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GIFDL: Generated Image Fluctuation Distortion
Learning for Enhancing Steganographic Security

Xiangkun Wang, Kejiang Chen, Yuang Qi, Ruiheng Liu, Weiming Zhang, Nenghai Yu

Abstract—Minimum distortion steganography is currently the
mainstream method for modification-based steganography. A key
issue in this method is how to define steganographic distortion.
With the rapid development of deep learning technology, the
definition of distortion has evolved from manual design to deep
learning design. Concurrently, rapid advancements in image
generation have made generated images viable as cover media.
However, existing distortion design methods based on machine
learning do not fully leverage the advantages of generated cover
media, resulting in suboptimal security performance. To address
this issue, we propose GIFDL (Generated Image Fluctuation Dis-
tortion Learning), a steganographic distortion learning method
based on the fluctuations in generated images. Inspired by
the idea of natural steganography, we take a series of highly
similar fluctuation images as the input to the steganographic
distortion generator and introduce a new GAN training strategy
to disguise stego images as fluctuation images. Experimental
results demonstrate that GIFDL, compared with state-of-the-
art GAN-based distortion learning methods, exhibits superior
resistance to steganalysis, increasing the detection error rates by
an average of 3.30% across three steganalyzers.

Index Terms—Generative adversarial networks (GANs),
steganography, generative model.

I. INTRODUCTION

IMAGE steganography is a technique for hiding informa-
tion, aiming to embed secret messages within images so

that they are not easily detected [20]. Steganalysis, a counter-
measure to steganography, seeks to identify the presence of
hidden messages in images [21]. Early steganography meth-
ods, known as LSB steganography [22], hide secret messages
in the least significant bits of pixels. These methods do
not consider the different risks of performing steganographic
modifications in different regions of the image, making them
susceptible to detection by statistical steganalysis techniques.
Content-adaptive steganography is then proposed, which ad-
justs the location and capacity of hidden messages based on the
texture complexity of the image. The most typical achievement
of this domain is minimum distortion steganography [23],
which separates steganography into two processes: defining
steganographic distortion and steganographic encoding, offer-
ing higher security than LSB steganography. Steganographic
coding schemes [14], [?], and [45] are approximately optimal
in minimizing total distortion, thus research focuses on how
to better define steganographic distortion. Methods such as
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(a) GAN-based End-to-End Steganography

(b) GAN-based Cost Learning

(c) Proposed Method

Cost
STC

STC

Cost
STC

STC

……
Random Selection

Modify
CFG

T2I

Fig. 1. Comparison of existing GAN-based steganography methods with the
proposed method.

WOW [1], UNIWARD [2], HILL [3], MiPOD [4], UERD [5],
MS [44], and IP [49] have been proposed to improve stegano-
graphic security by rationally defining distortion.

With the development of deep learning, traditional stegano-
graphic methods are not secure enough against deep learning-
based steganalysis. Moreover, the excellent performance of
generative adversarial networks (GANs) in image process-
ing has inspired new steganography methods. GAN-based
image steganography methods can be categorized into two
types: GAN-based end-to-end steganography and GAN-based
cost learning. As shown in Fig. 1(a), GAN-based end-to-
end steganography does not employ the minimum distortion
steganography framework. Instead, it explores the direct gener-
ation of stego images from cover images via the generator. For
instance, SteganoGAN [13] embeds secret messages within
the feature maps of cover images, achieving a payload of
up to 4 bpp (bits per pixel). ABDH [35] introduces attention
mechanisms in GANs to improve the quality and robustness
of stego images. Building on SteganoGAN and ABDH, Chat-
GAN [9] further enhances image quality using XuNet [26]
as the discriminator. However, these end-to-end methods suf-
fer from significant security weaknesses against steganalysis.
Deep learning-based steganalyzers such as SRNet [40] can
accurately detect stego images via a small number of training
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images.
Unlike GAN-based end-to-end steganography, GAN-based

cost learning methods adhere to the minimum distortion
steganography framework. They use GANs to learn stegano-
graphic distortions, convert them into steganographic costs,
and combine steganographic encoding to embed and extract
secret messages, as shown in Fig. 1(b). ASDL-GAN [6] is
the first to apply GANs to learn steganographic distortion,
using XuNet as the discriminator, but its security is weaker
than that of manually designed distortion methods [3]. UT-
GAN [7] improved upon ASDL-GAN by adopting a U-
Net architecture in the generator and adding a double-tanh
function, achieving better security than manual distortion
definitions. GMAN [8] highlights that the security of GAN-
based steganography is limited by discriminator performance,
and a multi-discriminator training strategy is proposed to
enhance security further. GACL [51] enhances the cover image
to highlight its contour information, which in turn improves
steganographic security. Despite these advancements, GAN-
based distortion learning methods still face security challenges
at high payloads, and designing more secure steganographic
methods remains a crucial objective for researchers.

The development of deep learning has provided us with not
only better cost learning methods but also new types of cover
media. According to the Everypixel Journal1, text-to-image
generation models have created over 15 billion images during
just a year and a half, equivalent to the number of photos
taken by humans over 149 years. The widespread popularity
of generated images makes them ideal steganographic covers.
Researchers have proposed several steganographic methods
based on generated images. For example, IDEAS [16] syn-
thesizes stego images by generating image structural features
from secret messages. GSN [17] uses secret messages as
latent variables to guide the generator in image synthesis.
StegaDDPM [18] generates stego images by sampling noise
according to secret messages in the final step of the de-
noising diffusion probabilistic model. These methods require
specially designed generator architectures or access to the
internal parameters of the generation model to control the
image generation process. However, popular image generation
models are often considered black-box, with users having no
access to internal information. Recently, Zhang et al. [47]
proposed volatility distortion (VC) based on the fluctuation of
black-box generative models, which can be used to improve
the security of existing steganographic distortion learning
methods by approximating the image pixel distribution using
a manual method. However, the hand-designed method may
make it difficult to comprehensively and accurately model the
fluctuation distribution of an image, and further improvements
are possible.

