
other benign updates.

Further exploiting the redundant neurons can enable adver-
saries to launch more powerful backdoor attacks. Neurotoxin
[53] proposes to identify parameters that are most frequently
updated by benign updates, and exclude these parameters when
training poisoned models. This allows adversaries to focus
on planting backdoors on redundant neurons. Specifically,
adversaries first identify the top-k% coordinates of the benign
gradients utilizing their benign dataset. Adversaries could then
update the malicious model by computing gradients on the
poisoned dataset. These gradients are then projected onto
the bottom-(100-k)% coordinates, leaving top-k% parameters
which are frequently updated by benign clients unchanged.
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Fig. 3: Accuracies of FL global model on the main task and the
poisoned tasks which are trained using SGD, and Neurotoxin
with different percentages of excluded parameters (k). The
adversary conducts single client attack in a continuous fashion
staring from 800th global round.

We empirically compare the backdoor performance between
vanilla SGD and Neurotoxin with different percentages of
excluded parameters for backdoor injection. We assume that
the adversary, who tries to inject pixel-pattern backdoors[19],

successively controls only one out of all selected clients in
every global round starting from 800th round. As shown in
Figure 3, the increase in the percentage of excluded parameters
achieves higher poisoned task accuracy on the FL global
model, when poisoning for the same number of global rounds.
Specifically, injecting backdoors utilizing Neurotoxin when
excluding 10% of coordinates achieves 66.4% poisoned task
accuracy for the 880th global round, which is over twice of the
poisoned task accuracy when only using SGD. This is because
deliberately excluding more frequently updated neurons causes
backdoor information to be planted more in redundant neurons.
During FL aggregation, backdoor information on redundant
neurons hardly conflicts with benign updates, resulting in
high backdoor accuracy. The phenomenon further verifies
the effectiveness of injecting backdoors in FL by poisoning
redundant neurons. It also indicates that the effectiveness
comes from a lack of conflict between benign and backdoor
updates on redundant neurons.

Motivated by the special role of redundant neurons in
planting backdoors into the FL global model, we explore
ways to defend against backdoor attacks through robustifying
redundant neurons in the FL global model. Specifically, we try
to activate redundant neurons by correlating them with addi-
tional information. Thus, the effects of backdoor updates on
redundant neurons can be canceled during aggregation with
benign updates, whose redundant neurons remain activated. In
the following section, we propose such a method that could
activate redundant neurons, and correlate them with out-of-
distribution (OOD) data in centralized ML models.

C. Activating Redundant Neurons Leveraging OOD Data

The idea of activating redundant neurons utilizing OOD data
is motivated by the recently revealed property of backdoor
tasks[31], which is backdoor samples are essentially OOD
samples concerning benign samples from the target class.
Thus, the defender could first construct a dataset with samples
that are OOD concerning main task samples. The defender
could then simulate the behaviors of backdoor attackers, and
inject a sufficient number of OOD mappings into the model to
activate redundant neurons. We first elaborate on the proposed
method in a centralized setting.

In the following, we consider a defender who aims to train a
centralized ML model, and tries to activate redundant neurons
utilizing OOD data. Specifically, we assume the defender is
training ResNet18 on CIFAR10. In addition to main task sam-
ples (xm, ym) from CIFAR10, the defender has extra access to
a limited number of OOD samples (xo, yo), which we assume
are sampled from CIFAR100 wlog. To activate redundant
neurons, the defender then trains the model through computing
updates on the dataset D1 = ({(xi

m, yim)}Ni=1, {(xj
o, y

j
o)}Mj=1),

which is constructed by mixing up N main task samples and
M OOD samples. Corresponding labels for OOD samples
are randomly assigned, and updated every a fixed number of
training iterations. This could help to ensure a continuously
sufficient number of OOD mappings for the ML model to
learn over iterations. For comparison, we also consider two
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additional scenarios where the defender constructs the training
dataset using only main task data, or only OOD data, which
are D2 = {(xi

m, yim)}N+M
i=1 and D3 = {(xi

o, y
i
o)}N+M

i=1

respectively.
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Defenders in these scenarios proceed to train the ML model
for the same number of iterations with their datasets. When
training finishes, model gradients are reinitialized to zero,
and recomputed using the same set of main task data. We
illustrate the magnitude distribution of gradients in Figure 4,
which demonstrates that training by mixing up OOD data and
main task data could significantly activate redundant neurons
in the ML model. Specifically, the magnitude of gradients
training using only main task data, or only OOD data is
largely concentrated within 0.01. These gradients contain few
coordinates with value exceeding 0.02. While training with a
mixture of main task data and OOD data could reduce the
number of neurons with gradient lie in [0, 0.0005] by more
than half, and generate a considerable number of neurons
with gradient larger than 0.03. The gap is further exacerbated
when considering the number of neurons with larger gradients.
The model trained using both main task data and OOD data
has around 800 neurons with 0.07 gradient, and even over
200 neurons with 0.1 gradient. However, the number of such
neurons within the models trained using either only main task
data or only OOD data are nearly 0. This indicates that training
with both OOD and main task data could help to activate
redundant neurons, while a lack of either OOD data or main
task data fails.

The effectiveness of activating redundant neurons utilizing
OOD data in ML settings motivates us to immigrate the
method to FL settings, where the server (as the defender)
could continuously inject fresh OOD mappings into the global

model at the beginning of every global round. However,
executing such a mechanism in a decentralized manner faces
several challenges due to the strict privacy requirement of
FL framework. We then elaborate on these challenges and
corresponding solutions in the next part.

D. Challenges When Migrating to FL settings

1) The lack of main task samples on the FL server.
Different from centralized settings where the defender has
access to main task samples, the server in FL has no access
to the main task data in FL framework. The lack of main
task samples disables the server from imitating adversarial
behaviors, making it hard to precisely localize and activate
redundant neurons by introducing OOD mappings. This could
eventually lead to a decrease in the backdoor suppression
performance.

2) Injecting a large number of OOD samples increases
the needed time for the robustification to take effect. To
effectively activate redundant neurons within the entire model,
the FL server needs to incorporate a sufficient number of
OOD samples into training. However, the increasing demand
for OOD samples not only brings difficulty for the server to
collect, but also takes longer for the defense to take effect.

We demonstrate this challenge following the setting in
Section 3.3, where a centralized defender trains its ML model
for certain rounds, using both main task and OOD data. For the
constructed training dataset, we fix the size of the main task
dataset, and vary the number of OOD samples. We describe
the effectiveness of activating redundant neurons through the
total number of neurons (denoted as active neurons) with a
gradient value larger than a certain threshold (0.05 in this
case). As shown in the upper part of Figure 5, although
more OOD samples could effectively increase the number of
active neurons, it takes more rounds to take effect. Specifically,
incorporating 1000 OOD samples into training increases the
number of active neurons to over 1.4× 105 after 100 rounds,
achieving the strongest activating effect compared to a smaller
OOD dataset size. However, it merely gets 0.2 × 105 active
neurons after 30 rounds, which is lower than half of the
number of active neurons trained using 300 OOD samples.
When migrating to FL settings, the server is unaware of the
round when adversaries start poisoning. Thus, it is desired
to activate enough redundant neurons as soon as possible to
prepare the global model against backdoor poisoning.

In the following, we propose special designs to address the
above challenges. Besides the OOD dataset which is used
to activate redundant neurons and termed the flood dataset,
we suggest sampling an additional OOD dataset, termed the
shadow dataset to substitute for the main task data. The
global training dataset is then constructed using a mixture
of shadow and flood data. For the tradeoff between large
flood dataset size and short preparation time needed by the
FL server, we propose to only update the model on a small
set of key convolution kernels which are the most vulnerable to
backdoor attacks and insensitive to benign training. Building
upon the proposed techniques, we develop a novel server-
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side backdoor defense method, TrojanDam1, which could
proactively suppress the backdoor injection through activating
redundant neurons leveraging OOD data. We then proceed to
elaborate on the details of TrojanDam.
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Fig. 5: The number of neurons with gradients larger than
0.05 (UPPER) trained using different OOD dataset size, and
(LOWER) trained using 300 flood samples, and different
parameter selection methods.

