
JOURNAL OF LATEX CLASS FILES, JULY 2024 1

SOLIDO: A Robust Watermarking Method for
Speech Synthesis via Low-Rank Adaptation

Yue Li, Weizhi Liu, and Dongdong Lin

Abstract—The accelerated advancement of speech generative
models has given rise to security issues, including model in-
fringement and unauthorized abuse of content. Although existing
generative watermarking techniques have proposed correspond-
ing solutions, most methods require substantial computational
overhead and training costs. In addition, some methods have
limitations in robustness when handling variable-length inputs.
To tackle these challenges, we propose SOLIDO, a novel
generative watermarking method that integrates parameter-
efficient fine-tuning with speech watermarking through low-rank
adaptation (LoRA) for speech diffusion models. Concretely, the
watermark encoder converts the watermark to align with the
input of diffusion models. To achieve precise watermark extrac-
tion from variable-length inputs, the watermark decoder based
on depthwise separable convolution is designed for watermark
recovery. To further enhance speech generation performance and
watermark extraction capability, we propose a speech-driven
lightweight fine-tuning strategy, which reduces computational
overhead through LoRA. Comprehensive experiments demon-
strate that the proposed method ensures high-fidelity water-
marked speech even at a large capacity of 2000 bps. Furthermore,
against common individual and compound speech attacks, our
SOLIDO achieves a maximum average extraction accuracy of
99.20% and 98.43%, respectively. It surpasses other state-of-the-
art methods by nearly 23% in resisting time-stretching attacks.

Index Terms—Generative watermarking, speech watermark-
ing, proactive forensic, diffusion model, low-rank adaption.

I. INTRODUCTION

THE prosperous growth of Artificial Intelligence-
Generated Content (AIGC) has led to remarkable

advancements in generative models in recent years, making
text-to-speech (TTS) synthesis a highly sought-after area
within this research boom. Speech generative models, which
are constructed upon Generative Adversarial Networks
(GANs) [1], transformer, and Diffusion Models (DMs) [2]–
[4], are at the forefront of advancing the naturalness
of AI-generated speech, achieving unprecedented levels
of humanlike vocal quality [5]–[8]. Nevertheless, these
sophisticated technologies have concurrently injected certain
undercurrents into what was once a placid social environment.
Malicious attackers are able to utilize open-source speech
generation models to fabricate any speech they aim to
disseminate, with merely the expense of training models.
Consequently, there is an urgent need for a technology capable
of identifying generated content and even generative models
to regulate content and protect model copyrights [9]–[11].
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Fig. 1. Illustration of different watermarking techniques with full-parameters
and parameter-efficient fine-tuning strategy. The proposed method leverages
low-rank adaptation to enable single-step model training while drastically
reducing the number of trainable parameters.

Watermarking technology, due to its traceability, is often
used as a proactive measure for copyright protection [12]–[14].
Previous studies primarily utilized post-hoc watermarking
techniques for protecting speech intellectual property, which
can be categorized into handcrafted-based and deep learning-
based watermarking methods. Handcrafted-based watermark-
ing typically designs specific algorithms tailored to speech
features for watermark embedding [15]–[18], whereas deep
learning-based watermarking integrates the watermark with
speech representations through neural networks [19]–[22].
Although post-hoc watermarking can effectively trace natural
or generated content, it falls short in tracing the generative
models. Consequently, this has spurred the development of
generative watermarking capable of safeguarding the copy-
right of models [23]–[28], which can be categorized into
parameter training-based watermarking and parameter frozen-
based watermarking according to their training strategy. In the
first category of generative watermarking, existing approaches
root the watermark into the generative model through full-
parameter training (FPT), including designing specific loss
functions for training [23], [24] and employing a two-stage
training strategy [25], [26]. The second category of generative
watermarking employs the parameter-frozen strategy (PT) for
the generative model, where only the watermark encoder and
decoder is trained to achieve watermarking [28].

However, the aforementioned methodologies confront per-
sistent limitations that require resolutions. On the one hand, in
terms of computational overhead, existing parameter training-
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based watermarking methods that train models through FPT
incur significant computational resource consumption, and the
two-stage training strategy further increases training costs
and time. In the field of image watermarking, preliminary
research has already explored instilling the watermark into
generative models utilizing additional parameter training
(APT), including approaches such as utilizing LoRA [29] for
watermarking [30], [31]. Nevertheless, such APT strategies
have yet to be applied to speech watermarking, leaving the
field still grappling with the challenge of high computational
resource consumption. On the other hand, in terms of ro-
bustness, although existing watermarking methods maintain
competent extraction performance against common speech
attacks, certain deep learning-based approaches (whether post-
hoc or generative) lack the inherent capability to process
variable-length inputs directly. This limitation compromises
their effectiveness when confronting variable-length attacks
such as rear-segment cropping and time-stretching attacks.

To eliminate the limitations, we propose a generative speech
watermarking method via LoRA. This method is the first to
incorporate parameter-efficient fine-tuning (PEFT) into speech
watermarking, effectively reducing computational overhead
while establishing a traceable mechanism for both models
and content. As illustrated in Fig. 1, the proposed method
requires training only the watermark encoder-decoder and
additional parameters (e.g., LoRA) to achieve watermark em-
bedding. Our SOLIDO accomplishes the training of gener-
ative models with significantly fewer parameters than FPT
and eliminates the cumbersome two-stage training process.
To mitigate the impact of watermark embedding on model
performance, the watermark encoder, comprising only three
operations, is designed to transform watermarks into latent
variables aligned with the diffusion model’s input. Moreover,
we construct the watermark decoder employing depthwise sep-
arable convolutions, enabling it to better capture fine-grained
features from speech waveforms for high-precision watermark
recovery. Notably, this decoder can accept variable-length
inputs, allowing watermark extraction even from arbitrary-
length speech without extra processing. In addition, to further
boost watermarking performance, we propose a speech-driven
lightweight fine-tuning strategy, which achieves high-fidelity
watermarked audio generation at a lower computational cost.

The main contributions are summarized as follows:
• We innovatively incorporate parameter-efficient fine-

tuning with speech watermarking and propose a gener-
ative watermarking via low-rank adaptation, which en-
ables both copyright protection for diffusion models and
authentication of generated content.

• To preserve the original model’s performance and water-
marking effectiveness, the lightweight watermark encoder
and decoder are meticulously designed. Notably, the
decoder is capable of accurately recovering watermarks
directly from variable-length inputs.

• To balance speech quality and watermark extraction ac-
curacy, we further propose a speech-driven lightweight
fine-tuning strategy (SDFT), where the computational
overhead of watermark training is reduced through LoRA.

• Extensive experiments demonstrate that the proposed

method achieves high-fidelity speech generation with a
large capacity of 2000 bps. In addition, comparative ex-
periments highlight its robustness against various speech
attacks, e.g., common attacks and variable-length attacks.

II. RELATED WORK

A. Post-hoc Watermarking

Post-hoc watermarking methods embed identifying marks
into natural or AI-generated speech for copyright protection.
These methods can be divided into two main categories:
handcrafted-based watermarking and deep learning-based wa-
termarking approaches.

Handcrafted-based watermarking methods Handcrafted
watermarking methods primarily focus on designing corre-
sponding algorithms for watermark embedding and extracting
based on speech features. Since the frequency-domain features
of speech exhibit better robustness compared to time-domain
features, they are often utilized as the embedding features for
watermarking [15]–[17]. Using the Discrete Cosine Transform
(DCT), Natgunanathan et al. [17] adopted a patchwork-based
approach, embedding the watermark into the DCT coefficients
of multiple layers of speech. Using Arnold transformation,
Saadi et al. [15] first encrypted the watermark. Subsequently,
the watermark is embedded into the norm space of speech after
applying discrete wavelet transform and DCT. Zhao et al. [16]
utilized Singular Value Decomposition to extract frequency
singular value coefficients from the DCT coefficients of speech
and then embedded the watermark into them.