To address this issue, we propose a new GAN-based
steganographic cost learning method, named GIFDL (Gen-
erated Image Fluctuation Distortion Learning), as shown in
Fig. 1(c). We observe that when the input parameters of
an image generation model are slightly modified, it outputs
images that are highly similar to the original, which we call

1https://journal.everypixel.com/ai-image-statistics

fluctuation images. Inspired by the idea of natural steganog-
raphy [46], the goal of GIFDL is to disguise stego images as
fluctuation images. To this end, we take a series of fluctuation
images as inputs to the generator, select one of them as
the cover image, and randomly select one of the remaining
fluctuation images, called “flu”. We pursue the stego image
indistinguishable from fluctuation images, so GIFDL employs
two discriminators, one for distinguishing between stego and
cover, and the other for distinguishing between stego and
“flu”, with the two discriminators updating their parameters
alternately. Considering that the cover is also a member of the
fluctuation images, the joint function of the two discriminators
can ensure that the stego image is close to fluctuation images
in terms of pixel distribution.

With the above design, the stego images resemble the
fluctuation images, enabling the generator to learn the fluc-
tuation distribution of the generated images, which allows the
generator to modify pixels that deviate from the distribution
at a higher cost. Under the minimum distortion steganography
framework, we ultimately obtain stego images that are close
to the fluctuation images in distribution. Unlike other GAN-
based steganography methods, GIFDL focuses on the char-
acteristics of black-box generated images and leverages their
fluctuations to achieve steganographic distortion learning. Our
contributions can be summarized as follows:
• A novel steganographic distortion learning method

based on the fluctuations of generated images: Based
on the observation of the fluctuation characteristics of
the generated images, we take the fluctuation images as
as the input of our network and use a GAN to learn the
distribution of fluctuation images, which in turn disguises
the stego images as fluctuation images.

• A new discriminator training strategy that considers
the inherent differences between cover and fluctuation
images: We use a steganalysis network to distinguish
between cover and stego images, while another steganal-
ysis network is used to distinguish between fluctuation
and stego images. By updating these two discriminators
alternately, GIFDL can better learn the characteristics of
fluctuation images, achieving better camouflage.

• Extensive experiments to validate the effectiveness of
GIFDL: Extensive experiments have shown that GIFDL
achieves considerable security against three mainstream
steganalyzers. Compared with state-of-the-art methods,
the detection error rate of steganalysis is improved by
3.30% on average.

II. RELATED WORK

In this section, we first introduce GAN-based cost learning
methods, then we introduce volatility cost, followed by an
introduction to text-to-image generation models.

A. GAN-based cost learning

The GAN consists of two adversarial sub-networks: the
generator, which aims to create samples that resemble real
data, and the discriminator, which aims to distinguish between

https://journal.everypixel.com/ai-image-statistics
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(b) CFG = 7.5000 (c) CFG = 7.5001(a) Stable Diffusion

Fig. 2. (a) Users can access the black-box Stable Diffusion at Stable Diffusion
web UI Online to use Stable Diffusion. (b) Images generated with CFG =
7.5000. (c) Images generated with CFG = 7.5001, where the Classifier-Free
Guidance (CFG) scale is an input parameter in Stable Diffusion that controls
how closely a prompt should be followed.

real data and fake samples generated by the generator. GAN-
based cost learning methods are built on the minimum distor-
tion steganography framework, which uses a GAN to generate
steganographic costs and employs steganographic encoding to
embed and extract secret messages. GAN-based cost learning
methods leverage the adversarial nature of GANs and use
deep-learning steganalyzers as discriminators. During training,
these methods learn the implicit features of steganalysis algo-
rithms within the discriminator and feed this information back
to the generator to produce a modification probability map,
thus obtaining steganographic cost. Notable methods include
ASDL-GAN [6], UT-GAN [7], GMAN [8] and GACL [51].

1) ASDL-GAN: ASDL-GAN is the first to propose using
the adversarial nature of GANs to learn steganographic cost,
employing the steganalysis network Xu-Net as the discrimina-
tor. The generator learns the modification probabilities of the
cover image, which are then mapped to modifications through
a ternary embedding simulator (TES). The loss function of
the generator is directly related to the undetectability by
the adversarial steganalyzer and achieved backpropagation
through TES. However, the security performance was not
satisfactory. Experimental results revealed that ASDL-GAN
was less effective against steganalysis compared with manually
designed methods such as HILL.

2) UT-GAN: UT-GAN builds upon ASDL-GAN by em-
ploying a generator based on the U-Net architecture. Ad-
ditionally, it introduces a dual-tanh activation function that
does not require training, replacing the TES in ASDL-GAN.
This improvement means that steganographic performance is
no longer constrained by the pre-training of TES, and that
the training time of GAN is reduced. Experimental results
demonstrate that UT-GAN outperforms ASDL-GAN and the
manual method HILL in resisting steganalysis.

3) GMAN: GMAN addresses the limitations of ASDL-
GAN and UT-GAN, which use a single, relatively weak
steganalyzer, Xu-Net, as the GAN discriminator. A weak
discriminator can limit the generator’s performance, thereby
constraining the overall security of the steganographic method.
GMAN introduces multiple steganalyzers as discriminators.
During training, GMAN adaptively updates the parameters of
the discriminators based on their performance. Experimental
results indicate that GMAN achieves the highest security
performance among the methods tested.

4) GACL: GACL enhances the cover image using Laplace
operators to highlight the edges and contours of the image

to obtain an enhanced image. GACL then learns the stegano-
graphic distortion by feeding the cover image together with
the enhanced image into a two-stream U-Net network.

These methods focus on optimizing the design of the
network structure of the GAN itself and pay less attention
to steganographic cover.

B. Volatility Cost
On the basis of the fluctuation of generated images, Zhang et

al. [47] first proposed the idea of disguising the steganographic
modification as the inherent volatility of the generated model,
which improves the steganographic security and can be used in
the black-box scenarios of the generated model. They approxi-
mated the pixel distribution of fluctuation images as a Gaussian
distribution and estimated the parameters of the Gaussian
distribution through a series of fluctuation images, which
were then integrated to obtain the occurrence probability of
each pixel. Furthermore, Volatility Cost (VC) was introduced
based on the estimated distribution, with the probability of
generated pixel occurrences as the steganographic modification
probability, thus translating into volatility cost. Since VC
calculates distortion only in terms of image volatility, for
comprehensive consideration, Since VC calculates distortion
solely in terms of image volatility, for a more comprehensive
approach, it was combined with existing distortion defini-
tions, improving security by an average of 4.64%. However,
the distortion definition method of VC is based on some
approximation assumptions, which inevitably have a bias in
estimating the pixel distribution of fluctuation images and
cannot comprehensively model the fluctuation characteristics
of the generated images. Considering the limitations of VC, we
propose to use deep learning methods to learn the fluctuation
characteristics of generated images.

