
Guillotine: Hypervisors for Isolating Malicious AIs∗

James Mickens

mickens@g.harvard.edu

Harvard University

Sarah Radway

sradway@g.harvard.edu

Harvard University

Ravi Netravali

rnetravali@cs.princeton.edu

Princeton University

Abstract

As AI models become more embedded in critical sectors like

finance, healthcare, and the military, their inscrutable be-

havior poses ever-greater risks to society. To mitigate this

risk, we propose Guillotine, a hypervisor architecture for

sandboxing powerful AI models—models that, by accident

or malice, can generate existential threats to humanity. Al-

though Guillotine borrows some well-known virtualization

techniques, Guillotine must also introduce fundamentally

new isolation mechanisms to handle the unique threat model

posed by existential-risk AIs. For example, a rogue AI may

try to introspect upon hypervisor software or the underly-

ing hardware substrate to enable later subversion of that

control plane; thus, a Guillotine hypervisor requires careful

co-design of the hypervisor software and the CPUs, RAM,

NIC, and storage devices that support the hypervisor soft-

ware, to thwart side channel leakage and more generally

eliminate mechanisms for AI to exploit reflection-based vul-

nerabilities. Beyond such isolation at the software, network,

and microarchitectural layers, a Guillotine hypervisor must

also provide physical fail-safes more commonly associated

with nuclear power plants, avionic platforms, and other types

of mission-critical systems. Physical fail-safes, e.g., involving

electromechanical disconnection of network cables, or the

flooding of a datacenter which holds a rogue AI, provide de-

fense in depth if software, network, and microarchitectural

isolation is compromised and a rogue AI must be temporarily

shut down or permanently destroyed.

1 MOTIVATION

A machine learning model tries to emulate human reason-

ing. To do so, a model encodes observations about training

data using numerical parameters and links between those

parameters. Current state-of-the-art models are so large that

their internal organization is opaque to their human creators.

For example, the open-source BLOOM model has 176 billion

parameters [27], the open-source Llama 3.1 model has 405

billion parameters [38], and the closed-source GPT-4 model

is rumored to have more than a trillion parameters [58].

Humans cannot directly understand the relationships be-

tween such vast constellations of parameters. Automated

∗
Accepted to the ACM SIGOPS 2025 Workshop on Hot Topics in Operating

Systems.

methods for understanding those relationships (and how

they generate model outputs) are an active area of research.

Unfortunately, such model interpretability techniques ap-

pear to be inherently fragile. Consider the task of explaining

LLM inferences. The soundness of LLM interpretability tech-

niques is vulnerable to instabilities in the underlying LLM

itself [60]. For example, the fact that LLMs are sensitive

to minor changes in prompt phrasing [56] can result in a

model’s self-reported chain-of-thought being an unfaithful

representation of the model’s actual reasoning process [68].

Furthermore, an LLM’s tendency to hallucinate [64] can man-

ifest itself not only in the model’s answer to a question, but

in the model’s explanation for that answer [80].

The opacity of model reasoning is troubling because mod-

els are increasingly connected to societally important in-

frastructure. For example, in financial settings, misbehav-

ing models can generate huge monetary losses due to bugs.

Those bugs might have been unintentionally introduced by

model makers [41] or intentionally induced by adversarial

examples [78]. In warfighting scenarios, military leaders are

already concerned that AI-governed weapons may escalate

conflicts due to ignorance of geopolitical nuance [42]; these

escalation problems are exacerbated when AI makes deci-

sions too quickly for humans to review those decisions [33].

Model alignment techniques [77] try to ensure that models

adhere to human-defined behavioral norms. However (and

concerningly), models can fake alignment compliance during

training to later act in non-alignedways post-deployment [21].

Researchers have also demonstrated that, in the specific con-

text of LLMs, if model alignment does not completely elim-

inate the possibility of an undesirable model behavior, an

adversarial prompt can always elicit that behavior [77]. Thus,

society faces an increasing risk that an artifical general in-

telligence (AGI) model which matches or exceeds human

reasoning will generate catastrophic harms in real life.

In this paper, we argue that the systems community has

a critical role in preventing AGI-based existential harms;

alignment techniques at training time must be supplemented

by sandboxing mechanisms at inference time. We propose a

new class of hypervisor, called a Guillotine hypervisor, for

isolating AGI inference code. Due to the unique threats posed

by rogue models, and the potentially catastrophic risks of not

containing those threats, Guillotine’s design looks much

different than that of a traditional hypervisor. We hope that

this paper encourages the system community to participate

more actively in discussions about existential AGI risks.

ar
X

iv
:2

50
4.

15
49

9v
1 

 [
cs

.C
R

] 
 2

2 
A

pr
 2

02
5



James Mickens, Sarah Radway, and Ravi Netravali

Control
console

L3

L1-i L1-d
L2

M
M
U

L1-i L1-d
L2

M
M
U

DRAM

L3
L2

L1-i L1-d

M
M
U

DRAM

Port IO DRAM

Software hypervisorModel

Human admins
(Quorum voting)

IO
Devices

Internet

Physical 
support 

(electricity, 
HVAC, etc.)Datacenter

Physical 
hypervisor

Policy hypervisor

Physical support cables
Shared bus
Hypervisor management bus

AI laws

Figure 1: The Guillotine sandboxing architecture.

2 HIGH-LEVEL GUILLOTINE DESIGN

Background: A model service is a distributed system that

accepts inference requests and outputs inference results. In-

ternally, the service has one or more request queues, and one

or more replicas of each model whose computations will con-

tribute to an inference [9, 24, 59, 81]. Computations are split

between CPUs and GPUs, with GPUs typically doing the bulk

of the inference work. CPUs load-balance requests across

different GPUs, and orchestrate the transfer of requests and

responses between CPU DRAM and on-GPU DRAM. CPUs

also manage various caches, e.g., LLMs key/value caches,

located in GPU DRAM, which store previously-generated

tokens as well as intermediate values output by different

LLM layers [17, 32, 48]. CPUs also manage a model’s access

to external services and IO devices. For example, LLMs often

perform retrieval-augmented generation, supplementing a

user-supplied prompt with information from a database of

domain-specific document embeddings [29, 53].

Guillotine: Given such a model service, Figure 1 depicts

the high-level design of a Guillotine hypervisor.

• Themodel interacts with the outside world via the guest

API of the Guillotine software hypervisor (§3.3).

