
Valkyrie: A Response Framework to Augment
Runtime Detection of Time-Progressive Attacks

Nikhilesh Singh†
System Security Lab

Technische Universität Darmstadt
Darmstadt, Germany

nikhilesh.singh@tu-darmstadt.de

Chester Rebeiro
Dept. of Computer Science & Engg.

Indian Institute of Technology Madras
Chennai, India

chester@cse.iitm.ac.in

Abstract—A popular approach to detect cyberattacks is to
monitor systems in real-time to identify malicious activities as
they occur. While these solutions aim to detect threats early,
minimizing damage, they suffer from a significant challenge
due to the presence of false positives. False positives have a
detrimental impact on computer systems, which can lead to inter-
ruptions of legitimate operations and reduced productivity. Most
contemporary works tend to use advanced Machine Learning
and AI solutions to address this challenge. Unfortunately, false
positives can, at best, be reduced but not eliminated.

In this paper, we propose an alternate approach that focuses
on reducing the impact of false positives rather than elimi-
nating them. We introduce Valkyrie, a framework that can
enhance any existing runtime detector with a post-detection
response. Valkyrie is designed for time-progressive attacks, such
as micro-architectural attacks, rowhammer, ransomware, and
cryptominers, that achieve their objectives incrementally using
system resources. As soon as an attack is detected, Valkyrie
limits the allocated computing resources, throttling the attack,
until the detector’s confidence is sufficiently high to warrant a
more decisive action. For a false positive, limiting the system
resources only results in a small increase in execution time.
On average, the slowdown incurred due to false positives is
less than 1% for single-threaded programs and 6.7% for multi-
threaded programs. On the other hand, attacks like rowhammer
are prevented, while the potency of micro-architectural attacks,
ransomware, and cryptominers is greatly reduced.

Index Terms—Post-Detection Response, False Positives, Time-
Progressive Attacks, Runtime Attack Detection.

I. INTRODUCTION

The last few years have seen an unprecedented rise in mal-
ware that threatens the security of computing systems. Side-
by-side, new malware classes such as ransomware, micro-
architectural attacks, cryptominers, and rowhammer have
evolved to be extremely potent attack vectors. Ransomware
encrypts the contents of a victim’s file system and is growing
at an alarming rate of 27% per year [30]. Similarly, with the in-
creased usage of cryptocurrencies, cryptomining malware has
also grown significantly, by more than six times in 2023 [59].
Micro-architectural attacks [28] and rowhammer [34] are new

†The author was associated with the Indian Institute of Technology Madras
during the work.

This is the authors’ version of the paper Valkyrie: A Response Framework
to Augment Runtime Detection of Time-Progressive Attacks, to appear in the
55th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN) 2025.

attack vectors that utilize inherent weaknesses in the hard-
ware, making them difficult to defend against. While micro-
architectural attacks leak sensitive information through shared
hardware resources, rowhammer attacks are capable of flipping
bits in memory without accessing them.

A common feature among all of these attacks is that they
progress incrementally with execution time. For example, if
ransomware executes for a longer duration, it can encrypt
more files. Thus, the progress of the ransomware attack
increases with execution time. Similarly, if executed for a
longer duration, cryptominers are likely to compute more
hashes, micro-architectural attacks can leak more information,
while rowhammer is likely to flip more bits in memory. These
attacks, which we call time-progressive attacks, achieve their
objectives gradually during their execution.

An extensively studied approach to counter time-progressive
attacks at runtime is based on the program execution be-
havior [12], [19], [23], [32], [38], [46]–[49], [53], [64],
[69]. A typical runtime detector profiles features of executing
programs to train a Machine Learning (ML) model [10],
[12], [23], [32], [38], [46]–[49], [64] to identify patterns
unique to time-progressive attacks. For example, hardware
performance counters (HPCs) present in processors [12], [25],
[32], [38], [46]–[49], [64], system-level APIs [10], [33], [45],
and network activity [27], [33] are periodically measured and
used by trained models to detect an ongoing attack. Such
detection approaches can be easily adapted to support new
attacks, while at the same time, applied at various levels of
the computing stack, such as the network, Operating System
(OS), and hardware [33].

A limitation of these ML-based detectors is that they are
susceptible to false positives. As a result, benign programs
are classified malicious. Existing works address these false
positives by using more sophisticated detection models [23],
[32], [33]. For example, Gulmezoglu et al. [32] use unsuper-
vised deep learning techniques, while Karapoola et al. [33]
employ a multi-level mixture of experts model for detection.
However, none of these solutions can completely eliminate
false positives in real-world deployments [24], [36], [70]. For
instance, [12] implements perceptrons and has up to 7% false
positives, while [48] which uses more sophisticated machine
learning models, has under 3% false positives for detecting

ar
X

iv
:2

50
4.

15
44

7v
1

 [
cs

.C
R

]
 2

1
A

pr
 2

02
5

https://orcid.org/0000-0002-2697-1855
https://orcid.org/0000-0001-8063-0026

micro-architectural attacks.
False positives in attack detection can adversely impact

operations. For instance, a high number of false positives
in the alerts raised by the detector at the retail network
Target, led to alerts being ignored by the security team.
This eventually resulted in one of the most prominent cyber
attacks in recent years [11]. Instead of alerting users about
ongoing attacks, another option is to terminate programs that
are classified malicious. This would result in a large number
of falsely classified programs being prematurely terminated. In
some cases [49], [69], the detected programs can be migrated
to a different execution environment, resulting in significant
overheads. Thus, there is a pressing need to design efficient
responses, following a detection.

Post-detection response strategies for time-progressive at-
tacks have two critical requirements. R1: The response should
throttle attacks and minimize their progress. R2: The response
should minimally affect the execution of benign programs
when falsely classified. Throttling attacks and minimizing their
progress requires timely detection and termination. In contrast,
reducing the adverse effects of benign programs necessitates
improving the efficacy of detection, primarily minimizing false
positives. However, the higher detection efficacy would require
more complex detection models or a larger number of runtime
measurements, causing delays in thwarting attacks.

Most existing works, unfortunately, target satisfying R1 but
not R2, hampering the usability of the solution. For instance,
even a low false-positive rate, of say, 3% [48], would mean that
3 out of every 100 programs, on average, would be terminated
prematurely. Addressing this limitation requires either the
elimination of false positives or a reduction in the impact of
false positives. Since the elimination of false positives with
present-day ML models is challenging, it is essential to focus
on minimizing the impact of false positives. Thus, we pose
the following research question in this work: can we design
post-detection response mechanisms for runtime detectors that
satisfy R1 and R2, thwarting attacks while minimizing the
adverse impacts of false positives?

A characteristic feature of all time-progressive attacks is that
they require system resources, such as CPU, memory, network,
or the file system, for successful execution. Limiting these re-
sources would result in slowing down the attack’s progress. For
example, limiting the time a ransomware executes in the CPU,
restricting the memory allocated to the process, or restricting
file system access can slow down the rate at which files
are encrypted. We use this observation to present Valkyrie,
a framework to augment detectors with post-detection re-
sponse strategies 1. Designed to handle the adverse impacts of
false positives, Valkyrie augments a detector that periodically
provides an inference. Programs that are detected malicious
are terminated only if the detection has sufficient detection
efficacy. If the detection efficacy is not achieved, detected
programs are slowed down by throttling system resources

1The relevant code and data associated with Valkyrie are maintained at
https://bitbucket.org/casl/valkyrie/src/main/

needed for their execution. For an attack, the slowdown would
reduce its progress, while for a false positive, there is a
temporary slowdown. This is less adverse than termination.
Thus, the choice of detection efficacy affects the slowdown of
false positives as well as the rate at which attacks are stymied.
We define detection efficacy as a metric that quantifies the
capability of the detector to classify benign and malicious
program behavior. It can be represented by model evaluation
metrics such as F1-score and false positive rate (FPR). Users
can specify constraints regarding the detection efficacy, based
on the application. Once this efficacy is reached, the program
is terminated only if it continues to be classified as malicious.
On the other hand, if the program is classified as benign –
a false positive – then its resources are gradually restored.
Thus, Valkyrie provides a response mechanism ensuring that
benign programs do not face premature termination (R2) while
attacks are throttled (R1).

Following are the key contributions of the paper.

• We present Valkyrie, a response framework that augments
detection countermeasures for time-progressive attacks
to minimize the impacts of false positives while ensur-
ing that attacks get throttled. Valkyrie slows down the
progress of attacks by restricting system resources and
terminates a detected process only when the detector
achieves sufficient detection efficacy specified by the user.