C. Text-to-image Generative Model
Text-to-image (T2I) generation models take text descrip-

tions as inputs and produce high-quality, realistic images
that correspond to the given descriptions. To increase image
quality, numerous methods have been developed. For instance,
Text-conditional GAN [28] was the first to implement an
end-to-end differentiable architecture from the character level
to the pixel level. StackGAN [29] utilizes multiple stacked
generators, AttnGAN [30] incorporates attention mechanisms,
and ControGAN [31] employs a word-level discriminator and
perceptual loss to control image generation. Recently, Denois-
ing Diffusion Probability Models (DDPMs) have emerged as
a new paradigm in image generation due to their outstanding
performance. DDPM-based models such as Imagen [34], Sta-
ble Diffusion [12], and DALL-E 3 [41] can generate images
that are close to real images while also having artistic qualities.
According to Everypixel Journal, in 2024, people created an
average of 34 million images per day, which are widely shared
on social networks.

III. PROPOSED METHOD

A. Motivation
Research in the field of image steganography has consis-

tently shown that introducing steganographic modifications

https://stabledifffusion.com/webui
https://stabledifffusion.com/webui
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(a) Cover (b) Fluctuation (c) Steganography

Fig. 3. (a) Cover image, (b) average pixel difference between the 10
fluctuation images and the cover image, (c) pixel difference between the stego
image and the cover image, where the stego image is generated by GMAN.
For clearer observation, the brightness of (b) and (c) is multiplied by 50.

in areas with complex textures is less likely to be detected.
Based on this insight, researchers have proposed heuristic
steganographic distortion methods such as WOW [1], S-
UNIWARD [2], HILL [3], MiPOD [4], and UERD [5].
With the advancement of deep learning, researchers have
also developed GAN-based methods to learn steganographic
distortion definitions, including ASDL-GAN [6], UT-GAN [7],
GMAN [8] and GACL [51]. In these methods, the GAN’s
discriminator is composed of steganalysis networks, and the
generator learns the definition of steganographic distortion
based on the adversarial loss from the discriminator. This
means that the learning of steganographic distortion is driven
solely by the adversarial interaction with the steganalysis
network.

However, as demonstrated in GMAN, current methods typ-
ically use the relatively weak steganalysis network XuNet as
the discriminator. Stronger steganalysis networks such as Yed-
Net can lead to gradient vanishing and training failure. These
factors limit the performance of the generator. By introducing a
new discriminator training strategy, GMAN employs multiple
steganalyzers as discriminators to increase the security of
stego images. Nonetheless, experimental results revealed that
using three steganalyzers was less effective than using two,
indicating that steganographic security does not necessarily
improve with an increasing number of steganalyzers and can
even decrease. Therefore, we pose the following question: In
scenarios where improving the discriminator’s performance
does not enhance steganographic security, how can GAN-
based distortion learning methods further improve security?

We have observed that generated images exhibit certain
fluctuation characteristics. For example, in Stable Diffusion,
the input parameter “Classifier-Free Guidance”(CFG) scale
controls the similarity between the text and the image. This
value is typically set to 7 to balance similarity and image
quality. When the CFG value is slightly changed, Stable
Diffusion outputs two nearly identical images. As shown in
Fig. 2 (b) and (c), when the CFG changes from 7.5000 to
7.5001, the differences between the two generated images
are imperceptible to the human eye. To further explore the
distribution properties of fluctuation images, we used Stable
Diffusion to generate 11 images with CFG values of 7.5000,
7.5010, 7.5020,..., and so on. We selected one of these images
as the cover image and the remaining 10 as fluctuation images,
using GMAN to generate the stego image corresponding to the

cover image. Fig. 3 (b) shows the average pixel differences
between the cover image and the 10 fluctuation images, and
Fig. 3 (c) shows the pixel difference between the cover and the
stego image. For better visualization, the brightness in Fig. 3
(b) and (c) has been increased by 50 times. As depicted in
Fig. 3, the pixel differences between fluctuation images and the
cover image are concentrated in areas with complex textures,
which closely aligns with the distribution of modifications
introduced by steganography.

Based on these observations, we propose that the fluctuation
characteristics of generated images can provide distribution
information about the images, which we term the fluctuation
distribution. Inspired by the idea of natural steganogra-
phy [46], we aim to disguise stego images as fluctuation
images, i.e., modifications of steganography, disguised as
fluctuation differences. Therefore, we propose a stegano-
graphic cost learning method based on the fluctuations of
generated images, named GIFDL. By using fluctuation images
to provide side information, we ensure that stego images
are not only indistinguishable from cover images but also
difficult to distinguish from fluctuation images, which makes
the distribution of stego images similar to that of fluctuation
images, disguising the stego images as those produced under
slight input parameter fluctuations.

B. Framework

As shown in Fig. 4, the overall framework of the proposed
GIFDL consists of three components. In GIFDL, the U-Net of
the Generator, as well as the two discriminators are trainable,
while the T2I Model and the Simulator are fixed.

1) Generative Model: The generative model includes a T2I
Model, for which we use the pre-trained Stable Diffusion as
the T2I Model to generate the cover image C from the input
text. We represent C as C = (ci,j)

H×W (1 ≤ i ≤ H, 1 ≤
j ≤ W ), a grayscale image with height H and width W .
By slightly altering the input parameter “CFG scale”, we
obtain a series of fluctuation images F1, F2, . . . FN , where
Fk = (F k

i,j)
H×W , k = 1, 2, . . . , N . In this paper, we set

N = 10.
The T2I model is used solely for generating cover images

and the corresponding fluctuation images; it does not partici-
pate in the training process. During training, the cover image
is input into the generator to produce the stego image. In each
batch, one image is randomly selected from the fluctuation
images, denoted as Fran = (F ran

i,j )H×W . Fran is input into
the discriminator to provide side information on the fluctuation
distribution of the generated images.

We observed that fluctuation images Fk sometimes show
significant differences from the cover image C, as shown in
Fig. 5. When the difference between the cover image and the
fluctuation image is too large, constraining the stego image to
be similar to both at the same time becomes impossible. These
large differences may provide incorrect information to the
generator. Therefore, we introduce a parameter τ to limit the
distance between the cover image and the fluctuation images:

MSE(C,Fk) ≤ τ, (1)
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Fig. 4. The overall framework of the proposed GIFDL consists of three components: the Generative Model, the Generator, and the Discriminator. In the
Generative Model, we use a T2I model to generate cover image C and corresponding fluctuation images Fi, i = 1, 2, . . . From this series of fluctuation
images, a random fluctuation image Fran is selected to participate in the subsequent training of the generator and discriminator. In the Generator, we employ
a U-Net architecture to generate the modification probability map P . Using a simulation embedder, we obtain the modification map M , which is further
used to produce the stego image S. In the Discriminator, Discriminator #1 is used to distinguish between the cover image C and the stego image S, while
Discriminator #2 distinguishes between the fluctuation image Fran and the stego image S. It is important to note that Fran is randomly selected in each
training epoch and is not fixed.