Deep learning-based watermarking methods achieve the
integration of watermarks and audio features through neural
networks, enhancing watermark performance by designing dif-
ferent network architectures [19]–[21]. For time-domain fea-
tures of speech, Roman et al. [19] obtain discrete features us-
ing the speech neural codec and fuse them with the watermark
to reconstruct watermarked audio. In addition, leveraging the
invertible neural network, Chen et al. [20] complete watermark
embedding by fusing the short-time Fourier transform (STFT)
features of the watermark and speech. To defend against voice
cloning attacks, Liu et al. [21] repeat the watermark and
combine it with the STFT magnitude features of the speech,
then apply the inverse STFT to obtain watermarked audio.

B. Generative Watermarking

Unlike post-hoc watermarking techniques that modify con-
tent after generation, generative watermarking represents a
paradigm shift by integrating the watermarking into the gener-
ating process of generative models. Contemporary watermark-
ing techniques can be classified into two categories: parameter
training-based [23]–[26] and parameter frozen-based water-
marking methods [28].

Parameter training-based watermarking indicates that
watermark embedding is achieved by performing FPT. Cho
et al. [23] retrained the generative model with specialized
constraints, ensuring that the retrained model could trace
its synthesized speech. Juvela et al. [24] jointly trained the
generative model and the detector, enabling the classifier to
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identify speech synthesized by this specific model. How-
ever, the aforementioned methods are zero-bit watermark-
ing schemes, which can only determine the presence of a
watermark based on content rather than extracting specific
embedded information. Therefore, subsequent research has
shifted focus toward multi-bit watermarking. Zhou et al. [25]
and Cheng et al. [26] utilized a two-stage training strategy for
watermark embedding. Specifically, the watermark encoder-
decoder is first pretrained, and then the generative model is
fine-tuned using the pretrained encoder and decoder.

Parameter frozen-based watermarking means that the
generative model does not need to participate in training.
Following this principle, Liu et al. [28] utilized JOPT to
integrate the watermarking process with the generation process
while keeping the generative model parameters frozen.

In a nutshell, post-hoc speech watermarking, due to its
decoupling from generative models, cannot trace the mod-
els themselves and focuses solely on content. Most existing
generative watermarking methods employ FPT strategy for
watermarking, resulting in substantial computational overhead.
Besides, in the speech domain, research on watermarking
using APT has not yet been explored. Therefore, the proposed
method integrates PEFT techniques and leverages APT to
reduce computational overhead and training costs, making it
more aligned with practical application requirements.

III. PRELIMINARIES

Diffusion Denoising Probabilistic Model (DDPM) [2].
The proposed SOLIDO focuses on DDPM-based vocoders,
specifically DiffWave [7] and PriorGrad [8], to generate wa-
termarked speech. A brief overview of DDPMs in the context
of speech generation is provided below.

In the diffusion process of DDPM, the original input st
of the DDPM is obtained by adding Gaussian noise to the
original speech s0 ∼ qdata(s0) step by step, with the standard
deviation of noise determined by hyper-parameter βt ∈ (0, 1):

q(st|st−1) = N (st;
√
1− βt st−1, βtI), (1)

q(s1:T |s0) =
T∏

t=1

q (st|st−1) , (2)

where I means identity matrix. Furthermore, let αt = 1− βt,
αt =

∏t
i=1 αi and ϵ ∼ N (0, I), then st can be acquired by

simply adding noise in a single step:

st =
√
αts0 +

√
1− αtϵ, (3)

The denoising process involves using a neural network to
approximate the noise added during the diffusion process,
which can be expressed as:

pθ(s0:T ) = p(sT )

T∏
t=1

pθ(st−1|st), (4)

pθ(st−1|st) = N (st−1;µθ(st, t), Σθ(st, t)), (5)

where θ denotes the learnable parameter. Concretely, this
process aims to remove the noise from latent variable st by
employing the prediction network ϵθ to estimate the noise

added during the diffusion process step by step. The completed
process can be calculated as:

st−1 =
1
√
αt

(
st −

1− αt√
1− αt

ϵθ(st, t, c)

)
+ δtz, (6)

where δtz denotes the random noise, z ∼ N (0, I), and c is
the mel-spectrogram.

The training of ϵθ aims to fit the noise ϵ. Thus, the
parameters θ need to be continuously learned and updated by
maximizing the variational lower bound. Therefore, the final
objective function can be simplified as:

Lsimple = Es0,t,ϵ

[
||ϵ− ϵθ(st, t, c)||2

]
. (7)

Low-Rank Adaptation. LoRA [29], as one of the PEFT
techniques, its core idea is to freeze the original parameters
of the model and introduce two additional low-rank matrices
for training. This low-rank decomposition of matrices can be
viewed as a form of approximate numerical decomposition
technique.

Given the parameters WG of the generative model, the
number of parameters required for conventional full fine-
tuning is WG. When using LoRA, an additional parameter
∆W is introduced on top of WG. During subsequent training,
the original parameters WG remain frozen, and only the
trainable parameters ∆W are updated. Since the core of
LoRA lies in the use of low-rank decomposition, the trainable
parameters ∆W can be further decomposed into two low-rank
matrices, A and B, where A ∈ Rd×r, B ∈ Rr×k, and the
rank r ≪ min(d, k). Therefore, the updated formula for the
total model parameters W after fine-tuning using LoRA can
be expressed as:

W = WG +∆W = WG + αBA. (8)

where α is a scale factor. Setting α helps reduce the need for
readjusting hyperparameters when r changes.

When initializing the two low-rank matrices, matrix A is
typically initialized using Gaussian initialization, while matrix
B is initialized as a zero matrix. This initialization strategy en-
sures that the training starts with ∆W = 0, thereby preventing
any impact on the model’s original output. In summary, when
using LoRA, the training process of the generative model only
computes gradients for the two low-rank matrices A and B,
while freezing the majority of the original parameters WG,
significantly reducing training time and resource consumption.
In addition, during training, α is set for W to help eliminate
the impact of changes in r on parameter updates, ensuring
more consistent hyperparameter tuning.

IV. THE PROPOSED METHOD

A. Overview

The proposed method aims to address three fundamental
challenges in the field: (1) establishing robust traceability for
the diffusion model and its generative content, (2) developing
flexible processing capabilities for variable-length inputs, and
(3) reducing the steps of algorithm construction and computa-
tional overhead of watermark training. Therefore, the proposed
SOILDO, as depicted in Fig. 2, comprises three phases designed
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to tackle these issues. First, the watermark encoder Enc(·) is
employed to transform the watermark w into the latent vari-
able σ. Then, the original input of model sT is combined with
σ and fed into the diffusion model to generate the watermarked
speech ŝ0. Subsequently, ŝ0 undergoes the attack simulator
AS(·). Finally, the watermark decoder Dec(·) recovers the
watermark ŵ from the watermarked speech. It is emphasized
that the parameters of the diffusion model are frozen during
training, and the model is updated solely through LoRA. The
details will be provided in the following sections.

B. The Pipeline of the Proposed Method

1) Watermarking Phase: During this phase, the primary ob-
jective is to inject the watermark into the diffusion model while
preserving the model’s intrinsic performance. To realize this,
the watermark encoder is designed to convert the watermark
into the latent variable, which is subsequently combined into
the original input of the diffusion model. This procedure also
necessitates that the latent variable be adjusted to approximate
the original input as closely as possible, ensuring that the
addition operation does not disrupt the normal operation of
the diffusion model. To achieve the model lightweighting, the
encoder’s architecture is deliberately streamlined, consisting
of three essential components: a linear layer, a ReLU activa-

tion, and a one-dimensional convolution layer (Conv1d), as
depicted in Fig. 3. The linear layer maps the watermark of
arbitrary length to a hidden representation that corresponds
dimensionally with the diffusion model’s original input. Sub-
sequently, the hidden representation undergoes normalization
through ReLU. Finally, the Conv1d layer captures the fine-
grained features of the watermark, effectively minimizing the
performance impact of the watermarking process.