• The implementation of Valkyrie requires minimal
changes and can be plugged into any detector. We
demonstrate Valkyrie by augmenting multiple detectors
against various time-progressive attacks. We present case
studies involving various micro-architectural attacks, such
as Prime+Probe on the L1 Data [50], L1 Instruction [9],
and LLC caches [42], [66]; L1 and TLB Evict+Time
attacks [29], [50]; and Fill-and-Forward Timed Specu-
lative Attack on Load-Store Buffer [22]. Similarly, we
also evaluate Valkyrie with rowhammer [1], [34], ran-
somware [3]–[7], and cryptominers [52].

• We mathematically quantify the slowdowns induced
by Valkyrie when benign processes are falsely classified.
We present an empirical evaluation of these slowdowns
with multiple benign benchmark suites, including SPEC-
2017 [20], SPEC-2006 [60], SPECViewperf-13 [2],
STREAM [43], and multi-threaded SPEC-2017 [20]. The
average slowdowns are 1% for single-threaded and 6.7%
for multi-threaded programs across different evaluation
systems. Additionally, Valkyrie also supports a con-
figurable upper limit for maximum slowdowns due to
resource throttling.

The rest of the paper is organized as follows. Section II
presents the necessary background on time-progressive attacks
and their detection. We provide an overview of existing post-
detection approaches in Section III. Section IV describes the
motivation for Valkyrie and presents an overview of the
framework. In Sections V and VI, we discuss the design
of Valkyrie in detail and demonstrate the utility of Valkyrie
by augmenting several detectors for various time-progressive

https://bitbucket.org/casl/valkyrie/src/main/

TABLE I: Existing runtime detection countermeasures and their
post-detection responses along with the reported false positives. [Req:
Rquirement; : requirement not satisfied, : requirement partially
satisfied, : requirement satisfied].

Post-Detection
Response Papers Req. False positives

reportedR1 R2

Not Specified

Alam et al. [12] 5-7%
Briongos et al. [19] 1.6-4.3%
Chiapetta et al. [23] Not reported

Gulmezoglu et al. [32] 0.21%
Mushtaq et al. [46] 1-30%
Mushtaq et al. [47] 5%

Wang et al. [64] upto 13.6%
Karapoola et al. [33] 0.01%

Ahmed et al. [10] 0.58%
Vig et al. [63] 1%
Pott et al. [56] 0.2%
Tahir et al. [61] 0.25%
Mani et al. [40] 0.2-3.8%

Warning Kulah et al. [38] Not reported

Migration Zhang et al. [69] Not reported
Nomani et al. [49] Not reported

Termination Mushtaq et al. [48] 1-3%
Payer [53] Not reported

DRAM
responses

Aweke et al. [14] 1%
Yaglikçi et al. [65] 0.01%

Systematic
throttling and

eventual
termination

Valkyrie (this paper;
augmented with any

detector)

Same as
augmented

detector

attacks as case studies, respectively. Section VII presents a
discussion on the limitations of Valkyrie, while Section VIII
concludes the paper.

II. BACKGROUND

A. Time-Progressive Attacks

Time-progressive attacks use system resources such as
CPU, memory, network, kernel APIs, or the filesystem to
achieve their objectives incrementally with execution. For ex-
ample, consider cryptominers [52]. These attacks aim to mine
cryptocurrency, which involves a computationally intensive
challenge, such as recovering the input of a hash function
from a given output. The longer the cryptominer executes,
the more challenges can be solved to mine cryptocurrency.
Similarly, micro-architectural attacks rely on the execution
time measurements to glean information. When given a longer
time to execute, these attacks can collect more measurements
and, in turn, leak more bits of information. Restricting the
system resources such as CPU time, memory, network and
filesystem can, thus, impede the progress of time-progressive
attacks. In this paper, we make use of this dependence of the
attack’s progress on the system resources to design Valkyrie.

B. Runtime Detection of Attacks

Runtime detection of time-progressive attacks typically in-
volves detection models trained on measurements representing
program behavior. These measurements are captured using
tools such as the Linux Perf tool [55], which captures the
CPU’s hardware performance counters (HPCs); Microsoft
ProcMon [45], which captures the operating system (OS)

events; or Wireshark [27], which captures network behav-
ior. Machine Learning (ML) based detection models such
as SVM [47], XGBoost [33] and artificial neural networks
(ANNs) [49] are trained on such measurements from benign
and malicious programs. After training, the detector is de-
ployed to classify processes using the measurements that are
continuously captured for each process at runtime.

Several existing works have demonstrated the efficacy
of such runtime detectors to identify time-progressive at-
tacks [12], [19], [23], [32], [38], [46]–[49], [53], [64], [69].
Unfortunately, all of these approaches have been shown to be
susceptible to false positives [24], [36], [70], which impact
their usability. For this work, the comparative assessment of
different types of measurements and detectors is not relevant.
Rather, we are interested in post-detection response strategies.
We discuss this in the next section.

III. EXISTING POST-DETECTION APPROACHES

Table I presents the post-detection response strategies fol-
lowed in existing runtime detection countermeasures along
with the reported false positive rate (FPR) of each detector.
The FPR represents the benign programs that are affected by
the response. We evaluate these post-detection responses with
respect to the requirements R1 and R2 described in Section I.
Most existing runtime detectors [10], [12], [19], [23], [32],
[33], [40], [46], [47], [56], [61], [63], [64] for time-progressive
attacks do not specify any post-detection response. Works such
as Kulah et al. [38] respond with a warning to the user once
a process is classified malicious. Since handling the detection
requires a vigilant user, it is challenging to guarantee either of
the requirements R1 or R2 with these approaches.

A promising response strategy for micro-architectural at-
tacks is to migrate the detected process to a different CPU
core or another virtual machine (VM). While this approach
satisfies both R1 and R2, it has two key limitations. First,
migration is applicable only against contention-based micro-
architectural attacks [49], [69] such as cache attacks in cloud
infrastructure [13], [54]. Second, migration of processes across
VMs can induce high overheads. For instance, a process that
is falsely classified malicious throughout its execution by [49]
can incur up to 50% performance overheads due to migration
across CPU cores.

The detection countermeasure presented in Payer [53] re-
quires users to select between termination or a reduction in
the execution priority of attacks like rowhammer [34]. While
termination satisfies R1 but not R2, reducing the execution
priority may not satisfy R1 as it can allow attacks to execute
endlessly. Further, relying on users to respond after detection
also affects the consistency of the approach. Mushtaq et
al. [48] discuss the challenge of false positives in micro-
architectural attack detection and attempt to address it with
a post-detection response. Rather than terminating a process
right after detection, this solution terminates a process only
when it is classified malicious three times consecutively. While
such an approach reduces the number of benign processes that
are falsely terminated from 5% to under 3% (R2), the choice

(a) F1-Score. (b) False Positive Rate.

Fig. 1: Detection efficacy of various models similar to existing works with respect to the number of runtime measurements captured by the
detector and elapsed time. The user of a detection solution can specify the desired level of detection efficacy.

of waiting for three consecutive classifications is arbitrary and
can not be generalized across detectors.

The authors in [14] and [65] present responses to refresh
the DRAM after detecting a rowhammer attack. While these
approaches satisfy both R1 and R2, the response specifically
targets rowhammer and is not applicable to other attacks. Un-
like the post-detection responses in existing works, Valkyrie
can augment any runtime detector targeting a wide range of
time-progressive attacks, making it scalable and generalizable.
Once the solution is deployed, Valkyrie does not require any
involvement of the user. Further, the responses from Valkyrie
are not arbitrary, but are designed based on the threat level of
a process and the specifications given by the user for detection
efficacy and performance slowdowns.

IV. MOTIVATION AND OVERVIEW

The design of Valkyrie is based on two key observations.
The first is that the efficacy of detection models increases over
time with the number of captured runtime measurements of
process behavior [37]. Second, time-progressive attacks are
impacted by the availability of system resources, as discussed
in Section II-A. In this section, we analyze these two obser-
vations to motivate the design of Valkyrie. We then describe
the high-level overview of the design.

