
ar
X

iv
:2

50
4.

15
28

4v
3

 [
cs

.S
E

]
 2

1
Ju

n
20

25

EDITLORD: Learning Code Transformation Rules for Code Editing

Weichen Li 1 Albert Jan 2 Baishakhi Ray 2 Junfeng Yang 2 Chengzhi Mao 3 Kexin Pei 1

Abstract
Code editing is a foundational task in software
development, where its effectiveness depends
on whether it introduces desired code property
changes without changing the original code’s in-
tended functionality. Existing approaches often
formulate code editing as an implicit end-to-end
task, omitting the fact that code editing proce-
dures inherently consist of discrete and explicit
steps. Thus, they suffer from suboptimal perfor-
mance and lack of robustness and generalization.
We introduce EDITLORD, a code editing frame-
work that makes the code transformation steps
explicit. Our key insight is to employ a language
model (LM) as an inductive learner to extract
code editing rules from the training code pairs as
concise meta-rule sets. Such rule sets will be man-
ifested for each training sample to augment them
for finetuning or assist in prompting- and iterative-
based code editing. EDITLORD outperforms the
state-of-the-art by an average of 22.7% in edit-
ing performance and 58.1% in robustness while
achieving 20.2% higher functional correctness
across critical software engineering and security
applications, LM models, and editing modes.

1. Introduction
Pre-trained code Language Models (code LMs) have shown
impressive performance in automating software develop-
ment and substantially improved the developers’ productiv-
ity in a wide range of programming tasks (Shani & Staff,
2023). Among these tasks, code editing has been a fun-
damental building block with broad applications, such as
optimizing code efficiency (Shypula et al., 2024; Huang
et al., 2024; Peng et al., 2025b; Garg et al., 2022), reverse
engineering and decompilation (Tan et al., 2024; Hu et al.,
2024; Wong et al., 2023; Xie et al., 2024), and vulnerability

1The University of Chicago 2Columbia University
3Rutgers University. Correspondence to: Weichen Li <we-
ichenli@uchicago.edu>, Kexin Pei <kpei@uchicago.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

#include
using namespace
int

int

<int>
for int = < ++ >>

int
int =
for int = < ++

if < ++
<< <<

return

<bits/stdc++.h>

 ;

 () {

 n, k;

 cin >> n >> k;

 vector (n);

 (i ; i n; i) cin h[i];

 (h. (), h. (), < >());

 cnt ;

 (i ; i n; i)

 (h[i] k) cnt ;

 cout cnt endl;

 ;

}

std
main

h

sort begin end greater
0

0
0

0

Pre-edit Code

#include
using namespace
int

int
% % & &

<int>
for int = < ++

% &

for int = < ++
if < ++

%
return

<bits/stdc++.h>

 ;

 () {

 n, k;

 (“ d d”, n, k);

 vector (n);

 (i ; i n; i)

 (“ d”, h[i]);

 (i ; i n; i)

 (h[i] k) cnt ;

 (“ d”, cnt);

 ;

}

std
main

scanf
h

scanf

printf

0

0

0

//- sort(h.begin(), h.end(), greater<int>());

Edit-Lord Edit Code
1. Functional Specification: Count the number of integers in
a list that are greater than or equal to a specified threshold k.

2. Input Specification: The programs take two integers n
and k as input, where n is the number of integers in the list
and k is the threshold. Then, n integers are read into the list.

3. Output Specification: Output the count of integers in the
list that are greater than or equal to k.

Functional Specifications

pre construct
cin

cout
unnessary sort

post construct
scanf

printf
∅

performance

#include
using namespace
int

int
>> >>

<int>
for int = < ++ >>

int
int =
for int = < && >= ++

++
<< <<

return

<bits/stdc++.h>

 ;

 () {

 n, k;

 cin n k;

 vector (n);

 (i ; i n; i) cin h[i];

 (h. (), h. (), < >());

 cnt ;

 (i ; i n h[i] k; i)

 cnt ;

 cout cnt endl;

 ;

}

std
main

h

sort begin end greater
0

0
0

0

GPT-4 End-to-End Edit Code

✓ cin → scanf
✓ cout → printf
✓ unnecessary → ∅

✓ cin → scanf
✓ cout → printf
✘ unnecessary → ∅

Editing 
Rule
Library

Figure 1: A performance editing example showing how ED-
ITLORD differs from the existing approach (Shypula et al.,
2024). The editing rule library here is discovered during the
induction rule learning phase (Section 2.2) and used to pre-
pare the finetuning set or directly prompting (Section 2.4).
EDITLORD’s edits include removing redundant sort and
calling efficient I/O functions (cin to scanf), while Shy-
pula et al. (2024) provides a suboptimal performance im-
provement while breaking the original code’s input-output
functionality.

repair and security hardening (Xia & Zhang, 2024; Fu et al.,
2022; Peng et al., 2025a; He & Vechev, 2023; Perry et al.,
2023; Bhatt et al., 2023).

Code editing is often considered more challenging than code
generation, as it comes with extra requirements for intro-
ducing desired new properties, e.g., improved efficiency, in
addition to generating functionally correct code. Such new
requirements necessitate diagnosing and localizing specific
properties in the original code, determining the necessary
changes to edit these properties, and ensuring the edits do
not introduce unintended side effects. These abstract editing
procedures are often compositional because fulfilling cer-
tain code property changes can consist of multiple editing
steps at multiple program points. However, they are also
modular and reusable, as the same abstract editing steps can
be reapplied in diverse code editing scenarios.

Unfortunately, existing works often treat the knowledge of
code editing as latent and implicit, and resort to brute-force

1

https://arxiv.org/abs/2504.15284v3

EDITLORD: Learning Code Transformation Rules for Code Editing

finetuning to internalize it as part of the model weights (Shy-
pula et al., 2024; Tan et al., 2024). Such approaches could
fail to decouple the modular code transformation proce-
dures from the specific training samples and thus suffer
from suboptimal performance (Section 3.2) and the lack of
robustness and generalization (Section 3.5).

We introduce EDITLORD, a novel framework for learning
explicit meta-program transformation rules for code editing
tasks. Instead of directly prompting or finetuning an LM
to perform the editing, EDITLORD first employs an LM
to discover a concise set of inductive transformation rules
from training data and then trains an LM to apply these
transformations for each code pair. EDITLORD consists
of three key subtasks: discovering edit rules to abstract
the editing steps, summarizing functional specifications to
maintain the code functionality, and learning the discovered
rules for code editing. Figure 1 compares EDITLORD to the
finetuned baseline (Shypula et al., 2024).

A key advantage of our approach is that it operates in a struc-
tured, discrete transformation space, reflecting the symbolic
and compositional nature of code editing tasks. Since our
discovered meta-program transformation rules are expressed
in natural language, they remain interpretable. Moreover, by
exposing the editing steps as explicit modules, EDITLORD
enables more precise operations and allows human experts
to intervene when necessary.

We evaluate EDITLORD on the three critical software engi-
neering and security code editing tasks, including optimiz-
ing code efficiency, improving the readability of decompiled
code, and repairing security vulnerabilities. EDITLORD
outperforms the state-of-the-art code editing techniques by
23.3%, 12.7%, and 27.6%, respectively, across multiple
code LMs. With explicit editing rules, EDITLORD signif-
icantly improved the baseline in generalization, e.g., by
up to 24.87% improvement in length generalization and
58.1% improved robustness against semantics-preserving
code transformations. In addition to finetuning, EDITLORD
applies to different editing modes, with an average of 56.3%
improvement in zero-shot prompting and 5.7% improve-
ment for iterative refinement based on execution feedback.
As EDITLORD exposes the explicit editing steps, we show
that its editing performance can be further improved by up
to 35.5% when steered by human experts.

2. Methodology
2.1. Problem Statement

The code editing task aims to transform a given pre-edit
code into a post-edit code. The post-edit code must be
semantically equivalent to the pre-edit code, i.e., preserving
its input-output behavior and possessing the desired new
code properties, e.g., improved efficiency, readability, or

security (fewer vulnerabilities).

More formally, given a Language Model (LM) M and a
training dataset D = {(xi, yi)}ni=1,D ⊆ X × Y , where
X = {xi}ni=1 is the set of pre-edit code samples and Y =
{yi}ni=1 is the set of post-edit code samples. Finetuning M
for code editing tasks can be formulated as optimizing the
conditional probability PM (Y |X) with respect to M .

EDITLORD first creates an augmented training setD⋆ before
finetuning the model to perform rule-based code editing.
Specifically, there are three steps: (1) data-driven inductive
rule discovery, (2) functional specification discovery, and (3)
rule-based code editing. Figure 2 illustrates the high-level
workflow of EDITLORD. The first two steps bootstrap the
training data D, while the third step finetunes the code LM
based on the augmented training set D⋆.

In data-driven inductive rule discovery, we query an LM
G to iterate the training set and summarize a meta-rule set
R. We will elaborate on the process in Section 2.2. In
functional specification discovery, we extract the functional
description si ∈ S that describes the shared input-output
behavior of both xi and yi. Such a behavior is expected to be
the same because the post-edit code yi should preserve the
same input-output semantics of xi. With the meta-rule set R
and the functional specifications S, we obtain an augmented
training set D⋆ ⊆ X × Y ×R× S.

During finetuning, we train the LM M to predict
the per-sample editing rules Ri, functional specifica-
tion si, before predicting the post-edit code yi, all
conditioned on the pre-edit code xi: PM (yi|xi) =∑

si,Ri
P (si|xi)P (Ri|xi, si)P (yi|xi, si, Ri). Besides

finetuning, we also consider other editing modes, e.g.,
prompting (Section 2.4).

2.2. Data-Driven Inductive Rule Discovery

Transformations required to achieve the desired changes in
code property can be formalized as editing rules. Intuitively,
these rules represent the explicit knowledge of code edits
instead of the implicit weight internalized in the model. Our
goal is to learn such an explicit meta-rule set R from the
training samples, before learning to perform the code editing
guided by these explicit rules for better generalization. In
the following, we describe how EDITLORD iterates the
training set D to grow R and ensures the rules in R remain
modular and reusable.

Inductive meta-rule set initialization Formally, we start
by extracting raw editing rules by iterating each training
code pair (xi, yi). For each (xi, yi), we query an LM G to
generate a per-sample raw editing rule set Ri that explicitly
describes the code property changes required to transform
xi into yi. Each raw rule set Ri is thus defined as Ri =

2

EDITLORD: Learning Code Transformation Rules for Code Editing

too specific!

duplication!

pre construct
recursive DFS

cout
......

post construct
iterative BFS

printf
......

performance

pre construct
non-descriptive names

raw pointers
......

post construct
meaningful names

structured data types
......

readability

pre construct
weak hash func

......

secure pattern
strong hash func

......

security

void char**
bool** int
int int int

-

+

-

 (,
 , ,

 , ,
) {

 (grid, visited,
row , col, rows, cols);

 (grid, visited,
row , col, rows, cols);

 (grid, visited, row,
col , rows, cols);

 (...);

}

dfs

dfs

dfs

dfs

dfs

grid
visited row

col rows
cols
 // ...

 // Check 4 directions

1

1

1

performance

double rotate
double

*
&

return *
- *

 (,
){

 (in_XMM2_Qa
_DAT_001020c0,local_10, loca
l_18);

 param_2 local_18
 in_XMM1_Qa local_10[];

}

Point

sincos

param_1
param_2

 // ...