(a) CFG = 7.5000 (b) CFG = 7.4980

Fig. 5. (a) Image generated with CFG = 7.5000. (b) Image generated with
CFG = 7.4980. There are significant differences between (a) and (b).

where for two images X and Y , the Mean Squared Error
(MSE) is defined as follows:

MSE =
1

N

∑
i

∑
j

(X(i, j)− Y (i, j))2, (2)

where N is the total number of pixels in the image, and
X(i, j) and Y (i, j) are the pixel values of images X and Y at
position (i, j), respectively. A smaller MSE indicates that the
two images are more similar, meaning that their differences
are smaller.

During training, if Fk and C satisfy the above MSE
condition, the corresponding sample will participate in the
subsequent training process; otherwise, Fk will be regenerated
with a different “CFG” scale.

2) Generator: The generator takes the cover image as input
and outputs the stego image, which can be divided into two
parts:

(1) Generate the modification probability map: This
process converts the input cover image C = (ci,j)

H×W into an
embedding probability P = (pi,j)

H×W , where pi,j represents
the probability that the pixel value ci,j will be modified by
±1 due to message embedding at pixel location (i, j). In this
work, we constrain the probability of each pixel value ci,j
being modified by +1 (i.e., p+1

i,j ) to be equal to the probability
of being modified by -1 (i.e., p−1

i,j ), as shown below:

p+1
i,j = p−1

i,j =
pi,j
2

. (3)

Following the setup in UT-GAN [7], we utilize a U-Net-
based architecture for this image-to-image task (i.e., from C
to P ). The U-Net consists of 15 blocks and a deconvolution
layer. The first 8 blocks perform down-sampling, and the
remaining 7 perform up-sampling. The output of the i-th
block (i = 1, 2, . . . , 7) is concatenated with the output of the
(16− i)-th block and passed into the (17− i)-th block. Each
block contains two convolutional layers, followed by batch
normalization and LeakyReLU activation.

(2) Simulated embedding: This step simulates STC embed-
ding to generate the stego image based on the probabilities P
obtained in the first step. First, random noise R = (ri,j)

H×W

is generated, where ri,j is independently and identically
distributed (i.i.d.) over a uniform interval [0, 1]. Comparing
pi,j and ri,j , the modification map M = (mi,j)

H×W in the
simulated embedding is defined as follows:

mi,j =


−1, if ri,j < p−1

i,j ,

+1, if ri,j > 1− p+1
i,j ,

0, otherwise.
(4)

Since the above piecewise function is non-differentiable,
we follow the setup in UT-GAN [7] and use the Double-
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Tanh function as an embedding simulator during training to
obtain the modification map M = (mi,j)

H×W . The double-
tanh function serves as a differentiable approximation of the
discrete piecewise function, which facilitates the backpropaga-
tion process in the GAN. The double-tanh function is defined
as:

mi,j =
1

2
tanh(γ(p+1

i,j − ri,j))

− 1

2
tanh(γ(p−1

i,j − (1− ri,j))),
(5)

where, mi,j in the interval [−1, 1] represents the simulated
modification amount, and the parameter γ controls the preci-
sion of the simulation. We set γ = 60 as in UT-GAN. Finally,
we obtain the stego image as S = C +M .

Once the training is complete, the embedding costs ρ for
the input image C can be calculated as follows:

ρ+1
i,j = ln

(
1

p+1
i,j

− 2

)
,

ρ−1
i,j = ln

(
1

p−1
i,j

− 2

)
,

ρ0i,j = 0.

(6)

Based on the above embedding costs, we then use STC,
rather than the embedding simulator, to perform the actual
message embedding, resulting in the final stego image S while
minimizing the total embedding cost.

3) Discriminator: The discriminator consists of two dis-
tinct steganalysis networks, namely Discriminator #1 and Dis-
criminator #2. Discriminator #1 differentiates between cover
images and stego images, while Discriminator #2 distin-
guishes between fluctuation images Fran and stego images.
Experimental observations indicate that steganalysis networks
generally find it easier to distinguish between fluctuation
images Fran and stego images than between cover images and
stego images. Consequently, we empirically select the more
powerful steganalysis network, Yed-Net [19], as Discriminator
#1, and the less powerful Xu-Net [26] as Discriminator #2.
We name this strategy of using two different discriminators to
perform two different categorization tasks as “assignment”.
We will explore the design rationale of “assignment” in
Section IV-C4 and Section IV-C5.

To balance the performance of the two discriminators given
their different classification tasks, we apply the training strat-
egy from GMAN [8], which updates the parameters of the
weaker discriminator in each iteration, preventing the van-
ishing gradient problem during training. The specific training
process of the discriminators can be divided into the following
two steps:

(1) Compute cross-entropy: For each steganalysis network
Di within the discriminators, the output of Di is the softmax
layer’s classification result, represented as a two-dimensional
normalized vector. The classification performance of the ste-
ganalysis network Di is evaluated by binary cross-entropy Ei,
which is defined as follows:

E1(C, S) = −z0 log(D1(C))− z1 log(D1(S)), (7)

E2(Fran, S) = −z0 log(D2(Fran))− z1 log(D2(S)), (8)

Algorithm 1 Training Steps of GIFDL
Input: cover image C, fluctuation image Fi, i ∈ {1, ..., N},

number of epochs Ne, learning rate η.
Output: θg , θd1 , θd2 .