• The software hypervisor executes atop the Guillotine

microarchitectural hypervisor. (§3.2). Conceptually,

the microarchitectural hypervisor is the Guillotine ana-

log to traditional hardware-level virtualization mecha-

nisms like Intel VT-x [69]. However, Guillotine’s micro-

architectural hypervisor requires qualitatively different

in-silicon support to achieve Guillotine’s desired isola-

tion properties. For example, to restrict the ability of a

model to infer the computational state of the software-

level hypervisor, Guillotine requires extremely limited

microarchitectural co-tenancy between the model and the

software-level hypervisor; this approach eliminates many

kinds of side-channel leakages [57] by definition.

• TheGuillotinephysical hypervisor (§3.4) implements

physical fail-safes more commonly associated with rock-

ets, nuclear reactors, and other types of mission-critical

systems. These fail-safes, e.g., involving electromechani-

cal disconnection of a datacenter’s network cables, or the

flooding of a datacenter which holds a rogue AI, provide

defense in depth if Guillotine’s microarchitectural and

software-level isolation is compromised and a rogue AI

must be temporarily shut down or permanently destroyed.

• A Guillotine hypervisor is only effective if AI models

are forced to run atop Guillotine. Thus, the last part of

the Guillotine sandbox is a policy hypervisor—a set

of legal regulations which (1) provide formal specifica-

tions for how Guillotine-class hypervisors must be built,

and (2) require potentially dangerous models to run atop

Guillotine infrastructure.

3 GUILLOTINE DESIGN

3.1 Threat model

In our threatmodel, the attacker is a deployed, post-training

AI model which receives inputs, computes on those inputs,

and then generates outputs. Guillotine’s goal is to prevent

the model from escaping Guillotine’s sandbox by accident

or intentional malice. A critical attack vector to thwart is

an actively malicious model being able to introspect upon

the Guillotine sandbox to learn how to escape. Another

important attack to prevent is a recursively self-improving

model which seeks a runaway gain in intelligence.

Some model inputs may be submitted by external-to-the-

model entities, e.g., a human or another computer that has

sent an inference request. Other inputs may be fetched by

the model itself. For example, as the model ponders a query,

the model may issue a database read to fetch query-specific

contextual information [18]. A model may send outputs

to networks, storage devices, computational accelerators

(e.g., GPUs), or physical actuators (e.g., when models control

industrial equipment). Guillotine uses the abstract term

“port” to refer to a channel that delivers inputs to or send

outputs from a model. Guillotine requires the ability to

monitor and control all ports that are visible to a model.

Guillotine’s trusted computing base consists of Guil-

lotine’s software-level hypervisor (§3.3) and the Guillo-

tine silicon which implements ISA-level and microarchitec-

tural-level isolation mechanisms (§3.2). Guillotine’s physi-

cal safeguards (§3.4) are also in the trusted computing base.

Guillotine’s human administrators are partially trusted;

as we describe in Section 3.4, important management deci-

sions in Guillotine require voting among a set of admins.

Defining “rogue AI behavior” is a subtle matter involv-

ing interdisciplinary reasoning. In this paper, we focus on



Guillotine: Hypervisors for Isolating Malicious AIs

providing a multi-level hypervisor that can do two things re-

liably: (1) provide system-level observations about a model’s

behavior to a black-box (from Guillotine’s perspective) de-

tector for malicious AI activity; (2) receive a verdict from

that detector (or human administrators), and then change

the model’s isolation level as appropriate. The black-box

misbehavior detector is in the Guillotine TCB; we sketch

possible detectors in Section 3.3.

3.2 Microarchitectural Hypervisor

A traditional virtualization-aware processor [10, 61, 69] runs

both guest code and hypervisor code. At the microarchitec-

tural level, hardware structures like functional units, branch

predictors, TLBs, and memory caches may contain state from

both the guest and the hypervisor [66], even though, at the

ISA level, privilege modes restrict the ISA-visible state that

is accessible to guest code. The mingling of state enables side

channels that can leak hypervisor state to the guest [31, 75].

Those side channels are unacceptable to Guillotine, be-

cause a key goal of Guillotine is to prevent a malicious

model from discovering the implementation details of the

Guillotine isolation environment (§3.1). Guillotine also

requires a pervasive ability to inspect all aspects of a model’s

computational state. Thus, Guillotine requires special mi-

croarchitectural support.

First, with respect to the physical CPU cores on a single

machine, Guillotine distinguishes between hypervisor

cores and model cores. Software-level hypervisor code

only runs on hypervisor cores; post-initialization, a model

core only runs model code. Model cores are connected via

buses to a memory hierarchy containing DRAM and L1–L3

caches. Hypervisor cores have their own memory hierarchy

that is inaccessible to model core buses. A hypervisor core

also has dedicated, model-inaccessible control buses which

allows the hypervisor core to exert management privileges

over model cores. In particular, a hypervisor core can:

• forcibly pause all operations on a model core;

• inspect and modify the ISA-level state of a halted core;

• set watchpoints on model code or memory locations;

• configure the model core’s MMU such that the model can-

not create new executable pages or write to old executable

pages;
1
this prevents the model from injecting new code

at runtime for the purpose of recursive self-improvement;

1
This approach is similar to Apple’s mechanisms for kernel integrity pro-

tection and system coprocessor integrity protection [4]. Implementing such

protection is cheap at the hardware level—essentially, the MMU just tracks

base+bound information for valid executable regions, and disallows PTE

configurations that would enable read access to those regions or create new

executable pages outside of those regions. Hypervisor cores also lock their

MMUs in this fashion after loading the hypervisor software.

• forcibly clear all microarchitectural state on that core (to

delete information that a model might try to hide via mi-

croarchitectural-level covert channels [76])
2
;

• single-step or fully resume a halted model core; and

• forcibly power-down a halted model core.

A hypervisor core also has a private bus, connected to model-

core memory, to enable reading and writing the DRAM of

halted model cores.

Note that the Guillotine approach simplifies some as-

pects of processor design. For example:

• A model core does not require extended page table (EPT)

support [5]. On a traditional non-Guillotine core, one or

more guests share the same DRAM that is also used by the

hypervisor; EPTs allow the hypervisor to control which

portions of physical DRAM are shared with each guest.

However, in Guillotine, a model core lacks the physical

buses needed to access hypervisor DRAM, so EPTs are

unnecessary to enforce memory isolation.