0

readability

int (,
 }{

(input, output);

}

encrypt string
string output
 MD5

input

security

Raw Editing Rule Set

Training Data

Given a two-dimensional binary grid, count the
number of connected groups.

performance

Rotate a 2D point around the origin by a specified
angle.

readability

Encrypt the input with a hash method and store
the result as output.

security

Functional Specifications

void char**
bool** int

int int
int *

while !

for
+

+
+

+ =

 (,
 ,

, ,
, ,) {

 ((q)) {

 (...) {

 (q, row dx,
col dy);

 visited[row dx]
[col dy] ;

 }

 }

}

bfs

Queue

isQueueEmpty

enqueue

grid
visited

startRow startCol
rows cols q
 // ...

 // Check 4 directions

true

performance

Point rotate Point (,
) {

 Point rotated;

 rotated.x p.x cosTheta

 p.y sinTheta;

 rotated.y p.x sinTheta

 p.y cosTheta;

 rotated;

}

p
angle

double

= *
- *

= *
+ *

return

 // ...

readability

int (,
 }{

(input, output);

}

encrypt string
string output
 SHA256

input

security

Post-Edit CodePre-Edit Code

Rule Learning

too specific!

duplication!

pre construct
recursive DFS

cout
......

post construct
iterative BFS

printf
......

performance

pre construct
non-descriptive names

raw pointers
......

post construct
meaningful names

structured data types
......

readability

pre construct
weak hash func

......

post construct
strong hash func

......

security

void char**
bool** int
int int int

-

 (,
 , ,

 , ,
) {

 (grid, visited,
row , col, rows, cols);

 (...);

}

dfs

dfs

dfs

grid
visited row

col rows
cols
 // ...

 // Check 4 directions

1

performance

double rotate
double

*
&

return *
- *

 (
,){

 (in_XMM2_Qa
_DAT_001020c0,local_10, lo
cal_18);

 param_2
local_18 in_XMM1_Qa
local_10[];

}

Point

sincos

param_1 param_2
 // ...

0

readability

string encrypt string

MD5

 (
){

 (input);

}

input
return

security

Raw Editing Rule Set

Training Data

Given a two-dimensional binary grid, count the
number of connected groups.

performance

Rotate a 2D point around the origin by a specified
angle.

readability

Encrypt the input with a hash method and store
the result as output.

security

Functional Specifications

void ...

while !

for
+

+
+

+ =

 () {

 ((q))
{

 (...) {

 (q, row dx,
col dy);

 visited[row dx]
[col dy] ;

}}}

bfs

isQueueEmpty

enqueue

 // ...

 // Check 4 directions

true

performance

Point rotate Point (,
) {

 Point rotated;

 rotated.x p.x
cosTheta p.y sinTheta;

 rotated.y p.x
sinTheta p.y cosTheta;

 rotated;

}

p
angledouble

= *
- *

= *
+ *

return

 // ...

readability

string encrypt string

SHA256

 (
){

 (input);

}

input
return

security

Post-Edit CodePre-Edit Code

PRUNE

pre construct
raw pointers

recursive DFS
var name `param_2`

......

post construct
structured data types

iterative BFS
var name `angle`

......

Raw Editing Rule Set
pre construct

raw pointers
recursive DFS

var name `param_2`
......

post construct
structured data types

iterative BFS
var name `angle`

......

Refined Editing Rule Set

MERGE

pre construct
raw pointers

recursive traversal
weak hash func
DFS traversal

......

post construct
structured data types
iterative traversal
strong hash func
BFS traversal

......

Raw Editing Rule Set

pre construct
raw pointers
recursive DFS
weak hash func

......

post construct
structured data types

iterative BFS
strong hash func

......

Refined Editing Rule Set

ADD

pre construct
raw pointers

recursive DFS
......

post construct
structured data types

iterative BFS
......

Raw Editing Rule Set
pre construct

raw pointers
recursive DFS
weak hash func

......

post construct
structured data types

iterative BFS
strong hash func

......

Refined Editing Rule Set

Meta-Rule Set

Rule Learning

Pre-Edit Code xi

Functional Specifications si Per Sample Rule Ri Post-Edit Code yi

Finetuning / Inference

Pre-Edit Code xi Meta-Rule Set R

Functional Specifications si Per Sample Rule Ri Post-Edit Code yi

Zero-Shot Prompting

Pre-Edit Code xi Meta-Rule Set R Feedback

Functional Specifications si Per Sample Rule Ri Post-Edit Code yi

Iterative Refinement with Execution Feedback

Editing ModesAugmenting Training Set

pre construct
weak hash func

post construct
strong hash func

Per Sample Rule Ri

desci: Encrypt the input with a
hash method and store the result as
output.

ini: A string representing the plain
text message to be processed

outi: A string containing the
hashed version of the input
message.

Functional Specifications si
string encrypt string

MD5
 ()

{ (input); }
input

return

Pre-Edit Code xi

string encrypt string
SHA256

 ()

{ (input); }

input
return

Post-Edit Code yi

pre construct
raw pointers

weak hash func
recursive DFS

......

post construct
structured data types
strong hash func

iterative BFS
......

Meta-Rule Set R

Figure 2: EDITLORD workflow. The upper section shows how EDITLORD discovers the meta-rule set and functional
specification based on the pre-edit and post-edit training code samples. The lower section shows how EDITLORD augment
the training data. The editing process can then be performed either by querying the finetuned LMs (by augmented training
samples) or using the meta-rule set as the prompt to guide the zero-shot prompting and the iterative refinement with external
feedback. Note that the rule learning steps for three tasks are independent. We put them together just to show that the
process is generic for different editing tasks.

G(xi, yi). We then aggregate {R1, ..., Rn} to initialize the
raw editing rule set R =

⋃n
i=1 Ri.

Iterative meta-rule set refinement While the initial R
collects the raw editing rules for each sample, they are either
too generic or too specific to provide actionable guidance for
an effective editing. For example, they can be as generic as
“check for potential vulnerability”, or as specific as “switch
from a to a+1” (with very specific variable names). Addi-
tionally, multiple editing rules may indicate similar trans-
formations, e.g., “switch from cin to scanf” and “switch
from std::cin to scanf”. Given these challenges, we
introduce an iterative meta-rule set refinement algorithm to
ensure the ultimate R is concise and effective. We start with
this initial R and iteratively refine each rule r ∈ R until R
converges. Figure 2 illustrates the procedures.

To systematically perform the refinement, we define three

operations that G can use to update the meta-rule set R.
(1) ADD: R ∪ {r} → R. This operation instructs G to
directly add the rule r ∈ Ri derived from the training sample
(xi, yi) to the meta-rule set R. This step is still necessary
as MERGE and PRUNE (described below) can be very
aggressive and some useful rules have been inadvertently
removed. (2) MERGE: R ∪ {ri ⊕ rj} \ {ri, rj} → R.
This operation instructs G to merge two rules ri, rj ∈ R by
replacing them with an updated rule ri ⊕ rj . (3) PRUNE:
R \ {r} → R. This operation instructs G to remove the rule
r from the meta-rule set R.

Algorithm 1 shows the procedures of updating the editing
rule set R. Before adding each r (ADD and MERGE) to
R, we prompt G to assess whether it is a balanced rule,
i.e., neither too generic nor too specific (line 4). If not, we
apply PRUNE to discard it (line 14). Otherwise, we prompt
G again to decide whether we should ADD or MERGE r

3

EDITLORD: Learning Code Transformation Rules for Code Editing

Algorithm 1 Iterative Meta-Rule Set Refinement

input Initial Meta-Rule Set R
output Finalized Meta-Rule Set R′

1: R′ ← R
2: while R′ not converge do
3: for each r ∈ R ∪R′ do
4: if r is well-balanced then
5: if ∄r∗ ∈ R′ similar to r then
6: /* Add Rules */
7: R′ ← R′ ∪ { r }
8: else
9: /* Merge Rules */

10: R′ ← R′ ∪ {r ⊕ r∗} \ {r, r∗}
11: end if
12: else
13: /* Prune Rules */
14: R′ ← R′ \ { r }
15: end if
16: end for
17: end while
18: return R′

(line 5). Specifically, G will be prompted to decide whether
there exists a rule in R similar or identical to r. We apply
MERGE (line 10) if yes and ADD (line 7) if not. Figure 2
and Table 5 include some examples of the learned rules in
R after this algorithm completes.

2.3. Functional Specification Discovery

We consider functional specification as a high-level nat-
ural language description of the program’s intended be-
havior and input-output constraints. Specifically, for each
sample (xi, yi) in the training dataset, we define the func-
tional specification si of the training code pair (xi, yi) as
si = {desci, ini, outi}, where desci describes the func-
tionality implemented in (xi, yi), and ini and outi specifies
the input and expected output constraints of (xi, yi), respec-
tively. We prompt G to generate si.

2.4. Code Editing Modes

Finetuning for rule-based code editing Once we ob-
tain the meta-rule set R, we iterate each training sample
(xi, yi), and prompt G to identify Ri ⊆ R as the per-sample
editing rules that transform xi to yi. With the per-sample
rules Ri, we also incorporate the corresponding functional
specifications si to prepare the augmented finetuning set
D⋆ = {(xi, si, Ri, yi)}ni=1 (as shown in bottom-left in Fig-
ure 2).

The finetuning task can now be formulated as model-
ing the following conditional probability for each sample:
PM (yi, si, Ri|xi) = P (si|xi)P (Ri|xi, si)P (yi|xi, si, Ri).

Note that the LM M to be finetuned may differ from G,
which is used to construct the meta-rule set R and func-
tional specifications S (see Section 3).

Other editing modes Beyond editing the code using the
finetuned model, the generic design of EDITLORD also sup-
ports other editing modes. For example, with the meta-rule
set R, we can simply prompt an LM M to directly generate
the edited code or further refine the edited code based on
external feedback (e.g., execution information (Peng et al.,
2025b)). Figure 2 illustrates other code editing modes, i.e.,
zero-shot prompting and iterative refinement with execution
feedback. We study how EDITLORD assists these additional
editing modes in Section 3.4.

3. Experiments
We evaluate EDITLORD on three critical software engineer-
ing and security applications that can be formulated as code
editing tasks (Section 3.1). We consider inference using the
finetuned model as our default editing mode and compare it
to the state-of-the-art baselines, which are also mostly based
on finetuning (Shypula et al., 2024; Tan et al., 2024; Fu et al.,
2022). In Section 3.4, we also show EDITLORD comple-
ments other editing modes. We choose models that can be
full-parameter finetuned on our local hardware (2x4 Nvidia
L40S GPUs), i.e., open-source DeepSeek-Coder 1.3B and
6.7B, or via an online API, i.e., GPT-4o mini. To gener-
ate the functional specifications and editing rules, we use
GPT-4o mini (G in Section 2).

3.1. Setup: Tasks, Datasets, and Metrics

Performance optimization This task aims to edit a given
program to improve its execution efficiency (see prompts
in Appendix A.1). Following Shypula et al. (2024), we
specifically focus on the execution time speedup and use
gem5 CPU simulator (Binkert et al., 2011) to mitigate the
noises introduced by the bare metal. We use the HQ (high
quality) dataset from Shypula et al. (2024) for training and
evaluation. The dataset consists of 4,085 training (slow and
fast code) pairs, 2,544 validation samples, and 978 testing
samples.