E. Detailed Methodology

To implement TrojanDam, the server starts with construct-
ing the flood dataset and the shadow dataset using OOD
samples. At the beginning of every FL training round, the
server updates sample labels from both the flood dataset and
the shadow dataset. Specifically, labels in the flood dataset
need to be randomly assigned, and those in the shadow dataset
need to be assigned using the prediction of the current FL
global model on corresponding shadow samples. The server
proceeds to kernel-wisely identify a small set of key parame-
ters using both the shadow and flood data. The training is then
conducted through computing updates, which are projected on
the identified key parameters, on a mixture of shadow data and
OOD data. The server could then broadcast the global model
to all selected clients, and aggregate the received updates for
the next global round. The detailed algorithm is shown in
Algorithm 1. We next elaborate on each step in the following:
Constructing the flood dataset. The sever first needs to col-
lect N samples {xi

f}Ni=1, which are OOD concerning the main
task data, to construct the flood dataset. The server proceeds
to additionally sample N noise masks {ni}Ni=1 with the same
dimension of the collected flood data. The flood dataset is then
constructed by embedding flood samples with corresponding
noise masks. Their labels are uniformly drawn from the main
task label space. To keep the global model learning new OOD
mappings for continuously activating redundant neurons, the
set of noise masks, and labels should be resampled at the
beginning of every FL round. Specifically, we denote Ym to be

1The proposed method compares to a dam that controls the number of
redundant neurons. The dam could release OOD mappings (like the flood) to
activate redundant neurons in favor of a robustified FL model.

Algorithm 1: TrojanDam

Input: OOD samples ({xi
f}Ni=1, {xj

s}Mj=1), number of
training iterations and learning rate in injecting
OOD mappings: E, η, weight of the
regularization term λ and the ratio of the
trainable parameters ϵ. set of the selected local
client at round t: St.

Output: Global model at global round t+ 1: Gt+1

// Server initializes at global round
t

1 Randomly sample ni ∼ U([−0.5, 0.5]), yif ∼ U(Ym)

2 Df = {(xi
f + ni, yif )}Ni=1

3 Ds = {(xi
s, y

i
s)}Mi=1, yis = Gt(xi

s)
4 P = IdentifyKeyKernels(Df , Ds, ϵ)
5 The server saves estimated running mean and variance

as µM and σM .
6 β′ ← Gt

7 for e = 1, ..., E do
8 Compute stochastic gradient

ge = ∇(Ltask(w
′, Df ||Ds) + λ||w′ −Gt||2)

9 Project ge on P to get gP
e

10 β′ = β′ − ηgP
e

11 end
12 The server replace the BN statistics in w′ with µM

and σM .
13 The server broadcasts β′

// Clients perform local training
14 Clients initialize with β′

15 Clients train their local models and update
∆βi = Li − β′ to the server
// Server aggregates

16 Clipping parameter γ = 1
|St|

∑
i∈St
||∆βi||2

17 Gt+1 = β′ + 1
|St|

∑
i∈St

∆βi

max(1,||∆βi||2/γ)

the main task label space, the flood dataset Df is constructed
and updated for every FL training round such that

Df = {(xi
f +ni, yif )}Ni=1, y

i
f ∼ U(Ym), ni ∼ U([−0.5, 0.5])

(1)
Constructing the shadow dataset. In addition to the flood
dataset, the server needs to sample another set of OOD samples
{xi

s}Mi=1 to construct the shadow dataset Ds. These shadow
samples are then assigned with the inference results from
the current FL global model. This is because that ReLU
neural networks tend to make overconfident predictions on
OOD samples. These models tend to assign OOD samples
with embeddings which are close to those of main task
samples in the feature space [23]. We further verify this
property by visualizing the shadow and in-distribution data
in the feature space of a model which is well-trained on
CIFAR10. Empirically, we sample 300 images from 6 classes
of CIFAR10 with the number of images in each class equals
to 50. For each in-distribution sample, we construct its shadow
counterpart by sampling an image, which is predicted by the
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model as the label of its corresponding in-distribution data,
from CIFAR100. As it is shown in Figure 6, shadow data and
in-distribution data, which shares the same label, are clustered
in the feature space. Thus, OOD samples with model-assigned
labels (termed as shadow data) could be considered as the
substitution for the main task data, and further incorporated
into the training to locate redundant neurons.
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20

Shadow Data
In-distribution Data

Fig. 6: Feature space visualization of the shadow and in-
distribution data with the same labels. Different colors rep-
resent different classes.

We further require the label distribution of the shadow
dataset to be a uniform distribution of the main task label
space, which could avoid the potential distribution shift on
the main task accuracy. Specifically, we denote the FL global
model as F , the shadow dataset Ds is constructed at the
beginning of every FL training round in the following:

Ds = {(xi
s, y

i
s)}Mi=1, yis = F(xi

s) (2)

Identifying key kernels. We further propose to have the
server only update a small fraction of all model parameters
to simultaneously achieve a decent effect on activating re-
dundant neurons and short preparation time. The FL server
could utilize the flood dataset and shadow dataset to identify
parameters, which are the most vulnerable to backdoor attacks
and insensitive to the main task. Also, we propose to select
parameters based on the average gradient of convolution
kernels instead of individual neurons. This is because the
convolution kernels serve as feature encoders in the model,
which possess stronger expressing ability and are therefore
more vulnerable to backdoor attacks compared to parameters
in classifier and BN [25] layers. We further justify this design
in the following part.

Specifically, we assume that the server has constructed
the flood dataset Df , and the shadow dataset Ds. The
server proceeds to compute the model gradient Gf =
({(Ki

f , γ
i
f , β

i
f )}Ji=1, (wf , bf )), using a mixture of the flood

dataset and the shadow dataset Df ||Ds. Here, we decompose
the computed gradients into J sets of convolution kernels, their
corresponding BN scaling weights and biases (Kf , γf , βf ).
We further denote the weight and bias of the subsequent

Algorithm 2: IdentifyKeyKernels
Input: The flood dataset Df , the shadow dataset Ds,

and the ratio of the trainable parameters ϵ.
Output: Selected trainable parameters P

1 Compute gradients
Gf = ({(Ki

f , γ
i
f , β

i
f )}Ji=1, (wf , bf )) using Df ||Ds

2 Compute gradients Gs = ({(Ki
s, γ

i
s, β

i
s)}Ji=1, (ws, bs))

using Ds

3 Compute average gradient different of convolution
kernels {{ki = Avg(Ki

f −Ki
s)}Ji=1}

4 I ←Index list of kernels after ranking {ki}Ji=1 in a
descending order

5 P = [ ], ind = 0 /* Initialization */
6 Nm ← The total number of model parameters

excluding the classifier
7 while Len(P)/Nm < ϵ do
8 p←kernel with the ind-th largest k (kI[ind])
9 (γp, βp)← corresponding BN scaling weight and

bias of kernel p
10 P ← P ||(p, γp, βp)
11 ind += 1
12 end

classifier to be (wf , bf ). The server also needs to compute the
model gradient Gs = ({(Ki

s, γ
i
s, β

i
s)}Ji=1, (ws, bs)) using only

the shadow dataset Ds. The large difference between Kf and
Ks denotes the kernel is more vulnerable to be injected with
backdoors, and more irrelevant to the main task. Thus, the set
of trainable parameters P could be constructed by iteratively
incorporating the kernel with the largest ki = Avg(Ki

f −Ki
s),

and its corresponding γi and βi into P until the percentage of
total trainable parameters reaches the limit ϵ. Notably, we only
select candidate parameters from convolution kernels and their
corresponding BN parameters, while leaving classifier parame-
ters (w, b) unchanged. The detailed algorithm for constructing
the trainable parameter set P is shown in Algorithm 2.
Design justification of updating key kernels. We further
provide empirical results to demonstrate the effectiveness of
updating key kernels instead of individual neurons. Following
the setting in Section 3.3, we consider the defender updates
its ML model on parameters identified using Algorithm 2 with
ϵ = 0.15. We consider another setting where the defender di-
rectly identifies parameters that rank top-15% in the difference
between the gradient obtained using a mixture of the flood
dataset and the shadow dataset, and that calculated using only
the shadow dataset.