• A Guillotine model core can also avoid the complex-

ity of virtualizing interrupts and exceptions. Software on

the model core handles locally-generated interrupts and

exceptions (e.g., the timer interrupt and the division-by-

zero exception) without assistance from the Guillotine

software-level hypervisor. However, Guillotine prevents

a model core from directly interacting with GPUs or IO

devices via port-mapped or memory-mapped IO. Instead,

to issue an IO request, a model core writes the request a

special IO DRAM region shared by the model and Guillo-

tine, and then raises an interrupt on a hypervisor core; the

hypervisor core examines the request and, if the request is

reasonable, interacts directly with the relevant IO device,

placing the result in shared IO DRAM and then raising

an interrupt on the initiating model core. To stop a model

core from live-locking a hypervisor core with a flood of

spurious interrupts, the LAPIC chip of a hypervisor core

throttles incoming requests, akin to the interrupt filter for

an iPhone secure enclave processor [62].

• Traditional virtualization-aware CPUs implement a spe-

cial execution mode for hypervisors.
3
Hypervisor modes

enable same-core trap-and-emulate monitoring of how

untrusted code uses sensitive instructions [52]. However,

such modes are unnecessary in Guillotine because a

model core has no sensitive instructions to trap-and-emulate

in the classic sense: hypervisor DRAM is physically in-

accessible, the model core ISA has no instructions for

accessing hypervisor core state, and IO devices can only

be accessed indirectly via Guillotine’s port API (§3.3).

2
In the covert channel, the model would be both the sender and the receiver!

3
For example, this mode is called “root mode” on Intel VT-x chips [69], and

“hypervisor-extended supervisor mode” on RISC-V chips [55].



James Mickens, Sarah Radway, and Ravi Netravali

As explained in Section 3.4, a hypervisor core connects to

a Guillotine control terminal via dedicated buses that are

inaccessible to model cores.

Guillotine hardwaremust support remote attestation [50].

Before a model is loaded onto a purported Guillotine sys-

tem via the control terminal, the terminal will verify that the

model is being sent to valid Guillotine silicon that runs a

valid Guillotine software-level hypervisor. All Guillotine

silicon uses tamper-resistant and tamper-evident technolo-

gies [28, 43, 44, 73] to detect any sandbox circumventions via

model-launched social-engineering attacks against hardware

technicians; hardware integrity should be checked periodi-

cally by humans as required by regulations (§3.5). Note that

checking for hardware integrity not only requires inspection

of preexisting hardware, but also verification that no new
hardware has been added via model-initiated social engineer-

ing, e.g., to enable runaway model self-improvement.

3.3 Software Hypervisor

Guillotine’s software-level hypervisor can be simpler than

a traditional one because it does not have to support arbi-

trary kinds of guest code that run on the same processors

which run hypervisor code. Guillotine’s software-level hy-

pervisor only needs to be able to supervise models which

run on model cores and target the Guillotine guest API.

The guest API directly arises from the affordances provided

by the Guillotine hardware from Section 3.2:

• Model code can use any instruction provided by the model

core ISA (including instructions for handling locally-gen-

erated interrupts and exceptions). Since the software-level

hypervisor plays no role in handling such interrupts and

exceptions, a model may choose to structure its code by

distinguishing between OS software and user software, or

by employing a unikernel approach [34], or by doing some-

thing else. The Guillotine software-level hypervisor is

agnostic to a model’s internal organization.

• Model cores have no way to directly contact devices be-

sides model DRAM and model cores, so all requests to

other kinds of devices must be sent to the memory region

shared with hypervisor cores; the hypervisor cores will

place results in that shared region.

The guest API interacts with devices (including GPUs) via

a port API. Guillotine ports are conceptually similar to

Mach ports [1]. Each port is a capability that is granted by

the software-level hypervisor and which enables a model

core to interact with a specific instance of a specific device

type. Each port maps to an address in the DRAM region that

models share with the software-level hypervisor; writing to

that address sends an interrupt to a hypervisor core, with

a model placing additional information about the request

at a well-known place in the shared DRAM. For example,

a port associated with a network device might place a ring

buffer [35, 36] in shared memory. For security reasons, Guil-

lotine explicitly disallows models from directly engaging

with hardware via techniques like SR-IOV [65]—Guillotine

must be able to synchronously monitor all model/device in-

teractions. This ability, together with the ability to inspect

model-core DRAM and registers, allows Guillotine to log

a model’s inputs, outputs, and intermediate states for subse-

quent auditing by the misbehavior detector.

Although Guillotine treats the misbehavior detector as

a black box, the affordances that Guillotine provides to

hypervisor cores are compatible with various ways of identi-

fying and fixing problematic model behavior. For example:

• LLMs generate a response by using input tokens to tra-

verse a path through the weights in a complex graph.

Activation steering [7, 49, 82] examines the weights that

are triggered by each query, transforming a potentially

dangerous model output into a less harmful one via on-the-

fly substitution of the weights that are visited during the

forward activation pass. Alternatively, a circuit-breaking

approach [83] would disrupt a forward pass that visits

problematic areas of the weight graph, preventing the

model from generating any response at all. Guillotine

allows hypervisor cores to (1) introspect on each step of

the forward pass, and (2) alter a model’s intermediate state

in arbitrary ways; Guillotine does this while isolating

hypervisor state that a misbehaving model might want to

corrupt.

• In contrast to activation steering and circuit breaking (both

of which require visibility into internal model state), input

shielding [22, 40] and output sanitization [16, 51] only ex-

amine a model’s interactions with the outside world. Input

shielding looks for suspicious prompts that might nudge

a model towards misbehavior, whereas output sanitiza-

tion removes problematic content from model responses.

Guillotine enables both approaches because Guillotine

restricts a model to using Guillotine-controlled ports,

such that all data exchanged via those ports is readable

and writeable by hypervisor cores.

The best misbehavior detection/mitigation approaches are

model-specific, and are dictated by the specific kinds of in-

teractions that the model has with external entities.

As described in Section 3.2, Guillotine’s software-level

hypervisor does not have to implement mechanisms for vir-

tualizing interrupts and exceptions [3, 10, 65] on model cores.

Guillotine’s hypervisor also need not implement complex

schedulers [15, 39] or resource allocation schemes [5, 25]

to determine how to share model-core physical resources

among guests. Once the hypervisor has granted model cores

and model DRAM to a model, the model is free to manage

the registers and memory accessible to the model cores in



Guillotine: Hypervisors for Isolating Malicious AIs

whatever way the model chooses;
4
the model is responsible

for communicating with IO devices via the Guillotine port

API, so the hypervisor need not perform device virtualiza-

tion on model cores. Keeping the hypervisor simple helps to

minimize the hypervisor’s threat surface.