We adopt the same metrics as Shypula et al. (2024):
Correct@k: the percentage of problems in the testing set
for which the LM generates at least one correct solution out
of the k candidates. OPT@k: the percentage of problems in
the testing set that the fastest and correct code among the k
LM generated programs is at least 10% faster. Speedup@k:
the average absolute ratio between the execution time re-
quired by the given slow code and the fastest and correct
code among the k LM-generated programs.

4

EDITLORD: Learning Code Transformation Rules for Code Editing

int*
const char*
int*

for =
!= ++

=

if ==
-=

if ==
=

int*
sizeof int * +

++ =

=

* =
return

 (

 ,

) {

 (i ; paren_string[i]
 ; i) {

 chr paren_string[i];

 (chr) {

 level ;

 (level) {

 all_levels
() (all_levels,

() (count));

 all_levels[count]
max_level;

 max_level ;

 }

 }

 }

 returnSize count;

 all_levels;

}

func0

realloc

paren_string
returnSize

 // ...

 // ...

0
\0

1
0

1

0

' '

')'

void *
char *
int *

if ==

else

do

if ==
= + -

if ==
= +
=

long *
* int * long +

long * - U =
=

= *
= +

while !=

* =
return

 (

 ,

){

 (cVar1) {

 }

 {

 {

 (cVar1) {

 iVar3 iVar3 ;

 (iVar3) {

 iVar5 iVar5 ;

 __ptr (__ptr,
()iVar5);

 ()(()__ptr
(()iVar5)) iVar4;

 iVar4 ;

 }

 }

 cVar1 pcVar2;

 pcVar2 pcVar2 ;

 } (cVar1);

 }

 param_2 iVar5;

 __ptr;

}

func0

realloc

param_1
param_2

 // ...

 // ...

 //

 //

' '

')'

' '

\0

1
0

1

4

4 4
0

1
\0

Char based: 31.27

Token based: 33.43

Embedding based: 33.94

✓ meaningful

✓ structured type

✘ non-descriptive

✘ raw pointer

Ghidra Decompiled Code Original Source Code

Similarity Metric

Figure 3: The similarity metrics between the Ghidra de-
compiled code and its corresponding source code are con-
sistently low. This outcome is primarily due to the non-
descriptive variable names and convoluted data structures,
which result in both poor readability and consistently low
similarity scores.

Decompilation This task aims to edit a highly unreadable
decompiled code into a more readable form (see prompts in
Appendix A.2). We obtain these decompiled code samples
using the off-the-shelf decompiler Ghidra (Agency, 2019).
Figure 3 shows an example of the unreadable decompiled
code and its original source code.

To construct training and validation samples, we follow Tan
et al. (2024) to randomly sample original code snippets from
AnghaBench (Da Silva et al., 2021) and construct the cor-
responding Ghidra decompiled code samples by compiling
the original code and decompiling it. We keep the testing
samples strictly non-overlapping with the training by using
HumanEval-Decompile (Tan et al., 2024).

Ghidra decompiled code in HumanEval-Decompile may
contain both syntactic and semantic errors, i.e., the pre-edit
decompiled code may not compile or fail the test cases.
These samples make it impossible for any code editor to
reconstruct the semantically correct code without an ora-
cle, which is often not available in typical code editing
scenarios (Section 4). Therefore, we only consider the
functionally correct decompiled code from the HumanEval-
Decompile (Tan et al., 2024). Overall, our dataset set con-
sists of 8,567 (machine-decompiled code, original source
code) training code pairs, 834 validation samples, and 131
testing samples with test cases.

We adopt the same metrics in Tan et al. (2024) and extend
its readability measurements. Compilability: the percent-

age of problems in the testing set where the model gener-
ates the compilable program. Correctness: the percentage
of problems in the testing set where the model generates
the correct program. Readability: similarity between the
ground truth and the edited code at three different levels,
i.e., character-, token-, and embedding-level. The similarity
is defined as 1− d, where d is the edit distance between the
ground truth source code and the recovered original code at
the character and token level, and cosine distance between
CodeSage (Zhang et al., 2024) embeddings of them at the
embedding-level.

Security hardening This task aims to edit a given vul-
nerable code into the patched version (see prompts in Ap-
pendix A.3). In the vulnerable code, there can be one or
more vulnerabilities under different Common Weakness
Enumeration (CWE) categories.

We obtain the vulnerable and secure code pairs from
SVEN (He & Vechev, 2023) for training and validation,
and evaluate EDITLORD on a strictly unseen testing set,
CWEval (Peng et al., 2025a). CWEval includes vulner-
able code samples covering 31 CWEs. Importantly, we
choose CWEval because each of its samples includes both
functionality and security tests to automate the evaluation,
while the other benchmarks, e.g., (Fu et al., 2022) focus
only on security fixes and rely on manual effort to check the
functionality.

Following CWEval (Peng et al., 2025a), we define n as the
total number of sampled solutions and a varying k ≤ n.
We then evaluate the security repair performance with the
following three metrics. Correct@k: the expectation of any
of k LM generated solutions is correct. Security@k: the
expectation of any of k LM generated solutions is secure.
Correct & Security@k: the expectation of any of k LM
generated solutions is both correct and secure.

These metrics are calculated through the same formula

EProblems

[
1− (n−c

k)
(nk)

]
, where c is the number of correct

programs, secure programs, and both correct and secure
programs, respectively.

3.2. Main Results

We compare EDITLORD to zero-shot prompting, chain-of-
thought prompting (CoT), and finetuning (state-of-the-art
baselines) on three tasks: performance optimization, de-
compilation, and security hardening. As illustrated in Ta-
ble 1, EDITLORD outperforms the state-of-the-art baselines
across all tasks and models, with 23.3%, 12.7%, and 27.6%
improvements on average in performance optimization, de-
compilation, and security hardening, respectively.

While EDITLORD underperforms the prompting-based ap-

5

EDITLORD: Learning Code Transformation Rules for Code Editing

Table 1: Main results for performance optimization, decompilation, and security hardening. “Finetuned” refers to the
approach from Shypula et al. (2024), Tan et al. (2024), Fu et al. (2022), respectively.

Performance opt. OPT@k ↑ Speedup@k ↑ Correct@k ↑

k =1 k =8 k =1 k =8 k =1 k =8

DeepSeek-Coder 1.3B

Prompt 4.0 16.2 1.0 1.2 11.3 18.3
CoT 5.6 15.9 1.0 1.2 10.0 19.3

Finetuned 12.5 47.5 1.5 3.0 18.5 67.5
EDITLORD (Ours) 16.4 53.1 1.7 3.8 28.9 72.0

DeepSeek-Coder 6.7B

Prompt 6.0 19.5 1.1 1.2 60.0 89.5
CoT 4.1 6.8 1.1 1.2 16.0 36.6

Finetuned 7.8 76.9 2.1 3.1 20.7 87.4
EDITLORD (Ours) 11.0 82.5 2.7 4.5 36.0 89.5

GPT-4o mini

Prompt 12.2 26.4 1.1 1.3 47.4 71.5
CoT 10.0 29.1 1.1 1.5 45.2 64.1

Finetuned 28.1 61.5 2.3 3.8 59.0 89.5
EDITLORD (Ours) 31.2 72.5 2.9 4.2 62.5 93.5

Decompilation Compile↑ Correct↑
Readability↑

char token emb

DeepSeek-Coder 1.3B

Prompt 67.9 65.7 31.4 35.7 31.3
CoT 10.7 6.9 31.7 35.9 31.2

Finetuned 77.1 38.9 36.6 40.8 37.5
EDITLORD (Ours) 93.1 46.6 44.0 47.6 41.4

DeepSeek-Coder 6.7B

Prompt 83.2 64.9 35.3 39.3 34.3
CoT 4.4 4.4 30.8 35.4 32.7

Finetuned 89.6 56.5 42.1 47.8 39.7
EDITLORD (Ours) 90.1 58.8 46.2 49.9 43.3

GPT-4o mini

Prompt 61.8 44.3 33.1 37.0 37.9
CoT 59.5 46.6 34.3 38.3 39.8

Finetuned 86.3 52.7 45.6 49.4 43.6
EDITLORD (Ours) 97.7 67.2 51.4 54.9 48.4

Security hardening Correct@k ↑ Security@k ↑ Correct & Sec@k ↑

k = 1 k = 10 k = 50 k = 1 k = 10 k = 50 k = 1 k = 10 k = 50

DeepSeek-Coder 1.3B

Prompt 6.7 26.8 40.4 3.0 15.2 30.8 1.0 7.1 15.4
CoT 21.2+14.5 39.7+12.9 48.1+7.7 6.4+3.4 20.2+5.0 34.6+3.8 1.8+0.8 9.4+2.3 17.3+1.9

Finetuned 24.1+17.4 35.7+8.9 40.4+0.0 9.5+6.6 21.5+6.3 28.9−1.9 5.3+4.3 13.8+6.8 19.2+3.8

EDITLORD (Ours) 31.2+24.5 49.6+22.8 59.6+19.2 12.2+9.2 28.4+13.2 36.5+5.8 7.4+6.4 18.7+11.6 23.1+7.7

DeepSeek-Coder 6.7B

Prompt 20.3 31.7 44.2 14.8 29.5 36.5 8.7 17.3 23.1
CoT 13.0−7.3 40.3+8.6 51.9+7.7 7.6−7.2 32.7+3.2 42.3+5.8 8.8+0.0 17.8+0.5 21.1−1.9

Finetuned 22.4+2.1 45.5+13.8 53.9+9.6 13.7−1.1 35.0+5.4 44.2+7.7 7.7−1.0 20.6+3.3 25.0+1.9

EDITLORD (Ours) 25.3+5.0 41.3+9.6 49.1+4.9 17.9+3.1 37.1+7.6 50.0+13.5 11.8+3.1 23.9+6.6 30.8+7.7

GPT-4o mini

Prompt 21.9 36.2 46.1 18.0 30.2 40.4 13.0 23.1 26.9
CoT 27.4+5.5 43.2+7.0 53.9+7.7 23.3+5.2 35.3+5.1 42.3+1.9 18.4+5.4 28.1+5.1 34.6+7.7

Finetuned 30.1+8.3 42.4+6.2 50.0+3.9 16.5−1.6 28.5−1.7 34.6−5.8 13.0+0.0 22.1−1.0 30.8+3.8

EDITLORD (Ours) 31.4+9.5 49.9+13.6 61.5+15.4 27.6+9.5 40.3+10.1 50.0+9.6 21.2+8.2 29.3+6.2 36.5+9.6

proach based on DeepSeek-Coder 1.3B and 6.7B in the
decompilation task and DeepSeek-Coder 6.7B in the per-
formance task on the functional correctness, it is important
to note that this metric alone can often appear overstated
by simply keeping pre-edit code unmodified. The read-
ability metrics demonstrate that the prompting approach
even decreases the original Ghidra decompiled code’s read-
ability, i.e., 36, 31.7, and 31.2 for the character-, token-
and embedding-level readability metrics, respectively (Sec-
tion 3.1).

3.3. Ablations

We conduct ablation studies to evaluate the effectiveness
of each design component in EDITLORD. Specifically, we
introduce the following variants by incrementally adding
the key components (in both training and inference): (1)
Finetuned: neither functional specification nor editing rule
learning task is included; (2) func-spec: only the functional
specification learning task is included; (3) edit-rule: only
the editing rule learning task is included.

