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Gaussian Shading++: Rethinking the Realistic
Deployment Challenge of Performance-Lossless

Image Watermark for Diffusion Models
Zijin Yang, Xin Zhang, Kejiang Chen, Kai Zeng, Qiyi Yao, Han Fang, Weiming Zhang, Nenghai Yu

Abstract—Ethical concerns surrounding copyright protection
and inappropriate content generation pose challenges for the
practical implementation of diffusion models. One effective
solution involves watermarking the generated images. Existing
methods primarily focus on ensuring that watermark embedding
does not degrade the model performance. However, they often
overlook critical challenges in real-world deployment scenarios,
such as the complexity of watermark key management, user-
defined generation parameters, and the difficulty of verification
by arbitrary third parties. To address this issue, we propose
Gaussian Shading++, a diffusion model watermarking method
tailored for real-world deployment. We propose a double-channel
design that leverages pseudorandom error-correcting codes to en-
code the random seed required for watermark pseudorandomiza-
tion, achieving performance-lossless watermarking under a fixed
watermark key and overcoming key management challenges. Ad-
ditionally, we model the distortions introduced during generation
and inversion as an additive white Gaussian noise channel and
employ a novel soft decision decoding strategy during extraction,
ensuring strong robustness even when generation parameters
vary. To enable third-party verification, we incorporate public
key signatures, which provide a certain level of resistance against
forgery attacks even when model inversion capabilities are
fully disclosed. Extensive experiments demonstrate that Gaussian
Shading++ not only maintains performance losslessness but also
outperforms existing methods in terms of robustness, making it
a more practical solution for real-world deployment.

Index Terms—Image watermark, Diffusion models,
Performance-lossless.

I. INTRODUCTION

D iffusion models [1]–[5] signify a noteworthy leap for-
ward in image generation. These well-trained diffusion

models, especially commercial models like Stable Diffusion
(SD) [6], Glide [7], and Muse AI [6], enable individuals with
diverse backgrounds to create high-quality images effortlessly.
However, this raises concerns about intellectual property and
whether diffusion models will be stolen or resold twice.

On the other hand, the ease of generating realistic images
raises concerns about potentially misleading content genera-
tion. For example, on May 23, 2023, a Twitter-verified user
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Fig. 1. Existing watermarking frameworks can be divided into three
categories: (a) post-processing-based, (b) fine-tuning-based, and (c) latent-
representation-based. Since methods (a) and (b) either introduce watermark
residuals or require additional computational overhead, method (c) has
emerged as the mainstream approach by overcoming these two drawbacks.
Their performance is primarily evaluated based on the impact on the distri-
bution.

named Bloomberg Feed posted a tweet titled “Large explosion
near the Pentagon complex in Washington DC-initial report,”
along with a synthetic image. This tweet led to multiple
authoritative media accounts sharing it, even causing a brief
impact on the stock market1. On June 13, 2024, the European
Union enacted the Artificial Intelligence Act, which mandates
the implementation of technical safeguards including water-
marks to prevent AI-generated content from misleading the
public, ensuring transparency and credibility in the information
ecosystem.2. The urgency of labeling generated content for
copyright authentication and prevention of misuse is evident.

Watermarking is highlighted as a fundamental method for
labeling generated content, as it embeds watermark infor-
mation within the generated image, allowing for subsequent
copyright authentication and the tracking of false content.
Existing watermarking methods for the diffusion model can
be divided into three categories, as shown in Fig. 1. Post-
processing-based methods [8]–[20] adjust robust image fea-
tures to embed watermarks, thereby directly altering the image

1Fake image of Pentagon explosion on Twitter.
2Artificial Intelligence Act: Regulation (EU) 2024/1689 of the European

Parliament and of the Council.
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and degrading its quality. To mitigate this concern, recent
research endeavors propose fine-tuning-based methods [21]–
[25], which amalgamate the watermark embedding process
with the image generation process. Intuitively, these methods
need to modify model parameters, introducing supplementary
computational overhead.

To address two main concerns of visible watermark residu-
als in generated images and excessive computational overhead
inherent in prior methods, latent-representation-based meth-
ods [26]–[28] has emerged as a promising solution. These
methods ensure that watermark information remains invisible
in the image and offer plug-and-play functionality without
requiring training, making it an increasingly important focus
of research. Wen et al. [26] introduced the Tree-Ring Water-
mark (TRW), the first of its kind, which embeds information
by modifying latent representations to align with specific
patterns. However, it restricts the randomness of sampling,
which impacts the generative performance. Our earlier work,
Gaussian Shading [27], resolves this limitation by incorporat-
ing pseudorandom keys and distribution-preserving sampling
during the mapping of watermark information to latent repre-
sentations. This ensures that the distribution of watermarked
images matches that of non-watermarked images, achieving
the first provable performance-lossless watermarking scheme.
However, Gaussian Shading [27] requires assigning a unique
pseudorandom key to each image, which introduces significant
challenges in key management in practical implementation. To
tackle the key management issue, Gunn et al. [28] proposed
an undetectable watermarking method called the pseudoran-
dom error-correcting codes watermark (PRCW). The core
of PRCW [28] lies in pseudorandom error-correcting codes
(PRC) [29], where the generator matrix and parity check ma-
trix serve as the watermark key. Even when the watermark key
is fixed, PRCW [28] can generate pseudorandom bitstreams,
which are then mapped to latent representations that follow a
standard normal distribution. This effectively resolves the key
management problem.