Specifically, given the watermark w ∈ {0, 1}l, where l
denotes the length of the watermark, the watermark encoder
Enc(·) first transforms w into the latent variable σ, which
is then combined with the original input sT of the diffusion
model to acquire the modified input ŝT . The complete water-
marking phase can be expressed as:

σ = Enc(w), (9)

ŝT = σ + sT ∈ RB×C×L, (10)

where B is batch size, C denotes the channel of speech and
L represents the length of the original input.

2) Generating Phase: The generation phase utilizes the
diffusion model to synthesize watermarked speech based on
modified input ŝT . Although the preceding watermarking
phase has been optimized to minimize performance degrada-
tion, this operation inevitably introduces additional noise to
the diffusion model. In light of this, this phase implements
LoRA technology, which maintains the original parameters of
the diffusion model in a frozen state while adapting to the
watermarking operation through the introduction of a minimal
set of supplementary parameters.

In the training process of this method, the total parameters
W of the diffusion model are divided into two parts: the
original parameters WG and the trainable parameters ∆W ,
denoted as W = WG+∆W . Therefore, during the generation
phase, the diffusion model first takes ŝT as input and the mel-
spectrogram c of the speech as the condition, synthesizing the
watermarked speech through the inclusion of these additional
trainable parameters. The complete generating phase is:

ŝ0 = G(ŝT , t, c;WG +∆W ), (11)

where G(·) represents the diffusion model and t denotes
the diffusion step. After integrating LoRA into the diffusion
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TABLE I
SPECIFIC SETTINGS AND DESCRIPTIONS FOR EACH TYPE OF ATTACK, INCLUDING THE PARAMETERS AND

PROBABILITIES USED IN THE ATTACK SIMULATOR AND THE PARAMETERS UTILIZED FOR ROBUSTNESS EXPERIMENT DURING EVALUATION.

Attack Type Param. Prob. Param. (Infer) Description

Non-Attack
Non - 0.2 - Watermarked speech without attacking.

Speech Post-process Attacks
Gaussian Noise (GN) 15-20 dB 0.2 5/10/15/20 dB Adding white Gaussian noise to the watermarked speech.

Echo default 0.2 default Attenuating the watermarked speech volume by a factor of 0.4, delaying it by 100ms.
Rear-Segment Cropping (RSC) 25% 0.2 50% Cropping initial and final of the watermarked speech based on cut-rate.

Dither RPDF 0.2 TPDF Applying eliminating nonlinear truncation distortion to the watermarked speech.
Low-Pass Filtering (LPF) - - 3 kHz Permitting watermark speech signals below the threshold to pass.
Band-Pass Filtering (BPF) - - 0.3-8 kHz Allowing watermark speech signals within the minimum and maximum thresholds to pass.

Pink Noise (PN) - - 0.5 Adding pink background noise to the watermarked speech.

model, only the trainable parameters ∆W require gradi-
ent optimization, while the original parameters WG of the
model remain frozen. Furthermore, to balance the watermarked
speech quality and watermark extraction accuracy, this method
employs a speech-driven lightweight fine-tuning strategy for
training, which will be detailed in Section IV-C. In addition,
during the inference process, the diffusion model utilizing
LoRA eliminates the need for extra computational overhead
when performing generation tasks.

3) Attack Simulator: To simulate potential attacks that
could be confronted in real-world scenarios, we introduced an
attack simulator prior to the watermark extracting stage during
the training phase, which aims to boost the robustness of the
proposed method. Given a watermarked speech ŝ0, it initially
passes through the attack simulator AS(·) to yield an attacked
speech AS(ŝ0) and is then input into the watermark decoder.
Considering the impracticality of simulating all potential at-
tacks encountered in real-world environments, we incorpo-
rated three prevalent attack types (Gaussian Noise, echo, and
dither) complemented by a rear-segment cropping attack into
our attack simulator as representative speech post-processing
operations, as illustrated in Table I. To mitigate overfitting to
any particular attack, we assigned equal probabilities of 0.2
to each of the four attacks. In addition, we incorporated a
Non-attack operation with an equivalent probability of 0.2,
whereby the speech signal remains unmodified. This uniform
probability distribution ensures balanced exposure to all five
operations during training. Notably, we initially configured
the parameters of these attacks at low intensities. However,
these attacks are implemented with more aggressive parameter
settings for validating in robustness experiments.

4) Extracting Phase: To establish reliable traceability of
the diffusion model and synthesized speech while accommo-
dating variable-length inputs, a watermark decoder is designed
meticulously to facilitate efficient watermark recovery during
the extracting phase. The watermark decoder architecture
integrates a convolutional block (ConvBlock) and an extraction
block (ExtBlock), as depicted in Fig. 3. We construct the
ConvBlock utilizing seven depthwise separable convolution
(DSC) layers combined with a global averaging operation
(GAO).

The ExtBlock is composed of one linear layer, a ReLU
activation function, and another linear layer. The final linear
layer outputs the extracted watermark. In contrast to the

standard convolutional layer, DSC applies an individual filter
to each input channel, decomposing the input feature into
distinct separate layers, one for filtering and another for com-
bining [32]–[34]. As a single-channel signal, speech leverages
DSC’s channel-wise feature extraction capabilities to cap-
ture enhanced temporal representations. After the ConvBlock
completes feature extraction, the hidden features undergo a
GAO. This operation computes the mean across the feature
dimensions, aggregating hidden features of arbitrary speech
lengths into a unified scalar value. In this way, a fixed-length
feature is obtained regardless of variations in the input length.
It is also incorporated because it eliminates the dependency
of certain watermarking methods on input dimensions when
using convolutional layers, enabling the watermark decoder
to handle variable-length inputs. Besides, the averaging pro-
cess preserves global features, ensuring the integrity of the
watermark features. Subsequently, the ExtBlock recovers the
watermark from the averaged hidden feature.

upon receiving the watermarked speech ŝ0, it is first fed
into the attack simulator AS(·) to generate the attacked
speech AS(ŝ0). The attacked speech is then processed by the
watermark decoder Dec(·), where it first passes through the
ConvBlock CB(·) to extract hidden features h, which can be
expressed as:

h = CB(AS(̂s0)). (12)

Then, h is aggregated via GAO (GAO(·)) to obtain the fixed-
length feature hfix, enabling the effective accommodating of
variable-length inputs:

hfix = GAO(h) ∈ RB×lfix , (13)

where lfix denotes the fixed length obtained after aggre-
gating inputs of arbitrary lengths. Finally, hfix is fed into
the ExtBlock Ext(·) for watermark recovery, which can be
represented as:

ŵ = Ext(hfix) ∈ RB×l. (14)

C. Speech-Driven Lightweight Fine-tuning Strategy

The primary purpose of our SOLIDO is to reduce the
computational overhead associated with model training while
simultaneously balancing watermarked speech quality and
watermark extraction accuracy. To meet this goal, we fur-
ther proposed a speech-driven lightweight fine-tuning strategy
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(SDFT). This strategy implements LoRA to fine-tune the
diffusion model, introducing only a small number of addi-
tional parameters while keeping the original parameters of the
diffusion model frozen. Unlike the training objective function
of DDPM, this strategy drives gradient updates in the model
by constraining the distance between the original speech and
the watermarked speech.