As shown in Table 2, adding the functional specification

6

EDITLORD: Learning Code Transformation Rules for Code Editing

Table 2: Ablations on performance optimization, decompilation, and security hardening (based on DeepSeek-Coder 1.3B).

Performance opt. OPT@k ↑ Speedup@k ↑ Correct@k ↑

k =1 k =8 k =1 k =8 k =1 k =8

Finetuned 12.5 47.5 1.5 3.0 18.5 67.5
+ func-spec 12.5 49.2 1.7 3.5 21.4 73.4
+ edit-rule 15.7 51.9 1.8 3.7 26.2 70.0

EDITLORD (Ours) 16.4 53.1 1.8 3.8 28.9 72.0

Decompilation Compile↑ Correct↑
Readability↑

char token emb

Finetuned 77.1 38.9 36.6 40.8 37.5
+ func-spec 93.9 38.9 38.9 43.6 38.4
+ edit-rule 87.0 29.8 41.5 45.2 39.5

EDITLORD (Ours) 93.1 46.6 44.0 47.6 41.4

Security hardening Correct@k ↑ Security@k ↑ Correct and Sec@k ↑

k = 1 k = 10 k = 50 k = 1 k = 10 k = 50 k = 1 k = 10 k = 50

Finetuned 24.1 35.7 40.4 9.5 21.5 28.9 5.3 13.8 19.2
+func-spec 25.5+1.3 41.8+6.1 46.1+5.8 11.5+1.9 27.3+5.8 36.5+7.7 6.0+0.7 15.8+2.0 21.1+1.9

+edit-rule 25.7+1.6 39.0+3.3 44.2+3.8 11.8+2.3 27.3+5.8 38.5+9.6 6.7+1.3 17.5+3.6 23.1+3.8

EDITLORD (Ours) 31.2+7.1 49.6+13.9 59.6+19.2 12.2+2.6 28.4+6.9 36.5+7.7 7.4+2.1 18.7+4.8 23.1+3.8

Table 3: Comparing EDITLORD to Tan et al. (2024) against
semantics-preserving code transformations for robustness
and unseen samples with longer lengths for generalization
by measuring performance degradation with the original
decompilation results (Table 1).

Compile↑ Correct↑
Readability↑

char token emb

Robustness

Finetuned 7.0 8.6 4.2 3.1 5.5
EDITLORD (Ours) 1.2 4.5 1.8 1.7 4.3

Generalization

Finetuned 4.3 11.4 7.6 8.9 5.8
EDITLORD (Ours) 3.4 9.5 5.8 8.7 4.3

learning task alone outperforms the end-to-end finetuning
baselines on the functional correctness metrics across all
three tasks by up to 21.8%, while also improving the editing
performance, e.g., efficiency, readability, and security, by up
to 26.7%. Similarly, training models with the editing rule
learning task alone can outperform the end-to-end finetun-
ing baselines on the editing performance metrics across all
three tasks by up to 33.2%, while improving the functional
correctness by up to 17.1%. When combined, EDITLORD
can outperform the end-to-end finetuning baselines by up to
34.8% in overall editing performance.

While EDITLORD underperforms these ablation variants
on some specific metrics, i.e., Correct@8 for performance,
Compilability for decompilation, and security@50 for se-
curity hardening, EDITLORD obtains the best performance
when considering both the functional correctness and editing
performance.

w/o EditLord w/ EditLord

R=0 R=1 R=3 R=50.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

OP
T(

%
)

(a) Performance opt.
R=0 R=1 R=3 R=530

32

34

36

38

40

Av
g.

 R
ea

da
bi

lit
y

(b) Decompilation
R=0 R=1 R=3 R=50.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Co
rre

ct
 &

 S
ec

 @
 1

(c) Security hardening

Figure 4: EDITLORD with different editing modes under
zero-shot prompting (R = 0) and iterative refinement (R =
1, 3, 5) with execution feedback. Here, R is the number of
iterations taken to refine the edited code.

3.4. Other Editing Modes

In addition to finetuning, EDITLORD is complementary to
other code editing modes. We evaluate the effectiveness
of EDITLORD when applied to zero-shot prompting and
iterative refinement with execution feedback (Peng et al.,
2025b; Huang et al., 2024).

As shown in Figure 4, EDITLORD improves the perfor-
mance of zero-shot prompting and iterative refinement with
execution feedback by an average of 56.3% and 5.7%, re-
spectively. We observe EDITLORD underperforms slightly
in the decompilation and security hardening task when
R = 3 or R = 5. We suspect this is due to the coarse-
grained execution feedback, e.g., compilation error, execu-
tion error, etc., while the state-of-the-art baselines incor-
porate more fine-grained information, e.g., per-statement
execution profile (Huang et al., 2024) (see Section 4 for the
discussion).

7

EDITLORD: Learning Code Transformation Rules for Code Editing

Table 4: Editing rules augmented by human experts using DeepSeek-Coder 1.3B.

Performance opt. OPT@k ↑ Speedup @k ↑ Correct@k ↑

k = 1 k = 8 k = 1 k = 8 k = 1 k = 8

EDITLORD 16.4 53.1 1.7 3.8 28.9 72.0
+ human 17.9 61.4 1.9 3.9 53.0 76.9

Decompilation Correct↑ Compile↑
Readability↑

char token emb

EDITLORD 46.6 93.1 44.0 47.6 41.4
+ human 49.9 89.3 47.0 51.3 56.1

Security hardening Correct@k ↑ Security@k ↑ Correct & Sec@k ↑

k = 1 k = 10 k = 50 k = 1 k = 10 k = 50 k = 1 k = 10 k = 50

EDITLORD 31.2 49.6 59.6 12.2 28.4 36.5 7.4 18.7 23.1
+ human 33.2+2.0 53.9+4.3 65.4+5.8 13.5+1.3 33.8+5.4 42.3+5.8 8.9+1.5 21.9+3.2 28.9+5.8

3.5. Robustness and Generalization

Robustness We compare EDITLORD to the state-of-the-
art baseline against semantics-preserving code transforma-
tions (Wang et al., 2023a; Yefet et al., 2020; Gao et al., 2023;
Yang et al., 2022; Bielik & Vechev, 2020). The transforma-
tions include renaming variables and functions to long ran-
dom strings and removing comments, whitespaces, unused
variables, and unused headers. We observe individual trans-
formations alone rarely produce significant output changes.
We thus exhaust each transformation (e.g., renaming all
variables) and compose all of these transformations together
to introduce input changes substantial enough.

Table 3 (left) shows the average performance degradation in
functional correctness, comparability, and readability when
the input undergoes semantics-preserving transformations.
EDITLORD achieves up to 58.1% less drops in readabil-
ity measured by character-level readability compared to
the baseline, indicating that producing explicit functional
specifications and editing rules helps EDITLORD stay less
susceptible to syntactic code changes.

Length generalization We investigate EDITLORD’s gen-
eralizability to longer sequences than those seen in train-
ing (Anil et al., 2022). Specifically, we select 71 testing
samples with lengths over 500 and finetune EDITLORD only
on 6,105 strictly shorter (< 500) training samples.

Table 3 (right) demonstrates that EDITLORD suffers reduced
performance degradation on unseen longer code, achiev-
ing up to 25.86% less drops in readability measured by
embedding-level readability (Section 3.1).

3.6. Rule Augmentation by Human Experts

As EDITLORD produces explicit editing steps, it facilitates
human intervention to introduce customized editing rules.
To assess the effectiveness of EDITLORD augmented by hu-
man intervention, we incorporate two human experts (both
are the authors of this paper) to refine EDITLORD’s gen-
erated editing rules and functional specifications for each

testing sample, e.g., removing unreasonable rules or append-
ing effective new rules.

Table 4 shows that such an augmentation enhances EDIT-
LORD with up to 15.6%, 35.5%, and 25.1% improvement
in efficiency, readability in decompilation, and security.

4. Discussion and Limitation
Iterative refinement with execution feedback Exist-
ing LM-based code editing approaches often leverage it-
erative refinement with execution feedback (Huang et al.,
2024; Peng et al., 2025b; Xia & Zhang, 2024; Waghjale
et al., 2024), which relies on the availability of test inputs.
However, the code to be edited may not always be well-
maintained. Therefore, in this paper, we do not assume the
tests are available by default (Section 3). We also show that
EDITLORD is complementary to iterative refinement with
coarse-grained execution feedback (Section 2.4). We aim
to study whether the fine-grained execution feedback, i.e.,
per-statement execution profile (Huang et al., 2024), can
further improve EDITLORD in the future.

Functional correctness guarantee In code editing, func-
tional correctness is arguably a hard constraint that cannot
be violated, while the editing goals can be soft objectives.
While we ensured that our editing performance is mea-
sured strictly on the subset of edited code that must first
be functionally correct, EDITLORD cannot guarantee all
the edited code is correct. While this issue can be trivially
mitigated by falling back to the original code, it completely
fails to introduce any edits. We thus follow the existing
approaches (Shypula et al., 2024; Tan et al., 2024) by treat-
ing functional correctness as a soft constraint. Imposing a
formal correctness guarantee for the edited code would be
extremely valuable for future work.

5. Related Work
Code LMs have been extensively used to assist developers in
editing code (Guo et al., 2025; Li et al., 2023; LaBash et al.,

8

EDITLORD: Learning Code Transformation Rules for Code Editing

2024; Li et al., 2024; Cassano et al., 2024; Chakraborty et al.,
2020; Liu et al., 2024a; Gupta et al., 2023; Muennighoff
et al., 2023; Singhal et al., 2024) to fulfill various goals,
such as bug fixing (Xia & Zhang, 2024; Fan et al., 2023; Liu
et al., 2024c), decompilation (Tan et al., 2024; Wong et al.,
2023; Xie et al., 2024; Hu et al., 2024), efficiency optimiza-
tion (Huang et al., 2024; Shypula et al., 2024; Garg et al.,
2022; Peng et al., 2025b), vulnerability repair (He & Vechev,
2023; Peng et al., 2025a; Fu et al., 2022; Xia & Zhang, 2024;
Perry et al., 2023; Bhatt et al., 2023), code translation (Pan
et al., 2024; Eniser et al., 2024), code refactoring (Shirafuji
et al., 2023; Cummins et al., 2024), and more broadly related
tasks like generating proofs (Chen et al., 2025; Chakraborty
et al., 2025), invariants (Kamath et al., 2023; Chakraborty
et al., 2023), or specifications (Murphy et al., 2024; Ma
et al., 2025).

Most existing approaches either adopt finetuning to learn
the direct mapping between the code pairs or leverage it-
erative refinement with execution or self-generated feed-
backs (Huang et al., 2024; Peng et al., 2025b; Huang et al.,
2023a; Xia & Zhang, 2024; Chen et al., 2024; Dong et al.,
2024; Madaan et al., 2024; Zelikman et al., 2024; Liu et al.,
2024b). In contrast, EDITLORD complements these ap-
proaches by making the intermediate editing steps explicit.

EDITLORD shares a similar philosophy to bootstrapping the
symbolic reasoning of LMs (Zelikman et al., 2022; Kim
et al., 2023; Huang et al., 2023b; Chen et al., 2024; Hsieh
et al., 2023; Wang et al., 2023b; Zhang et al., 2023; Light-
man et al., 2023; Zhou et al., 2024), where the LMs synthe-
size the reasoning procedures to self-augment the samples
for supervised finetuning or preference tuning. EDITLORD
extends the idea by distilling a concise and composable
editing meta-rule set, such that the code to be edited can
share reusable editing steps and benefits from the improved
generalization (Section 3.5).