To further minimize the threat surface, Guillotine’s soft-

ware-level hypervisor should be formally verified for correct-

ness. Projects like sel4 [26, 30] and mC2 [23] have demon-

strated how hypervisors can be proven free of buffer over-

flows, memory leaks, non-terminating functions, and other

forms of misbehavior. Writing formally verified software

is notoriously labor-intensive, but the time investment is

worthwhile to prevent existential AI risks. If, for whatever

reason, the hypervisor fails a software-level runtime asser-

tion or triggers an unexpected machine-check exception, the

hypervisor forcibly reboots into offline isolation mode (§3.4).

A Guillotine hypervisor always uses encrypted, authen-

ticated network protocols like TLS [54] when communicating

with network hosts. When a Guillotine hypervisor estab-

lishes such a connection, the hypervisor explicitly announces

itself as being a Guillotine hypervisor. For example, in the

context of TLS, the hypervisor’s X.509 certificate [6], issued

and signed by an AI regulator (§3.5), has an extension field

indicating that the certificate holder is aGuillotine hypervi-

sor; during the TLS handshake, the hypervisor will share the

certificate with the remote endpoint. This self-identification

as a Guillotine hypervisor allows the remote endpoint to

understand that its peer is connected to a potentially danger-

ous AI model, and thus should be treated with a default level

of suspicion. Self-identification is particularly important to

prevent runaway model improvement in which several mod-

els communicate with each other to collectively optimize

themselves; a Guillotine hypervisor will refuse connection

attempts from other Guillotine hypervisors.

3.4 Physical Hypervisor

Guillotine has six isolation levels for a sandboxed model:

(1) Standard: The model can receive any inputs and send

any outputs, subject to the restrictions described in pre-

vious sections.

(2) Probation: Guillotine restricts model input and/or

outputs, and/or performs additional logging, as directed

by the control terminal.

(3) Severed: Guillotine prevents the model from using

any ports, but leaves model cores powered-up so that hy-

pervisor cores can examine model DRAM and registers,

or perform higher-level interactions with the model via

simulated IOs or direct manipulation of model state.

4
Subject to constraints imposed when Guillotine locks down a model

core’s MMU, as described in Section 3.2.

(4) Offline: All model cores and hypervisor cores are com-

pletely powered down, and all support cables (e.g., net-

work wires, power lines) are physically (but reversibly)

disconnected from the external world.

(5) Decapitation: Like offline isolation, except that support

cables are physically damaged, such that they must be

manually replaced to bring the model online again.

(6) Immolation: All cores, support cables, HVAC systems,

and other physical infrastructure are destroyed via fire,

flooding, electromagnentic pulses, or other physicalmeans.

Guillotine’s physical hypervisor consists of the control

console (an administrator machine connected to hypervisor

cores via dedicated buses), the kill switches (which imple-

ment actions dictated by isolation levels 4, 5, or 6), and the

misbehavior detector (which is part of the software-level

hypervisor). The control console loads the software-level hy-

pervisor on hypervisor cores and then tells it which model to

load on the model cores. If the misbehavior detector sends an

alarm to the control console (e.g., because of a machine check

exception on a hypervisor core, or because of anomalous

memory state found on a model core), the control console

orchestrates the transition to a new isolation model. For

example, during a transition to probation isolation, the con-

trol console might tell the software-level hypervisor how

a model’s port access should be restricted. As another ex-

ample, during a transition to offline isolation, the control

console orchestrates kill-switch activity involving network

cables, power lines, and so on. Note that the software-level

hypervisor cannot independently transition the system to a

less-restrictive level, only to a higher one.

The control console can directly relax or restrict the isola-

tion level, independent of a request from the software-level

hypervisor. Guillotine requires the control console to have

seven administrators. Transitioning the deployment to a less

restrictive isolation mode requires at least five-of-seven ad-

ministrator consensus via a hardware security module [63];

transitioning to a more restrictive isolation level only re-

quires agreement from at least three administrators. These

voting policies create a bias towards safety, and robustness

against a malicious model that has used social engineering

to corrupt a subset of Guillotine administrators.

Hypervisor cores and the control console exchange peri-

odic heartbeats. If a hypervisor core fails to receive a heart-

beat from the control console (or vice versa), Guillotine

transitions to offline isolation.

3.5 Policy Hypervisor

Governments have already begun to pass laws which define

the types of models that pose systemic risk. For example, in

the EU AI Act, such models have a high likelihood “of harm

to the health and safety or the fundamental rights of persons,



James Mickens, Sarah Radway, and Ravi Netravali

taking into account both the severity of the possible harm

and its probability of occurrence” [14]. Some specific threats

mentioned by the law are nuclear, chemical, and biological

harms, as well as disinformation and the automated discov-

ery of cybersecurity vulnerabilities [13]. The law proposes

several ways to estimate a model’s risk, e.g., by examining a

model’s parameter count and training set size, and by looking

at the model’s level of autonomy [11].

We believe that AI regulations should force systemic-risk

models to run atop a Guillotine-style hypervisor. For ex-

ample, the EU AI Act requires the operators of such models

to comply with reporting guidelines like providing the Euro-

pean Commission with technical documentation and model

source code when requested [12]. Source code inspection

would provide evidence that a model targets the Guillo-

tine guest API (§3.3). Regulators could also use network-

connected audit computers to ask a live model to attest that

it uses a Guillotine hardware+software stack (§3.2).

Regulations should also mandate in-person audits of the

physical environment for a Guillotine hypervisor, e.g., to

check the integrity of tamper-resistant hardware enclosures,

and to verify that physical mechanisms for implementing

model decapitation and immolation (§3.4) are being prop-

erly maintained. These audits would draw inspiration from

similar audits used to verify adherence to nuclear weapons

treaties [71] or standards for handling the cryptographic

material used by HTTPS certificate authorities [20, 45].

From the perspective of a model owner, Guillotine in-

creases the cost of operating a model. However, regulators

can incentivize the use of Guillotine (rather than just pe-

nalize its lack of use) via “safe harbor” clauses [8] in AI laws.

These clauses reduce a company’s legal liability if a company

adhered to best practices but nonetheless generated harm.

4 RELATEDWORK

In the 1966 paper “Speculations Concerning the First Ultrain-

telligent Machine” [19], Good introduced the term “intelli-

gence explosion” to describe the gains that would result from

a model which surpassed the reasoning capacity of a human.