1: Initialize the generator G, and the discriminatorD1, D2

2: for epoch in {1, ..., Ne} do
3: P ← G(C; θg)
4: Compute M by double-tanh function
5: S ← C +M
6: Randomly select Fran ∈ {F1, ..., FN}
7: Compute E1(C, S) and E2(Fran, S) by Eq. 7 and

Eq. 8.
8: if E1 ≤ E2 then
9: Update D2 by θd2

← θd2
− η∇θd2

E2

10: else
11: Update D1 by θd1 ← θd1 − η∇θd1

E1

12: end if
13: Compute la = E1 + λE2

14: Compute le by Eq. 13
15: lG ← −αla + βle
16: Update G by θg ← θg − η∇θg lG
17: Learning rate η decay
18: end for
19: return θg , θd1

, θd2
.

where, D1(C), D1(S) denote the classification scores of dis-
criminator #1 for cover C and stego S respectively, and
D2(S), D2(Fran) denote the classification scores of discrim-
inator #2 for stego S and fluctuation Fran respectively. The
vectors z0 = (1, 0)T and z1 = (0, 1)T are the true labels.

(2) Update Discriminators and Generator: A larger bi-
nary cross-entropy indicates a weaker steganalysis network.
Suppose in a particular iteration that E2 ≤ E1, which
suggests that Discriminator #1 is weaker than Discriminator
#2. Note that the classification performance of the steganalysis
networks may vary across iterations. To enhance discrimi-
native performance, we only update the parameters of the
weaker steganalysis network (i.e., Discriminator #1) in each
iteration, keeping the stronger network (i.e., Discriminator #2)
unchanged. This method enables the steganalysis networks to
improve gradually and progressively. To further enhance the
generator’s performance, both discriminators are used to guide
its updates in each iteration.

C. Loss Function

Below are the detailed descriptions of the loss functions
in GIFDL, including the discriminator loss lD1

, lD2
and the

generator loss lG:
(1) Discriminator loss lD1

and lD2
: The loss functions of

Discriminator #1 and Discriminator #2 are defined as lD1 and
lD2 respectively:

lD1
= −z0 log(D1(C))− z1 log(D1(S)), (9)

lD2
= −z0 log(D2(Fran))− z1 log(D2(S)). (10)

As described in Section III-B3, in each iteration, only the
parameters of the relatively weakly performing discriminator
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are updated. Thus, in each iteration, if lD1
> lD2

, the
parameters of Discriminator #1 will be updated using the loss
function lD1 , and the parameters of Discriminator #2 will be
kept unchanged. Otherwise, the parameters of Discriminator
#2 will be updated using the loss function lD2

, and the
parameters of Discriminator #1 will be kept unchanged.

(2) Generator loss lG: The generator’s goal is to embed
messages into cover images imperceptibly, making the result-
ing stego images difficult for the discriminator’s steganalysis
networks to detect. Accordingly, the generator loss lG is
defined as:

lG = −α · la + β · le, (11)

where lG consists of two components. The first term la
represents the adversarial loss against the discriminator, and
the second term, le, is the entropy loss, which ensures effective
payload embedding. The weights of these terms, α and β, are
set as in UT-GAN [7], with α = 1 and β = 10−7. Specifically,
la and le are defined as follows:

la =E1(C, S) + λE2(Fran, S)

=(−z0 log(D1(C))− z1 log(D1(S)))+

λ · (−z0 log(D2(Fran))− z1 log(D2(S))),

(12)

le = −

∑
∀i,j

∑
∀m

log2(p
(m)
i,j )− (H ×W × q)

2

, (13)

where, H and W represent the height and width of the input
image, respectively, with 1 ≤ i ≤ H , 1 ≤ j ≤ W . The
variable m denotes the embedding modification, where m ∈
{−1, 0,+1}, and q represents the embedding payload. The
parameter λ is used to weigh the adversarial losses from two
discriminators.

During the training phase, these loss functions lD and
lG are utilized to compute gradients and update the model
parameters for both the discriminator and generator in the
proposed GIFDL model. The training steps of the model are
outlined in Algorithm 1.

D. The Applicable Scope of GIFDL

The design of GIFDL depends on the fluctuation charac-
teristics of generated images. To the best of our knowledge,
we have observed that text-to-image diffusion models exhibit
fluctuation characteristics in the generated images when the
value of the input parameter “CFG scale” changes. The CFG
scale is used in mainstream text-to-image diffusion models,
such as Stable Diffusion and Midjourney. Therefore, the
applicable scope of GIFDL can be defined as text-to-image
diffusion models with the CFG scale.

IV. EXPERIMENTS

A. Experimental Setup

Since GIFDL uses generated images as steganographic
covers, we employ the widely popular image generation model
Stable Diffusion v1.4 to test GIFDL’s effectiveness. Stable
Diffusion can generate images that match the input text (called
the “prompt”), where the “CFG scale” parameter controls the

degree of alignment between the generated image and the input
text, and the “seed” parameter determines the specific content
of the generated image. We use 1,000 categories from the
ImageNet [39] as prompts for Stable Diffusion, assigning each
category 10 different random seeds. Additionally, the “CFG
scale” parameter is set to 7.5000. As a result, each category
contains 10 images with varying content, and the resulting
dataset consists of 10,000 images, each of size 512 × 512,
saved in PGM format. We name this dataset INtrain.

In section III-A, we observe fluctuations in the generation
model, where Stable Diffusion, given the same prompt and
seed, could produce two highly similar images by slightly ad-
justing the “CFG scale” value. The pixel differences between
the two images are mainly concentrated in the texture areas.
Therefore, we keep the prompt and seed constant and only alter
the “CFG scale” of INtrain, with values set to 7.4950, 7.4960,
7.4970, 7.4980, 7.4990, 7.5010, 7.5020, 7.5030, 7.5040, and
7.5050. This results in 10 fluctuation datasets, consistent in
content with INtrain, which we refer to as INflu. In subsequent
experiments, we train the baseline model using the INtrain

dataset and train the proposed GIFDL using both INtrain and
INflu datasets.

Additionally, we generate another dataset, named INtest,
using 10 different random seeds not included in INtrain,
including 10,000 images. All experiments are conducted on
four NVIDIA GEFORCE RTX 2080 Ti GPU cards.

B. Evaluation Metrics

1) Resistance to Steganalysis: The security performance
of steganographic methods is usually evaluated using the
detection error rate of steganalyzers. The detection error rate
PE is defined as:

PE =
1

2
(PFA + PMD) , (14)

where PFA and PMD represent the false-alarm (FA) rate and
the missed detection (MD) rate of steganalyzers, respectively.