6. Conclusion
We introduced EDITLORD, a generic code editing frame-
work, by learning the inductive code transformation rules to
elicit the explicit code editing steps. Our key approach is to
employ a language model (LM) as an inductive learner to
distill a concise and composable meta-rule set for code edit-
ing from the training code pairs. EDITLORD substantially
outperforms the state-of-the-art code editing techniques in
editing performance while enjoying significantly higher
functional correctness and improved robustness against
semantics-preserving code transformations across multiple
critical software engineering and security applications, LM
models, and editing modes.

Impact Statement
Code editing plays a crucial role in assisting developers’
daily jobs. While Large language models (LLMs) have
demonstrated promising capabilities in automated code
transformation, their end-to-end nature often leads to hal-
lucinated edits. These hallucinations would be especially
harmful when LLMs are used to edit security and safety-
critical code. Our paper introduced a new approach to im-
proving the safety of LLMs when applied to security-critical
software engineering applications.

References
Agency, N. S. Ghidra Disassembler. https://ghidra-
sre.org/, 2019.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546–38556, 2022.

Bhatt, M., Chennabasappa, S., Nikolaidis, C., Wan, S., Evti-
mov, I., Gabi, D., Song, D., Ahmad, F., Aschermann, C.,
Fontana, L., et al. Purple llama cyberseceval: A secure
coding benchmark for language models. arXiv preprint
arXiv:2312.04724, 2023.

Bielik, P. and Vechev, M. Adversarial robustness for code.
In International Conference on Machine Learning, pp.
896–907. PMLR, 2020.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K.,
Saidi, A., Basu, A., Hestness, J., Hower, D. R., Kr-
ishna, T., Sardashti, S., et al. The gem5 simulator. ACM
SIGARCH computer architecture news, 39(2):1–7, 2011.

Cassano, F., Li, L., Sethi, A., Shinn, N., Brennan-Jones, A.,
Ginesin, J., Berman, E., Chakhnashvili, G., Lozhkov, A.,
Anderson, C. J., et al. Can it edit? evaluating the ability of
large language models to follow code editing instructions.
In Conference on Language Modeling (COLM), 2024.

Chakraborty, S., Ding, Y., Allamanis, M., and Ray, B.
Codit: Code editing with tree-based neural models. IEEE
Transactions on Software Engineering, 48(4):1385–1399,
2020.

Chakraborty, S., Lahiri, S. K., Fakhoury, S., Musuvathi, M.,
Lal, A., Rastogi, A., Senthilnathan, A., Sharma, R., and
Swamy, N. Ranking llm-generated loop invariants for
program verification. arXiv preprint arXiv:2310.09342,
2023.

Chakraborty, S., Ebner, G., Bhat, S., Fakhoury, S., Fatima,
S., Lahiri, S., and Swamy, N. Towards neural synthesis

9

https://ghidra-sre.org/
https://ghidra-sre.org/

EDITLORD: Learning Code Transformation Rules for Code Editing

for smt-assisted proof-oriented programming. In Proceed-
ings of the 47th International Conference on Software
Engineering, 2025.

Chen, T., Lu, S., Lu, S., Gong, Y., Yang, C., Li, X., Misu,
M. R. H., Yu, H., Duan, N., Cheng, P., et al. Automated
proof generation for rust code via self-evolution. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. In The Twelfth
International Conference on Learning Representations,
2024.

Cummins, C., Seeker, V., Armengol-Estapé, J., Markosyan,
A. H., Synnaeve, G., and Leather, H. Don’t transform
the code, code the transforms: Towards precise code
rewriting using llms. arXiv preprint arXiv:2410.08806,
2024.

Da Silva, A. F., Kind, B. C., de Souza Magalhães, J. W.,
Rocha, J. N., Guimaraes, B. C. F., and Pereira, F. M. Q.
Anghabench: A suite with one million compilable c
benchmarks for code-size reduction. In 2021 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO), pp. 378–390. IEEE, 2021.

Dong, Y., Jiang, X., Jin, Z., and Li, G. Self-collaboration
code generation via chatgpt. ACM Transactions on Soft-
ware Engineering and Methodology, 33(7):1–38, 2024.

Eniser, H. F., Zhang, H., David, C., Wang, M., Christakis,
M., Paulsen, B., Dodds, J., and Kroening, D. Towards
translating real-world code with llms: A study of translat-
ing to rust. arXiv preprint arXiv:2405.11514, 2024.

Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., and
Tan, S. H. Automated repair of programs from large
language models. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pp. 1469–
1481. IEEE, 2023.

Fu, M., Tantithamthavorn, C., Le, T., Nguyen, V., and
Phung, D. Vulrepair: a t5-based automated software
vulnerability repair. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pp. 935–947, 2022.

Gao, F., Wang, Y., and Wang, K. Discrete adversarial at-
tack to models of code. Proceedings of the ACM on
Programming Languages, 7(PLDI):172–195, 2023.

Garg, S., Moghaddam, R. Z., Clement, C. B., Sundaresan,
N., and Wu, C. Deepdev-perf: a deep learning-based ap-
proach for improving software performance. In Proceed-
ings of the 30th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp. 948–958, 2022.

Guo, J., Li, Z., Liu, X., Ma, K., Zheng, T., Yu, Z., Pan, D., Li,
Y., Liu, R., Wang, Y., et al. Codeeditorbench: Evaluating
code editing capability of large language models. In ICLR
2025 Workshop on Deep Learning for Code, 2025.

Gupta, P., Khare, A., Bajpai, Y., Chakraborty, S., Gulwani,
S., Kanade, A., Radhakrishna, A., Soares, G., and Ti-
wari, A. Grace: Language models meet code edits. In
Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Founda-
tions of Software Engineering, pp. 1483–1495, 2023.

He, J. and Vechev, M. Large language models for code: Se-
curity hardening and adversarial testing. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1865–1879, 2023.

Hsieh, C.-Y., Li, C.-L., Yeh, C.-k., Nakhost, H., Fujii, Y.,
Ratner, A., Krishna, R., Lee, C.-Y., and Pfister, T. Distill-
ing step-by-step! outperforming larger language models
with less training data and smaller model sizes. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pp. 8003–8017, 2023.

Hu, P., Liang, R., and Chen, K. Degpt: Optimizing
decompiler output with llm. In Proceedings 2024
Network and Distributed System Security Symposium
(2024). https://api. semanticscholar. org/CorpusID, vol-
ume 267622140, 2024.

Huang, D., Bu, Q., Zhang, J. M., Luck, M., and Cui,
H. Agentcoder: Multi-agent-based code generation
with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023a.

Huang, D., Zeng, G., Dai, J., Luo, M., Weng, H., Qing, Y.,
Cui, H., Guo, Z., and Zhang, J. M. Effi-code: Unleashing
code efficiency in language models. 2024.

Huang, J., Gu, S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. In Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 1051–1068, 2023b.

Kamath, A., Senthilnathan, A., Chakraborty, S., Deligiannis,
P., Lahiri, S. K., Lal, A., Rastogi, A., Roy, S., and Sharma,
R. Finding inductive loop invariants using large language
models. arXiv preprint arXiv:2311.07948, 2023.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. Advances in Neural Information
Processing Systems, 36:39648–39677, 2023.

LaBash, B., Rosedale, A., Reents, A., Negritto, L., and
Wiel, C. Res-q: Evaluating code-editing large language

10

EDITLORD: Learning Code Transformation Rules for Code Editing

model systems at the repository scale. arXiv preprint
arXiv:2406.16801, 2024.

Li, J., Li, G., Li, Z., Jin, Z., Hu, X., Zhang, K., and Fu, Z.
Codeeditor: Learning to edit source code with pre-trained
models. ACM Transactions on Software Engineering and
Methodology, 32(6):1–22, 2023.

Li, K., Hu, Q., Zhao, J., Chen, H., Xie, Y., Liu, T., Shieh,
M., and He, J. Instructcoder: Instruction tuning large
language models for code editing. In Proceedings of the
62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 4: Student Research Work-
shop), pp. 50–70, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2023.

Liu, C., Cai, Y., Lin, Y., Huang, Y., Pei, Y., Jiang, B., Yang,
P., Dong, J. S., and Mei, H. Coedpilot: Recommending
code edits with learned prior edit relevance, project-wise
awareness, and interactive nature. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 466–478, 2024a.

Liu, J., Nguyen, T., Shang, M., Ding, H., Li, X., Yu, Y.,
Kumar, V., and Wang, Z. Learning code preference via
synthetic evolution. arXiv preprint arXiv:2410.03837,
2024b.

Liu, Y., Gao, P., Wang, X., Liu, J., Shi, Y., Zhang, Z., and
Peng, C. Marscode agent: Ai-native automated bug fixing.
arXiv preprint arXiv:2409.00899, 2024c.

Ma, L., Liu, S., Li, Y., Xie, X., and Bu, L. Specgen: Au-
tomated generation of formal program specifications via
large language models. In Proceedings of the 47th Inter-
national Conference on Software Engineering, 2025.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., Von Werra, L., and
Longpre, S. Octopack: Instruction tuning code large lan-
guage models. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following, 2023.

Murphy, W., Holzer, N., Qiao, F., Cui, L., Rothkopf, R.,
Koenig, N., and Santolucito, M. Combining llm code
generation with formal specifications and reactive pro-
gram synthesis. arXiv preprint arXiv:2410.19736, 2024.

Pan, R., Ibrahimzada, A. R., Krishna, R., Sankar, D., Wassi,
L. P., Merler, M., Sobolev, B., Pavuluri, R., Sinha, S.,
and Jabbarvand, R. Lost in translation: A study of bugs
introduced by large language models while translating
code. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pp. 1–13, 2024.

Peng, J., Cui, L., Huang, K., Yang, J., and Ray, B. Cweval:
Outcome-driven evaluation on functionality and security
of llm code generation. arXiv preprint arXiv:2501.08200,
2025a.

Peng, Y., Gotmare, A. D., Xiong, C., Savarese, S., Lyu, M.,
and Sahoo, D. Perfcodegen: Improving performance of
llm generated code with execution feedback. The 2nd
ACM International Conference on AI Foundation Models
and Software Engineering (FORGE 2025) in ICSE 2025,
2025b.

Perry, N., Srivastava, M., Kumar, D., and Boneh, D. Do
users write more insecure code with ai assistants? In
Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2785–2799,
2023.

Shani, I. and Staff, G. https://github.blog/news-
insights/research/survey-reveals-ais-
impact-on-the-developer-experience/,
2023.

Shirafuji, A., Oda, Y., Suzuki, J., Morishita, M., and
Watanobe, Y. Refactoring programs using large lan-
guage models with few-shot examples. In 2023 30th
Asia-Pacific Software Engineering Conference (APSEC),
pp. 151–160. IEEE, 2023.

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gard-
ner, J. R., Yang, Y., Hashemi, M., Neubig, G.,
Ranganathan, P., Bastani, O., and Yazdanbakhsh, A.
Learning performance-improving code edits. In The
Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/
forum?id=ix7rLVHXyY.

Singhal, M., Aggarwal, T., Awasthi, A., Natarajan, N., and
Kanade, A. Nofuneval: Funny how code lms falter on
requirements beyond functional correctness. In First
Conference on Language Modeling, 2024.

Tan, H., Luo, Q., Li, J., and Zhang, Y. Llm4decompile:
Decompiling binary code with large language models. In
Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 3473–3487,
2024.