A. Detection Efficacy Over Time

To detect time-progressive attacks at runtime, measurements
representing program behavior are captured periodically. A
detector augmented with Valkyrie uses these measurements
to provide an inference for each process at periodic intervals
called a measurement epoch or an epoch. Thus, with every
passing epoch, the detector accumulates a larger number
of measurements to classify the process behavior. For most
detection models, the detection efficacy improves with the
measurements captured. Fig. 1 presents the detection efficacy
of popular detection models with respect to the number of
measurements captured. We use metrics such as F1-Score
(Fig. 1a) and the False Positive Rate (FPR) (Fig. 1b) to
represent the detection efficacy. The analysis includes small
and large artificial neural networks (ANNs) similar to [12],
[23], [32], [48], a Support Vector Machine (SVM) model as
used in [33], [46], and an XGBoost ensemble as deployed

in [33]. The small ANN has one hidden layer of 4 nodes,
while the large ANN has two hidden layers of 8 nodes each.
All the evaluated detectors in Fig. 1 use HPC measurements
to detect ransomware programs. In these experiments, we use
67 ransomware programs from various open-source reposito-
ries [3]–[7]. Each model provides an inference after every
measurement (i.e., every epoch has one additional measure-
ment). The ANNs take a time series of HPC measurements as
input to classify programs. On the other hand, the SVM and
XGBoost models classify each measurement individually and
infer program behavior based on the classification of majority
of these measurements. For the purpose of our discussion, the
comparison across these detectors is not relevant. Rather, we
are interested in the change in detection efficacy over time.
We observe that the efficacy of each detector improves with
the number of measurements. For instance, the F1-Score of
the small ANN is 0.7 with 5 measurements, which increases
to 0.8 with 75 measurements. For a typical HPC monitoring
tool [55] that captures hardware events every 100ms, these
measurements would require 7 seconds.

We can utilize the trend that detection efficacy improves
with time (Fig. 1) to determine the number and duration
of measurements required to achieve a specified level of
efficacy. For instance, to get an F1-Score of more than 0.9,
the XGBoost detector would need 23 measurements, thus, 2.3
seconds. Similarly, an FPR of less than 10% on the same
model would require at least 5 seconds of measurements.
While accumulating measurements for a longer time improves
the detection efficacy, it also enables the attacks to progress
further. For example, by the time the ANN improves its
F1-Score to 0.8, ransomware encrypting data at a rate of
11.67MB/s [3], can corrupt 81MB of data. Similarly, a micro-
architectural attack that gleans data at 40KB/s [42], can extract
300KB. Thus, we need a solution that enables the detector to
accumulate measurements for a longer time, thereby attaining
sufficient detection efficacy while, at the same time, thwarting
the progress of the attacks.

B. Resource Availability and Attack Progress

To design a post-detection response framework that thwarts
the attack progress while the detector attains a specified effi-
cacy, we evaluate the dependence of time-progressive attacks

Fig. 2: An overview of Valkyrie post-detection response framework augmenting a runtime detector. In an offline phase, users can specify
the detection efficacy required based on the application, and Valkyrie determines the number of measurements required to achieve it. The
detector provides an inference for a process periodically during execution, which is used by Valkyrie to determine the threat index of the
process. Based on the threat index and the number of measurements, Valkyrie responds with a modification in available resources for the
process or termination.

on system resources. Consider an attack that (a) recursively
opens files present in the system, (b) computes the hash of
each file, and (c) sends the hash and the contents of each file
over the network to a colluding server. The progress of this
attack can be measured by the number of bytes transmitted to
the server. This is a time-progressive attack (Section II), as the
number of hashes computed and bytes transmitted increases
with time. The attack uses resources such as the disk to access
files, memory for data and instructions, network to transmit the
file contents, and CPU for execution. Table II demonstrates the
effects of variation in available resources on the progress of
the program. We control the system resources available to the
program using management features in the Linux kernel [62].

CPU time. We quantify the CPU usage based on the fraction
of time for which a program executes on the CPU core. We
control this CPU time using a Cgroup-based utility [62]. As
shown in Table II, reducing the CPU share to 1% can slow
down the rate of progress by 99.7% with respect to the default.

Memory. We measure the available memory given to the
program relative to the maximum memory space used by the
program without any restrictions. We modify the available
memory for a program by creating a Cgroup and assigning
limits on the usable memory. This ensures that the program
never exceeds the specified memory usage by forcibly in-
validating the associated pages. We observe that a reduction
in the available memory significantly brings down the attack
progress, as shown in Table II. For instance, the attack’s rate of
progress slows down by 99.99% when we reduce the available
memory to 93.6% of the required memory.

Network. Limiting the network bandwidth affects the trans-
mission of file contents by the attack program to the server.
To regulate the available network bandwidth, we use the
Cgroup feature and specify upper bounds for the usage of
network bandwidth. As shown in Table II, halving the network
bandwidth slows down the rate of progress by 11.4%.

Filesystem. Modifying the rate of filesystem access affects file
reading for hash computations and transmission. We control
this rate by keeping track of the files opened and using signals
to pause and resume execution. Changes in the rate of file
accesses affect the rate of progress proportionally (Table II).

TABLE II: The rate of progress of the example time-progressive
attack that recursively computes the hash of the victim’s files and
transmits the contents to a colluding server, with variations in the
available system resources.

Resource

Availability Rate of Progress

Value % of
default

Bytes
transmitted
(KB/second)

% slowdown

CPU

100%
[default] 100% 225.7 −

90% 90% 206.1 8.7%
50% 50% 123.6 45.2%
1% 1% 0.6 99.7%

Memory

4.7M
[default] 100% 225.7 −

4.6M 93.6% 0.087 99.96%
4.4M 89.4% 0.013 99.99%

Network

1024G
[default] 100% 225.7 −

512G 50% 200 11.4%
512M 10−3% 56.63 74.9%
512K 10−6% 0.05 99.98%

Filesystem

100 file/s
[default] 100% 225.7 −

90 files/s 100% 200.1 11.3%
50 files/s 50% 113.7 49.6%
1 file/s 1% 2.2 99%

We observe that different system resources influence the
attack progress at varying rates. For instance, the available
CPU time and the rate of file access affect the rate of
progress in a proportional manner. Availability of the network
bandwidth has a linear effect on the progress. On the other
hand, limiting the available memory has a non-linear and sharp
effect on the attack’s progress. Thus, throttling the available
memory can restrict the attack progress sharply while we can
have a graceful decline in progress by throttling the CPU time
and file accesses.

C. Valkyrie: An Overview

We have two important takeaways from the previous sec-
tions. First, a runtime detector needs to accumulate measure-
ments for longer durations in order to improve its detection
efficacy (Section IV-A). Second, restricting system resources
can impede time-progressive attacks (Section IV-B). Based on
these two observations, we design our post-detection response
framework, Valkyrie.

Fig. 2 provides the high-level overview of Valkyrie. For
each executing process, the detector augmented with Valkyrie,

provides a periodic inference. The response to these inferences
depends on the expected level of detection efficacy needed by
the target system. For example, critical systems necessitate
termination of attacks as early as possible. A higher FPR
in such systems is more easily tolerated. From Fig. 1, this
would require that the detector provides its response based
on fewer measurements. General purpose systems, on the
other hand, are more sensitive to false positives. Therefore,
detectors should terminate attacks in general purpose systems
after observing larger number of measurements.

In Valkyrie, users can specify the expected detection ef-
ficacy. Based on this input Valkyrie computes the number
measurements needed to achieve the specified efficacy. While
the detector accumulates the required number of measure-
ments, Valkyrie proportionally throttles the processes clas-
sified malicious by regulating the system resources, thereby
reducing the attack’s progress as described in Section IV-B.

To implement Valkyrie, we address the following questions.

Q1: Which system resources to throttle? The pattern of
resource utilization varies from one time-progressive attack
to another. For instance, ransomware has a significant depen-
dence on the CPU as well as the file system. On the other hand,
cryptominers are entirely CPU-dependent and do not use the
filesystem. Thus, Valkyrie monitors processes at runtime to
ensure that the system resources critical to the attack progress
are throttled.

Q2: How to throttle the system resources? Once the
resources to throttle are identified, we need a mechanism to
(a) quantify and (b) regulate the resources. To quantify the
resources available to a process, Valkyrie calculates a threat
index for the process. The threat index is a value between 0 and
100 that quantifies the maliciousness of the process. A higher
threat index implies a higher confidence in the process being
malicious. The calculation of the threat index for a process at
any instant is based on all the previous inferences from the
detector. The threat index increases when the detector classifies
the process as malicious and decreases when it is classified as
benign. An actuator function uses the threat index to regulate
the share of system resources available to the process. For
example, the actuator function can use Linux kernel features
to throttle CPU, memory, network, and the filesystem, as
discussed in Section IV-B.

Q3: How long to throttle and when to terminate? Valkyrie
regulates the resources available to the process until the de-
tector attains the detection efficacy specified by the user. After
this, the process can be terminated if classified as malicious
by the detector, or its resources are restored if it is detected
as a false positive (classified benign).