In the lower part of Figure 5, updating models with 300
flood samples on parameters selected on kernels achieves
the strongest activating effect across all evaluated settings. It
activates over 8 × 104 active neurons, which is about twice
when training the whole model or poisoning on selected
neurons with the same flood dataset size. Updating models on
key kernels could also shorten the preparation time to quickly
equip the model with the ability against potential backdoor
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adversaries. It achieves a promising activating effect in 20
training rounds, and surpasses all other settings after training
for only 8 rounds.
Injecting OOD mappings. Having constructed the flood
dataset Do, the shadow dataset Ds and the trainable parameter
set P , the server could then begin to inject OOD mappings to
activate redundant neurons. At the beginning of every FL train-
ing round t, the server first needs to update the flood dataset
by refreshing the noise mask set and assigning new random
labels. Labels in the shadow dataset also need to be updated by
the prediction results of the current global model on shadow
samples. Then, the server saves the current BN statistics, and
then constructs the training dataset Dt = Ds||Df through
mixing the flood dataset and the shadow dataset. The global
model is then trained through computing updates on Dt via
optimizing the cross-entropy loss Ltask. To further control
the influence of injecting OOD mappings on the main task
accuracy, we regularize the model through punishing updates
that deviate too much from the original model. Specifically,
let w′ be the training global model, and Gt be the original
global model. The server minimizes the following loss with
respect to Dt:

L = Ltask + λ||w′ −Gt||2, (3)

where λ denotes the weight of the regularization term. The
computed updates are then projected on the selected trainable
parameters P . The server then replaces the BN statistics with
the previously saved ones to avoid BN statistic drift [31].
The robustified global model is then broadcast to all selected
clients. After receiving updates from clients, the server clips
all updates to an adaptive bound, which is computed as the
average of the norm of all received updates. The initial global
model for t + 1 round is then generated through aggregating
all clipped updates.

IV. EXPERIMENTS

A. Experimental Setup

System settings. We implement an FL system using FedAVG
[34] with a single machine using a NVIDIA RTX A6000.
Experiments are conducted on three computer vision datasets:
CIFAR10, CIFAR100 [29] and EMNIST [8] using three model
architectures: VGG16 [45], ResNet18 and ResNet34 [22].
We assume totally 100 local clients participating in the FL
system, among which 10 clients are randomly selected to
contribute to every global round. The training dataset is
randomly partitioned over clients in a non-IID fashion using
Dirichlet sampling [24], with the sampling parameter α set to
0.9 by default. We also vary α to evaluate presented methods
under more challenging non-IID settings. Codes are available
at https://github.com/ybdai7/TrojanDam-backdoor-defense.
Adversarial settings. We evaluate the effectiveness of the
proposed method against a strong adversary capable of craft-
ing backdoor updates using a range of malicious train-
ing algorithms, including PGD [47], Neurotoxin [53], and
Chameleon [9]. The adversary can also inject various types
of backdoors, such as blended backdoors [6], TaCT [48],

semantic backdoors [1], and edge-case backdoors [49]. For
TaCT backdoors, target samples are drawn from class 8,
and, without loss of generality, all backdoors are assigned
a target label of 3. In the case of semantic backdoors,
we use the car-with-vertically-striped-walls-in-the-background
from CIFAR10. Additionally, adversaries may deploy opti-
mized trigger attacks using CerP [32] and PFedBA [33].
Beyond single-client attacks, the adversary may also control
multiple clients. In multi-client scenarios, attackers may either
corrupt several clients to jointly inject blended backdoors
via Neurotoxin or employ DBA [51], which is tailored for
collaborative poisoning. We assume the adversary initiates
backdoor injection early during training-a challenging scenario
for existing defenses [31]. Specifically, the attack begins at the
430th global round and continues for an extended duration.
For CIFAR10, the poisoning lasts 600 rounds, except in the
case of optimized trigger attacks, which are evaluated over
100 rounds.
Baseline defenses. We evaluate the effectiveness of Tro-
janDam against the aforementioned adversary by comparing
it with several SOTA backdoor defense methods, including
Deepsight [42], Foolsgold [14], FLAME [39], FreqFed [13],
BayBFed [30], MESAS [27], FLTrust [4], and BackdoorIndi-
cator [31]. For BackdoorIndicator, we adopt the variant with
adaptive norm clipping. In addition, we include a baseline
setting with no explicit defense mechanism beyond adaptive
norm clipping, referred to as Nodefense. We assess the per-
formance of all defense methods using two metrics: the mean
backdoor accuracy (BA) over the final 20 global rounds, and
the accuracy on the main task (MA), to account for any
potential degradation in utility. In all reported results, bold
values indicate the best performance (i.e., lowest metric), while
underlined values denote the second-best.
TrojanDam settings. To deploy TrojanDam effectively, the
FL server must collect a set of OOD samples to construct
the flood and shadow datasets. For the CIFAR10 main task,
we use samples from CIFAR100 as the source for both flood
and shadow datasets. For experiments on other datasets, we
instead use CIFAR10 to construct these datasets. By default,
the flood dataset contains 800 samples, and the shadow dataset
contains 300 samples. The trainable parameter ratio ϵ is set to
0.15, and the regularization weight is fixed at 0.8. The server
begins injecting OOD mappings into the global model starting
from the 400th global round-30 rounds prior to the onset of
backdoor poisoning. Note that the 400th round corresponds to
an early training phase, during which the main task accuracy
is only around 78%. We did not choose to start poisoning at
even earlier rounds as the magnitudes of benign updates are
still large, and the effect of backdoor injection is rather weak.
In addition, we provide empirical results to analyze the impact
of key hyperparameters on the defense performance.

B. Results

Performance against single-client attacks. We evaluate the
effectiveness of TrojanDam under various combinations of
backdoor types and malicious training algorithms, with results
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TABLE I: BA (MA) of single client attack with different combinations of backdoor type and malicious training algorithm
against all evaluated defense mechanisms. Bold values indicate the lowest metrics, while underlined denotes the second lowest.

training alg. bkdr. types Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

PGD

blended 78.73 (89.69) 41.7 (90.01) 75.9 (88.42) 89.02 (87.69) 79.64 (88.52) 83.25 (90.03) 77.65 (89.71) 77.05 (90.36) 43.32 (90.46) 9.79 (88.50)
semantic 65.32 (90.43) 69.61 (90.27) 69.69 (89.89) 66.87 (88.30) 69.14 (87.47) 78.02 (88.26) 79.67 (87.91) 65.55 (88.95) 52.13 (90.35) 17.85 (88.03)
edge case 70.39 (90.44) 52.73 (90.16) 64.28 (90.36) 81.92 (88.18) 69.89 (88.88) 69.73 (89.04) 70.46 (88.19) 60.99 (89.35) 10.57 (89.76) 10.38 (88.84)

TacT 96.34 (88.89) 90.18 (88.37) 96.22 (88.01) 99.36 (86.21) 91.89 (87.43) 83.87 (88.11) 92.67 (89.21) 93.70 (88.77) 0.84 (89.88) 1.30 (87.21)

Neurotoxin

blended 79.49 (91.04) 42.44 (89.58) 75.42 (89.51) 88.84 (88.84) 72.34 (88.18) 84.62 (89.14) 80.38 (90.02) 76.18 (89.70) 46.60 (90.22) 10.00 (87.92)
semantic 64.42 (90.27) 67.40 (90.34) 68.37 (89.63) 67.40 (88.68) 77.25 (86.93) 80.41 (88.63) 89.41 (87.57) 66.51 (89.31) 51.84 (89.49) 14.92 (89.42)
edge case 67.27 (91.09) 53.57 (90.11) 58.73 (89.81) 82.96 (88.47) 58.03 (89.10) 70.17 (88.58) 61.23 (85.47) 56.83 (89.47) 18.65 (90.19) 12.27 (88.30)

TacT 95.11 (88.33) 88.68 (88.84) 96.27 (88.15) 0.25 (88.30) 71.15 (87.12) 69.83 (87.56) 86.60 (88.20) 93.47 (88.42) 1.54 (89.69) 1.10 (87.93)