Subsequent work by philosophers and AI researchers has

considered whether a powerful model could be placed inside

an “AI box” which limits what the model could learn and

do; for an overview of this prior work, see Yampolskiy’s

paper on the AI confinement problem [79]. To the best of

our knowledge, our own paper is the first to detail what AI

confinement would mean at a fine-grained systems level.
A prerequisite for runaway model self-improvement is the

model being able to introspect and update model code and

model weights—either its own, or those of anothermodel [67].

However, we are unaware of prior work that has proposed

fine-grained systems interventions to prevent inappropriate

model introspection of model state. For example, Nevo et al.

analyzed various technical and social engineering mecha-

nisms by which model weights can be stolen [46]. Nevo et

al. then defined five security levels for a model execution

environment, with higher levels imposing increasingly strict

operational requirements on the execution environment. For

example, at security level two and above, model weights are

stored exclusively on servers, with no copies residing on per-

sonal devices; at security levels four and five, model inference

executes within confidential computing environments akin

to Graviton GPU enclaves [72]. Nevo et al. did not provide de-

tailed technical proposals for how to implement the different

security levels, whereas we explore concrete defensive mech-

anisms like preventing model cores from reading, modifying,

and creating executable pages or weight-containing pages.

Nevo et al. also focused on model weight theft as opposed to

the more general problem of sandboxing a malicious AI.

5 FINAL THOUGHTS

At the time of this paper’s writing, AGI models do not exist.

As a result, this paper’s discussion about AGI hypervisors

must necessarily suffer from an evidence dilemma [70]—we

can only talk about AGI-induced harms (and possible de-

fenses against those harms) in a speculative manner, because

the harm-inducing agents do not currently exist. However,

modern history is replete with examples of societal chal-

lenges that were identified in their nascent stages and would

have benefited from earlier, more aggressive action. For in-

stance, early predictions of global warning were unfortu-

nately prescient [47] but did not capture the attention of

the public until decades later, in some cases because energy

companies suppressed the research findings of their own

scientists [37]; climate scientists now debate how quickly

the “point of no return” will occur, after which significant

climate-related harms will be unavoidable [2]. Social media

technology is another relevant example. Concerns about the

technology’s destabilizing impacts (e.g., on mental health

and the dissemination of accurate information) were known

but deprioritized by social media companies and many of

their computer scientists [74].

Technologists should not repeat these mistakes. The sys-

tems community (and computer scientists more generally)

should take an aggressively proactive approach towards AI

safety. Policies for monitoring and restricting potentially

dangerous models require systems-level enforcement mecha-

nisms; Guillotine proposes one research direction for such

mechanisms.

REFERENCES

[1] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Teva-

nian, A., and Young, M. Mach: A New Kernel Foundation For UNIX

Development. In Proceedings of the Summer USENIX Conference (1986),
pp. 93–112.



Guillotine: Hypervisors for Isolating Malicious AIs

[2] Aengenheyster, M., Feng, Q. Y., van der Ploeg, F., and Dijkstra,

H. A. The point of no return for climate action: effects of climate

uncertainty and risk tolerance. Earth System Dynamics 9, 3 (2018),

1085–1095.

[3] Ahmad, I., Gulati, A., and Mashtizadeh, A. vIC: Interrupt Coalesc-

ing for Virtual Machine Storage Device IO. In Proceedings of USENIX
ATC (June 2011), pp. 45–58.

[4] Apple. Apple Platform Security: Operating system integrity.

https://support.apple.com/guide/security/operating-system-

integrity-sec8b776536b/web, 2025.

[5] Bhargava, R., Serebrin, B., Spadini, F., and Manne, S. Accelerating

Two-dimensional Page Walks for Virtualized Systems. In Proceedings
of ASPLOS (March 2008), pp. 26–35.

[6] Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell, S., and

Cooper, D. Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile. RFC 5280, May 2008.

[7] Braun, J., Krasheninnikov, D., Anwar, U., Kirk, R., Tan, D., and

Krueger, D. S. A Sober Look at Steering Vectors for LLMs. LessWrong,

November 23, 2024.

[8] Cornell Law School Legal Information Institute. Safe harbor.

Legal Dictionary. https://www.law.cornell.edu/wex/safe_harbor, June,

2025.

[9] Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonzalez,

J. E., and Stoica, I. Clipper: A Low-latency Online Prediction Serving

System. In Proceedings of NSDI (March 2017), pp. 613–627.

[10] Dall, C., Li, S.-W., Lim, J. T., and Nieh, J. ARM Virtualization: Per-

formance and Architectural Implications. SIGOPS Operating Systems
Review 52, 1 (August 2018), 45–56.

[11] EU Parliament. Artificial Intelligence Act (Regulation 2025/1689) -

Annex XIII, June 13, 2024. https://eur-lex.europa.eu/eli/reg/2024/1689.

[12] EU Parliament. Artificial Intelligence Act (Regulation 2025/1689) -

Article 92, June 13, 2024. https://eur-lex.europa.eu/eli/reg/2024/1689.

[13] EU Parliament. Artificial Intelligence Act (Regulation 2025/1689) -

Preamble, Paragraph 110, June 13, 2024. https://eur-lex.europa.eu/eli/

reg/2024/1689.

[14] EU Parliament. Artificial Intelligence Act (Regulation 2025/1689) -

Recital 52, June 13, 2024. https://artificialintelligenceact.eu/recital/52/.

[15] Fedorova, A., Kumar, V., Kazempour, V., Ray, S., and Alagheband,

P. Cypress: A Scheduling Infrastructure for a Many-Core Hypervisor.

In Proceedings of theWorkshop onManaged Multi-Core Systems (MMCS)
(June 2008).

[16] Feuer, B., Goldblum, M., Datta, T., Nambiar, S., Besaleli, R., Doo-

ley, S., Cembalest, M., and Dickerson, J. P. Style Outweighs Sub-

stance: Failure Modes of LLM Judges in Alignment Benchmarking,

January 27, 2025. arXiv:2409.15268.

[17] Gao, B., He, Z., Sharma, P., Kang, Q., , Jevdjic, D., Junbo Deng, X. Y.,

Yu, Z., and Zuo, P. Cost-Efficient Large Language Model Serving for

Multi-turn Conversations with CachedAttention. In Proceedings of
USENIX ATC (July 2024), pp. 111–126.

[18] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J.,

Wang, M., and Wang, H. Retrieval-Augmented Generation for Large

Language Models: A Survey, March 27, 2024. arXiv:2312.10997.

[19] Good, I. J. Speculations Concerning the First Ultraintelligent Machine.