V. THE VALKYRIE RESPONSE MECHANISM

In this section, we discuss the design of Valkyrie with
a formal description. Consider a detector D augmented
with Valkyrie, which uses the runtime measurements to clas-
sify process behavior. Let N∗ be the number of measurements

required by D to achieve the detection efficacy specified by
the user. N∗ is determined offline by learning the changes in
detection efficacy with respect to the number of measurements,
as discussed in Section IV-A. Let t be a process executing
on the system with Nti (< N∗) measurements captured till the
start of the i-th epoch. Based on these measurements, the
detector D classifies t as malicious or benign in the i-th epoch,
represented by D(t, i) = {malicious, benign}.

The set Rt
i represents the share of system resources avail-

able to process t in the i-th epoch, such that,

Rt
i = {rtCPU(i), r

t
mem(i), r

t
nw(i), r

t
fs(i)} , (1)

where rtCPU(i), r
t
mem(i), r

t
nw(i) and rtfs(i) represent the share

of CPU time, memory, network, and filesystem, respectively
available to the process t in the i-th epoch.

Valkyrie utilizes the inference D(t, i) and the user specifi-
cation (N∗) to assess the threat posed by process t. The threat
assessment is used to determine a response for D(t, i). For
instance, we can increase, decrease, or maintain the share of
system resources (a subset of Rt

i) available to t, thus affecting
the execution of the process.

A. Threat Assessment with Valkyrie

The threat index for the process t in the i-th epoch, Tti ,
is a quantification of the detector’s confidence in the process
being malicious. A threat index of 0 implies that the process is
benign and has no restrictions on the system resources, while
a threat index of 100 would result in the maximum restrictions
on resources. The value of the threat index in an epoch is based
on the history of the detector’s inferences till that epoch. To
determine the threat index, Valkyrie maintains two metrics
for each process, namely, penalty (Pti) and compensation
(Cti). Before the detector accumulates the required number of
measurements (N∗), the threat index increases by the penalty
metric each time the detector classifies t as malicious (Line 11
in Algorithm 1). If the behavior of the process t improves and
the detector classifies it as benign, the threat index decreases
by the compensation metric (Line 15 in Algorithm 1).

To determine the values of Pti and Cti , Valkyrie uses
two configurable functions. The penalty assessment function
(Fp(P

t
i)) takes in the penalty value of the previous epoch and

increases the penalty value if the process is classified malicious
(Lines 8-11 in Algorithm 1). Similarly, the compensation as-
sessment function (Fc(C

t
i)) increases the compensation metric

if Tti > 0 and the process is classified benign (Lines 13-15 in
Algorithm 1). To restrict the values of Pti , Cti and Tti between
0 and 100, we use a clamp() function (Lines 1, 10, 14, and 16
Algorithm 1). Both these functions can have several possible
realizations, such as incremental (Pti = Fp(P

t
i−1) = Pti−1+1),

linear (Fp(P
t
i−1) = aPti−1 + b,where a and b are constants),

or exponential (Fp(P
t
i−1) = 2iPti−1 + 1). Based on these

functions, the penalty and compensation metrics can grow at
varying rates, which, in turn, influences the threat index (Tti)
and the throttling of the process.

Algorithm 1: Execution of process t with a detector
D augmented with the Valkyrie.

1 Global: A process t; state(t): state of process t;
D(t, i): online detector’s inference in i-th epoch; Rt

i :
share of resources available to t in i-th epoch; Nti :
measurements captured for t till i-th epoch; N∗:
number of measurements required to satisfy user
specification; clamp(x) = max(0,min(x, 100)).

2 Initial State: t is executing; state(t) =normal;
i = 0; Pti = Cti = Tti = Nti = 0;

3 begin
4 while t is executing do
5 while Nti < N∗ do
6 i = i+ 1 and Update Nti
7 Get the inference D(t, i)
8 if D(t, i) == malicious then
9 state(t) = suspicious

10 Pti = clamp(Fp(P
t
i−1))

11 Cti = Cti−1 & Tti = Tti + Pti

12 else
13 if state(t) == suspicious then
14 Cti = clamp(Fc(C

t
i−1))

15 Pti = Pti−1 & Tti = Tti − Cti

16 Tti = clamp(Tti)
17 if Tti == 0 then
18 state(t) = normal

19 ∆Tti,1 = Tti − Tti−1

20 Rt
i = A(Rt

i−1,∆Tti,1)

21 state(t) = terminable
22 i = i+ 1
23 if D(t, i) == benign then
24 Areset(R

t
i−1)// restore t

25 else
26 Terminate process t

Based on the number of measurements and the threat index,
Valkyrie divides the execution of a process into four possible
states, as shown in Fig. 3. Each process starts in the normal
state (threat index Tti = 0). A process continues to execute in
the normal state if the detector does not classify it as malicious
in any epoch. Until the user specified detection efficacy is
satisfied (Nti < N∗), an increase in the threat index transitions
the process to the suspicious state. In this state, the threat
index of the process t in the i-th epoch, (Tti) determines the
rate at which the process gets thwarted or recovers. A process
can transition from the suspicious to the normal state if the
process behavior improves and the threat index falls to zero.
We typically observe this in the case of a false positive. Once
the user specified detection efficacy is satisfied (Nti ≥ N∗), then
the process transitions to the terminable state. The process
transitions to the terminated state if the detector classifies it

normal

suspicious

terminable

terminated

Tti > 0,
Nti < N∗

Tti = 0,
Nti < N∗

Tti > 0,
Nti < N∗

N
t
i
≥ N

∗

Nti ≥ N∗

Tti = 0,
Nti < N∗

D
(t
,i
)

=
m

al
ic

io
us

or
t

co
m

pl
et

es

t is executing
and D(t, i) = benign

Fig. 3: The state transitions of a process t with Valkyrie. The process
starts in the normal state (Tti = 0) and transitions to a suspicious state
if it gets classified as malicious (D(t, i) = malicious, thus Tti > 0).
The process t can remain in the suspicious state (Tti > 0) or return
to a normal state (Tti = 0) based on its execution behavior. Once
the detector accumulates the number of measurements to achieve
the detection efficacy specified by the user (Nti ≥ N∗), the process
switches to the terminable state from normal or suspicious. The
process t in terminable state gets terminated if the detector classifies
it as malicious (D(t, i) = malicious) or if t completes execution.

malicious or the execution of the process is complete.

B. Throttling Resources with Valkyrie

In the suspicious state, the resources available to a pro-
cess are determined based on the threat index (Tti). Valkyrie
incorporates an actuator function (A) to identify the system
resources used by a process and regulate them based on the
threat index. This function A(Rt

i−1,∆Tti,1) takes in the share
of resources from the previous epoch, Rt

i−1 and the change
in threat index in the current epoch ∆Tti,1, to output the
updated share of resources available to the process. It ensures a
reduction and improvement in the share of available resources
with an increase or decrease in the threat index, respectively
(Lines 19-20 in Algorithm 1). The design of A depends on the
resource to throttle. For instance, a possible actuator function
to regulate the CPU time can work by modifying the OS
scheduler such that processes with higher threat index are
scheduled for shorter durations. Another possibility is to mon-
itor the process execution and use SIGSTOP and SIGCONT
signals to pause and resume execution, respectively. Such an
actuator function can induce restrictions on the CPU time
of a process, similar to utilities like cpulimit [8]. Similarly,
an actuator can control the available memory, network, and
filesystem resources to process using Linux kernel features,
as shown in Section IV-B.

Termination with Valkyrie. Once the process t transitions
to the terminable state and the detector classifies it as benign,
the function Areset removes all the restrictions on available
resources for the process, restoring t to its default resources.
On the other hand, the process is terminated when the detector
classifies it as malicious.

C. Quantifying Slowdowns with Valkyrie

As the progress function of time-progressive attacks de-
pends on the available resources, we define a function Bt

i (R
t
i)

to represent the progress of t in the i-th epoch. For time-
progressive attacks, the precise value of this function depends
on the objectives of the attack. For instance, the attack progress
can be quantified as the number of bits gleaned by a micro-
architectural attack [9], [22], [29], [42], [50], [66], bits flipped
in memory by the rowhammer attack [34], bytes encrypted
by ransomware [3]–[7], [17], or the hashes computed by a
cryptominer [52].

Let the detector D require K epochs to capture N∗ mea-
surements for process t. If t is a time-progressive attack, the
progress of t in K epochs without Valkyrie can be given as,

Attack progress in K epochs without Valkyrie =

K−1∑
i=0

Bt
i (R

t
i)

(2)
which, for instance, can be the total number of bits gleaned

by a micro-architectural attack.
Assuming the attack is suspicious state, in K epochs the

attack progress with Valkyrie is given by,

Attack progress in K epochs with Valkyrie

= Bt
0(R

t
0) +

K−1∑
i=1

Bt
i

(
A(Rt

i−1,∆Tti,1)
)

, (3)

where ∆Tti,1 = Tti − Tti−1. Equations 2 and 3 gives the
effective slowdown (S(t)) of the process t in percentage due
to Valkyrie.