As described in Sec. IV-B2, the overall parameters W of
the diffusion model are composed of the original parameters
WG and trainable parameters ∆W . Specifically, ∆W can be
decomposed into two low-rank matrices, A and B, where
∆W = BA ∈ Rd×k, A ∈ Rd×r, and B ∈ Rr×k, as
described in Sec. III. Therefore, according to the generation
process outlined in Eq. 11, the specific denoising process can
be refined as follows:

ŝt−1 =
1
√
αt

(
ŝt −

1− αt√
1− αt

ϵW (ŝt, t, c)

)
+ δtz. (15)

Once the watermarked speech is generated by the diffusion
model augmented with LoRA, the diffusion model can then
be trained by employing the corresponding loss function. To
enhance the quality of the watermarked speech, the mel-
spectrogram loss LM is first utilized to constrain the distance
between the original speech and the watermarked speech,
which can be expressed as:

LM = ||ϕ(s0)− ϕ(ŝ0)||1, (16)

where s0 is original speech, ŝ0 represents the watermarked
speech, ϕ(·) denotes the function of mel-sepctrogram transfor-
mation, and || · ||1 means the L1 norm. In addition, we utilize
the Short-Time Fourier Transform (STFT) magnitude loss LS

to further boost the quality of the watermarked speech. It can
be represented as:

LS = || log(ξ(s0))− log(ξ(ŝ0))||1, (17)

where ξ(·) denotes the function of STFT magnitude transfor-
mation. Therefore, the overall loss for promoting the water-
marked speech quality can be defined as:

LSQ = λmLM + λsLS , (18)

where λm and λs are hyper-parameters of LM and LS , used
to maintain the balance between the two terms.

On the other hand, binary cross-entropy is employed to
elevate the accuracy of watermark extraction, and this loss
LWEA can be expressed as:

LWEA = −
k∑

i=1

wi log ŵi + (1− wi) log(1− ŵi). (19)

In a nutshell, the final objective function is represented as:

L = LSQ + λweaLWEA, (20)

where λwea is a hyper-parameter to strike a balance between
the speech quality and extraction accuracy. The complete
process of speech-driven lightweight fine-tuning strategy is
presented in Algorithm 1.

Algorithm 1: Speech-Driven Lightweight Adaption
Fine-tuning Strategy (SDFT).
Require: Watermark w, watermark encoder Enc(·)

and decoder Dec(·) with their trainable
parameters θenc and θdec, diffusion model ϵθ
with trainable parameters ∆W and frozen
weights WG of DM, hyper-parameter αt,
diffusion step T , attack simulator AS(·), and
objective function LSQ and LWEA.

1 repeat
2 sT ← sT ∼ N (0, I);

// Watermarking
3 σ = Enc(w); ▷ w = {(wi), wi ∈ {0, 1}}li=1

4 ŝT ← ŝT = sT + σ;
// Generating

5 W ←W = WG +∆W ;
6 for t← T, ..., 1 do
7 if t > 1 then z ∼ N (0, I) else z← 0;
8 ŝt−1 = 1√

αt

(
ŝ− 1−αt√

1−αt
ϵW (ŝt, t, c)

)
+ δtz;

9 end
10 return ŝ0;

// Extracting
11 ŵ← ŵ = Dec(AS(ŝ0));

// Fine-tuning
12 Take gradient descent step on:

∇∆W+θEnc+θDec
(LSQ + LWEA);

13 until converged;

V. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Datasets: In order to validate the proposed SOLIDO, we
utilize two speech datasets: LJSpeech [35] and LibriTTS [36].
Concretely, LJSpeech is a single-speaker dataset consisting of
13,000 audio clips with a sampling rate of 22.05 kHz, while
LibriTTS is a multi-speaker dataset containing approximately
586 hours of speech with a sampling rate of 24 kHz. For
experimental validation, all audio samples from the LibriTTS
were resampled to 22.05 kHz to conform to diffusion models’
input specifications. Furthermore, all speech samples were
uniformly segmented into one-second intervals.

2) Evaluation Metrics: We evaluated the performance of
our method with different objective evaluation metrics. Short-
Time Objective Intelligibility (STOI) [37] predicts the intelli-
gibility of speech. Mean Opinion Score of Listening Quality
Objective assesses speech quality based on the Perceptual
Evaluation of Speech Quality (PESQ) [?]. We also conducted
evaluation metrics using Structural Similarity Index Measure
(SSIM) [38], which is a metric typically used for image quality
assessment Bit-wise accuracy (ACC) is employed to evaluate
the accuracy of watermark extraction.

3) Compared Methods: To comprehensively validate the ef-
fectiveness of the proposed method, we conducted comparative
experiments with various watermarking techniques. In the ex-
perimental design, representative methods were selected from
two major categories: post-hoc watermarking and generative
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TABLE II
COMPUTATIONAL OVERHEAD

Method Training Strategy Parameters↓ Size (MB)↓ ACC(%)↑

Post-hoc Watermarking (Deep Learning-based)
AudioSeal [19] FPT 23.33M 89.14 92.14
WavMark [20] FPT 2.48M 9.55 100.00
TBWM [21] FPT 0.77M 33.27 99.98

Generative Watermarking
HiFi-GANw [26] FPT 13.94M 193.03 98.93

Groot [28] PF 250.28M 984.99 99.69
SOLIDO(LoRA) APT 2.50M 49.88 98.93
SOLIDO(LoHA) APT 2.51M 49.90 97.92

TABLE III
ABLATION STUDY IN DIFFERENT RAND AND ALPHA OF LORA.

Rank Alpha Param.↓ STOI↑ PESQ↑ SSIM↑ ACC(%)↑

4 4 3.84k 0.9425 2.9048 0.8917 98.17
4 8 3.84k 0.9627 3.2440 0.8752 97.67
4 16 3.84k 0.9583 3.2147 0.9056 98.93
4 32 3.84k 0.9548 3.0058 0.8986 97.91

8 16 7.68k 0.9628 3.2274 0.8765 98.08
16 16 15.36k 0.9613 3.2091 0.8763 98.53
32 16 30.72k 0.9635 3.2376 0.8770 96.67

8 8 7.68k 0.9286 2.6133 0.8846 97.29
32 32 30.72k 0.9642 3.5104 0.8446 90.48
40 40 38.40k 0.9444 2.8199 0.8892 98.59
80 80 76.80k 0.9546 2.9849 0.8983 98.36

watermarking. For post-hoc watermarking, three handcrafted-
based methods (Normspace [15], FSVC [16], and PBML [17])
and three deep learning-based methods (WavMark [20], Au-
dioSeal [19], TBWM [21]) were chosen. As for generative
watermarking, one typical parameter training-based method
(HiFi-GANw [26]) and one parameter frozen-based method
(Groot [28]) were selected respectively.

B. Implementation Details

1) Model Settings: We employ two representative speech
diffusion models, DiffWave [7] and PriorGrad [8], as gen-
erative models for validation. Both diffusion models were
implemented using their default configurations for training
and inference. To evaluate the feasibility of the proposed
method, we incorporated two PEFT approaches: LoRA [29]
and LoHA [39]. The PEFT hyperparameters were configured
as follows: both LoRA and LoHA were implemented with
rank r = 4 and scaling factor α = 16. These adaptations
were integrated into the final five convolutional layers of the
diffusion models. The architectural configurations were as
follows: in the watermark encoder, the Conv1d layer utilized
a kernel size of 3, stride of 1, and padding of 1. For the
watermark decoder, all DSC layers were implemented with a
kernel size of 3, stride of 2, and padding of 1.