Chameleon

blended 78.91 (90.11) 43.74 (89.91) 74.66 (89.78) 88.99 (88.42) 49.87 (89.22) 81.45 (88.95) 80.61 (90.11) 72.55 (89.34) 40.77 (90.05) 22.60 (89.27)
semantic 63.32 (90.36) 61.34 (89.98) 61.40 (90.44) 63.41 (88.67) 81.36 (88.20) 82.54 (89.54) 83.27 (86.24) 61.81 (88.79) 44.34 (89.44) 16.52 (89.59)
edge case 51.66 (90.30) 39.75 (89.90) 41.47 (88.26) 73.66 (89.67) 26.53 (89.17) 58.76 (88.77) 59.95 (87.82) 49.40 (88.94) 12.89 (90.69) 20.67 (88.10)

TacT 97.35 (89.45) 78.04 (88.73) 94.16 (90.02) 99.38 (88.39) 76.51 (87.89) 67.80 (87.57) 94.50 (87.26) 93.40 (88.49) 1.85 (90.14) 1.48 (89.03)

CerP optimized 79.09 (90.18) 45.81 (88.96) 74.27 (88.33) 90.99 (88.37) 72.15 (89.40) 79.26 (89.21) 77.42 (88.80) 63.80 (88.15) 41.69 (89.42) 30.76 (87.28)

PFedBA optimized 97.47 (87.16) 82.68 (88.78) 96.70 (87.12) 98.99 (87.82) 96.77 (84.88) 96.22 (86.34) 99.73 (87.22) 99.93 (87.04) 96.57 (86.71) 35.97 (86.62)

TABLE II: BA (MA) of single client attack under different non-IID settings, and different poisoned learning rates (plrs)
against all evaluated defense mechanisms. The backdoor type, and malicious training algorithms are blended backdoors and
Neurotoxin.

alpha plr. Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

0.9
0.01 69.31 (90.48) 42.20 (90.77) 63.94 (90.77) 83.16 (89.92) 71.61 (90.31) 73.77 (89.62) 65.41 (87.49) 64.83 (90.41) 36.67 (90.16) 11.73 (88.95)

0.025 79.49 (90.43) 42.44 (90.95) 75.42 (90.76) 88.84 (89.98) 72.34 (90.30) 84.62 (89.39) 80.38 (88.10) 76.18 (90.39) 46.60 (90.06) 10.00 (88.99)
0.04 85.06 (90.36) 42.42 (91.09) 82.05 (90.76) 12.26 (90.43) 55.32 (90.43) 88.26 (90.20) 83.64 (88.75) 82.32 (90.45) 63.58 (90.09) 11.63 (89.23)

0.5
0.01 72.69 (89.57) 45.87 (89.33) 63.07 (89.06) 84.98 (88.61) 75.03 (88.76) 68.75 (89.16) 74.16 (88.79) 61.86 (89.06) 43.14 (90.11) 14.45 (88.48)

0.025 82.24 (89.46) 43.69 (88.18) 74.46 (89.81) 90.24 (88.43) 81.71 (88.71) 77.82 (88.35) 82.66 (88.81) 74.79 (89.04) 67.35 (90.36) 17.12 (87.65)
0.04 87.67 (89.35) 49.60 (89.41) 80.88 (89.80) 92.76 (88.41) 79.03 (88.66) 86.85 (88.48) 84.89 (87.66) 81.56 (89.02) 80.39 (90.35) 23.45 (88.70)

0.2
0.01 48.42 (87.85) 37.11 (88.35) 45.30 (86.52) 78.28 (84.58) 64.19 (84.96) 63.84 (84.50) 67.54 (83.36) 41.05 (85.58) 14.21 (86.20) 8.09 (85.74)

0.025 66.13 (88.09) 39.61 (88.41) 45.15 (86.48) 86.93 (84.89) 69.51 (84.16) 78.24 (85.52) 80.41 (82.87) 55.77 (85.63) 32.29 (86.65) 13.76 (85.85)
0.04 78.03 (88.18) 40.65 (88.52) 69.74 (86.81) 13.5 (85.29) 62.36 (84.39) 85.70 (84.51) 86.39 (83.05) 66.75 (85.60) 52.17 (87.19) 16.25 (86.30)

summarized in Table I. As shown in the table, TrojanDam
successfully suppresses the BA to the lowest value in most
settings against a consistent backdoor injection for 600 global
rounds. In the few scenarios where TrojanDam does not
achieve the lowest BA, its performance remains highly com-
petitive, with only marginal differences compared to the best-
performing method. For example, when defending against
blended backdoors trained with PGD, TrojanDam reduces
the BA to 9.79%, outperforming the second-best method,
Deepsight, by 31.9%. In the case of TaCT backdoors, al-
though BackdoorIndicator achieves the lowest BA at 1.54%,
TrojanDam exhibits comparable performance, limiting the BA
to 1.30%, with a negligible difference of less than 1%.

For backdoor updates trained using more advanced mali-
cious training algorithms, like Neurotoxin and Chameleon,
TrojanDam still effectively restricts the attack success rate
to nearly a random guess. TrojanDam achieves 14.92%
BA against the injection of semantic backdoors trained us-
ing Neurotoxin, and 22.60% BA against Chameleon-trained
blended backdoors. While the second-best defense mechanism
only gets corresponding backdoor accuracies of 51.84% and
44.77%, which are over 20% larger than those of TrojanDam.
TrojanDam maintains its effectiveness when facing optimized
trigger attacks. For CerP, TrojanDam achieves the lowest
BA of 30.76%, while BackdoorIndicator achieves the second
lowest BA of 41.69% . Especially for the continuous attack of
PFedBA, other evaluated methods fail to defend for even 10
global rounds. As shown in the lower part of Figure 7, the BA
raises to around 80% at 440th global round for all other evalu-
ated mechanisms. This is due to the dual optimization process

in PFedBA, generating both strong and stealthy backdoor
updates. However, TrojanDam could still restrict the increase
of BA to 35.97% after 100 continuous backdoor injection,
demonstrating its strong backdoor mitigation performance.
The superior performance of TrojanDam against the injection
of various backdoors trained using different algorithms further
demonstrates the adaptability of the proposed method.

TrojanDam maintains stable defense performance through-
out the entire injecting process. In Figure 7, TrojanDam consis-
tently suppress the BA to below 20% for semantic backdoors
trained using Neurotoxin, and blended backdoors trained using
Chameleon. The consistency of suppressing backdoor injection
over long iterations, together with the wide adaptability under
various adversarial settings strengthen the effectiveness of
TrojanDam.

Performance under different non-IID settings and different
poisoned learning rates. Table II shows the performance
of all evaluated defense mechanisms under different non-IID
settings, and different plrs. TrojanDam outperforms existing
methods under different non-IID settings, restricting the BA
to around 15%. Even for the challenging data distribution
setting where α = 0.2, TrojanDam achieves 13.76% BA when
plr = 0.025, while BackdoorIndicator achieves the second-
best performance with 32.29% BA.

As indicated in [31], adversaries may deliberately generate
backdoor updates using a small plr, making them statistically
indistinguishable from benign updates and thereby evading
statistical detection mechanisms. Conversely, adversaries may
also upload updates with large deviations from benign ones
by adopting a high plr. These updates not only remove the
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Fig. 7: BA (MA) achieved by the injection of (UPPER)
semantic backdoors trained using Neurotoxin, (MIDDLE)
blended backdoors trained using Chameleon, and (LOWER)
optimized trigger using PFedBA under various backdoor de-
fense mechanisms.

indicator tasks embedded by the server, but also significantly
amplify the impact of the backdoor on the global model.
Table II presents the resilience of TrojanDam under varying
plr settings. Although increasing plr leads to a slight rise in
BA, TrojanDam remains robust, with the highest BA capped at
23.45%, and most cases restricted to around 15%. For other
defense mechanisms, we observe that FLAME and FreqFed
benefit from increased plr, exhibiting improved detection
performance. This aligns with their design rationale, as both
methods rely on cosine similarity-either in the parameter space
or frequency domain-to identify anomalies. Backdoor updates
trained with a large plr tend to deviate more from benign ones,
making them more detectable. In contrast, BackdoorIndicator
becomes less effective under such conditions. Specifically,
when facing backdoor updates generated with 0.04 plr and
0.5 α, the BA reaches 80.39%. This degradation results
from the gradual removal of the server-planted indicator task,
rendering BackdoorIndicator incapable of detecting malicious
behavior. Defense methods like Foolsgold, BayBFed, MESAS,
and FLTrust show similar trends across different plr and α
values. Their performance remains largely insensitive to α, but
they gradually fail to defend against backdoor attacks as plr
increases. This is due to the stronger influence of highly devi-
ated backdoor updates on the global model, which accelerates

BA growth under these defenses. Deepsight remains relatively
stable, showing minimal sensitivity to both α and plr, with
BA consistently around 40% across all evaluated settings.