S(t) =

(
1−

Bt
0(R

t
0) +

∑K−1
i=1 Bt

i (A
(
Rt

i−1,∆Ti,1

)
∑K−1

i=0 Bt
i (R

t
i)

)
× 100

(4)

Thus, the throttling of an attack is dependent on the value
of K, the threat index, which in turn depends on the penalty
and compensation assessment functions Fp and Fc, and the
actuator function A. A 0% slowdown indicates no modification
of the available resources by Valkyrie and is ideal for benign
processes. A slowdown of 100% implies that the attack
progress halts completely.

Let us understand slowdowns with the example attack
described in Section IV-B. Consider a detector that requires a
minimum of 15 epochs to satisfy the user specified detection
efficacy (i.e., N∗ = 15) with an incremental penalty and com-
pensation assessment function. Thus, each time the detector
classifies the attack as malicious, the penalty increases by
1, and the threat index increases by the penalty value. The
actuator in this example drops the CPU share by 10% for
every increase in the threat index (the minimum CPU share is
1%). If the detector classifies the attack as malicious in every
epoch, the attack would incur a slowdown of 79.6% before

reaching the terminable state (15 epochs). A benign process
can also incur slowdowns due to false positives. With the same
setup, if the detector has false positives in the first 5 epochs and
classifies the benign process correctly in the next 10 epochs,
the effective slowdown is 26%. To configure the level of
slowdowns tolerable, Valkyrie supports a user-specified limit
on the minimum share of a resource available to a process,
thereby limiting the slowdowns incurred. This configurability
provides a trade-off between security and performance, as
limiting overheads can allow a higher level of attack progress.

VI. CASE STUDIES AND RESULTS

For evaluation, we present four case studies, including vari-
ous micro-architectural attacks [9], [22], [29], [42], [50], [66],
the rowhammer attack [34], ransomware [3]–[7] and cryp-
tominers [52]. These case studies use different detectors based
on existing works that have been augmented with Valkyrie.
For instance, the detectors for micro-architectural attacks use
statistical models similar to [53], while the detector for ran-
somware uses time-series deep learning (DL) models similar
to the ones used in [12], [23], [32]. Table III describes the
configurable aspects of Valkyrie for each attack along with
the user specification, such as the progress metric calculation,
penalty and compensation assessment functions (Fp and Fc),
and the actuator (A). We present the details for each of these
case studies in the next section.

We evaluate Valkyrie on three platforms. First, an Intel Core
i7-7700 processor. Second, an Intel i9-11900 processor, both
running Ubuntu 20.04 on a Linux kernel version 4.19.265.
Third, an Intel Core i7-3770 processor with the Ivy Bridge
micro-architecture and the Linux kernel version 4.19.2 with
Ubuntu 16.04 operating system.

A. Case Study: Micro-architectural Attacks

Micro-architectural attacks are a potent class of attacks
that aim to break the isolation guarantees provided by the
hardware. A micro-architectural attack uses shared hardware
resources to leak information across these isolation boundaries.
They have been used in a variety of applications, such as
creating covert channels [42], retrieving secret keys of ciphers
[16], reading Operating System data [35], [39], breaking
Address Space Layout Randomization [15] and leaking secrets
stored in Trusted Execution Environments like SGX [18] and
Trustzone [68]. In a typical micro-architectural attack, the
attacker runs a program called the spy that contends with
a victim program for shared hardware resources such as a
common cache memory [9], [31], Branch Prediction Unit
(BPU) [26], or Translation Lookaside Buffer (TLB) [29]. The
contention affects the spy’s execution time in a manner that
correlates with the victim’s execution. If the victim’s execution
pattern happens to depend on secret data, then the correlation
can be used to reveal it. Similarly, using the differences in
execution time, two processes can establish a covert channel
to transmit and receive bits [22], [29], [42], [67].

Detector and assessment functions. We augment a sta-
tistical detector using measurements from hardware perfor-

TABLE III: Case studies to evaluate Valkyrie. For each attack, we have the details of Valkyrie implementation, such as the progress metric,
the detector D augmented by Valkyrie, penalty assessment function (Fp), compensation assessment function (Fc), and the actuator (A).

Case Study Attack(s)
Valkyrie implementation

Progress Detector
augmented Fp Fc Actuator (A)

Micro-architectural
attacks

L1-D cache attack on AES [50] Guessing
entropy [41]

Statistical,
HPC-based

Incremental
(Equation 5)

Incremental
(Equation 6)

OS-Scheduler
based

(Equation 8)

L1-I cache attack on RSA [9] Error rate
Load-Store Buffer covert channel [22] Error rate
CJAG high-speed covert channel [42] Bits transmitted

LLC covert channel [66] Bits transmitted
TLB covert channel [29] Bits transmitted

Rowhammer [34] Rowhammer attack [1] Bits flipped Statistical,
HPC-based Incremental Incremental OS-Scheduler

based

Ransomware Open-sourced samples [3]–[7] Bytes encrypted DL model,
HPC-based Incremental Incremental Cgroup based

Cryptominer Open-sourced samples [52] Hashes computed Statistical,
HPC-based Incremental Incremental Cgroup based

(a) L1-data cache attack on AES (b) L1-instruction cache attack on RSA (c) TSA Covert Channel

(d) CJAG cache covert channel (e) LLC covert channel (f) TLB covert channel

Fig. 4: The impact of Valkyrie on the progress of various micro-architectural attacks.

mance counters (HPCs). Similar detectors have been presented
in [14], [19], [23], [46], [69] to classify malicious processes.
To calculate the threat index, we use the following assessment
functions.

FP (P
t
i−1) = Pti−1 + 1 (5)

FC(C
t
i−1) = Cti−1 + 1 (6)

The penalty function ensures that every time the detector
classifies the process t as malicious, the penalty increases
linearly, thereby increasingly throttling system resources. Sim-
ilarly, the compensation function provides a mechanism for
falsely classified benign programs to recover by increasing
the available resources.

OS scheduler-based actuator function. A common char-
acteristic of micro-architectural attacks is the dependence
on the available CPU time. We leverage this by using an
actuator function that controls the CPU time available to a
process. The actuator function modifies the OS scheduler such
that the execution time of processes is dependent on their
threat index values. The Linux kernel, since Version 2.6.,
incorporates a Completely Fair Scheduler (CFS), which tries

to achieve the ideal multitasking environment where processes
with equal priorities receive the same share of CPU time for
execution, called timeslice. The timeslice allocated to a process
t, denoted ∆t

ts, is a fraction of a predefined value called
targeted latency (∆tl). When multiple processes compete for
CPU time, the scheduler allocates timeslices in proportion to
a metric called weight of the process as follows

∆t
ts = ∆tl ×

wti∑
processes wi

= ∆tl × sti , (7)

where wti is the weight of the process t,
∑

processes wi is
the sum of weights of all the processes sharing the CPU,
and sti is the relative weight of process t. When a process
starts execution, its weight takes a default value, which lies
in the middle of 40 discrete levels. The difference in weights
at two consecutive levels γ, (0 < γ < 1) is determined by
the OS scheduler at design time. A higher weight value for
a thread implies a larger timeslice and a higher frequency of
getting scheduled for execution, and hence more CPU time.
The actuator function A maps the weight level of the process
to its threat index, given by,

(a) (b)

Fig. 5: (a) Slowdowns with Valkyrie on programs from different benchmark suites including SPEC-2006 [60], SPEC-2017 [20],
SPECView13 [2], STREAM [43] and multi-threaded SPEC-2017 [20] due to false positives. (b) Slowdowns due to false positives with
different post-detection strategies for micro-architectural attacks, i.e., system migration, CPU core migration, and Valkyrie.

sti = A(sti−1,∆Tti,1)

=

{
sti−1 − γ × (sti−1)×∆Tti,1, ∆Tti,1 > 0

sti−1 + γ × (sti−1)×∆Tti,1, ∆Tti,1 ≤ 0 ,
(8)

where γ determines the amount of fall in the weight with
every increase in the threat index, sti−1 is the relative weight
of process t in the i-th epoch, and ∆Tti,1 = Tti − Tti−1. In our
evaluation platforms, γ = 0.1, which means that every rise in
threat index decreases the relative weight of the process by
10% until it reaches the minimum value sMIN. Similarly, when
a process is in the suspicious state, every drop in the threat
index increases the process’s relative weight by 10% until it
goes back to the normal state (Equation 8).