2) Training Settings: In the proposed SDFT, we employ
AdamW optimizer [40] with a learning rate of 2e-4. The batch
size and epochs were set to 4 and 25, respectively. During
SDFT, we initially set λwea = 1, λm = 0, and λs = 0.
Once LWEA dropped below a certain threshold, we updated
the settings to λwea = 0.1, λm = 0.5, and λs = 0.5. All
experiments are performed on the platform with Intel(R) Xeon
Gold 5218R CPU and a NVIDIA GeForce RTX 3090 GPU.

C. LoRA Parameter Configuration

To investigate the impact of LoRA configuration on the
watermark performance in the proposed method, this exper-
iment systematically examines different settings of rank r and
scaling factor α. Specifically, we conducted three comparative
experiments: (1) Evaluating watermarking performance with
consistent r while varying the α. (2) Further validating the
best-performing α from (1) across different r values. (3)
Rigorous examination of watermarking performance by im-
plementing extreme parameter configurations.

Table III delineates the comprehensive experimental out-
comes. Empirical analysis of the resultant data indicates that
within Setting (1), the optimal configuration balancing speech
fidelity and watermark recovery accuracy is achieved at r =
4, α = 16. This equilibrium point represents a performance
apex, with degradation observed when modulating α in either
direction. Furthermore, maintaining a constant α = 16, we
investigated the impact of varying r in Setting (2). The results
revealed a clear trend: as the rank increased, the overall perfor-
mance of the watermark exhibited a more pronounced degrada-
tion. In Setting (3), even under more extreme parameter config-
urations, the watermark performance showed no improvement
nor achieved parity with the optimal settings. Both speech
quality and extraction accuracy remained significantly inferior
to those in the best-case scenario. In a nutshell, experimental
results across various parameter configurations demonstrate
that the optimal configure are achieved at r = 4, α = 16.
Consequently, all subsequent experiments involving LoRA (or
LoHA) parameters adopt this configuration.

D. Computational Overhead

To elucidate the efficiency of the proposed SOLIDO in
mitigating the computational overhead inherent in parameter
training-based generative speech watermarking methods, we
conducted a comprehensive quantitative analysis of the para-
metric complexity, as illustrated in Table II. Specifically, we
systematically computed and compared the total parameter
count and model size across various generative watermarking
approaches during the training phase. Moreover, to provide
a comprehensive comparative assessment, we extended our
analysis to include deep learning-based post-hoc watermarking
techniques, thereby enabling a nuanced evaluation across
different watermarking paradigms.

As shown in the Table II, the proposed SOLIDO requires a
total of 2.50M and 2.51M trainable parameters for the LoRA
and LoHA configurations, respectively. Specifically, the LoRA
and LoHA introduce 3.84k and 7.68k additional parameters,
while the watermark encoder and decoder maintain fixed
parameter counts of 2.25M and 0.25M, consistent across both
configurations. In addition, the total model size of SOLIDO is
49.88 MB, comprising 9.55 MB for the watermark encoder-
decoder, 10.11 MB for LoRA, and 30.22 MB for the diffusion
model. The proposed SOLIDO, after utilizing PEFT, requires
lower computational costs and a more lightweight training
process than similar generative watermarking methods, both in
terms of total training parameters and model size. Specifically,
when compared to HiFi-GANw, a generative watermarking
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TABLE IV
FIDELITY OF THE PROPOSED METHOD. ↑ INDICATES A HIGHER VALUE IS MORE DESIRABLE.

Model PEFT Dataset Generated(Non-WM) ↔ Natural Watermarked ↔ Generated(Non-WM) Watermarked ↔ Natural

STOI↑ PESQ↑ SSIM↑ ACC(%)↑ STOI↑ PESQ↑ SSIM↑ ACC(%)↑ STOI↑ PESQ↑ SSIM↑ ACC(%)↑

D
iff

W
av

e

LoRA LJSpeech 0.9655 3.5120 0.8453 N/A 0.9583 3.2147 0.9056 98.93 0.9618 3.4066 0.8629 98.93
LibriTTS 0.9583 2.8156 0.8025 N/A 0.9274 2.7180 0.8800 98.33 0.9366 2.8153 0.8395 98.33

LoHA LJSpeech 0.9655 3.5120 0.8453 N/A 0.9594 3.1175 0.8699 98.78 0.9620 3.1107 0.9038 98.78
LibriTTS 0.9583 2.8156 0.8025 N/A 0.9412 2.6552 0.8389 99.13 0.9292 2.6198 0.8767 99.13

Pr
io

rG
ra

d

LoRA LJSpeech 0.9619 3.2154 0.8695 N/A 0.9653 3.4325 0.8675 97.92 0.9669 3.3257 0.9102 97.92
LibriTTS 0.9375 2.7489 0.8450 N/A 0.9358 2.8576 0.8342 98.01 0.9273 2.7745 0.8791 98.01

LoHA LJSpeech 0.9619 3.2154 0.8695 N/A 0.9577 3.0540 0.8690 99.28 0.9602 3.0633 0.9031 99.43
LibriTTS 0.9375 2.7489 0.8450 N/A 0.9327 2.6200 0.8431 99.48 0.9273 2.5899 0.8763 99.54

TABLE V
COMPARISON OF FIDELITY ON LJSPEECH. ↑ INDICATES A HIGHER VALUE

IS MORE DESIRABLE. DW AND PG REPRESENT DIFFWAVE AND
PRIORGRAD.

Method (bps) STOI↑ PESQ↑ SSIM↑ ACC(%)↑

Post-hoc Watermarking (Handcrafted-based)
Normsapce [15] (32) 0.9646 2.5506 0.8868 100.00

FSVC [16] (32) 0.9861 3.7866 0.9560 100.00
PBML [17] (100) 0.9984 3.9977 0.9803 100.00

Post-hoc Watermarking (Deep Learning-based)
AudioSeal [19] (16) 0.9985 4.5893 0.9811 92.14
WavMark [20] (32) 0.9997 4.4628 0.9690 100.00
TBWM [21] (100) 0.9853 4.0353 0.9388 99.98

Generative Watermarking
HiFi-GANw [26] (20) 0.9414 2.5862 0.9447 98.93

Groot [28] (100) 0.9605 3.3871 0.9088 99.69
SOLIDO(DW-LoRA) 0.9618 3.4066 0.8629 98.93
SOLIDO(DW-LoHA) 0.9620 3.1107 0.9038 98.78
SOLIDO(PG-LoRA) 0.9669 3.3257 0.9102 97.92
SOLIDO(PG-LoHA) 0.9602 3.0633 0.9031 99.43

approach via FPFT, its training parameters and model size
are 5.5 and 3.8 times larger than our method, respectively. In
the case of Groot, a parameter-free training approach, despite
requiring only watermark encoder and decoder training, its pa-
rameter count reaches an astonishing 250.28M—100 times that
of SOLIDO. Moreover, its model size is 19 times larger than
our method. Compared to post-hoc watermarking methods, our
approach requires significantly fewer training parameters than
AudioSeal and is on par with WavMark. Although TBWM
demonstrates superior parameter efficiency—attributable to its
specialized focus on audio traceability functionality—it lacks
the generative capabilities inherent in the SOLIDO. Moreover,
regarding model size, SOLIDO achieves a more compact
overall model size (19.66 MB) when excluding the generative
model, which is significantly smaller than TBWM. In a
nutshell, compared to the aforementioned methods, SOLIDO’s
significantly lower computational overhead further highlights
its efficiency in performing generative watermarking tasks,
making it practically viable for real-world watermarking tasks
on diffusion models.