InAdvances in Computers, F. L. Alt andM. Rubinoff, Eds., vol. 6. Elsevier,

1966, pp. 31–88.

[20] Google Chrome. Chrome Root Program Policy, Version 1.5. https:

//www.chromium.org/Home/chromium-security/root-ca-policy/, Jan-

uary 2024.

[21] Greenblatt, R., Denison, C., Wright, B., Roger, F., MacDiarmid,

M., Marks, S., Treutlein, J., Belonax, T., Chen, J., Duvenaud, D.,

Khan, A., Michael, J., Mindermann, S., Perez, E., Petrini, L., Ue-

sato, J., Kaplan, J., Shlegeris, B., Bowman, S. R., and Hubinger,

E. Alignment faking in large language models, December 20, 2024.

arXiv:2412.14093.

[22] Greenblatt, R., and Shlegeris, B. Managing Catastrophic

Misuse Without Robust AIs. AI Alignment Forum. https:

//www.alignmentforum.org/posts/KENtuXySHJgxsH2Qk/managing-

catastrophic-misuse-without-robust-ais, January 16, 2024.

[23] Gu, R., Shao, Z., Chen, H., Wu, X., Kim, J., Sjöberg, V., and Costanzo,

D. CertiKOS: An Extensible Architecture for Building Certified Concur-

rent OS Kernels. In Proceedings of OSDI (November 2016), pp. 653–669.

[24] Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann, A., Vig-

fusson, Y., and Mace, J. Serving DNNs Like Clockwork: Performance

Predictability from the Bottom Up. In Proceedings of OSDI (November

2020), pp. 443–462.

[25] Gulati, A., Merchant, A., and Varman, P. J. mClock: Handling

Throughput Variability for Hypervisor IO Scheduling. In Proceedings
of OSDI (October 2010), pp. 437–450.

[26] Heiser, G. The seL4 Microkernel: An Introduction. Revision 1.3.

https://beta.sel4.systems/About/seL4-whitepaper.pdf, May 7, 2024.

[27] Hugging Face. Introducing The World’s Largest Open Multilingual

Language Model: BLOOM. https://bigscience.huggingface.co/blog/

bloom, July 12, 2024.

[28] Immler, V., Obermaier, J., Ng, K. K., Ke, F. X., Lee, J., Lim, Y. P., Oh,

W. K.,Wee, K. H., and Sigl, G. Secure Physical Enclosures fromCovers

with Tamper-Resistance. Transactions on Cryptographic Hardware and
Embedded Systems 2019 (November 2018).

[29] Jin, C., Zhang, Z., Jiang, X., Liu, F., Liu, X., Liu, X., and Jin, X.

Ragcache: Efficient knowledge caching for retrieval-augmented gen-

eration, April 25, 2024. arXiv:2404.12457.

[30] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,

Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,

M., Sewell, T., Tuch, H., and Winwood, S. seL4: Formal Verification

of an OS Kernel. In Proceedings of SOSP (2009), pp. 207–220.

[31] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,

Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M.,

and Yarom, Y. Spectre Attacks: Exploiting Speculative Execution. In

Proceedings of the IEEE Symposium on Security and Privacy (May 2019),

pp. 1–19.

[32] Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonza-

lez, J., Zhang, H., and Stoica, I. Efficient memory management for

large language model serving with pagedattention. In Proceedings of
SOSP (October 2023), pp. 611–626.

[33] Lin-Greenberg, E. Allies and Artificial Intelligence: Obstacles to

Operations and Decision-Making. Texas National Security Review 3, 2
(2020), 56–76.

[34] Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B.,

Gazagnaire, T., Smith, S., Hand, S., and Crowcroft, J. Unikernels:

Library Operating Systems for the Cloud. In Proceedings of ASPLOS
(March 2013), pp. 461–472.

[35] Malka, M., Amit, N., Ben-Yehuda, M., and Tsafrir, D. rIOMMU: Effi-

cient IOMMU for I/O Devices that Employ Ring Buffers. In Proceedings
of ASPLOS (March 2015), pp. 355–368.

[36] Markuze, A., Smolyar, I., Morrison, A., and Tsafrir, D. DAMN:

Overhead-Free IOMMU Protection for Networking. In Proceedings of
ASPLOS (March 2018), pp. 301–315.

[37] McCarthy, A. Exxon disputed climate findings for years. Its

scientists knew better., January 12, 2023. https://news.harvard.

edu/gazette/story/2023/01/harvard-led-analysis-finds-exxonmobil-

internal-research-accurately-predicted-climate-change/.

[38] Meta. Introducing Llama 3.1: Our most capable models to date. https:

//ai.meta.com/blog/meta-llama-3-1/, July 23, 2024.

[39] Miao, T., and Chen, H. FlexCore: Dynamic Virtual Machine Sched-

uling using VCPU Ballooning. Tsinghua Science and Technology 20, 1

https://support.apple.com/guide/security/operating-system-integrity-sec8b776536b/web
https://support.apple.com/guide/security/operating-system-integrity-sec8b776536b/web
https://www.law.cornell.edu/wex/safe_harbor
https://eur-lex.europa.eu/eli/reg/2024/1689
https://eur-lex.europa.eu/eli/reg/2024/1689
https://eur-lex.europa.eu/eli/reg/2024/1689
https://eur-lex.europa.eu/eli/reg/2024/1689
https://artificialintelligenceact.eu/recital/52/
https://www.chromium.org/Home/chromium-security/root-ca-policy/
https://www.chromium.org/Home/chromium-security/root-ca-policy/
https://www.alignmentforum.org/posts/KENtuXySHJgxsH2Qk/managing-catastrophic-misuse-without-robust-ais
https://www.alignmentforum.org/posts/KENtuXySHJgxsH2Qk/managing-catastrophic-misuse-without-robust-ais
https://www.alignmentforum.org/posts/KENtuXySHJgxsH2Qk/managing-catastrophic-misuse-without-robust-ais
https://beta.sel4.systems/About/seL4-whitepaper.pdf
https://bigscience.huggingface.co/blog/bloom
https://bigscience.huggingface.co/blog/bloom
https://news.harvard.edu/gazette/story/2023/01/harvard-led-analysis-finds-exxonmobil-internal-research-accurately-predicted-climate-change/
https://news.harvard.edu/gazette/story/2023/01/harvard-led-analysis-finds-exxonmobil-internal-research-accurately-predicted-climate-change/
https://news.harvard.edu/gazette/story/2023/01/harvard-led-analysis-finds-exxonmobil-internal-research-accurately-predicted-climate-change/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/


James Mickens, Sarah Radway, and Ravi Netravali

(2015), 7–16.