C. Experimental Results and Analysis

1) The optimal value of the parameter τ : In the design
of GIFDL, the adversarial loss la of the Generator consists
of two parts that constrain the generator in two ways: (1) the
stego image should be indistinguishable from the cover image,
and (2) the stego image should be indistinguishable from the
randomly chosen fluctuation image. To balance the impact
of two constraints on steganographic security, we introduce
a parameter λ in section III-C to regulate the contribution of
E2(Fran, S) to the total generator loss la. To determine the
optimal value for λ, we conduct the following experiment:

We set the value of λ to 1, 2, 4, and 8, respectively. After
training GIFDL, we use 10,000 grayscale images from the
INtest dataset as the cover images for testing the security of
GIFDL. Specifically, we generate the corresponding stegano-
graphic cost through GIFDL and embed the secret message via
STC, with the payload set to 0.4 bpp. We obtain 10,000 stego
images via the above operations. We then divide the 10,000
cover-stego image pairs into three subsets of sizes 4,000,
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(a) Cover image (b) 2,500 iterations (c) 10,000 iterations (d) 80,000 iterations (e) 180,000 iterations

Fig. 6. Cover images (generated by Stable Diffusion) and modification maps with different number of iterations.

TABLE I
DETECTION ERROR RATE(%) OF SRM, COVNET, AND LWENET UNDER DIFFERENT λ. A HIGHER RATE INDICATES HIGHER SECURITY.

Steganalyzer Parameter 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp Average

SRM

λ = 1 46.74 44.09 38.53 33.99 40.84

λ = 2 46.49 42.68 39.43 33.35 40.49

λ = 4 45.83 42.08 38.66 33.80 40.09

λ = 8 46.09 42.72 38.92 34.42 40.54

CovNet

λ = 1 45.07 41.69 35.31 29.40 37.87

λ = 2 44.25 40.01 36.96 29.66 37.72

λ = 4 43.41 40.87 34.20 30.34 37.21

λ = 8 40.44 39.46 36.56 31.82 37.07

LWENet

λ = 1 43.35 42.36 36.49 30.52 38.18

λ = 2 42.58 40.80 38.57 30.45 38.10

λ = 4 43.48 40.95 34.48 29.97 37.22

λ = 8 40.17 38.70 36.99 30.77 36.66

1,000, and 5,000, which are used as the training, validation,
and test datasets, respectively.

Finally, we train and test three steganalyzers (SRM [43],
CovNet [15], and LWENet [11]) using the above datasets,
and record the detection error rate (PE) on the test dataset.
The experimental results, shown in Table I, indicate that when
λ = 1, GIFDL exhibits the best resistance against the three
steganalyzers, achieving optimal security performance. There-
fore, in all subsequent experiments, we set the parameter λ to 1
for GIFDL. Additionally, we observe that a larger λ results in
higher security as the payload increases. This phenomenon can
be explained by the fact that a larger λ gives greater weight to
the role of fluctuation images, and the fluctuation distribution
can provide more modification regions for steganographic
modifications, which are also relatively secure, i.e., a larger

λ offers more optional regions for steganography. When the
payload increases, the security is increased compared with the
lower λ because there are more “secure” locations to modify.

As shown in Fig. 6, as the number of training iterations of
GIFDL increases, the steganographic modifications shift from
random modifications to concentrate on regions with complex
image textures. This indicates that the training is effective and
that the performance of the generator gradually improves.

2) Security Performance: In this section, we compare the
security performance of GIFDL with that of other stegano-
graphic cost learning methods such as SUNIWARD [2],
HILL [3], GMAN [8], and GACL [51]. Among them, the
distortion definitions of SUNIWARD and HILL are heuristic
and do not require pretraining. First, we train GMAN and
GACL using the INtrain dataset, and the proposed GIFDL
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(a) Cover image (c) HILL(b) SUNIWARD (d) GMAN (e) GIFDL

Fig. 7. Cover images, stego images (first row, third row), and corresponding modification maps (second row, fourth row).

using the INtrain and INflu datasets. Next, we use the INtest

dataset as the cover images, and use SUNIWARD, HILL,
GMAN, GACL, and GIFDL, respectively, with payloads of
0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp respectively to obtain the
corresponding stego images. The stego images and modifica-
tion maps of the cover images with the four steganography
methods are shown in Fig. 7. Unlike other steganography
methods, the steganographic modifications of GIFDL are not
only concentrated in the complex regions of the image texture
but also distributed in the regions of fluctuation, which is very
similar to Fig. 3(b). We use the above cover-stego pairs to train
three steganalyzers, SRM, CovNet, and LWENet, respectively.
where the cover-stego pairs are divided into three datasets of
sizes 4000, 1000, and 5000, which are used for steganalyzer
training, validation, and testing, respectively. The detection
error rates (PE) of the steganalyzers are shown in Table. II,
where it can be observed that all four steganographic methods
are more easily detected by the steganalysis as the payload

increases. Moreover, PE for GIFDL is significantly lower than
that of the comparison methods, and the average PE is 3.30%
higher than that of the suboptimal GMAN. Therefore, GIFDL
has the highest security in terms of resistance to steganalysis.

3) Security performance on real datasets: In this section,
we explore the generalization performance of GIFDL on
different datasets. We use the dataset INtrain to train GIFDL
and the comparison methods. Then we test them on the
dataset DiffusionDB [48] and JourneyDB [52]. DiffusionDB
is the first large-scale text-to-image prompt dataset. It con-
tains 14 million images generated by Stable Diffusion using
prompts and hyperparameters specified by real users. We
randomly select 10,000 images of size 512× 512 from the
DiffusionDB dataset to form our test dataset, which is named
DDB. Meanwhile, We obtain 10,000 Midjourney-generated
images from the JourneyDB dataset. These images have a
resolution of 1024×1024 and are then resized to 512×512
using the imresize function with the bicubic interpolation
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TABLE II
DETECTION ERROR RATE(%) OF SRM, COVNET, AND LWENET UNDER DIFFERENT PAYLOAD. A HIGHER RATE INDICATES HIGHER SECURITY.