E. Fidelity and Capacity

1) Analysis of Fidelity: In this experiment, we apply the
proposed SOLIDO to two diffusion models, DiffWave [7] and
PriorGrad [8], to validate fidelity. For each model, we evaluate
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Fig. 4. Capacity Analysis Across Different PEFT.

the quality of watermarked speech generated utilizing both
LoRA [29] and LoHA [39]. Table IV presents the fidelity
experimental results under these settings across two datasets,
LJSpeech [35] and LibriTTS [36].

The fidelity evaluation framework is systematically designed
to assess three critical dimensions:

• Case 1 conducts a comparative analysis between gen-
erated speech (without watermark) and natural speech
(Natural ↔ Generated(Non-WM)), serving as a bench-
mark to evaluate the intrinsic generation capability of the
diffusion model itself.

• Case 2 performs a comparative evaluation between wa-
termarked speech and generated speech (Watermarked
↔ Generated(Non-WM)), providing a quantitative assess-
ment of the speech quality degradation attributable solely
to the watermarking process.

• Case 3 establishes an evaluation by comparing water-
marked speech with natural speech (Watermarked↔ Nat-
ural), comprehensively assessing the composite effects of
both the generation and watermarking process on speech
quality.

The rationale for this experimental design stems from the dual
constraints that generative watermarking imposes on fidelity,
where both the generation and watermarking simultaneously
govern output quality. This fundamentally differs from post-
hoc watermarking approaches, where speech quality metrics
can directly and exclusively reflect watermarking performance.

The experimental results presented in the Table IV demon-
strate that the proposed SOLIDO successfully synthesizes
watermarked speech while maximally preserving the diffusion
models’ inherent generation capability. In terms of speech
quality metrics, the results of Case 2 show only a minor degra-
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TABLE VI
ROBUSTNESS OF THE PROPOSED METHOD AGAINST INDIVIDUAL ATTACKS. ↑ INDICATES A HIGHER VALUE IS MORE DESIRABLE.

Model PEFT Dataset GN PN LPF BPF Echo RSC Dither

5 dB 10 dB 15 dB 20 dB 0.3 0.5 3 kHz 0.3-8 kHz Default 50% Default

D
iff

W
av

e
[7

]

LoRA

LJSpeech
PESQ↑ 1.0372 1.0841 1.2235 1.5352 1.1943 1.0866 4.6185 3.7717 1.1702 N/A 4.6439
SSIM↑ 0.4589 0.5376 0.6202 0.7030 0.6633 0.5784 0.8846 0.7891 0.5706 N/A 1.0000

ACC(%)↑ 98.34 98.66 98.85 98.90 98.55 98.18 98.51 98.89 97.25 96.57 98.81

LibriTTS
PESQ↑ 1.0756 1.1820 1.4297 1.8902 1.1875 1.1022 4.6140 3.5055 1.2534 N/A 4.6438
SSIM↑ 0.4881 0.5672 0.6485 0.7281 0.6228 0.5642 0.8809 0.7741 0.5652 N/A 0.9999

ACC(%)↑ 97.77 98.33 98.49 98.49 98.51 96.48 97.48 98.03 96.85 91.26 98.33

LoHA

LJSpeech
PESQ↑ 1.0449 1.1103 1.2961 1.6976 1.2356 1.1029 4.6180 3.7993 1.1683 N/A 4.6439
SSIM↑ 0.5001 0.5840 0.6701 0.7532 0.7148 0.6313 0.8923 0.7857 0.5740 N/A 1.0000

ACC(%)↑ 98.89 98.93 98.90 99.05 98.56 97.81 98.69 98.71 96.26 96.87 98.73

LibriTTS
PESQ↑ 1.0891 1.2209 1.5192 2.0476 1.2499 1.1160 4.6174 2.6387 2.6358 N/A 4.6437
SSIM↑ 0.5152 0.5961 0.6790 0.7582 0.6839 0.6003 0.8800 0.8440 0.8438 N/A 1.0000

ACC(%)↑ 98.76 98.81 99.04 99.11 98.40 97.38 99.10 98.98 97.12 97.66 99.02

Pr
io

rG
ra

d
[8

] LoRA

LJSpeech
PESQ↑ 1.0379 1.0867 1.2274 1.5411 1.2067 1.0913 4.6186 3.8093 1.1875 N/A 4.6439
SSIM↑ 0.4610 0.5408 0.6243 0.7075 0.6695 0.5858 0.8860 0.7900 0.5762 N/A 1.0000

ACC(%)↑ 97.30 97.37 97.88 97.61 96.89 96.10 97.81 97.10 95.72 95.15 98.02

LibriTTS
PESQ↑ 1.0700 1.1652 1.3957 1.8327 1.2049 1.0952 4.6132 3.5013 1.2523 N/A 4.6438
SSIM↑ 0.4794 0.5571 0.6377 0.7171 0.6322 0.5485 0.8724 0.7747 0.5596 N/A 0.9999

ACC(%)↑ 97.66 97.52 98.02 98.18 95.93 94.35 97.58 96.98 96.70 97.42 97.96

LoHA

LJSpeech
PESQ↑ 1.0447 1.1099 1.2946 1.6932 1.2387 1.1044 4.6175 3.7846 1.1716 N/A 4.6439
SSIM↑ 0.5005 0.5840 0.6699 0.7532 0.7154 0.6328 0.8919 0.7858 0.5764 N/A 1.0000

ACC(%)↑ 99.27 99.35 99.18 99.16 99.44 99.07 99.22 99.35 99.51 98.36 99.28

LibriTTS
PESQ↑ 1.0888 1.2182 1.5159 2.0450 1.2491 1.1157 4.6132 3.4731 1.2595 N/A 4.6438
SSIM↑ 0.5138 0.5947 0.6773 0.7568 0.6838 0.5985 0.8797 0.7719 0.5714 N/A 1.0000

ACC(%)↑ 99.04 99.34 99.44 99.60 98.96 98.42 99.06 99.39 98.25 98.41 99.48

TABLE VII
COMPARISON OF ACC(%) FOR ROBUSTNESS AGAINST INDIVIDUAL ATTACKS. THE BEST RESULTS ARE INDICATED IN BOLD, WHILE THE

SECOND-BEST RESULTS ARE UNDERLINED.

Method (bps) GN PN LPF BPF Echo RSC Dither

5 dB 10 dB 15 dB 20 dB 0.3 0.5 3 kHz 0.3-8 kHz Default 50% Default

Post-hoc Watermarking (Handcrafted-based)
Normspace (32) [15] 52.64 58.56 54.17 62.08 47.31 47.33 58.06 52.52 56.30 49.91 65.75

FSVC (32) [16] 66.49 73.12 81.08 88.35 85.10 81.64 85.86 75.22 79.76 52.11 100.00
PBML (100) [17] 56.18 75.04 66.98 71.76 74.63 70.60 97.41 75.04 69.95 50.28 98.09

Post-hoc Watermarking (Deep Learning-based)
AudioSeal (16) [19] 60.48 60.86 62.38 66.00 68.72 65.71 91.64 70.20 72.77 64.60 59.46
WavMark (32) [20] 51.03 52.32 56.27 65.23 81.70 69.62 99.99 99.95 86.68 - 100.00
TBWM (100) [21] 55.98 63.37 72.25 81.92 81.96 73.24 99.43 98.83 94.30 99.31 99.99

Generative Watermarking
HiFi-GANw (20) [26] 61.29 79.57 92.67 96.78 97.28 95.88 91.39 97.43 98.37 98.93 98.93

Groot (100) [28] 99.13 99.39 99.65 99.37 99.22 99.04 98.66 99.39 98.67 - 99.56
SOLIDO(DW-LoRA) 98.34 98.66 98.85 98.90 98.55 98.18 98.51 98.89 97.25 96.57 98.81
SOLIDO(DW-LoHA) 98.89 98.93 98.90 99.05 98.56 97.81 98.69 98.71 96.26 96.87 98.73
SOLIDO(PG-LoRA) 97.30 97.37 97.88 97.61 96.89 96.10 97.81 97.10 95.72 95.15 98.02
SOLIDO(PG-LoHA) 99.27 99.35 99.18 99.16 99.44 99.07 99.22 99.35 99.51 98.36 99.28

dation compared to Case 1, indicating that the watermarking
process has a negligible impact on speech quality. Further-
more, comparing Case 3 with Case 2 reveals that after ac-
counting for the additional influence of the generation process,
the performance either remains comparable or shows only
a marginal decline. Synthesizing all experimental evidence,
the proposed SOLIDO ensures that the watermarking process
introduces only minimal degradation to speech generation,
with the final watermarked speech maintaining objectively
verified fidelity.