Throttling micro-architectural attacks with Valkyrie. Our
evaluation covers various micro-architectural attacks that target
different micro-architectural components as listed in Table III.
These attacks include an L1 data cache attack on AES [50],
an L1 instruction cache attack on RSA [9], a cache-agnostic
covert channel using the Load and Store buffers [22], a
high-speed covert channel called CJAG [42], a LLC covert
channel [66], and a TLB covert channel [29].

Fig. 4 describes the impact of Valkyrie on the progress
of these attacks after they have been detected and transi-
tioned to the suspicious state. To understand the effectiveness
of Valkyrie, we use different metrics to represent the attack’s
progress Bt

i (R
t
i) (as shown in Table III). For example, to

quantify the progress of the L1-D cache attack that performs
key recovery on a T-table implementation of AES, we use the
Guessing Entropy [41]. The Guessing Entropy metric defines
the number of possible values for the key byte. A Guessing
Entropy of 128 indicates that the attacker has no significant
benefits from the timing measurements, as compared to a
random guess. As the attack progresses and performs more
timing measurements, the Guessing Entropy decreases. As
shown in Fig. 4a, Valkyrie increases the guessing entropy of
the attack from 10 to 131, thereby thwarting the attack. For
the L1-instruction cache attack on RSA and the TSA load-
store buffer covert channel, we quantify the progress based on
the error in guessing 1-bit of the key correctly. With Valkyrie,
the error rate for both these attacks increases to more than

50% (Fig. 4b and Fig. 4c), rendering the attacks on par with
randomly guessing the key bits.

For the covert channels using the LLC [42], [66] and
TLB [29], we represent the progress by the number of bits
transmitted. The Cache-based Jamming Agreement (CJAG)
is the fastest micro-architectural covert channel [42] to date.
CJAG supports multiple communication channels in the LLC,
noise characterization, and error correction to retrieve bits.
During initialization, the sender and receiver identify cache
sets that serve as channels for communication. Post initial-
ization, a 2-way communication protocol is used to transmit
bits from the sender to the receiver with speeds of over
40KB/second. Fig. 4d describes the impact of Valkyrie on
CJAG with different configurations of communication chan-
nels. After the channels are throttled, no bits are transmitted,
clamping the information leaked from sender to receiver. We
observe that as the number of channels increases, the bits
transferred by CJAG decrease (Fig. 4d). This is because a
large number of channels would require a longer initialization
period, giving Valkyrie time to throttle the channel before bits
are transmitted. Similarly, the covert channels using LLC [66]
and TLB [29] see a drastic fall in the number of bits commu-
nicated after getting throttled by Valkyrie (Fig. 4e and 4f).

Slowdowns due to false positives. As discussed in Sec-
tion V-C, Valkyrie can induce slowdowns in benign processes
by throttling resources when the detector has false positives.
We evaluate these slowdowns with multiple benchmark suites
namely SPEC-2006 [60], SPEC-2017 [20], SPECViewperf-
13 [2], STREAM [43] and the multi-threaded SPEC-2017 [20]
benchmarks. SPEC-2006 and SPEC-2017 are CPU bench-
mark suites with different integer and floating-point programs
like Machine Learning algorithms. SPECViewperf-13 is a
collection of graphics-oriented benchmark programs, while
STREAM is designed to perform memory-intensive tasks.
The multi-threaded SPEC-2017 suite has floating-point multi-
threaded programs that spawn 4 threads during the evaluation.

A simple statistical detector effectively demonstrates the
capabilities of Valkyrie, as it is expected to have a higher
frequency of false positives compared to more complex de-
tectors. For instance, the detector used for micro-architectural
attack detection classifies programs from the SPEC-2006 suite

(a) (b) (c)

Fig. 6: (a) The impact of Valkyrie on the number of bits flipped by the rowhammer [1] attack. By throttling the CPU time available to
the attack, Valkyrie induces a 100% slowdown evaluated in a day of attack execution. (b) The average rate of encryption of data with and
without Valkyrie. (c) The average rate of hash computations by cryptominers with and without Valkyrie.

TABLE IV: Average (geometric mean) slowdowns with Valkyrie
on SPEC-2017 [20] programs due to false positives on different
execution environments.

Processor OS and Linux Kernel Slowdowns
i7-3770 Ubuntu 16.04, Linux 4.19.2 1%
i7-7700 Ubuntu 20.04, Linux 4.19.265 2.2%

i9-11900 Ubuntu 20.04, Linux 4.19.265 <1%

as malicious in 4% of the epochs, on average. Fig. 5a presents
the slowdowns due to Valkyrie incurred by these benchmark
programs. Out of the 77 single-threaded programs evaluated,
60 have slowdowns of less than 5%, while 35 have less than
1% slowdowns. The overall average across all benchmarks is
1% (geometric mean) or 2.8%(arithmetic mean) for single-
threaded programs, while the maximum slowdown incurred
is 40.3%. We further evaluate the benchmarks on two other
platforms, namely, Intel i7-7700 and Intel i9-11900, which
have an average runtime slowdown of 2.2% and under 1%,
respectively, as shown in Table IV. On the other hand, multi-
threaded programs incur an average slowdown of about 6.7%.

In contrast to contemporary post-detection responses [12],
[19], [23], [38], [46]–[49], [53], [69], all falsely classified
benign processes recover and are not adversely affected. As
an example, let us consider blender_r, a 3D rendering pro-
gram, which is falsely classified by the detector in 30% of the
epochs. Assuming the same detector and a termination based
response [12], [19], [23], [38], [46]–[48], blender_r would
have been terminated with a probability of 0.3. Improving the
detection algorithm cannot completely prevent the termination.
In contrast to this, Valkyrie throttles the program, resulting in
a slowdown of 25% (the highest slowdown observed across
all single-threaded benchmarks). Another response strategy for
micro-architectural attack detection is to migrate the detected
processes to a different CPU core or a different system via
the network [49], [69]. With migration schemes, the slow-
downs for blender_r would have as high as 10X as that
of Valkyrie. Fig. 5b compares the slowdowns of benchmark
programs with different migration techniques. We observe that
on each detection, the migration of a process to a different
CPU core in the same machine has 1.5X more overheads,
while the migration of the process to a different system
performs 4X slower than the response from Valkyrie, on
average. Thus, Valkyrie provides a mechanism for a reactive
post-detection response, even with a highly simplistic detector.

B. Case Study: Rowhammer Attack

The rowhammer attack [34] flips the bits stored in a DRAM
cell by frequently accessing the adjacent cells in a loop. To
this end, the attacker iteratively performs memory accesses to
the DRAM while flushing the cache to ensure that each load is
fetched from the memory. These bit flips induced by rowham-
mer have been used for various exploits such as gaining kernel
privileges [58], breaking isolation between VMs [57], and
compromising cryptographic implementations [57].

We evaluate Valkyrie by augmenting it to an HPC-based
statistical detector, similar to [14]. We use a linear penalty
and compensation function. The rowhammer attack uses both
the CPU time and the memory resources. However, in each
iteration, the attack only accesses a small number of addresses.
Thus, we throttle the execution using the actuator function
shown in Equation 8. In our experiments, we use a popular
open-sourced implementation of the attack [1]. On average,
this attack induces a bit flip in every 29 iterations on our
evaluation DRAM chip, Transcend DDR3-1333 645927-0350.
Fig. 6a demonstrates the throttling of the rowhammer attack
in the suspicious state with Valkyrie such that no bit-flips
are observed even after a day of execution. Thus, in our
evaluation, the attack incurs a 100% slowdown with Valkyrie
before termination.

C. Case Study: Ransomware Attacks

Ransomware attacks are a class of malware that encrypts the
filesystem of infected electronic devices such as consumer de-
vices or enterprise systems [30], [59], rendering them useless.
A popular example is the Wannacry ransomware attack [17],
which affected 400K devices in over 150 countries. The
easy availability of attack programs to malevolent actors via
businesses providing Ransomware-as-a-Service (RaaS) [44]
has exacerbated the spread of these attacks in recent years.

We augment a detector based on deep learning approaches
(similar to [12], [46], [48]) with Valkyrie. We use a Long
Short-Term Memory (LSTM) model trained on the time-
series HPC measurements from a dataset of 67 ransomware
from open-sourced repositories [3]–[7] and benign programs
from the SPEC-2006 [60] benchmark suite. The LSTM neural
network has an input layer of 20 nodes, a hidden layer of 8
nodes, and an output layer with a sigmoid activation function.
We use a linear penalty and compensation assessment function
(Equation 5 and 6).