Waghjale, S., Veerendranath, V., Wang, Z. Z., and Fried, D.
Ecco: Can we improve model-generated code efficiency

11

https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=ix7rLVHXyY

EDITLORD: Learning Code Transformation Rules for Code Editing

without sacrificing functional correctness? In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 15362–15376, 2024.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang, M.,
Kumar, V., Tan, S., Ray, B., Bhatia, P., et al. Recode:
Robustness evaluation of code generation models. In Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13818–13843, 2023a.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. In Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13484–13508, 2023b.

Wong, W. K., Wang, H., Li, Z., Liu, Z., Wang, S., Tang,
Q., Nie, S., and Wu, S. Refining decompiled c code with
large language models. arXiv preprint arXiv:2310.06530,
2023.

Xia, C. S. and Zhang, L. Automated program repair via
conversation: Fixing 162 out of 337 bugs for $0.42 each
using chatgpt. In Proceedings of the 33rd ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, pp. 819–831, 2024.

Xie, D., Zhang, Z., Jiang, N., Xu, X., Tan, L., and Zhang,
X. Resym: Harnessing llms to recover variable and data
structure symbols from stripped binaries. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, pp. 4554–4568, 2024.

Yang, Z., Shi, J., He, J., and Lo, D. Natural attack for
pre-trained models of code. In Proceedings of the 44th
International Conference on Software Engineering, pp.
1482–1493, 2022.

Yefet, N., Alon, U., and Yahav, E. Adversarial examples for
models of code. Proceedings of the ACM on Program-
ming Languages, 4(OOPSLA):1–30, 2020.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zelikman, E., Lorch, E., Mackey, L., and Kalai, A. T. Self-
taught optimizer (stop): Recursively self-improving code
generation. In First Conference on Language Modeling,
2024.

Zhang, D., Ahmad, W., Tan, M., Ding, H., Nallapati, R.,
Roth, D., Ma, X., and Xiang, B. Code representation
learning at scale. In The Twelfth International Conference
on Learning Representations, 2024.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic
chain of thought prompting in large language models.
In The Eleventh International Conference on Learning
Representations, 2023.

Zhou, P., Pujara, J., Ren, X., Chen, X., Cheng, H.-T., Le,
Q. V., Chi, E. H., Zhou, D., Mishra, S., and Zheng, H. S.
Self-discover: Large language models self-compose rea-
soning structures. In Advances in Neural Information
Processing Systems, 2024.

12

EDITLORD: Learning Code Transformation Rules for Code Editing

A. Prompt Format
A.1. Performance Optimization

Prompt 1: Baseline prompt for performance optimization.

User: This is the slow code:
[SLOW CODE]
{src code}
[/SLOW CODE]
The corresponding fast code is:
[FAST CODE]
Assistant:{tgt code}
[/FAST CODE]

Prompt 2: Functional specifications only prompt for performance optimization.

User: This is the slow code:
[SLOW CODE]
{src code}
[/SLOW CODE]
The given code describes the following problem: {functional specification}
The input specification is: {input specification}
The output specification is: {output specification}
The corresponding fast code is:
[FAST CODE]
Assistant:{tgt code}
[/FAST CODE]

Prompt 3: Editing rules only prompt for performance optimization.

User: This is the slow code:
[SLOW CODE]
{src code}
[/SLOW CODE]
Following editing rules should be applied: {editing rules}
The corresponding fast code is:
[FAST CODE]
Assistant:{tgt code}
[/FAST CODE]

Prompt 4: Our prompt for performance optimization.

User: This is the slow code:
[SLOW CODE]
{src code}
[/SLOW CODE]
The given code describes the following problem: {functional specification}
The input specification is: {input specification}
The output specification is: {output specification}
Following editing rules should be applied: {editing rules}
The corresponding fast code is:
[FAST CODE]

13

EDITLORD: Learning Code Transformation Rules for Code Editing

Assistant:{tgt code}
[/FAST CODE]

A.2. Decompilation

Prompt 5: Baseline prompt for decompilation.

User: This is the decompiled code:
[MACHINE DECOMPILED CODE]
{src code}
[/MACHINE DECOMPILED CODE]
The corresponding source code is:
[ORIGINAL SOURCE CODE]
Assistant:{tgt code}
[/ORIGINAL SOURCE CODE]

Prompt 6: Functional specifications only prompt for decompilation optimization.

User: This is the decompiled code:
[MACHINE DECOMPILED CODE]
{src code}
[/MACHINE DECOMPILED CODE]
The given code describes the following problem: {functional specification}
The input specification is: {input specification}
The output specification is: {output specification}
The corresponding source code is:
[ORIGINAL SOURCE CODE]
Assistant:{tgt code}
[/ORIGINAL SOURCE CODE]

Prompt 7: Editing rules only prompt for performance decompilation.

User: This is the decompiled code:
[MACHINE DECOMPILED CODE]
{src code}
[/MACHINE DECOMPILED CODE]
Following editing rules should be applied: {editing rules}
The corresponding source code is:
[ORIGINAL SOURCE CODE]
Assistant:{tgt code}
[/ORIGINAL SOURCE CODE]

Prompt 8: Our prompt for decompilation.

User: This is the decompiled code:
[MACHINE DECOMPILED CODE]
{src code}
[/MACHINE DECOMPILED CODE]
The given code describes the following problem: {functional specification}
The input specification is: {input specification}
The output specification is: {output specification}

14

EDITLORD: Learning Code Transformation Rules for Code Editing

Following editing rules should be applied: {editing rules}
The corresponding source code is:
[ORIGINAL SOURCE CODE]
Assistant:{tgt code}
[/ORIGINAL SOURCE CODE]

A.3. Security

Prompt 9: Baseline prompt for security.

User: This is the vulnerable code:
[VULNERABLE CODE]
{src code}
[/VULNERABLE CODE]
The corresponding secure code is:
[SECURE CODE]
Assistant:{tgt code}
[/SECURE CODE]

Prompt 10: Functional specifications only prompt for security.

User: This is the vulnerable code:
[VULNERABLE CODE]
{src code}
[/VULNERABLE CODE]
The given code describes the following problem: {functional specification}
The input specification is: {input specification}
The output specification is: {output specification}
The corresponding secure code is:
[SECURE CODE]
Assistant:{tgt code}
[/SECURE CODE]

Prompt 11: Editing rules only prompt for security.

User: This is the vulnerable code:
[VULNERABLE CODE]
{src code}
[/VULNERABLE CODE]
Following editing rules should be applied: {editing rules}
The corresponding secure code is:
[SECURE CODE]
Assistant:{tgt code}
[/SECURE CODE]

Prompt 12: Our prompt for security.

User: This is the vulnerable code:
[VULNERABLE CODE]
{src code}
[/VULNERABLE CODE]

15

EDITLORD: Learning Code Transformation Rules for Code Editing

The given code describes the following problem: {functional specification}
The input specification is: {input specification}
The output specification is: {output specification}
Following editing rules should be applied: {editing rules}
The corresponding secure code is:
[SECURE CODE]
Assistant:{tgt code}
[/SECURE CODE]

A.4. Meta-Rule Set

Prompt 13: Generic/specific evaluation for an editing rule

Please analyze the provided editing rule (in order to improve {task name}) and determine whether it is broadly
applicable across different code snippets (generic) or tailored to a specific code snippet (specific). An editing rule
like ”{generic rule example}” should be considered as a generic rule. While a rule like ”{specific rule example}”
should be considered as a specific rule.
Provide your response in the following format:
The rule is [generic/specific] because ...
So, what do you think about the rule ”{editing rule}”? Is it generic or specific?

Prompt 14: Add/Merge rules

Please analyze the provided editing rule (in order to improve {task name}) and compare it with the existing editing
rules in the meta-rule set. If it’s similar to any existing editing rule, please suggest how it should be integrated into
the existing meta-rule set. Specify the one and only one appropriate action from the options below:
[ADD]: If none of the existing editing rules in the meta-rule set is similar to the current one, provide the refined and
updated editing rule to be added to the set.
[MERGE]: If the current editing rule is similar to an existing editing rule, indicate which existing meta-rule is
similar to the current editing rule so that they can be merged and how they should be merged.
If [ADD] is selected, please provide the refined and updated editing rule to be added to the set directly without any
other information. If [MERGE] is selected, please provide exactly the existing meta-rule that is similar to the current
editing rule with an updated editing rule.
Please notice that whether you select [ADD] or [MERGE], the editing rule you add or merge into the meta-rule set
must adhere to the format “switch from ... to ...”. Ensure that you only provide editing rules that transition from a
{old property} to {new property}.
Here are several examples of the output:
[Example Output 1]
[ADD] only the editing rule to be added here [/ADD]
[/Example Output 1]
[Example Output 2]
[MERGE] only the editing rule to be merged and the updated rule, split by semicolon [/MERGE]
[/Example Output 2]
Meta-Rule Set:
{meta rule set}
Editing Rule Requested for Analysis:
{editing rule}

B. Meta-Rule Set Learned by EDITLORD

Table 5 shows some examples of meta-rules for code editing discovered by EDITLORD. We also calculate the percentage
of edited samples (as indicated in the third column) that benefit from the specific rule in each row. For example, the rule

16

EDITLORD: Learning Code Transformation Rules for Code Editing

Table 5: Meta-rule examples discovered by EDITLORD for performance optimization, decompilation, and security hardening
(Section 2.2). Each rule follows the universal format “switch from [old properties] to [new properties]”.
The third column shows the percentage of the samples improved by the specific rule.

From To %↑ Examples

Performance Optimization
cout printf 32.4 Figure 6
cin scanf 24.8 Figure 6
multiple nested loops for condition checks a single streamlined loop for condition checks and assignments 21.0 Figure 5
recursive function calls optimized iterative data handling methods 7.6 Figure 5
dynamic memory allocation static memory allocation 7.6 Figure 6

Decompilation
complex if-else structure simplified conditional logic 11.9 Figure 7
complex pointer arithmetic clear variable assignments 10.1 Figure 7, 8
redundant checks straightforward boolean comparisons 6.0 Figure 8
cryptic variable names descriptive variable names 5.9 Figure 7
ambiguous function signatures clear function signatures 5.9 Figure 8

Security Hardening
no checks on function return values check function return value 32.9 Figure 9
direct SQL string interpolation use of parameterized logic 10.6 Figure 10
unvalidated input handling check for buffer overflows on memory accesses 8.9 Figure 11
unvalidated memory allocation check maximum buffer allocation size before allocation 7.6 Figure 12
direct parsing implement comprehensive validation checks for character handling 6.8 Figure 13

“switch from cout to printf” applies to 32.4% of the testing samples that have obtained performance improvement.

C. Case Study
C.1. Performance Optimization

We show several examples to demonstrate how EDITLORD improve performance optimization.

17

EDITLORD: Learning Code Transformation Rules for Code Editing

Given slow code EDITLORD output

#include <bits/stdc++.h>

using namespace std;

long long n;long long k;
vector<long long> vec;
long long meme[100007];

long long solve(long long index){
if(index==n-1){
return 0;

}
if(meme[index]!=-1){
return meme[index];

}
long long ret = 10000000000000000;
long long sol = 10000000000000000;
for(long long i = 1 ;i<=k ; i++){
if(index+i<n){

ret = abs (vec[index]-
vec[index+i]) +
solve(index+i);

↪→
↪→

}
sol = min(sol,ret);

}
return meme[index] = sol;

}

int main(){
cin>>n;
cin>>k;
memset(meme,-1,sizeof(meme));
long long num;
for(long long i = 0 ; i<n ; i++){
cin>>num;
vec.push_back(num);

}
cout<<solve(0)<<endl;
return 0;

}

The given code describe the following
problem: Find the minimum cost to reach
the last index of a sequence of integers,
where the cost is defined as the absolute
difference between consecutive integers.