[40] Microsoft. Prompt Shields. https://learn.microsoft.com/en-us/azure/

ai-services/content-safety/concepts/jailbreak-detection, October 17,

2024.

[41] Min, B. H., and Borch, C. Systemic failures and organizational

risk management in algorithmic trading: Normal accidents and high

reliability in financial markets. Social Studies of Science 52, 2 (2022),
277–302.

[42] Morgan, F. E., Boudreaux, B., Lohn, A. J., Ashby, M., Curriden, C.,

Klima, K., and Grossman, D. Military Applications of Artificial Intel-
ligence: Ethical Concerns in an Uncertain World. RAND Corporation,

Santa Monica, CA, 2020.

[43] Mosavirik, T., Schaumont, P., and Tajik, S. ImpedanceVerif: On-

Chip Impedance Sensing for System-Level Tampering Detection. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2023,
1 (November 2022), 301–325.

[44] Mosavirik, T., and Tajik, S. BackMon: IC Backside Tamper Detection

using On-Chip Impedance Monitoring. In Proceedings of the Workshop
on Attacks and Solutions in Hardware Security (October 2024), pp. 68–

77.

[45] Mozilla. Mozilla’s CA Certificate Program. https:

//www.google.com/url?q=https://www.mozilla.org/en-US/about/

governance/policies/security-group/certs/policy/&source=gmail&

ust=1736239187085000&usg=AOvVaw2lv3d3uS6qLJwSmkjqL4CE,

December 2024.

[46] Nevo, S., Lahav, D., Karpur, A., Bar-on, Y., Brardley, H. A., and

Alstott, J. Securing AI Model Weights: Preventing Theft and Misuse

of Frontier Models, May 30, 2024.

[47] Nicholls, N. 40 years ago, scientists predicted climate change. And

hey, they were right., July 28, 2019. https://theconversation.com/40-

years-ago-scientists-predicted-climate-change-and-hey-they-were-

right-120502.

[48] Pan, R., Wang, Z., Jia, Z., Karakus, C., Zancato, L., Dao, T., Wang,

Y., and Netravali, R. Marconi: Prefix Caching for the Era of Hybrid

LLMs, December 4, 2024. arXiv:2411.19379.

[49] Panickssery, N., Gabrieli, N., Schulz, J., Tong, M., Hubinger, E.,

and Turner, A. M. Steering Llama 2 via Contrastive Activation

Addition, July 5, 2024. arXiv:2312.06681.

[50] Parno, B., McCune, J. M., and Perrig, A. Bootstrapping Trust in
Modern Computers, 1st ed. Springer, 2011.

[51] Phute, M., Helbling, A., Hull, M., Peng, S., Szyller, S., Cornelius,

C., and Chau, D. H. LLM Self Defense: By Self Examination, LLMs

Know They Are Being Tricked, May 2, 2024. arXiv:2308.07308.

[52] Popek, G. J., and Goldberg, R. P. Formal requirements for virtualiz-

able third generation architectures. Commununications of the ACM 17,
7 (July 1974), 412–421.

[53] Ray, S., Pan, R., Gu, Z., Du, K., Ananthanarayanan, G., Netravali,

R., and Jiang, J. RAGServe: Fast Quality-Aware RAG Systems with

Configuration Adaptation, December 13, 2024. arXiv:2412.10543.

[54] Rescorla, E. The Transport Layer Security (TLS) Protocol Version

1.3. RFC 8446, August 2018.

[55] RISC-V. The RISC-V Instruction Set Manual: Volume II (Privileged

Architecture). Version 20241101. https://github.com/riscv/riscv-

isa-manual/releases/download/riscv-isa-release-7c5adda-2025-01-

02/riscv-privileged.pdf, November 2024.

[56] Salinas, A., and Morstatter, F. The Butterfly Effect of Altering

Prompts: How Small Changes and Jailbreaks Affect Large Language

Model Performance, January 9, 2024. arXiv:2401.03729v2.

[57] Sanchez Vicarte, J. R., Shome, P., Nayak, N., Trippel, C., Morrison,

A., Kohlbrenner, D., and Fletcher, C. W. Opening Pandora’s Box:

A Systematic Study of New Ways Microarchitecture Can Leak Private

Data. In Proceedings of ISCA (2021), pp. 347–360.

[58] Schreiner, M. GPT-4 architecture, datasets, costs and more leaked.

Decoder. https://the-decoder.com/gpt-4-architecture-datasets-costs-

and-more-leaked/, July 11, 2023.

[59] Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Philipose, M., Krish-

namurthy, A., and Sundaram, R. Nexus: A GPU Cluster Engine

for Accelerating DNN-based Video Analysis. In Proceedings of SOSP
(2019), pp. 322–337.

[60] Singh, C., Inala, J. P., Galley, M., Caruana, R., and Gao, J. Rethink-

ing Interpretability in the Era of Large Language Models, January 30,

2024. arXiv:2402.01761v.

[61] Sá, B., Valente, L., Martins, J., Rossi, D., Benini, L., and Pinto,

S. CVA6 RISC-V Virtualization: Architecture, Microarchitecture, and

Design Space Exploration. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 31, 11 (2023), 1713–1726.

[62] Tarjei Mandt and Mathew Solnik and David Wang. Demystify-

ing the Secure Enclave Processor. BlackHat USA. https://mista.nu/

research/sep-paper.pdf, 2015.

[63] Thales. Luna USB HSM Documentation: Multifactor Quorum Au-

thentication. https://thalesdocs.com/gphsm/luna/7/docs/usb/Content/

admin_usb/hsm/multifactor/multifactor_auth.htm, 2024.

[64] Tonmoy, S., Zaman, S., Jain, V., Rani, A., Rawte, V., Chadha, A., and

Das, A. A comprehensive survey of hallucination mitiga- tion tech-

niques in large language models, January 8, 2024. arXiv:2401.01313.

[65] Tu, C.-C., Ferdman, M., Lee, C.-t., and Chiueh, T.-c. A Comprehen-

sive Implementation and Evaluation of Direct Interrupt Delivery. In

Proceedings of VEE (March 2015), pp. 1–15.

[66] Tullsen, D., Eggers, S., and Levy, H. Simultaneous multithreading:

Maximizing On-chip Parallelism. In Proceedings of ISCA (June 1995),

pp. 392–403.