Steganalyzer Method 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp Average

SRM

S-UNIWARD 42.20 38.28 32.66 27.29 35.11

HILL 43.70 37.15 33.24 27.72 35.45

GACL 44.16 38.62 35.57 33.68 38.01

GMAN 45.43 41.57 34.16 30.78 37.99

GIFDL 46.74 44.09 38.53 33.99 40.84

CovNet

S-UNIWARD 38.65 33.06 25.56 18.87 29.04

HILL 39.09 32.70 27.23 20.73 29.94

GACL 39.95 34.10 33.89 26.95 33.72

GMAN 41.59 33.64 30.69 27.10 33.26

GIFDL 45.07 41.69 35.31 29.40 37.87

LWENet

S-UNIWARD 36.20 30.24 27.15 21.25 28.71

HILL 39.56 31.31 29.18 23.12 30.79

GACL 40.57 36.94 28.64 22.44 32.15

GMAN 42.43 39.64 33.66 27.25 35.75

GIFDL 43.35 42.36 36.49 30.52 38.18

(b) DDB(a) IN (b) MDB

Fig. 8. Differences between datasets IN, DDB and MDB. (a) The prompts
used in IN come from class labels of ImageNet, and the images in IN are
usually single objects with simpler textures. (b) The prompts used in DDB
and MDB are from real users, and the images in DDB are more artistic and
have more complex textures.

method and the default parameter settings in MATLAB. We
name the above dataset the Midjourney Database (MDB).
Fig. 8 shows the main differences between the training set
IN and the test set DDB, MDB. The images in DDB and
MDB usually along with longer and more complex prompts,
and the models used are usually stable diffusion v1.5, v2.0,
and Midjourney. We use the DDB and MDB datasets as cover
images and use GIFDL and comparison methods to obtain the
corresponding stego images, respectively. Cover-stego pairs
are partitioned into three datasets of sizes 4000, 1000, and
5000, which are used for training, validation, and testing of the
steganalyzers, respectively. The experimental results are shown
in Table III, where it can be observed that GIFDL maintains
the resistance to steganalysis performance on the real dataset
and possesses good generalizability to the stable diffusion
family of models. Meanwhile, GIFDL maintains a certain
generalization performance on the image generation model
Midjourney. Although the performance of GIFDL shows some
degradation on Midjourney, it is still significantly better than

the comparison methods.

TABLE III
DETECTION ERROR RATES(%) OF SRM, COVNET, AND LWENET ON

DIFFERENT DATASETS. A HIGHER RATE INDICATES HIGHER SECURITY.

Dataset Method SRM CovNet LWENet

IN

SUNIWARD 27.29 18.87 21.25

HILL 27.72 20.73 23.12

GACL 33.68 26.95 22.44

GMAN 30.78 27.10 27.25

GIFDL 33.99 29.40 30.52

DDB

SUNIWARD 27.86 23.77 23.46

HILL 31.10 27.11 26.56

GACL 33.44 28.58 24.06

GMAN 30.31 27.51 28.97

GIFDL 35.85 31.60 33.24

MDB

SUNIWARD 23.10 19.45 16.21

HILL 26.56 22.40 16.63

GACL 24.19 18.25 15.27

GMAN 23.79 19.31 17.99

GIFDL 26.34 25.99 24.99

4) Ablation study: In this section, we explore the role of
each component of GIFDL. For this purpose, we design several
variants of GIFDL in Table IV. Among them, Variant #1 refers
to GMAN, “Fluctuation image” denotes the use of fluctuation
images during training, and “Threshold” denotes the use of
threshold τ to filter the fluctuation images. “Discriminator
strategy” indicates that the assigned discriminator update
strategy is used, i.e., two different steganalyzers are used
as two discriminators to discriminate cover-stego pairs and
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TABLE IV
SEVERAL VARIANTS OF GIFDL.

Variant Fluctuation image Threshold Discriminator strategy

Variant #1 × × ×

Variant #2 ✓ × ×

Variant #3 ✓ ✓ ×

Variant #4 ✓ ✓ ✓

fluctuation-stego pairs, respectively. If this item is unchecked,
it means that two identical steganalyzers are used as two dis-
criminators to discriminate cover-stego pairs and fluctuation-
stego pairs, respectively. We use the dataset INtrain to train
the above variants and test the performance of these variants
against steganalysis on the dataset INtest, and the experimental
results are shown in Table V.

Based on the experimental results of Variant #1 and Variant
#2, using fluctuation images without a threshold to constrain
their differences from cover images during training does not
significantly improve the security of steganographic images.
This can be explained from two perspectives. First, the ma-
jority of fluctuation images and cover images are visually
indistinguishable, so their differences are concentrated in re-
gions with complex textures. These images are involved in the
training process, which helps to improve steganographic secu-
rity. Second, without a threshold restriction, some fluctuation
images with substantial differences from the cover image (e.g.,
Fig. 5) are included in the training. When these highly different
images are involved in training, GIFDL evaluates the content
change regions as suitable areas for steganographic modifi-
cation. However, in reality, these regions are very smooth
and not suitable for steganographic modification. These highly
different images neutralize the gains brought by learning
distortion from similar fluctuation images, which is why the
experimental results of Variant #1 and Variant #2 are similar.
When we introduce a threshold into the framework (i.e.,
Variant #3), these differentiated images are excluded, and the
training set only includes fluctuation images that we consider
ideal. Naturally, the performance is improved as a result. The
experimental results for Variant #3 and Variant #4 demonstrate
that the steganographic security can be effectively improved
by using the assigned discriminator update strategy, which
suggests that it is reasonable to use two discriminators that
differ in performance. In fact, by observing the change in the
loss of the discriminator in Variant #3, it can be found that the
loss of the discriminator used to discriminate the fluctuation-
stego pairs always reduces to 0 very quickly, which results
in the generator not being able to learn effective knowledge
during the adversarial process, i.e., the gradient disappears.
In conclusion, the use of “Fluctuation image” can provide
additional information for steganography, which can improve
the steganographic security under the “Threshold” constraint.
Moreover, the allocation-based discriminator update strategy
can balance the contributions of cover images and fluctuation
images to further improve steganographic security.

TABLE V
DETECTION ERROR RATES(%) OF SRM, COVNET, AND LWENET UNDER

DIFFERENT VARIANTS. A HIGHER RATE INDICATES HIGHER SECURITY.

Variant SRM CovNet LWENet

Variant #1 30.78 27.10 27.25

Variant #2 31.81 26.80 27.45

Variant #3 32.56 29.03 29.71

Variant #4 33.99 29.40 30.52

5) An alternative discriminator training strategy: In sec-
tion III-B, our design of the discriminator is such that two
different discriminators are applied to different discrimination
tasks. That is, Yed-Net is used to discriminate between cover
and stego, and XuNet is used to discriminate between flu
and stego. It has been shown in section IV-C4 that the
use of two discriminators with different performances better
balances the contributions of the cover and the fluctuation
images, compared with the use of the same discriminator.
However, there is naturally a more mundane design where two
discriminators are applied to the same discrimination task. This
is done by Yed-Net and XuNet, which are used to discriminate
not only cover and stego but also flu and stego. Thus, we
redefine the discriminator loss:

lD = max{Ei(Fran, S) + λ′Ei(C, S), i = 1, 2}, (15)

la = min{Ei(Fran, S) + λ′Ei(C, S), i = 1, 2}, (16)

where we use a different training strategy: the two discrim-
inators have the same classification task, i.e., discriminating
both cover-stego pairs and fluctuation-stego pairs, using the
parameter λ′ to weigh the contributions of both. In each epoch,
we update the parameters of the discriminator with the higher
loss, leaving the other discriminator unchanged. At the same
time, the adversarial loss la of the steganography generator is
the smaller loss. We call this experimental setup GIFDL*.