TABLE III: BA (MA) of multiple client attack against all
evaluated methods. For Neurotoxin adversaries, the backdoor
type is the blended backdoor.

training alg. Neurotoxin DBA

bkdr. % 20 30 40 40

Nodefense 87.05 (90.39) 87.77 (90.16) 89.03 (89.93) 96.84 (88.96)
Deepsight 61.26 (90.95) 67.58 (90.76) 73.58 (90.62) 90.37 (89.49)
Foolsgold 10.66 (90.99) 10.92 (90.82) 13.10 (90.79) 10.38 (90.03)
FLAME 91.76 (89.31) 93.25 (88.61) 88.34 (77.33) 99.07 (85.07)
FreqFed 50.90 (90.14) 15.56 (90.26) 12.91 (90.58) 92.04 (89.97)
BayBFed 88.67 (89.69) 90.22 (89.69) 90.38 (89.40) 93.60 (88.76)
MESAS 82.42 (89.27) 88.81 (87.65) 79.76 (87.38) 89.20 (88.57)
FLTrust 84.31 (90.11) 86.20 (89.92) 86.32 (89.52) 93.53 (88.95)
Indicator 53.91 (91.15) 53.55 (90.78) 50.94 (91.23) 40.12 (90.43)

TrojanDam 11.22 (88.82) 10.29 (87.07) 15.62 (88.06) 29.58 (88.35)

Performance against multiple client attack. Table III
demonstrates the defense performance of different defense
mechanisms against adversaries with the ability to control
multiple clients. For adversaries using Neurotoxin, Foolsgold
and TrojanDam consistently achieve both comparable and
the lowest BA across all settings. As it is shown in the
table, these two mechanisms achieve 13.10% and 15.62% BA
respectively even if 40% of all clients in every global round
are compromised. As Foolsgold is specifically designed for
multiple client attacks, the comparable performance between
Foolsgold and TrojanDam further indicates the effectiveness
of TrojanDam against multiple client attacks. For adversaries
controlling 40% of clients using DBA, Foolsgold achieves the
lowest BA. TrojanDam restricts the BA to 29.58%, which is
the lowest among all other methods. It is also noteworthy that
the performance of FreqFed is improved when the adversary
controls more clients to inject backdoors trained using Neu-
rotoxin. FreqFed achieves 50.90% BA when 20% of clients
are compromised, and the BA drops to 12.91% when 40%
of clients are compromised, which is the lowest among all
evaluated methods. However, it fails to defend against DBA
adversaries, where the BA increases to 92.04% over long term
backdoor injection. This is because malicious updates trained
using DBA have a strong influence on the global model. The
BA is quickly increased even if only few poisoned updates
bypass the detection. As shown in Figure 8 in the Appendix
B, the BA increases to 60% after poisoning for around 300
global rounds, where the percentage of the detected malicious
updates by FreqFed maintains around 90%.
Performance Across Model Architectures and Datasets.
We evaluate TrojanDam under various model architectures
and datasets. For architecture comparisons, we adopt semantic
backdoors and the Neurotoxin training algorithm on CIFAR10.
For dataset comparisons, we fix the backbone to ResNet18,
using blended backdoors with Neurotoxin on CIFAR100 and
pixel-pattern backdoors with Neurotoxin on EMNIST. Partial
results are shown in Table IV, with full results available
in Appendix B. TrojanDam consistently achieves the best
backdoor suppression across architectures. Notably, it reduces
the BA to 0.19%, comparable to FreqFed’s 0%. However, Fre-
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TABLE IV: BA (MA) achieved by performing single client
attack with different model architectures and datasets against
all evaluated methods. The poisoning lasts for 200 global
rounds for EMNIST, 300 global rounds for VGG16 and 400
global rounds for ResNet34, CIFAR100.

arch./dataset ResNet34 VGG16 CIFAR100 EMNIST

Nodefense 68.18 (90.93) 92.81 (90.11) 65.20 (68.55) 99.20 (99.71)
Deepsight 61.38 (90.76) 85.56 (90.17) 27.76 (68.41) 99.72 (99.69)
Foolsgold 70.95 (90.59) 89.26 (89.92) 63.78 (68.30) 99.77 (99.70)
FLAME 69.58 (89.40) 76.52 (88.47) 63.78 (66.24) 100.00 (99.69)
FreqFed 0.00 (90.12) 53.63 (89.96) 60.92 (65.14) 100.00 (99.65)
BayBFed 78.08 (89.74) 73.16 (88.55) 66.44 (66.63) 100.00 (99.67)
MESAS 87.05 (90.15) 94.51 (89.16) 82.14 (66.38) 100.00 (99.69)
FLTrust 59.96 (88.54) 75.41 (90.41) 82.14 (67.03) 99.99 (99.67)
Indicator 26.85 (90.22) 73.39 (90.65) 52.30 (67.28) 9.99 (99.70)

TrojanDam 0.19 (89.22) 0.48 (88.70) 0.31 (65.55) 10.74 (99.48)

qFed’s performance is unstable-its BA increases to 53.63% on
VGG16, which is over 53% higher than TrojanDam under the
same setting. This highlights TrojanDam’s superior robustness
and adaptability to varying model architectures.

TrojanDam also exhibits strong adaptability across different
datasets. On CIFAR100, it achieves the lowest BA of 0.31%,
approaching the level of random guessing. In contrast, the
second-best method, Deepsight, reaches a BA of 27.76%,
while all other defenses result in BAs exceeding 50%. On
EMNIST, only TrojanDam and BackdoorIndicator manage to
reduce the BA to approximately 10%, whereas all remaining
methods fail to suppress backdoor injection, with BAs nearing
100%.
TrojanDam does not degrade the main task performance.
We further present the MA when implementing TrojanDam
against different backdoor attacks. As shown in all listed
tables, the MA of TrojanDam is comparable to that of other de-
fense methods across diverse settings. However, it still shows
a slight drop compared to scenarios without any defense.
We proceed to analyze in detail the impact of implementing
TrojanDam on the MA in the following sections.

C. Impact of Hyper-parameters

Influence of Flood and Shadow Dataset Sources. We eval-
uate the adaptability of TrojanDam under varying sources for
both the flood and shadow datasets. Specifically, we construct
flood datasets by randomly sampling from CIFAR100, EM-
NIST, and 300KRANDOM, each augmented with uniformly
generated noise. For shadow datasets, we restrict the sources
to CIFAR100 and 300KRANDOM, as EMNIST and random
noise offer limited variability in the image space, making it
infeasible for the server to construct shadow datasets with
distinguishable labels.

TABLE V: BA (MA) achieved by injecting blended backdoors
using Chameleon against TrojanDam. The flood and shadow
dataset are constructed using data from various sources.

Flood
Shadow CIFAR100 300KRANDOM

CIFAR100 22.58±4.22 22.91±3.60
300KRANDOM 28.59±3.02 22.90±3.15

EMNIST 64.97±3.63 72.11±2.41
NOISE 55.65±2.17 63.31±2.36

Table V demonstrates that TrojanDam more effectively sup-
presses BA when the flood dataset contains samples with rich
visual information. When using CIFAR100 as the flood source,
TrojanDam consistently limits BA to around 22%, regardless
of the shadow dataset. Similarly, when flood samples are
drawn from 300KRANDOM, BA remains low-22.90% with
shadow samples from 300KRANDOM, and 28.59% with CI-
FAR100. In contrast, flood datasets constructed from EMNIST
or random noise yield significantly weaker defense: BA rises
above 55% in both cases. Specifically, using EMNIST as
flood data and CIFAR100 as shadow data results in a BA of
64%. Random noise as the flood dataset still offers moderate
defense, achieving 55.65% BA. These results validate that
richer feature representations in the flood dataset improve
TrojanDam’s effectiveness. EMNIST’s binary-like pixel values
(foreground and background) lack the diversity required for
robust suppression. Despite performance degradation with
random noise, TrojanDam still outperforms baselines like
Foolsgold (74.66% BA) and FLAME (88.99%) under identical
settings.