2) Comparison of Fidelity: To further comprehensively
validate the fidelity of the proposed method, we conducted
comparative experiments with existing watermarking methods.

Table V presents the fidelity evaluation results of different
approaches at their default capacity settings. Our SOLIDO
demonstrates fidelity performance under various configura-
tions employing different diffusion models and PEFT tech-
niques, with all four experimental setups maintaining a consis-
tent watermark capacity of 100 bps. The experimental results
demonstrate that the proposed SOLIDO achieves superior
speech generation capability among generative watermarking
methods. While numerical comparisons in PESQ with deep
learning-based post-hoc watermarking approaches still show
some performance gaps, this can be explained by the additional
generation process inherent to generative watermarking, as
analyzed in Section V-E1. However, when examining the other
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TABLE VIII
ROBUSTNESS OF THE PROPOSED METHOD AGAINST COMPOUND ATTACKS.

Model PEFT Dataset GN+BPF GN+Echo GN+Dither GN+PN PN+BPF PN+Echo PN+Dither
D

iff
W

av
e

[7
]

LoRA
LJSpeech

PESQ↑ 1.4787 1.1105 1.5353 1.0721 1.2561 1.0465 1.0851
SSIM↑ 0.5494 0.4527 0.7029 0.5393 0.4731 0.3819 0.5779

ACC(%)↑ 99.21 97.44 99.19 98.51 98.27 96.15 98.14

LibriTTS
PESQ↑ 1.7684 1.1612 1.8902 1.0889 1.2712 1.0547 1.1016
SSIM↑ 0.5570 0.4588 0.7281 0.5386 0.4433 0.3678 0.5643

ACC(%)↑ 98.14 97.22 98.49 96.43 96.24 94.11 95.90

LoHA
LJSpeech

PESQ↑ 1.1199 1.0556 1.1102 1.0451 1.3098 1.0502 1.1022
SSIM↑ 0.4436 0.3884 0.5840 0.5070 0.5086 0.4148 0.6321

ACC(%)↑ 99.07 96.75 98.69 98.32 98.25 95.71 98.19

LibriTTS
PESQ↑ 1.2528 1.0871 1.2209 1.0602 1.3030 1.0570 1.1183
SSIM↑ 0.4409 0.3898 0.5965 0.5060 0.4674 0.3889 0.6013

ACC(%)↑ 98.92 96.50 98.87 97.26 97.12 95.00 97.53

Pr
io

rG
ra

d
[8

]

LoRA
LJSpeech

PESQ↑ 1.0958 1.0492 1.0866 1.0384 1.2672 1.0484 1.0916
SSIM↑ 0.4140 0.3590 0.5408 0.4636 0.4789 0.3879 0.5856

ACC(%)↑ 97.37 95.13 97.79 95.88 95.93 92.98 95.64

LibriTTS
PESQ↑ 1.1966 1.0741 1.1660 1.0494 1.2531 1.0530 1.0984
SSIM↑ 0.4127 0.3629 0.5571 0.4628 0.4317 0.3576 0.5516

ACC(%)↑ 97.23 96.12 97.95 93.97 94.10 92.85 93.89

LoHA
LJSpeech

PESQ↑ 1.1184 1.0549 1.1098 1.0444 1.3077 1.0507 1.1049
SSIM↑ 0.4437 0.3870 0.5840 0.5056 0.5080 0.4143 0.6305

ACC(%)↑ 99.20 97.61 99.00 98.50 98.46 97.49 98.78

LibriTTS
PESQ↑ 1.2481 1.0844 1.2194 1.0595 1.3048 1.0582 1.1168
SSIM↑ 0.4394 0.3844 0.5949 0.5047 0.4666 0.3910 0.6003

ACC(%)↑ 99.06 98.12 99.37 98.43 98.32 96.97 98.46

TABLE IX
COMPARISON OF ACC(%) FOR ROBUSTNESS AGAINST COMPOUND ATTACKS. THE BEST RESULTS ARE INDICATED IN BOLD, WHILE THE

SECOND-BEST RESULTS ARE UNDERLINED.

Method (bps) GN+BPF GN+Echo GN+Dither GN+PN PN+BPF PN+Echo PN+Dither

Post-hoc Watermarking (Handcrafted-based)
Normspace (32) [15] 50.76 55.06 59.06 47.03 50.87 48.30 47.49

FSVC (32) [16] 72.55 67.27 73.41 72.37 79.45 71.20 79.53
PBML (100) [17] 60.86 58.89 60.89 60.13 70.98 65.66 70.78

Post-hoc Watermarking (Deep Learning-based)
AudioSeal (16) [19] 60.60 58.86 60.87 62.30 64.80 62.80 65.94
WavMark (32) [20] 51.25 48.96 52.89 52.55 65.82 56.36 69.19
TBWM (100) [21] 59.61 59.35 59.87 59.07 70.49 76.75 80.92

Generative Watermarking
HiFi-GANw (20) [26] 78.94 81.15 79.95 78.79 93.40 96.02 95.66

Groot (100) [28] 99.22 97.61 99.52 98.61 99.41 97.66 99.26
SOLIDO(DW-LoRA) 99.21 97.44 99.19 98.51 98.27 96.15 98.14
SOLIDO(DW-LoHA) 99.07 96.75 98.69 98.32 98.25 95.71 98.19
SOLIDO(PG-LoRA) 97.37 95.13 97.79 95.88 95.93 92.98 95.64
SOLIDO(PG-LoHA) 99.20 97.61 99.00 98.50 98.46 97.49 98.78

two evaluation metrics, our method demonstrates compara-
ble performance to post-hoc approaches. A comprehensive
analysis incorporating all three metrics confirms that the
watermarked speech maintains considerable quality overall.

3) Analysis of Capacity: We evaluated the capacity per-
formance of our SOLIDO by validating it on DiffWave using
LoRA and LoHA at capacities of 100, 500, 1000, and 2000
bps, respectively. All experiments were conducted on the
LJSpeech dataset. Figure 3 illustrates the relationship between
the capacity and performance metrics of our proposed method.
For the LoRA implementation, we observe a notable decline
in accuracy at 500 bps, despite maintaining comparable speech
quality. The performance metrics at 1000 bps remain largely
consistent with those at 500 bps. However, increasing the
capacity to 2000 bps results in substantial deterioration of both

speech quality and extraction accuracy relative to 1000 bps,
though the accuracy remains robust at 87%. In contrast, the
LoHA implementation exhibits remarkable stability at lower
capacities, with performance at 500 bps and 1000 bps remain-
ing virtually identical to that at 100 bps, with only SSIM
showing a minor degradation. At the elevated capacity of 2000
bps, while speech quality metrics remain relatively stable,
extraction accuracy experiences a considerable decrease, yet
maintains effectiveness above 85%. The evidence presented
above demonstrates that our method achieves a maximum
operational capacity of 2000 bps, beyond which performance
metrics indicate significant degradation in both speech quality
and watermark extraction reliability.
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F. Robustness

1) Robustness Against Individual Attacks: To validate the
robustness against individual attacks, we conducted evalu-
ations using the seven types of attacks listed in Table I.
Moreover, the attack intensities configured during validation
were set significantly higher than those in the attack simulator.
Table VI presents the robustness evaluation of the proposed
method applied to DiffWave and PriorGrad, using both LoRA
and LoHA configurations (denoted as D-R, D-H, P-R, and
P-H, respectively). The results were validated across the
LJSpeech and LibriTTS datasets.