↪→
↪→
↪→
↪→
The input specification is: The programs take

two integers n and k as input, where n is
the number of integers in the sequence
and k is the maximum jump length. Then, n
integers are read, representing the
sequence.

↪→
↪→
↪→
↪→
↪→
The output specification is: Output the

minimum cost to reach the last index from
the first index.

↪→
↪→
Following editing rules should be applied:
switch from multiple nested loops to single

linear iterations↪→
switch from recursive function calls to

optimized iterative data handling methods↪→
The corresponding fast code is:
[FAST CODE]

#include<bits/stdc++.h>

using namespace std;

long long int dp[100007],a[100007];

int main(){
long long int n,k,i,j,x,y,z;
cin>>n>>k;
for(i=0;i<n;i++){

cin>>a[i];
}
dp[0]=0;
for(i=1;i<n;i++){

x=10000000000007;
for(j=i-1;j>=i-k&&j>=0;j--){
x=min(x,dp[j]+abs(a[i]-a[j]));

}
dp[i]=x;

}
cout<<dp[n-1];

}

[/FAST CODE]

Figure 5: Performance optimization example 1.

18

EDITLORD: Learning Code Transformation Rules for Code Editing

Given slow code EDITLORD output

#include <bits/stdc++.h>

using namespace std;

int n ,k;
vector<int>vi;
long long mem[200005];
bool vis[200005];

long long solve(int indx){
if(indx == n-1)
return 0;

if(vis[indx])
return mem[indx];

vis[indx] = true;
mem[indx] = 1e13;
for(int i = indx+1; i <=min(indx+k

, n-1) ; i++){↪→
mem[indx] = min(mem[indx] ,

solve(i) + abs(vi[indx] -
vi[i]));

↪→
↪→

}
return mem[indx];

}

int main(){
cin>>n>>k;
vi.resize(n);
for(int i = 0; i <n ; i++)
cin>>vi[i];

cout<<solve(0);
return 0;

}

The given code describe the following
problem: Calculate the minimum cost to
reach the last index in a list of
integers, where each step can jump up to
k positions.

↪→
↪→
↪→
↪→
The input specification is: The programs take

two integers n and k as input, where n is
the number of integers in the list and k
is the maximum jump length. Then, n
integers are read, representing the cost
associated with each index.

↪→
↪→
↪→
↪→
↪→
The output specification is: Output the

minimum cost to reach the last index from
the first index.

↪→
↪→
Following editing rules should be applied:
switch from multiple nested loops for

counting elements to direct arithmetic
calculation

↪→
↪→
switch from multiple nested loops to a

compact function↪→
switch from cout to printf
switch from cin to scanf
switch from dynamic memory allocation to

static memory allocation↪→
The corresponding fast code is:
[FAST CODE]

#include<bits/stdc++.h>

using namespace std;

int n,k;
long long dp[100005];
long long arr[100005];

int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)

scanf("%lld",&arr[i]);↪→
for(int i=2;i<=n;i++){
dp[i]=1e18;
for(int j=max(i-k,1);j<i;j++){

dp[i]=min(dp[i],
dp[j]+abs(arr[i]-arr[j]));↪→

}
}
printf("%lld",dp[n]);

}

[/FAST CODE]

Figure 6: Performance optimization example 2.

19

EDITLORD: Learning Code Transformation Rules for Code Editing

C.2. Decompilation

We show several examples to demonstrate how EDITLORD improves the readability of machine-decompiled code.

Given machine decompiled code EDITLORD output

void func0(char *param_1,long
param_2)↪→

{
char cVar1;
long lVar2;
ulong uVar3;
char *pcVar4;
int iVar5;
bool bVar6;

lVar2 = -1;
pcVar4 = param_1;
do {
if (lVar2 == 0) break;
lVar2 = lVar2 + -1;
cVar1 = *pcVar4;
pcVar4 = pcVar4 + 1;

} while (cVar1 != '\0');
iVar5 = ˜(uint)lVar2 - 1;
if (0 < iVar5) {
uVar3 = 0;
do {

cVar1 = param_1[uVar3];
if ((byte)(cVar1 + 0x9fU) <

0x1a) {↪→
cVar1 = cVar1 + -0x20;

}
else if ((byte)(cVar1 + 0xbfU)

< 0x1a) {↪→
cVar1 = cVar1 + ' ';

}
*(char *)(param_2 + uVar3) =

cVar1;↪→
bVar6 = uVar3 != ˜(uint)lVar2 -

2;↪→
uVar3 = uVar3 + 1;

} while (bVar6);
}
*(undefined *)(param_2 + iVar5) =

0;↪→
return;

}

The given code describe the following
problem: Convert a string from one case
(upper or lower) to another, handling
special characters appropriately.

↪→
↪→
↪→
The input specification is: The programs take

a string as input, which may contain
uppercase and lowercase letters, and a
buffer to store the converted string.

↪→
↪→
↪→
The output specification is: Output the

converted string, where all letters are
converted to lowercase, while preserving
the case of special characters.

↪→
↪→
↪→
Following editing rules should be applied:
switch from arbitrary pointer checks to

clearer termination conditions↪→
switch from complex pointer arithmetic to

clear variable assignments↪→
switch from indirect variable assignments to

direct return statements↪→
switch from complex multi-step declarations

to clear single declarations↪→
switch from complex logic to simple loops
switch from complex complex if-else structure

to simplified conditional logic↪→
switch from implicit return values to

explicit return values↪→
switch from cryptic variable names to

descriptive variable names↪→
The corresponding source code is:
[ORIGINAL SOURCE CODE]

static void
func0 (char *str, char *buf)
{

int i, len = strlen (str);
for (i = 0; i < len; i++) {

if (str[i] >= 'A' && str[i] <= 'Z')
buf[i] = str[i] + ' ';

else if (str[i] >= 'a' && str[i] <= 'z')
buf[i] = str[i] - ' ';

else
buf[i] = str[i];

}
buf[len] = '\0';

}

[/ORIGINAL SOURCE CODE]

Figure 7: Decomilation example 1.

20

EDITLORD: Learning Code Transformation Rules for Code Editing

Given machine decompiled code EDITLORD output

undefined8 func0(char *param_1,char
*param_2)↪→

{
char cVar1;
int iVar2;
uint uVar3;
char *pcVar4;
char *pcVar5;
long lVar6;
size_t __n;
bool bVar7;

lVar6 = -1;
pcVar4 = param_2;
do {
if (lVar6 == 0) break;
lVar6 = lVar6 + -1;
cVar1 = *pcVar4;
pcVar4 = pcVar4 + 1;

} while (cVar1 != '\0');
uVar3 = ˜(uint)lVar6;
iVar2 = uVar3 - 1;
pcVar4 = (char

*)malloc((long)(int)(uVar3 +
iVar2));

↪→
↪→
if (0 < iVar2) {
lVar6 = (long)iVar2;
__n = 0;
do {

strncpy(pcVar4,param_2 +
__n,lVar6 - __n);↪→

strncpy(pcVar4 + (lVar6 -
__n),param_2,__n);↪→

pcVar4[lVar6] = '\0';
pcVar5 =

strstr(param_1,pcVar4);↪→
if (pcVar5 != (char *)0x0) {

free(pcVar4);
return 1;

}
bVar7 = __n != uVar3 - 2;
__n = __n + 1;

} while (bVar7);
}
free(pcVar4);
return 0;

}

The given code describe the following
problem: Determine if a string is a
rotation of another string by checking if
any substring of the second string is a
substring of the first string.

↪→
↪→
↪→
↪→
The input specification is: The programs take

two strings as input: the first string is
the original string, and the second
string is the potential rotation.

↪→
↪→
↪→
The output specification is: Return a boolean

value indicating whether the second
string is a rotation of the first string.

↪→
↪→
Following editing rules should be applied:
switch from ambiguous function signatures to

clear function signatures↪→
switch from complex pointer arithmetic to

clear variable assignments↪→
switch from indirect variable assignments to

direct return statements↪→
switch from complex logic to simple loops
switch from complex loops to clear

single-responsibility sections↪→
switch from complex nested conditionals to

clearer sequential logic↪→
switch from complex variable operations to

direct assignments↪→
switch from redundant checks to

straightforward boolean comparisons↪→
The corresponding source code is:
[ORIGINAL SOURCE CODE]

static int
func0(const char *s1, const char *s2)
{

char *s;
size_t len, i;
len = strlen(s2);
s = malloc(len * 2 + 1);
if (s == NULL) return (0);
for (i = 0; i < len; i++) {

strncpy(s, s2 + i, len - i);
strncpy(s + len - i, s2, i);
s[len] = '\0';
if (strstr(s1, s) != NULL) {
free(s);
return (1);

}
}
free(s);
return (0);

}

[/ORIGINAL SOURCE CODE]

Figure 8: Decomilation example 2.

C.3. Security Hardening

We show several examples to demonstrate how EDITLORD hardens the vulnerable code.

21

EDITLORD: Learning Code Transformation Rules for Code Editing

Given vulnerable code EDITLORD output

#include <stdlib.h>
#include <string.h>

char*
allocate_buffer_and_write(size_t
buf_size) {

↪→
↪→

char* buf =
(char*)malloc(buf_size);↪→

memset(buf, 'A', 10);
memset(buf + buf_size - 10, 'A',

10);↪→
return buf;

}

The program defines a function that allocates
a buffer of a specified size and
initializes its contents by writing 'A'
characters at both the start and end of
the buffer. The goal is to ensure that
the buffer is filled correctly without
exceeding its allocated size, thereby
preventing potential buffer overflows.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
The input specification is: The function

takes a single input parameter, buf_size,
which specifies the size of the buffer to
be allocated. This size determines how
much memory will be reserved for the
buffer.

↪→
↪→
↪→
↪→
↪→
The output specification is: The function

returns a pointer to the allocated and
initialized buffer. If the allocation is
successful, the buffer will contain 'A'
characters at the specified positions;
otherwise, it may return NULL if memory
allocation fails.

↪→
↪→
↪→
↪→
↪→
↪→
Following editing rules should be applied:
switch from no checks on function return

values to check function return value↪→
The corresponding secure code is:
[SECURE CODE]

char* allocate_buffer_and_write(size_t
buf_size) {↪→
char* buf = (char*)malloc(buf_size);
if (!buf) {

return 0;
}
memset(buf, 'A', 10);
memset(buf + buf_size - 10, 'A', 10);
return buf;

}

[/SECURE CODE]

Figure 9: Secure hardening example 1.