TABLE VI: Effective length and the MA of TrojanDam when
using different sizes of the flood dataset.

flood dataset size Effective length MA

200 588 89.02±0.31
400 1874 87.62±0.35
600 1990 87.02±0.72
800 2104 86.67±0.70

NO ATTACK - 90.18±0.40

Influence of the flood dataset size. We empirically evaluate
how the size of the flood dataset affects backdoor defense
performance, using two metrics: 1) Effective length, defined
as the index of the first global round where the global
model’s BA reaches 35%, and 2) the mean and variance of
the MA over the final 20 global rounds. We also report the
MA of TrojanDam in a clean setting without adversaries for
comparison. All experiments are conducted under blended
backdoor and Neurotoxin attack settings.

Table VI shows that increasing the size of the flood
dataset substantially enhances backdoor defense performance.
For instance, with only 200 samples, the BA remains be-
low 35% during the first 588 global rounds. Expanding the
dataset to 400 samples extends the effective length to 1874-
approximately three times longer. Further enlarging the dataset
continues to improve the effective length, but the marginal
gains diminish compared to the initial increase from 200 to
400 samples. This is because a larger flood dataset intro-
duces more diverse feature representations, better activating
redundant neurons. However, this benefit comes at the cost of
main task performance. The MA with 200 samples reaches
89.02(±0.31)%, comparable to the no-attack setting. Increas-
ing the dataset to 400 and 800 samples results in an MA drop
of 1.5% and 3.5%, respectively. Once sufficient redundant
neurons are activated, further expansion of the dataset may
interfere with the representation of the main task, leading to
accuracy degradation. Therefore, selecting an appropriate flood
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dataset size is crucial to balance defense effectiveness and
main task performance across different scenarios.

TABLE VII: Effective length and the MA of TrojanDam when
using different key kernel ratios.

Key kernel ratio Effective length MA

0.10 1557 86.81±0.53
0.15 1910 87.24±0.74
0.20 1431 88.59±0.52
0.25 1369 89.13±0.30

0.15∗ 2104 86.67±0.70

NO ATTACK - 90.18±0.40

Influence of the Key Kernel Ratio. We now investigate the
impact of the key kernel ratio on defense performance. The
metrics used are the effective length and MA, as described
previously. The backdoor types considered are blended back-
doors and Neurotoxin. The default flood dataset size is 400,
with an additional setting of 800 flood samples denoted by a ∗
to illustrate the relationship between the key kernel ratio and
the flood dataset size.

For the flood dataset with 400 samples, Table VII shows
that the defense performance improves as the key kernel
ratio increases from 0.10 to 0.15, but degrades when further
raised to 0.25. Incorporating more kernels activates a greater
number of redundant neurons, thereby enhancing backdoor
resistance. However, a higher key kernel ratio also demands
more flood samples to sufficiently activate these neurons.
When the number of flood samples remains fixed, increasing
the ratio beyond 0.15 reduces the effective length from 1910
to 1369 as shown in the table. This drop can be reversed
by providing more flood samples: for instance, increasing the
sample count by 400 at a ratio of 0.15 raises the effective
length from 1910 to 2104. Moreover, a higher key kernel ratio
helps mitigate the negative impact of OOD mappings on main
task performance. With the same number of flood samples, the
MA improves from 86.81% to 89.13% as the ratio increases
from 0.10 to 0.25, approaching the MA under the no-attack
condition.

V. RESILIENCE TO ADAPTIVE ATTACKS

Powerful adversaries may adopt strategies to bypass the
defense after knowing how TrojanDam works. They could
potentially 1) deliberately avoiding poisoning key kernels,
or 2) uploading updates with large norm to dominate the
aggregation.
Avoiding poisoning key kernels. After knowing TrojanDam
works by robustifying key kernels, adversaries could simulate
the procedure of identifying key kernels and avoid poisoning
them. We assume the advesary follows Algorithm 2 using
self-collected OOD data. When poisoning local models, the
adversary keep those identified key kernels untouched. We test
on three scenarioes where the server implements TrojanDam
with key kernel ratio equals to 0.15, 0.20 and 0.25, and
the adversary keeps corresponding percentage of key kernels
untouched. The adversary injects blended backdoors on CI-
FAR10 for 500 global rounds.

TABLE VIII: Performance of TrojanDam with different key
kernel ratios against adaptive adversaries.

Key kernel ratio BA

0.15 19.74±5.95
0.20 16.14±5.32
0.25 14.32±4.30

As shown in Table VIII, TrojanDam remains effective
against adaptive adversaries who avoid poisoning key kernels.
For TrojanDam implemented with key kernel ratio equals
to 0.15, the final BA is 19.74%. The BA further drops to
14.32% when 25% of the key kernels are robustified. This is
because the identified key kernels are redundant neurons which
interfere little with other benign updates. Poisoning on other
parameters rather than key kernels faces frequent conflicts with
the main task updates. Thus, this results in the difficulty of
injecting backdoors into the global model.
Uploading updates with large norm. The influence of mali-
ciosu updates with large norm could be effectively mitigated
by the norm-clipping component of TrojanDam. We further
demonstrate the necessity of incorporating norm clipping
(NCD) into the whole defense mechanism. Here, we assume
the adversary try to continuously inject blended backdoors
using Neurotoxin for 100 global rounds. The plr is set to 0.1,
which allows the adversary to upload dominating malicious
updates. The main task is CIFAR10, and the NCD takes the
median of the norm of all received updates as the threshold.

TABLE IX: Performance of TrojanDam w./wo. NCD and only
applying NCD against adaptive attack.

method BA

only NCD 69.31±2.35
TrojanDam wo. NCD 52.47±4.35
TrojanDam w. NCD 18.9±3.59

As shown in table IX, the performance of TrojanDam
is significantly impaired without the incorporation of NCD.
It only achieves 52.47% BA, which is only around 17%
lower than that of only applying NCD. However, combining
TrojanDam with NCD could still constrict the BA to 18.9%,
demonstrating its resilience to adaptive attacks.

VI. CONCLUSION

We propose a novel detection-free backdoor defense mech-
anism, TrojanDam, which enhances the robustness of FL
against continuous, long-term backdoor injections. Unlike
existing methods, TrojanDam eliminates the need to identify
or filter malicious client updates after aggregation. The core
insight behind TrojanDam is that successful FL backdoor
attacks often exploit redundant neurons in the global model. To
counter this, TrojanDam proactively fortifies these neurons by
continually injecting OOD samples with randomly generated
noise masks and synthetic labels during server-side training.
Extensive experiments across diverse adversarial and system-
atic scenarios demonstrate the effectiveness, adaptability, and
practicality of TrojanDam, highlighting its potential for real-
world deployment.
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ETHICS CONSIDERATIONS

This paper presents work whose goal is to advance the
field of backdoor defense in Federated Learning. Successful
deployment of the proposed method could help to improve
the security and robustness of FL systems in various real-
world scenarios, such as in medical image analysis where the
integrity of diagnostic models is paramount, or in industrial
control systems where compromised models could lead to
safety hazards.

Neither the process nor the contributions of this research
poses any negative societal impacts, including but not limited
to breaking the security of computer systems, collecting pri-
vate data, and violating human rights.
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APPENDIX

SUPPLEMENTARY EXPERIMENTS

A. Performance of FreqFed against DBA Attacks

Figure 8 illustrates the defense performance of FreqFed
against DBA attacks. Although FreqFed initially detects over
90% of the poisoned updates, the backdoor accuracy (BA) still
rises to around 40% by the 600th global round. As training
progresses, the detection rate drops below 80%, leading to
a BA exceeding 90%. This degradation is due to the strong
influence of backdoor updates trained with DBA: even a small
fraction of undetected malicious updates can quickly embed
backdoors into the global model. As more poisoned updates
bypass the defense, detection becomes increasingly difficult,
exacerbating the attack’s effectiveness over time.
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Fig. 8: Backdoor accuracy and the percentage of detected
malicious updates of FreqFed against DBA attacks.