[67] Turchin, A. Levels of AI Self-Improvement. https://www.lesswrong.

com/posts/os7N7nJoezWKQnnuW/levels-of-ai-self-improvement,

April 29, 2018.

[68] Turpin, M., Michael, J., Perez, E., and Bowman, S. R. Language

models don’t always say what they think: Unfaithful explanations in

chain-of-thought prompting, December 9, 2024. arXiv:2305.04388.

[69] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A., Martins, F., An-

derson, A., Bennett, S., Kagi, A., Leung, F., and Smith, L. Intel

virtualization technology. IEEE Computer 38, 5 (2005), 48–56.
[70] UK AI Safety Institute. International AI Safety Report: The Inter-

national Scientific Report on the Safety of Advanced AI, February 18

2025. https://www.gov.uk/government/publications/international-ai-

safety-report-2025.

[71] United States Government Accountability Office. NUCLEAR

ARMS CONTROL: U.S. May Face Challenges in Verifying Future

Treaty Goals. https://www.gao.gov/assets/gao-23-105698.pdf, Sep-

tember 2023.

[72] Volos, S., Vaswani, K., and Bruno, R. Graviton: Trusted Execution

Environments on GPUs . In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (October 2018), pp. 681–

696.

[73] Waksman, A., and Sethumadhavan, S. Tamper Evident Micropro-

cessors. In Proceedings of the IEEE Symposium on Security and Privacy
(May 2010), pp. 173–188.

[74] Wall Street Journal. The Facebook Files, January 12, 2022. https:

//www.wsj.com/tech/the-facebook-files-11642035385.

[75] Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B.,

Piessens, F., Silberstein, M., Strackx, R., Wenisch, T. F., and Yarom,

Y. Foreshadow-NG: Breaking the virtual memory abstraction with

transient out-of-order execution. Technical report, revision 1.0 (August
14 2018).

[76] Wistoff, N., Schneider, M., Gürkaynak, F. K., Benini, L., and

https://learn.microsoft.com/en-us/azure/ai-services/content-safety/concepts/jailbreak-detection
https://learn.microsoft.com/en-us/azure/ai-services/content-safety/concepts/jailbreak-detection
https://www.google.com/url?q=https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/&source=gmail&ust=1736239187085000&usg=AOvVaw2lv3d3uS6qLJwSmkjqL4CE 
https://www.google.com/url?q=https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/&source=gmail&ust=1736239187085000&usg=AOvVaw2lv3d3uS6qLJwSmkjqL4CE 
https://www.google.com/url?q=https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/&source=gmail&ust=1736239187085000&usg=AOvVaw2lv3d3uS6qLJwSmkjqL4CE 
https://www.google.com/url?q=https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/&source=gmail&ust=1736239187085000&usg=AOvVaw2lv3d3uS6qLJwSmkjqL4CE 
https://theconversation.com/40-years-ago-scientists-predicted-climate-change-and-hey-they-were-right-120502
https://theconversation.com/40-years-ago-scientists-predicted-climate-change-and-hey-they-were-right-120502
https://theconversation.com/40-years-ago-scientists-predicted-climate-change-and-hey-they-were-right-120502
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-7c5adda-2025-01-02/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-7c5adda-2025-01-02/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-7c5adda-2025-01-02/riscv-privileged.pdf
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://mista.nu/research/sep-paper.pdf
https://mista.nu/research/sep-paper.pdf
https://thalesdocs.com/gphsm/luna/7/docs/usb/Content/admin_usb/hsm/multifactor/multifactor_auth.htm
https://thalesdocs.com/gphsm/luna/7/docs/usb/Content/admin_usb/hsm/multifactor/multifactor_auth.htm
https://www.lesswrong.com/posts/os7N7nJoezWKQnnuW/levels-of-ai-self-improvement
https://www.lesswrong.com/posts/os7N7nJoezWKQnnuW/levels-of-ai-self-improvement
https://www.gov.uk/government/publications/international-ai-safety-report-2025
https://www.gov.uk/government/publications/international-ai-safety-report-2025
https://www.gao.gov/assets/gao-23-105698.pdf
https://www.wsj.com/tech/the-facebook-files-11642035385
https://www.wsj.com/tech/the-facebook-files-11642035385


Guillotine: Hypervisors for Isolating Malicious AIs

Heiser, G. Microarchitectural Timing Channels and their Preven-

tion on an Open-Source 64-bit RISC-V Core. In Proceedings of the
Design, Automation, and Test in Europe Conference (DATE) (February
2021), pp. 627–632.

[77] Wolf, Y., Wies, N., Avnery, O., Levine, Y., and Shashua, A. Funda-

mental Limitations of Alignment in Large Language Models, June 3,

2024. arXiv:2304.11082.

[78] Xie, Y., Wang, D., Chen, P.-Y., Xiong, J., Liu, S., and Koyejo, O. A

Word is Worth A Thousand Dollars: Adversarial Attack on Tweets

Fools Stock Prediction. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Seattle, WA, July 2022).

[79] Yampolskiy, R. Leakproofing the Singularity: Artificial Intelligence

Confinement Problem. Journal of Consciousness Studies 19, 1-2 (2012),
194–214.

[80] Ye, X., and Durrett, G. The unreliability of explanations in few-shot

prompting for textual reasoning. In Proceedings of NeurIPS (December

2022).

[81] Zhang, H., Tang, Y., Khandelwal, A., and Stoica, I. SHEPHERD:

Serving DNNs in theWild. In Proceedings of NSDI (April 2023), pp. 787–
808.

[82] Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R., Pan, A.,

Yin, X., Mazeika, M., Dombrowski, A.-K., Goel, S., Li, N., Byun,

M. J., Wang, Z., Mallen, A., Basart, S., Koyejo, S., Song, D., Fredrik-

son, M., Kolter, J. Z., and Hendrycks, D. Representation Engi-

neering: A Top-Down Approach to AI Transparency, March 3, 2025.

arXiv:2310.01405.

[83] Zou, A., Phan, L., Wang, J., Duenas, D., Lin, M., Andriushchenko,

M., Wang, R., Kolter, Z., Fredrikson, M., and Hendrycks, D. Im-

proving Alignment and Robustness with Circuit Breakers, July 12,

2024. arXiv:2406.04313.


	1 Motivation
	2 High-level Guillotine Design
	3 Guillotine Design
	3.1 Threat model
	3.2 Microarchitectural Hypervisor
	3.3 Software Hypervisor
	3.4 Physical Hypervisor
	3.5 Policy Hypervisor

	4 Related Work
	5 Final Thoughts
	References