We quantify the progress of ransomware attacks with the
amount of data encrypted. Since ransomware attacks utilize the
CPU for encrypting the filesystem, we demonstrate actuator
functions that throttle both these resources in the suspicious
state. Fig. 6b shows the data encrypted by the evaluated
ransomware attacks on average with and without Valkyrie.
In our experiment, each new measurement and inference
takes 100ms. Without Valkyrie, these attacks can encrypt
data with a rate of 11.67MB/second. With an actuator that
throttles the available CPU time, the rate of progress drops to
152KB/second after the fifth epoch. For the filesystem, we use
an actuator that halves the rate of file accesses every time there
is an increase in the threat index. Thus, the attack’s file access
rate goes down from 7 files per epoch to 1 file per epoch.
This brings down the rate of encryption to 1.5MB/second.
The attack can be terminated at different points based on
the user-specified detection efficacy. For instance, to achieve
an F1-Score of 0.85, our ANN takes 20 epochs. During
this period, Valkyrie throttles the ransomware to restrict the
encrypted data to about 3.5 MB as compared to 233 MB
without Valkyrie.

D. Case Study: Cryptominers

Cryptominer attacks attempt to use the CPU resources
of a victim’s system with a financial motivation to mine
cryptocurrency. Typically, mining involves guessing a hash
input that results in an output of a specific pattern. With
the growing popularity of cryptocurrency, such attacks are
growing rapidly [52].

We use an HPC-based statistical detector for detecting
cryptominers similar to [33]. The penalty and compensation
assessment functions are linear. Since cryptominers are com-
putationally expensive, the actuator throttles the available CPU
time upon detection. The average slowdown of cryptominers
with Valkyrie is 99.04% (Fig. 6c) in the suspicious state.

VII. DISCUSSION

In this section, we present a questionnaire outlining the
scope of the paper and caveats associated with Valkyrie.

Can Valkyrie improve the detection efficacy of detectors?
No. Valkyrie is not an attack detector, and it can not directly
influence the capabilities of a detector. Rather, it is a post-
detection framework that can augment runtime detectors. The
goal of Valkyrie is to reduce the adverse impacts of false
positives while thwarting time-progressive attacks.

Can Valkyrie counter adversarial attacks on detectors?
No. Adversarial attacks can evade detection by exploiting the
limitations of the detection model. Such attacks have been
shown to be effective against different statistical and machine
learning approaches [21]. These attacks are a limitation of
the underlying detector. Since Valkyrie enables responses only
after detection, the susceptibility of a detector to adversarial
attacks is out of scope for this paper. A possible solution is
to use multi-level detection approaches as presented in [51]
before augmenting them with Valkyrie.

Is Valkyrie limited to detectors using Hardware Per-
formance Counters? No. As shown in Fig. 2, in every
epoch Valkyrie takes the inference from the detector for
threat assessment and managing available system resources,
agnostic to the low-level details of the detector. The case
studies presented in Section VI use detectors based on existing
works [12], [19], [23], [32], [33], [46]–[49], [53], [69], which
typically make use of HPCs.

VIII. CONCLUSION

A major shortcoming of real-time cyberattack detection is
the detrimental impact of false positives. Existing research
aims to reduce false positives by deploying complex detection
algorithms, yet none can completely eliminate them, leading
to lower productivity and usability of computer systems.
Valkyrie augments detectors to mitigate the adverse impacts of
false positives by throttling system resources until the detectors
have sufficient confidence to terminate the program.

By shifting focus from the detection algorithm to the
response, Valkyrie enables the use of lightweight detectors.
This is particularly helpful for resource-constrained devices on
which complex detection algorithms are impractical. Addition-
ally, Valkyrie also enables users to configure security based on
the application requirements, enhancing adoption across vari-
ous domains. The paper opens up a new avenue for research
dealing with the post-detection impacts of countermeasures
and their applications.

ACKNOWLEDGEMENT

Our research work was partially funded by the European
Union under Horizon Europe Programme – Grant Agreement
101070537 – CrossCon, the European Research Council under
the ERC Programme - Grant 101055025 - HYDRANOS,
the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119
– 236615297, and the Information Security Education and
Awareness (ISEA) initiative, Ministry of Electronics and In-
formation Technology (MEiTY), Government of India. Any
opinions, findings, conclusions, or recommendations expressed
herein are those of the authors and do not necessarily reflect
those of the European Union, the European Research Council,
the Deutsche Forschungsgemeinschaft, or the Government of
India.

REFERENCES

[1] Rowhammer test implementation - Google. Accessed: July 9, 2024.
[2] SPECViewperf 13 Linux Edition Benchmark.
[3] BWare Ransomware Generator, 2024. https://github.com/back-2-hack/

BWare.git, Accessed: July 9, 2024.
[4] Open-Source Ransomware Repositories, 2024. https://github.com/topics/

ransomware-source-code, Accessed: July 9, 2024.
[5] Original Repository of the GonnaCry Ransomware, 2024. https://github.

com/tarcisio-marinho/GonnaCry, Accessed: July 9, 2024.
[6] RAASNet: Ransomware-As-A-Service Repository, 2024. https://github.

com/CesarAyalaDev/RAASNet, Accessed: July 9, 2024.
[7] Randomware: An Open-Source Ransomware Repository, 2024. https:

//github.com/afjoseph/randomware, Accessed: July 9, 2024.
[8] The cpulimit Utility, 2024. https://github.com/opsengine/cpulimit.
[9] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New Results

on Instruction Cache Attacks. In Cryptographic Hardware and Embed-
ded Systems, CHES 2010, pages 110–124, 2010.

https://github.com/back-2-hack/BWare.git
https://github.com/back-2-hack/BWare.git
https://github.com/topics/ransomware-source-code
https://github.com/topics/ransomware-source-code
https://github.com/tarcisio-marinho/GonnaCry
https://github.com/tarcisio-marinho/GonnaCry
https://github.com/CesarAyalaDev/RAASNet
https://github.com/CesarAyalaDev/RAASNet
https://github.com/afjoseph/randomware
https://github.com/afjoseph/randomware
https://github.com/opsengine/cpulimit

[10] Muhammad Ejaz Ahmed, Hyoungshick Kim, Seyit Camtepe, and Surya
Nepal. Peeler: Profiling Kernel-Level Events to Detect Ransomware. In
ESORICS 2021, page 240–260. Springer-Verlag, 2021.

[11] Bushra A. AlAhmadi, Louise Axon, and Ivan Martinovic. 99% False
Positives: A Qualitative Study of SOC Analysts’ Perspectives on Secu-
rity Alarms. In 31st USENIX Security Symposium, 2022.

[12] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and
Sourangshu Bhattacharya. Performance Counters to Rescue: A Machine
Learning based safeguard against Micro-architectural Side-Channel-
Attacks. IACR Cryptology ePrint Archive, 2017:564, 2017.

[13] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. S$A:
A Shared Cache Attack That Works across Cores and Defies VM
Sandboxing - and Its Application to AES. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, pages 591–604, 2015.

[14] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. ANVIL:
Software-Based Protection Against Next-Generation Rowhammer At-
tacks. In Proceedings of ASPLOS ’16, pages 743–755. ACM, 2016.

[15] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross.
CAIN: Silently Breaking ASLR in the Cloud. In 9th USENIX Workshop
on Offensive Technologies, WOOT, 2015.

[16] Daniel J. Bernstein. Cache-timing Attacks on AES, 2005.
[17] Alex Berry, Josh Homan, and Randi Eitzman. WannaCry Malware

Profile, 2017. Accessed: July 9, 2024.
[18] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,

Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure:
SGX Cache Attacks Are Practical. In Proceedings of the 11th USENIX
Conference on Offensive Technologies, 2017.

[19] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisen-
barth. CacheShield: Detecting Cache Attacks through Self-Observation.
In Proceedings of CODASPY 2018, pages 224–235, 2018.

[20] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In Companion of the
2018 ACM/SPEC ICPE, ICPE ’18, page 41–42, 2018.

[21] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopad-
hyay, and Debdeep Mukhopadhyay. Adversarial Attacks and Defences:
A Survey, 2018.

[22] Anirban Chakraborty, Nikhilesh Singh, Sarani Bhattacharya, Chester
Rebeiro, and Debdeep Mukhopadhyay. Timed Speculative Attacks
Exploiting Store-to-Load Forwarding Bypassing Cache-Based Counter-
measures. In 59th ACM/IEEE DAC 2022, page 553–558. ACM, 2022.

[23] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Appl. Soft Comput., 49:1162–1174, 2016.