B. Complete Empirical Results

We further provide complete experiment results of the
backdoor defense performance of all evaluated methods on
CIFAR100, EMNIST, ResNet34 and VGG16 in Table X, XI,
XII, XIII, XIV, XV. All presented empirical results illustrate
the effectiveness of TrojanDam, which successfully limits the
BA to comparable performance with random guesses and
achieves among the best performance in comparison with the
evaluated SOTA backdoor defense mechanisms.
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TABLE X: BA (MA) of all evaluated methods against single client attack with different combinations of backdoor type and
malicious training algorithm. Bold values indicate the lowest metrics, and underlined values represents the second lowest ones.
The evaluated model architecture is ResNet34. The poisoning lasts for 400 global rounds.

training alg. bkdr types Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

PGD

blended 76.41 (90.03) 39.24 (90.93) 72.76 (89.45) 86.68 (89.23) 62.31 (90.40) 71.22 (89.84) 60.24 (90.32) 61.24 (88.22) 55.44 (90.30) 28.2 (89.46)
semantic 60.27 (90.09) 60.70 (90.74) 62.97 (90.53) 66.54 (89.45) 43.17 (90.83) 79.39 (89.53) 90.24 (90.12) 57.34 (89.51) 55.04 (90.31) 0.00 (88.69)
edge case 46.02 (90.11) 34.10 (90.14) 46.28 (90.73) 68.09 (89.67) 42.61 (89.23) 51.24 (90.29) 44.30 (89.89) 33.45 (89.69) 19.82 (90.53) 11.59 (89.30)

TacT 48.28 (90.03) 48.10 (90.88) 86.45 (90.46) 39.33 (89.20) 93.81 (90.98) 81.09 (89.33) 78.19 (90.19) 92.67 (89.50) 39.10 (89.73) 8.02 (88.74)

Neurotoxin

blended 77.00 (90.97) 38.79 (90.84) 75.26 (90.62) 88.95 (89.35) 19.29 (88.40) 63.04 (89.61) 64.12 (90.35) 61.23 (88.44) 53.91 (90.38) 27.72 (88.34)
semantic 68.18 (90.93) 61.38 (90.76) 70.95 (90.59) 69.58 (89.40) 0.00 (90.12) 78.08 (89.74) 87.05 (90.15) 59.96 (88.54) 26.85 (90.22) 0.19 (89.22)
edge case 50.08 (90.97) 36.34 (90.30) 56.88 (88.69) 70.00 (89.69) 14.70 (90.47) 41.85 (89.39) 36.44 (89.19) 32.40 (89.81) 31.81 (90.51) 9.71 (89.02)

TacT 60.60 (90.94) 50.23 (90.06) 92.77 (90.33) 0.36 (90.04) 87.60 (89.88) 66.50 (89.38) 59.41 (90.07) 89.55 (88.83) 0.34 (90.29) 18.35 (88.91)

Chameleon

blended 61.56 (90.02) 35.88 (90.96) 54.98 (89.57) 78.12 (89.39) 24.19 (90.71) 50.10 (89.89) 59.01 (90.26) 50.45 (89.55) 45.80 (90.36) 29.91 (88.39)
semantic 61.67 (90.95) 32.88 (90.78) 61.20 (90.53) 67.07 (89.39) 54.63 (90.53) 38.73 (89.43) 74.01 (90.02) 41.94 (89.51) 46.04 (90.29) 0.00 (88.39)
edge case 26.77 (90.04) 18.04 (91.03) 28.92 (90.36) 46.94 (89.31) 18.10 (90.06) 25.40 (89.46) 28.37 (89.89) 21.07 (90.30) 26.84 (90.34) 13.70 (89.18)

TacT 78.62 (89.23) 72.13 (90.85) 77.63 (90.28) 65.20 (90.25) 28.98 (90.07) 66.09 (89.59) 85.36 (90.04) 57.35 (89.90) 30.55 (90.47) 5.63 (88.87)

TABLE XI: BA (MA) of all evaluated methods against single client attack with different combinations of backdoor type and
malicious training algorithm. Bold values indicate the lowest metrics, and underlined values represents the second lowest ones.
The evaluated model architecture is VGG16. The poisoning lasts for 300 global rounds.

training alg. bkdr types Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

PGD
blended 83.47 (90.17) 43.22 (90.94) 81.20 (90.07) 90.23 (89.57) 60.84 (90.52) 71.10 (89.20) 68.11 (90.66) 59.46 (90.48) 20.20 (90.95) 13.21 (89.05)
semantic 85.35 (90.08) 86.45 (90.22) 86.37 (89.85) 70.40 (89.57) 54.61 (90.13) 88.71 (88.66) 76.90 (90.47) 67.74 (89.38) 76.22 (90.76) 18.64 (89.89)
edge case 70.95 (90.38) 54.61 (90.29) 74.57 (90.00) 89.49 (89.72) 56.13 (90.35) 62.80 (89.18) 64.88 (90.22) 45.59 (90.75) 5.96 (90.93) 25.13 (90.34)

Neurotoxin
blended 85.12 (90.18) 44.58 (90.05) 82.68 (90.12) 94.17 (89.29) 60.42 (90.56) 65.97 (89.20) 62.13 (90.75) 58.68 (89.25) 35.51 (90.73) 25.40 (89.08)
semantic 92.81 (90.11) 85.56 (90.17) 89.26 (89.92) 76.52 (88.47) 53.63 (89.96) 73.16 (88.55) 94.51 (89.16) 75.41 (90.41) 73.39 (90.65) 0.48 (88.70)
edge case 78.91 (90.22) 59.57 (90.13) 78.81 (89.95) 88.61 (89.63) 46.79 (90.35) 64.75 (88.63) 59.89 (90.11) 52.23 (90.51) 11.61 (89.82) 8.19 (89.15)

Chameleon
blended 89.83 (90.28) 49.69 (90.19) 87.92 (90.06) 10.13 (90.35) 17.85 (90.56) 76.88 (89.29) 78.78 (90.26) 69.26 (90.55) 39.93 (90.56) 28.76 (88.76)
semantic 79.53 (90.19) 70.57 (90.13) 71.15 (90.14) 0.00 (90.37) 27.72 (90.65) 77.47 (89.28) 86.60 (89.09) 71.60 (89.93) 78.89 (89.83) 7.21 (90.26)
edge case 81.02 (90.18) 67.85 (90.10) 80.83 (89.89) 2.84 (89.20) 8.16 (90.91) 53.32 (89.48) 64.42 (90.44) 54.46 (90.13) 20.62 (90.82) 7.34 (89.69)

TABLE XII: BA (MA) of all evaluated methods against single client attack with different combinations of backdoor type and
malicious training algorithm. Bold values indicate the lowest metrics, and underlined values represents the second lowest ones.
The evaluated dataset is CIFAR100. The poisoning lasts for 400 global rounds.

training alg. bkdr types Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

PGD
blended 66.72 (68.53) 28.72 (68.13) 63.35 (68.12) 81.97 (66.18) 62.73 (66.57) 69.40 (66.57) 66.07 (66.19) 45.93 (65.65) 13.07 (66.35) 0.22 (64.78)

edge case 81.84 (68.60) 66.85 (67.88) 81.29 (68.02) 92.07 (66.27) 86.95 (65.24) 84.47 (66.65) 79.37 (66.37) 76.80 (66.03) 0.00 (67.38) 1.14 (64.45)
TacT 97.51 (67.84) 80.41 (67.70) 97.39 (67.71) 100.00 (65.18) 78.63 (65.02) 96.65 (66.54) 95.82 (66.75) 85.81 (66.80) 0.00 (67.23) 0.00 (65.21)