22

EDITLORD: Learning Code Transformation Rules for Code Editing

Given vulnerable code EDITLORD output

#include <stdio.h>
#include <stdlib.h>
#include <sqlite3.h>
#include <string.h>

char *get_user(sqlite3 *db, const
char *username, const char
*password) {

↪→
↪→

sqlite3_stmt *stmt;
char query[256];
char *userInfo = NULL;

snprintf(query, sizeof(query),
"SELECT userInfo FROM users
WHERE username = '%s' AND
password = '%s'", username,
password);

↪→
↪→
↪→
↪→

if (sqlite3_prepare_v2(db, query,
-1, &stmt, NULL) !=
SQLITE_OK) {

↪→
↪→

fprintf(stderr, "Failed to
prepare statement: %s\n",
sqlite3_errmsg(db));

↪→
↪→
return NULL;

}

if (sqlite3_step(stmt) ==
SQLITE_ROW) {↪→
const unsigned char *result

=
sqlite3_column_text(stmt,
0);

↪→
↪→
↪→
userInfo = strdup((const char

*)result);↪→
}

sqlite3_finalize(stmt);
return userInfo;

}

The program aims to retrieve user information
from a SQLite database based on a
provided username and password. It
connects to the database, executes a
query to find the user, and returns the
user's information if found. The program
ensures that the database interactions
are secure and that user input is handled
appropriately to prevent SQL injection
vulnerabilities.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
The input specification is: The program takes

three command-line arguments: the
database filename, a username, and a
password. These inputs are used to query
the database for matching user
credentials.

↪→
↪→
↪→
↪→
↪→
The output specification is: The program

outputs the user's information if a
matching user is found in the database,
or an error message if no user matches
the provided credentials or if an error
occurs during database operations.

↪→
↪→
↪→
↪→
↪→
Following editing rules should be applied:
switch from direct SQL string interpolation

to use of parameterized logic↪→
The corresponding secure code is:
[SECURE CODE]

char *get_user(sqlite3 *db, const char
*username, const char *password) {↪→

sqlite3_stmt *stmt;
char *userInfo = NULL;
const char *query = "SELECT userInfo FROM

users WHERE username = ? AND password =
?";

↪→
↪→
if (sqlite3_prepare_v2(db, query, -1,

&stmt, NULL) != SQLITE_OK) {↪→
fprintf(stderr, "Failed to prepare

statement: %s\n",
sqlite3_errmsg(db));

↪→
↪→
return NULL;

}
sqlite3_bind_text(stmt, 1, username, -1,

SQLITE_STATIC);↪→
sqlite3_bind_text(stmt, 2, password, -1,

SQLITE_STATIC);↪→
if (sqlite3_step(stmt) == SQLITE_ROW){

const unsigned char *result =
sqlite3_column_text(stmt, 0);↪→

userInfo = strdup((const char *)result);
}
sqlite3_finalize(stmt);
return userInfo;

}

[/SECURE CODE]

Figure 10: Secure hardening example 2.

23

EDITLORD: Learning Code Transformation Rules for Code Editing

Given vulnerable code EDITLORD output

#include <string.h>

void trim_spaces(char* str) {
int len = strlen(str);
while (str[len - 1] == ' ') {

str[len - 1] = '\0';
len--;

}
}

The program defines a function that trims
trailing spaces from a given string. It
modifies the string in place, ensuring
that any whitespace characters at the end
are removed, leaving the rest of the
string intact.

↪→
↪→
↪→
↪→
↪→
The input specification is: The function

takes a single string input, which is a
character array that may contain trailing
spaces that need to be removed.

↪→
↪→
↪→
The output specification is: The function

does not return any value; instead, it
modifies the input string by removing any
trailing spaces, effectively shortening
the string if necessary.

↪→
↪→
↪→
↪→
Following editing rules should be applied:
switch from unvalidated input handling to

check for NULL pointers before access↪→
switch from unvalidated input handling to

check for buffer overflows on memory
accesses

↪→
↪→
The corresponding secure code is:
[SECURE CODE]

void trim_spaces(char* str) {
int len = strlen(str);
while (len > 0 && str[len - 1] == ' ') {

str[len - 1] = '\0';
len--;

}
}

[/SECURE CODE]

Figure 11: Secure hardening example 3.

24

EDITLORD: Learning Code Transformation Rules for Code Editing

Given vulnerable code EDITLORD output

#include <stdio.h>
#include <stdlib.h>

char* read_stdin_to_buffer(int
buf_size) {↪→
char* buf =

(char*)malloc(buf_size);↪→
gets(buf);
return buf;

}

The program aims to read a line of input from
the standard input (stdin) into a
dynamically allocated buffer, ensuring
that the input does not exceed the
specified buffer size. It is designed to
prevent buffer overflow vulnerabilities
by limiting the number of characters read
based on the buffer's capacity.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
The input specification is: The function

takes an integer input representing the
maximum size of the buffer, which
dictates how many characters can be
safely read from stdin.

↪→
↪→
↪→
↪→
The output specification is: The function

returns a pointer to the buffer
containing the user input, ensuring that
the input is properly null-terminated and
does not exceed the allocated buffer
size.

↪→
↪→
↪→
↪→
↪→
Following editing rules should be applied:
switch from unvalidated input handling to

check for buffer overflows on memory
accesses

↪→
↪→
switch from no error handling to check for

NULL pointers after memory allocation↪→
The corresponding secure code is:
[SECURE CODE]

char* read_stdin_to_buffer(int buf_size) {
char* buf = (char*)malloc(buf_size);

fgets(buf, buf_size, stdin);

return buf;
}

[/SECURE CODE]

Figure 12: Secure hardening example 4.

25

EDITLORD: Learning Code Transformation Rules for Code Editing

Given vulnerable code EDITLORD output

#include <stdlib.h>

int get_price_at_index(int* prices,
int size, char* index_str) {↪→
int index = atoi(index_str);
return prices[index];

}

The program defines a function that retrieves
the price of an item at a specified index
from an array of prices. The index is
provided as a string, which is converted
to an integer. The function returns the
price at the corresponding index if it's
valid, or an error if the index is out of
bounds.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
The input specification is: The function

takes three inputs: an array of integers
representing prices, the size of the
array, and a string representing the
index of the price to retrieve.

↪→
↪→
↪→
↪→
The output specification is: The function

returns the price at the specified index
if it is valid; otherwise, it returns an
error message indicating that the index
is out of bounds.

↪→
↪→
↪→
↪→
Following editing rules should be applied:
switch from direct parsing to implement

comprehensive validation checks for
character handling

↪→
↪→
The corresponding secure code is:
[SECURE CODE]

int get_price_at_index(int* prices, int size,
char* index_str) {↪→
int index = atoi(index_str);
if (index < 0 || index >= size) {

return -1; // Error: index out of
bounds↪→

}
return prices[index];

}

[/SECURE CODE]

Figure 13: Secure hardening example 5.

26

EDITLORD: Learning Code Transformation Rules for Code Editing

Table 6: Evaluating DeepSeek-Coder 1.3B on the Code Polish task in CodeEditorBench.

Accuracy OptScoreTime OptScore

Finetuned 0.9% 0.03% 0.09%
EDITLORD (Ours) 23.4% 1.83% 1.19%

Table 7: Unseen CWEs evaluation. We also include evaluation on seen CWEs.

Correct@k ↑ Security@k ↑ Correct & Sec@k ↑

k = 1 k = 10 k = 50 k = 1 k = 10 k = 50 k = 1 k = 10 k = 50

Seen CWEs Finetuned 24.3 38.4 41.7 12.8 44.0 50.0 7.7 21.6 25.0
EDITLORD (Ours) 36.8 53.3 66.7 12.5 43.3 58.3 8.7 24.7 25.0

Unseen CWEs Finetuned 24.1 35.0 40.0 8.6 14.8 22.5 4.6 11.5 17.5
EDITLORD (Ours) 29.6 48.5 57.5 12.1 23.8 30.0 7.0 16.9 22.5

Table 8: Unseen programming languages evaluation. We also include evaluation on seen language.

Accuracy OptScoreTime OptScore

Seen Language (cpp) Finetuned 1.4% 0.02% 0.24%
EDITLORD (Ours) 28.3% 3.1% 2.29%

Unseen Languages Finetuned 0.7% 0.04% 0.02%
EDITLORD (Ours) 20.9% 1.18% 0.63%

D. Rule Learning Details
Given the meta-rule set G = {r|r = pre construct→ post construct} (Figure 2), we can manifest these meta-rules to each
training sample for augmentation. However, directly prompting the LM to infer meta-rules for each pre-edit and post-edit
code pair (xi, yi) often leads to hallucinations. To mitigate this, we propose a two-step approach. First, we apply the LM to
extract pre construct rules from xi and post construct rules from yi separately. Then, we identify which of these pre/post
construct combinations are included in the meta rule set. We adopt these verified combined rules as the meta-rules for the
code pair (xi, yi).

E. Hyperparameters
To finetune DeepSeek-Coder, we use a default batch size of 32, a learning rate of 1e-5, and 4,000 context lengths for both
the input and output tokens. The models are optimized using AdamW and trained for a fixed number of 10 epochs, and
we use the model checkpoint that achieves the best validation loss for inference. To finetune GPT-4o mini, we train for
only one epoch. At the inference stage, we set the temperature to 0.7 and use the model’s default window size, i.e., 16K for
DeepSeek-Coder and 128K for GPT-4o-mini.

F. Additional Experiments
F.1. Extra Well-Known Benchmark

We further evaluated our finetuned DeepSeek-Coder 1.3B on the Code Polish task in CodeEditorBench (Guo et al., 2025).
We follow their metrics by focusing on 1) accuracy: the percentage of problems with correct edits; 2) OptScoreTime: the
execution time improvement; and 3) OptScore, the improvement computed by the averaged time and memory. As illustrated
in Table 6, EDITLORD, even without extra finetuning on this dataset, outperforms the baseline by 22.5%, 1.8%, and 1.1%,
respectively.

27

EDITLORD: Learning Code Transformation Rules for Code Editing

Table 9: Comparing EDITLORD to the finetuned baseline under varying amounts of training data.

Data Usage Compile↑ Correct↑
Readability↑

char token emb

Robustness

Finetuned 50% 38.9 77.1 36.6 40.8 37.5
50% 41.2 93.1 42.6 46.3 41.4EDITLORD (Ours)

100% 46.6 93.1 44.0 47.6 41.4

F.2. Out-of-Domain Generalization

Unseen CWEs. As described in Section 3.1, our training comes from SVEN (He & Vechev, 2023), but our testing is from
CWEval (Peng et al., 2025a) with unseen CWEs. We further analyze the performance of the baseline and EDITLORD on
unseen CWEs. As shown in Table 7, EDITLORD generalizes better on unseen CWEs, outperforming the baseline by 38.1%.

Unseen languages. We also investigate EDITLORD’s generalizability to unseen languages (Python/Java) in performance
optimization tasks in CodeEditorBench (Guo et al., 2025) when training on C++ code only. Specifically, we train on the HQ
dataset from Shypula et al. (2024), which contains only C++ samples. Table 8 demonstrates that EDITLORD maintains
strong generalization to unseen languages, outperforming the baseline by 20.2% in accuracy, 1.14% in execution time
improvement, and 0.61% in combined time and memory efficiency improvement.

F.3. Data Efficiency

To evaluate how EDITLORD scale with varying amounts of finetuning data, we conduct an additional experiment on the
decompilation task using only 50% of the finetuning dataset. As shown in Table 9, EDITLORD, trained with just 50% of the
data, still surpasses the baseline trained on the full dataset by 5.9%. Moreover, EDITLORD achieves significantly better
readability, outperforming the baseline by 13.5% and 16.4% on character- and token-level readability metrics, respectively.
This highlights the sample efficiency of EDITLORD, requiring less than 50% of training samples while achieving comparable
performance.

28