[24] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. SoK: The Challenges, Pitfalls, and Perils of Using
Hardware Performance Counters for Security. In 2019 IEEE Symposium
on Security and Privacy, SP 2019, pages 20–38, 2019.

[25] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam
Waksman, Simha Sethumadhavan, and Salvatore J. Stolfo. On the
feasibility of online malware detection with performance counters. In
ISCA’13, pages 559–570, 2013.

[26] Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-Ghazaleh, and Dmitry
Ponomarev. BranchScope: A New Side-Channel Attack on Directional
Branch Predictor. In ASPLOS 2018, pages 693–707, 2018.

[27] Wireshark Foundation. Wireshark, Mar 2024. Accessed: March 2, 2024.
[28] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of

microarchitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptographic Engineering, 8(1):1–27, 2018.

[29] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks. In 27th USENIX Security Symposium,, 2018.

[30] THALES Group. 2024 Data Threat Report, Navigating New Threats
and Overcoming Old Challenges, Global Edition, Mar 2024.

[31] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In 24th
USENIX Conference on Security Symposium, pages 897–912, 2015.

[32] Berk Gülmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. FortuneTeller: Predicting Microarchitectural Attacks via Unsu-
pervised Deep Learning. CoRR, abs/1907.03651, 2019.

[33] Sareena Karapoola, Nikhilesh Singh, Chester Rebeiro, and Kamakoti
V. SUNDEW: A Case-Sensitive Detection Engine to Counter Malware
Diversity. IEEE Trans. on Dep. and Sec. Computing, pages 1–15, 2024.

[34] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping
Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors. In 41st ISCA, pages 361–372, 2014.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19), 2019.

[36] William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval
Yarom, and Ziyuan Zhu. SoK: Can We Really Detect Cache Side-
Channel Attacks by Monitoring Performance Counters? In Proceedings
of the 2024 ACM ASIA CCS. ACM, 2024.

[37] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and
Davide Balzarotti. Does Every Second Count? Time-based Evolution
of Malware Behavior in Sandboxes. In 28th Annual Network and
Distributed System Security Symposium, NDSS, 2021.

[38] Yusuf Kulah, Berkay Dincer, Cemal Yilmaz, and Erkay Savas. SpyDe-
tector: An approach for detecting side-channel attacks at runtime. Int.
J. Inf. Sec., 18(4):393–422, 2019.

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In 27th USENIX Security Symposium, 2018.

[40] Ganapathy Mani, Vikram Pasumarti, Bharat K. Bhargava, Faisal Tariq
Vora, James MacDonald, Justin King, and Jason Kobes. DeCrypto
Pro: Deep Learning Based Cryptomining Malware Detection Using
Performance Counters. In IEEE ACSOS, pages 109–118. IEEE, 2020.

[41] James L Massey. Guessing and entropy. In Info. Theory. IEEE, 1994.
[42] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,

Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels in
the Cloud. In 24th NDSS, 2017.

[43] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical report, Univ. of Virginia, 1991-2007.

[44] Per Håkon Meland, Yara Fareed Fahmy Bayoumy, and Guttorm Sindre.
The Ransomware-as-a-Service economy within the darknet. Comput.
Secur., 92:101762, 2020.

[45] Microsoft. Process Monitor, 2024. https://docs.microsoft.com/procmon.
[46] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham

Chaudhry, Vianney Lapotre, and Guy Gogniat. NIGHTs-WATCH: a
cache-based side-channel intrusion detector using hardware performance
counters. In HASP@ISCA, pages 1:1–1:8, 2018.

[47] Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz
Akram, Vianney Lapotre, Guy Gogniat, and Pascal Benoit. WHISPER:
A tool for run-time detection of side-channel attacks. IEEE Access,
8:83871–83900, 2020.

[48] Maria Mushtaq, David Novo, Florent Bruguier, Pascal Benoit, and
Muhammad Khurram Bhatti. Transit-Guard: An OS-based Defense
Mechanism Against Transient Execution Attacks. In 26th IEEE Eu-
ropean Test Symposium, ETS 2021, pages 1–2. IEEE, 2021.

[49] Junaid Nomani and Jakub Szefer. Predicting program phases and
defending against side-channel attacks using hardware performance
counters. In 4th HASP@ISCA, pages 9:1–9:4, 2015.

[50] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: The Case of AES. In RSA Conference, 2006.

[51] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael B. Abu-Ghazaleh,
and Dmitry V. Ponomarev. Malware-aware processors: A framework for
efficient online malware detection. In 21st IEEE HPCA, 2015.

[52] Panagiotis Papadopoulos, Panagiotis Ilia, and Evangelos P. Markatos.
Truth in Web Mining: Measuring the Profitability and Cost of Cryp-
tominers as a Web Monetization Model, 2018.

[53] Mathias Payer. HexPADS: A Platform to Detect ”Stealth” Attacks. In
8th ESSoS 2016, volume 9639 of Lecture Notes in Comp. Sc., 2016.

[54] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.
[55] perf: Linux profiling with performance counters, August 2015.
[56] Claudius Pott, Berk Gülmezoglu, and Thomas Eisenbarth. Overcoming

the Pitfalls of HPC-based Cryptojacking Detection in Presence of GPUs.
In 13th ACM CODASPY, pages 177–188. ACM, 2023.

[57] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. Flip Feng Shui: hammering a needle in the
software stack. In 25th USENIX SEC, page 1–18, 2016.

[58] Mark Seaborn and Thomas Dullien. Exploiting the DRAM RowHammer
bug to gain kernel privileges. In BlackHat, 2016.

https://docs.microsoft.com/procmon

[59] SonicWall. 2024 SonicWall Cyber Threat Report, Navigating the
Relentless Surge in Cybercrime, May 2024.

[60] Cloyce D. Spradling. SPEC CPU2006 Benchmark Tools. SIGARCH
Comput. Archit. News, 35(1):130–134, March 2007.

[61] Rashid Tahir, Muhammad Huzaifa, Anupam Das, Mohammad Ahmad,
Carl A. Gunter, Fareed Zaffar, Matthew Caesar, and Nikita Borisov.
Mining on Someone Else’s Dime: Mitigating Covert Mining Operations
in Clouds and Enterprises. In 20th RAID. Springer, 2017.

[62] The Linux Kernel Archives: Admin Guide, Cgroups, 2024. https://www.
kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#controllers.

[63] Saru Vig, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Siew-Kei
Lam. Rapid detection of rowhammer attacks using dynamic skewed
hash tree. In 7th HASP. ACM, 2018.

[64] Han Wang, Hossein Sayadi, Setareh Rafatirad, Avesta Sasan, and
Houman Homayoun. SCARF: Detecting Side-Channel Attacks at Real-
time using Low-level Hardware Features. In 26th IEEE International
Symposium on On-Line Testing and Robust System Design, IOLTS, 2020.

[65] Abdullah Giray Yaglikçi, Minesh Patel, Jeremie S. Kim, Roknoddin Az-
izi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstanti-
nos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu.
BlockHammer: Preventing RowHammer at Low Cost by Blacklisting
Rapidly-Accessed DRAM Rows. In IEEE HPCA, 2021.

[66] Yuval Yarom. Mastik: A Microarchitectural Side-Channel Toolkit, 2016.
[67] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolu-

tion, Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the
23rd USENIX Security Symposium, pages 719–732, 2014.

[68] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas
Hou. TruSense: Information Leakage from TrustZone. In IEEE
INFOCOM, pages 1097–1105, 2018.

[69] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A
Real-Time Side-Channel Attack Detection System in Clouds. In 19th
Research in Attacks, Intrusions, and Defenses RAID, 2016.

[70] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay
Joshi. Hardware Performance Counters Can Detect Malware: Myth or
Fact? In ACM AsiaCCS, pages 457–468. ACM, 2018.

https://www.kernel.org/doc/html/latest/admin-guide/cgroup- v2.html#controllers
https://www.kernel.org/doc/html/latest/admin-guide/cgroup- v2.html#controllers

	Introduction
	Background
	Time-Progressive Attacks
	Runtime Detection of Attacks

	Existing Post-Detection Approaches
	Motivation and Overview
	Detection Efficacy Over Time
	Resource Availability and Attack Progress
	Valkyrie: An Overview

	The Valkyrie response mechanism
	Threat Assessment with Valkyrie
	Throttling Resources with Valkyrie
	Quantifying Slowdowns with Valkyrie

	Case Studies and Results
	Case Study: Micro-architectural Attacks
	Case Study: Rowhammer Attack
	Case Study: Ransomware Attacks
	Case Study: Cryptominers

	Discussion
	Conclusion
	References