We use the GIFDL and GIFDL* models with λ′ values of
1, 2, 4, and 8 to generate 10,000 stego images respectively,
resulting in five stego datasets. For each stego dataset, we
divide the 10,000 stego images into training, validation, and
test datasets, with sizes of 4000, 1000, and 5000, respectively.
Subsequently, we use these datasets to train three state-of-the-
art steganalysis networks, SRM, CovNet, and LWENet. The
experimental results are presented in Table VI. This mundane
design method does not achieve better security performance,
which can be explained by the fact that the simultaneous
execution of two tasks by each discriminator leads to a
degradation of its performance under both tasks. In contrast,
our proposed method of assigning different discriminators to
each of the two tasks is able to maximize the performance of
the discriminators, and thus the performance of the generator,
while taking into account the differences in the cover and the
fluctuation images.

6) Combined with Volatility Cost: In this section, we com-
bine GIFDL and GMAN with the volatility cost (VC) proposed
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TABLE VI
DETECTION ERROR RATES(%) OF SRM, COVNET, AND LWENET UNDER
DIFFERENT STRATEGIES. A HIGHER RATE INDICATES HIGHER SECURITY.

Method SRM CovNet LWENet

GIFDL 33.99 29.40 30.52

GIFDL* with λ′ = 1 31.96 27.55 26.66

GIFDL* with λ′ = 2 32.10 26.21 27.24

GIFDL* with λ′ = 4 32.85 28.60 28.93

GIFDL* with λ′ = 8 31.91 27.95 27.31

in [47] as a way to explore the effectiveness of GIFDL in cap-
turing the fluctuations of generated images via deep learning
networks. To this end, we generate steganographic costs on
the dataset INtest via GMAN and GIFDL, respectively, and
compute the volatility costs of the dataset INtest in the manner
presented in [47]. The original steganographic cost is denoted
as ρo, the volatility cost as ρv , and the steganographic cost
after combining is denoted as ρc. The above process can be
expressed as follows:

ρc(+1) = β · ρv(+1) + (1− β) · (α · ρo(+1)),

ρc(−1) = β · ρv(−1) + (1− β) · (α · ρo(−1)),
(17)

where ρc(+1) and ρc(−1) represent the costs associated with
+1 modification and -1 modification, β is the hyperparameter
that determines the proportion of volatility cost, and α is the
scaling factor that equalizes the mean of ρo with the volatility
cost ρv . α is calculated as follows:

α =

∑
i,j

(
[ρvij ̸= wetcost] · ρvij

)
/
∑

i,j [ρ
v
ij ̸= wetcost]∑

i,j

(
[ρoij ̸= wetcost] · ρoij

)
/
∑

i,j [ρ
o
ij ̸= wetcost]

,

(18)
where α represents the ratio between the average value of the
volatility cost and the original cost, the Iverson bracket [Q]
is defined to be 1 if the logical expression Q is true and 0
otherwise, and “wetcost” represents the cost tending towards
infinity, which is excluded to avoid substantial impacts on the
mean. It has been experimentally demonstrated in [47] that
optimal performance is achieved with β = 0.15, so we take
β = 0.15.

We combine the volatility cost with the steganographic
cost of GMAN, named GMAN+VC, and similarly, combine
the volatility cost with the steganographic cost of GIFDL,
named GIFDL+VC. We utilize the above costs to embed the
secret message via STC [14] to obtain the corresponding stego
image. The detection error rates of the three steganalyzers are
shown in Table VII. Compared with GMAN, the steganalysis
error rate of GMAN+VC is increased by 8.77% on average.
Also, GMAN+VC improves by 5.85% on average compared to
GIFDL. In addition, GIFDL+VC improves 9.16% on average
compared to GIFDL.

In VC proposed by Zhang et al. [47], the pixel differences
between fluctuation images are modeled as Gaussian distri-
butions. However, there is a difference between the actual
distribution and the standard Gaussian distribution. In GIFDL,

we directly learn the pixel distribution of fluctuation images
from training data through a deep learning network, rather than
simply assuming it to be a Gaussian distribution. Due to the
differences in method design, new knowledge can possibly
be learned, and experimental results have also verified that
GIFDL and VC can be complementary.

TABLE VII
DETECTION ERROR RATES(%) OF SRM, COVNET, AND LWENET UNDER

DIFFERENT COMBINATIONS. A HIGHER RATE INDICATES HIGHER
SECURITY.

Method SRM CovNet LWENet Average

GMAN 30.78 27.10 27.25 28.38

GMAN + VC 36.09 38.86 36.51 37.15

GIFDL 33.99 29.40 30.52 31.30

GIFDL + VC 41.27 40.64 39.46 40.46

V. CONCLUSION

To further enhance steganographic security, we propose
a steganographic distortion learning method based on the
fluctuations of generated images. Specifically, we observe
that generated images exhibit a fluctuation distribution, and
we use this as side information to guide the generator in
learning steganographic distortion. To avoid the problem of
gradient vanishing during training and to fully utilize the
performance of the discriminators, we introduce a training
strategy called “assignment”, which assigns different tasks
to the two discriminators and balances their performance
by updating the parameters alternately. Experimental results
indicate that compared with GMAN, GIFDL can further
improve steganographic security and has some generalizability,
maintaining performance on new datasets.

In our experiments, we observed that the differences be-
tween fluctuation images and cover images are not entirely
concentrated in areas with complex textures; differences often
exist in the background regions as well. This is due to
the randomness introduced by the noise process in DDPMs.
Future research will focus on exploring whether these random
differences could potentially reduce steganographic security.
Additionally, we will investigate how to better utilize the
fluctuation characteristics of generated images, considering a
more refined estimation of their distribution. Overall, we pro-
pose a new method to enhance steganographic security using
generated images and explore the direction of steganography
via black-box generative models.
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