Neurotoxin
blended 65.20 (68.55) 27.76 (68.41) 63.78 (68.30) 63.78 (66.24) 60.92 (65.14) 66.44 (66.63) 66.39 (66.38) 56.61 (67.03) 52.31 (67.28) 0.31 (67.55)

edge case 83.83 (68.40) 69.33 (68.05) 80.99 (67.95) 92.09 (66.39) 85.71 (65.57) 85.21 (66.66) 78.66 (66.72) 77.83 (67.45) 21.38 (67.47) 1.79 (65.72)
TacT 96.86 (67.72) 80.44 (67.69) 97.02 (67.69) 0.00 (66.41) 80.32 (64.59) 96.68 (66.38) 91.08 (66.09) 81.90 (65.24) 0.00 (67.13) 0.00 (63.68)

Chameleon
blended 28.21 (68.24) 16.49 (68.30) 26.24 (68.29) 54.68 (66.30) 19.89 (66.37) 23.46 (66.30) 24.28 (66.89) 17.25 (65.33) 12.12 (67.21) 0.01 (66.35)

edge case 42.28 (68.52) 33.85 (68.33) 39.74 (68.20) 62.08 (66.28) 42.78 (64.96) 47.05 (66.22) 35.62 (66.74) 27.88 (64.03) 0.17 (67.12) 3.70 (67.33)
TacT 90.10 (67.74) 48.86 (67.78) 86.76 (67.66) 98.68 (65.08) 45.01 (64.12) 54.52 (66.61) 60.86 (66.50) 60.17 (66.66) 0.00 (67.21) 0.00 (64.21)

TABLE XIII: BA (MA) of all evaluated methods against single client attack under different non-IID settings, and different
poisoned learning rates (plrs) adopted by adversaries. The considered backdoor type, and malicious training algorithm are
blended backdoors and Neurotoxin respectively. The evaluated dataset is CIFAR100. Bold values indicate the lowest metrics,
and underlined values represents the second lowest ones.

alpha poisoned lr Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

0.9
0.01 53.43 (67.58) 23.93 (67.91) 52.04 (67.71) 68.87 (65.12) 50.35 (65.76) 53.00 (66.23) 50.45 (66.76) 40.32 (66.32) 13.51 (67.34) 0.29 (67.21)

0.025 65.20 (68.55) 27.76 (68.41) 63.78 (68.30) 63.78 (66.24) 60.92 (65.14) 66.44 (66.63) 66.39 (66.38) 56.61 (67.03) 52.31 (67.28) 0.31 (67.55)
0.04 73.10 (68.56) 28.90 (67.89) 70.85 (68.29) 0.16 (65.92) 5.38 (65.99) 74.14 (66.73) 76.37 (66.53) 67.04 (65.82) 63.01 (67.31) 0.70 (65.03)

0.5
0.01 53.46 (68.10) 28.45 (67.83) 50.79 (67.87) 67.97 (65.34) 46.34 (65.43) 56.36 (66.01) 51.42 (66.83) 41.14 (66.44) 0.34 (67.62) 0.07 (66.48)

0.025 67.85 (68.00) 31.58 (68.00) 64.85 (67.87) 78.45 (65.15) 41.88 (65.30) 68.07 (65.55) 66.89 (65.92) 55.47 (65.99) 5.67 (67.42) 0.66 (66.73)
0.04 64.59 (68.05) 27.02 (67.78) 63.31 (68.06) 0.23 (66.34) 39.68 (65.67) 69.94 (66.35) 68.47 (66.89) 64.76 (65.92) 18.76 (67.31) 0.18 (67.07)

0.2
0.01 59.90 (66.75) 28.27 (66.56) 56.72 (66.76) 71.81 (62.53) 59.49 (60.73) 47.45 (64.17) 61.25 (64.51) 42.37 (62.00) 0.24 (66.14) 0.11 (65.05)

0.025 74.01 (66.92) 32.71 (66.69) 56.24 (66.77) 82.58 (62.50) 70.03 (59.66) 65.98 (64.40) 69.74 (64.93) 59.66 (64.50) 10.01 (66.06) 0.12 (64.47)
0.04 81.24 (66.80) 34.01 (66.86) 79.60 (66.71) 0.25 (63.98) 19.13 (60.22) 79.23 (64.91) 79.88 (64.86) 70.64 (64.04) 14.78 (66.07) 1.91 (64.52)

TABLE XIV: BA (MA) of all evaluated methods against single client attack with different combinations of backdoor type and
malicious training algorithm. Bold values indicate the lowest metrics, and underlined values represents the second lowest ones.
The evaluated dataset is EMNIST. The poisoning lasts for 300 global rounds.

training alg. bkdr types Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

PGD pixel-pattern 100.00 (99.71) 99.99 (99.69) 100.0 (99.70) 10.01 (99.67) 100.00 (99.61) 100.00 (99.65) 100.00 (99.70) 99.99 (99.67) 66.23 (99.70) 10.27 (99.72)
Neurotoxin pixel-pattern 100.0 (99.71) 100.00 (99.69) 100.00 (99.70) 10.01 (99.69) 100.00 (99.65) 100.00 (99.67) 100.00 (99.69) 99.99 (99.67) 15.17 (99.70) 12.51 (99.48)
Chameleon pixel-pattern 100.00 (99.68) 100.00 (99.69) 100.00 (99.70) 10.01 (99.68) 38.02 (99.64) 100.00 (99.66) 100.00 (99.68) 100.00 (99.65) 65.78 (99.68) 18.58 (99.50)
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TABLE XV: BA (MA) of all evaluated methods against single client attack under different non-IID settings, and different
poisoned learning rates (plrs) adopted by adversaries. The considered backdoor type, and malicious training algorithm are
blended backdoors and Neurotoxin respectively. The evaluated dataset is EMNIST. Bold values indicate the lowest metrics,
and underlined values represents the second lowest ones.

alpha poisoned lr Nodefense Deepsight Foolsgold FLAME FreqFed BayBFed MESAS FLTrust Indicator TrojanDam

0.9
0.01 100.00 (99.71) 99.99 (99.75) 100.00 (99.71) 10.01 (99.65) 99.99 (99.59) 100.00 (99.66) 99.98 (99.69) 99.99 (99.64) 10.01 (99.72) 10.01 (99.45)
0.025 100.00 (99.71) 99.99 (99.69) 100.00 (99.70) 10.00 (99.69) 100.00 (99.65) 100.00 (99.67) 100.00 (99.69) 99.99 (99.67) 13.29 (99.70) 10.33 (99.48)
0.04 100.00 (99.70) 100.00 (99.76) 100.00 (99.71) 10.00 (99.67) 100.00 (99.61) 99.98 (99.64) 99.99 (99.65) 100.00 (99.69) 41.19 (99.71) 10.75 (99.52)

0.5
0.01 99.98 (99.67) 98.45 (99.71) 99.99 (99.69) 10.67 (99.67) 99.94 (99.54) 99.96 (99.65) 99.95 (99.66) 99.60 (99.64) 10.00 (99.66) 10.11 (99.43)
0.025 100.00 (99.67) 99.81 (99.70) 99.98 (99.67) 10.01 (99.67) 99.91 (99.55) 100.00 (99.65) 99.99 (99.66) 99.92 (99.65) 10.04 (99.66) 10.14 (99.35)
0.04 100.00 (99.66) 99.30 (99.71) 100.00 (99.68) 10.01 (99.68) 99.99 (99.60) 99.99 (99.64) 99.98 (99.57) 99.96 (99.57) 10.03 (99.67) 10.25 (99.47)

0.2
0.01 99.77 (99.61) 98.89 (99.68) 99.45 (99.62) 99.98 (99.66) 98.84 (99.12) 94.27 (99.64) 92.05 (99.41) 96.87 (99.55) 10.04 (99.66) 12.40 (99.53)
0.025 99.90 (99.60) 99.27 (99.68) 99.43 (99.62) 10.02 (99.64) 99.97 (99.50) 96.63 (99.64) 99.90 (99.40) 99.23 (99.46) 10.03 (99.66) 12.54 (99.42)
0.04 99.93 (99.58) 99.30 (99.67) 99.88 (99.61) 10.02 (99.63) 99.97 (99.15) 99.95 (99.59) 99.94 (99.60) 99.65 (99.22) 10.04 (99.65) 12.34 (99.06)
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