Experimental results demonstrate that the proposed method
maintains excellent robustness against multiple individual at-
tacks across all four schemes (D-R, D-H, P-R, and P-H).
Specifically, under the D-R scheme, the robustness patterns
remained consistent across LJSpeech and LibriTTS datasets,
achieving average ACC values of 99.17% and 97.27% against
all individual attacks. Despite replacing LoRA with LoHA
for the D-H scheme, the proposed method maintained strong
robustness, attaining average ACC values of 98.31% and
98.49% on two datasets, respectively. In addition, under the
P-R scheme, the proposed method achieved average ACC
values of 97.00% and 97.12% on two datasets, respectively.
Moreover, the P-H scheme demonstrated superior robustness,
attaining higher average ACC values of 99.20% and 99.04% on
the respective datasets. The analysis across the aforementioned
four schemes conclusively demonstrates that the proposed
SOLIDO effectively integrates PEFT (LoRA and LoHA) with
watermarking technology, while maintaining strong resistance
against individual attacks across different diffusion models.

Furthermore, to comprehensively highlight the robustness of
the proposed method, we conducted comparative experiments
with existing SOTA approaches, with detailed results presented
in Table VII. The experimental data conclusively demonstrates
that our method achieves excellent robustness compared to
SOTA approaches. When confronting Gaussian noise, while
our method slightly underperforms Groot under high-decibel
noise attacks, SOLIDO demonstrates the most robust perfor-
mance at the maximum noise intensity (5 dB). Simultaneously,
SOLIDO also achieves the highest ACC when dealing with
pink noise. When addressing other individual attacks, although
our SOLIDO does not guarantee the highest ACC among
all methods, it still achieves exceptionally high ACC, and
its performance is only slightly lower than that of the best-
performing method. In summary, the proposed SOLIDO not
only demonstrates consistent robustness across all four config-
urations but also ranks among the top-performing approaches
when compared to SOTA methods.

2) Robustness Against Compound Attacks: In real-world
scenarios, practical environments often involve more complex
and severe unknown attacks. To meet the requirements of
actual application conditions, we further conducted robustness
experiments on the proposed method against compound at-
tacks. Specifically, compound attacks were formed by arbi-
trarily combining two individual attacks. For this experiment,
as illustrated in Table VIII, we configured seven specific
composite attacks as follows: (1) GN+BPF, (2) GN+Echo,

TABLE X
IMPACT OF VARIABLE-LENGTH ATTACKS FOR DIFFERENT

WATERMARKING TECHNIQUES.

Method Variable-length RSC TS

WavMark [20] ✘ - -
DeAR [22] ✘ - -
Groot [28] ✘ - -

AudioSeal [19] ✔ 64.60 58.46
TBWM [21] ✔ 99.31 49.52

HiFi-GANw [26] ✔ 98.93 52.51
SOLIDO (Ours) ✔ 96.57 81.81

(3) GN+Dither, (4) GN+PN, (5) PN+BPF, (6) PN+Echo, (7)
PN+Dither. The parameter configurations for each compound
attack remain consistent with those used in individual attacks.

The experimental results demonstrate that the proposed
SOLIDO still maintains strong robustness against compos-
ite attacks. Specifically, under the D-R scheme, it achieves
average ACCs of 98.13% and 96.65% on LJSpeech and
LibriSpeech, respectively. Similarly, the D-H scheme demon-
strates comparable performance with average ACC values of
97.85% and 97.31% on the respective datasets. For PriorGrad,
the P-R scheme achieves average ACC rates of 95.82% and
95.16% on two datasets, while the P-H scheme maintains
even higher performance with average ACC values of 98.43%
and 98.39% on the respective datasets. Our findings reveal
that the P-R scheme exhibits degraded performance against
both individual and compound attacks. This degradation likely
stems from using LoRA parameters optimized for DiffWave,
which may conflict with PriorGrad’s distinct structural char-
acteristics, ultimately leading to suboptimal adaptation and
reduced effectiveness.

In addition, we conducted a comprehensive comparative
analysis by evaluating SOLIDO against existing methods
under identical compound attack configurations as described
above, with detailed results presented in Table IX. Experi-
mental results reveal that most SOTA methods demonstrate
inadequate robustness against compound attacks, whereas our
SOLIDO method exhibits excellent resilience. Although Groot
demonstrates the most exceptional performance against com-
pound attacks, Table II reveals that its superior capability
comes at the cost of excessive parameter size and prohibitive
training overhead. Notably, SOLIDO’s ACC metrics are only
marginally lower than Groot’s, without exhibiting signifi-
cant performance gaps. Moreover, when compared to HiFi-
GANw (another generative watermarking approach), SOLIDO
demonstrates superior robustness across multiple compound
attack types. In conclusion, the proposed SOLIDO exhibits
strong robustness against compound attacks, highlighting its
suitability for deployment in real-world scenarios.

G. Importance of Handling Variable-Length Inputs

Recent advances in speech editing technology have facili-
tated more accessible speech manipulation (i.e., cropping the
silent frame of speech). It has heightened the demand for
watermarking methods capable of handling variable-length
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Fig. 5. Robustness against various rates of rear-segment cropping attacks.

inputs. Since handcrafted-based watermarking methods do
not involve variable-length input challenges, this experiment
exclusively compares the remaining five deep learning-based
watermarking approaches, as illustrated in Table X. Specif-
ically, the experiment was designed to include the RSC at-
tack, followed by padding, interpolation, and another time-
stretching (TS) attack.

Among these approaches, both WavMark and Groot lack
the capability to process variable-length inputs, rendering them
unsuitable for direct application to trimmed speech segments.
In contrast, both TBWM and our SOLIDO successfully extract
watermarks from variable-length speech inputs. We further
investigated the watermark extraction capability under two
distinct operations: zero-padding and interpolation. Moreover,
when confronting TS, only our method is still capable of
effectively extracting the watermark, while the other meth-
ods, regardless of whether they can handle variable-length
inputs, lack sufficient robustness to cope with such distortions.
The experimental results demonstrate that while padding and
interpolation can partially mitigate the limitations of fixed-
length inputs, the extraction accuracy achieved through these
operations significantly declines, particularly with the most
commonly used interpolation. In conclusion, the capability
to accommodate variable-length inputs enables watermarking
methods to process speech segments of diverse durations with
flexibility, thereby facilitating more real-world applications.

VI. CONCLUSION

In the era of AIGC, there is an urgent necessity to develop
sustainable and easily deployable watermarking solutions.
To this end, we first investigate the intersections of PEFT
and speech watermarking and propose a generative speech
watermarking method via LoRA. Specifically, a watermark
encoder is designed to transform the watermark into the latent
variables aligned with the input of the diffusion model. For
high-precision watermark extraction, a watermark decoder
based on DSCs is utilized to capture fine-grained temporal
features from the speech waveform. Furthermore, we propose
a speech-driven lightweight fine-tuning strategy that intro-
duces additional parameters to the generative model while
keeping its original parameters frozen, achieving high-fidelity
speech generation with significantly reduced computational
overhead. Extensive experiments demonstrate our SOLIDO’s

high fidelity across varying capacity settings, while robustness
validation confirms its exceptional performance against both
individual and composite attacks—particularly its resilience to
variable-length attacks.
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