However, our experiments reveal that the robustness of
PRCW [28] is highly sensitive to the guidance scale pa-
rameter. As shown in Tab. VI, PRCW [28] only demonstrates
strong robustness when the guidance scale values used during
generation and inversion are identical. Performance degrades
significantly when there is a mismatch between these values.
This poses a challenge for real-world deployment, as platforms
typically allow users to customize generation parameters,
which are unknown during watermark verification.

Based on the above analysis, latent-representation-based
watermarking methods currently face three main challenges
in practical deployment: First, how to achieve performance-
lossless watermarking, where the distribution of watermarked
images aligns with that of non-watermarked images, with a
fixed watermark key to simplify key management. Second,
watermarking schemes should accommodate user-customized
generation parameters and maintain robust performance even
when mismatches occur between the generation and verifi-
cation phases. Lastly, many existing watermarking schemes
depend on operators for both watermark embedding and verifi-
cation, introducing potential security and trustworthiness risks

in the authentication process [30]. Consequently, watermark
verification needs to be publicly accessible to any third party.

To address the aforementioned three challenges, we propose
Gaussian Shading++, a more practical performance-lossless
watermarking scheme designed for real-world deployment
scenarios. Specifically, during watermark embedding, we pro-
pose a double-channel design, in which the latent space is
evenly divided along the channel dimension into two parts:
the GS Channel and the PRC Channel. The GS Channel
continues to use Gaussian Shading [27], where the robustness
is enhanced by replicating the watermark content. The PRC
Channel serves as the watermark header, encoding the seed for
the pseudorandom number generator (PRNG) used in Gaussian
Shading [27] via PRC [29]. The actual watermark key is the
generator matrix and parity check matrix of PRC, and a private
key that is used together with the seed to drive the PRNG.
While the watermark key remains fixed, the seed can vary
freely. The fixed watermark key does not compromise the
pseudorandomness of the PRC Channel, and the randomly
sampled seed ensures the pseudorandomness of the GS Chan-
nel. Thus, the entire watermark remains pseudorandom even
with a fixed watermark key. Under the effect of distribution-
preserving sampling, both the latent representations mapped by
the watermark and those from random sampling follow a stan-
dard Gaussian distribution. Since the subsequent generation
process remains unchanged, the distribution of watermarked
images aligns with that of non-watermarked images, achieving
performance-lossless watermarking while addressing the key
management issue.

During watermark extraction, inspired by PRCW [28], we
employ a more accurate Exact Inversion method [31] to
recover the latent representations from images. The seed is
then extracted from the PRC Channel. Next, we propose a
novel soft decision decoding strategy for the GS Channel,
which significantly improves the hard decision method in
Gaussian Shading [27] that employs direct binarization of
latent representations. By modeling the entire generation and
inversion process as an additive white Gaussian noise channel
(AWGN Channel), we reformulate watermark recovery as a
maximum likelihood decoding problem of repetition codes
(REP codes) [32]. Specifically, each watermark bit undergoes
multiple embeddings in the latent space, and we compute
the posterior expectation of each repeated instance based on
the estimated noise. These expectations are then aggregated
to form a log-likelihood ratio (LLR) for each bit, enabling
near-optimal soft decision decoding that equivalently performs
maximum a posteriori (MAP) estimation under the assump-
tion of independent Gaussian noise. Thanks to the accurate
inversion, efficient modeling, and soft decision decoding,
the robustness of Gaussian Shading++ is further improved,
ensuring that the watermark can still be correctly extracted
even when the parameter guidance scale varies.

To further extend the scheme to third-party verifiability, it
is necessary to make the model inversion capability public,
which implies that third parties can access the latent rep-
resentations, thereby introducing the risk of forgery using
surrogate models [33]. To address this, we incorporate the
public-key signature ECDSA [34] into the framework, using
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a private signing key to sign the user information in the GS
Channel. During extraction, the extracted watermark from the
GS Channel is further verified using a public verification key
to authenticate the signature. After forgery, the watermark
accuracy of the image decreases, making it difficult to pass the
signature verification. This ensures that Gaussian Shading++
can resist a certain degree of forgery attacks [33].

To demonstrate the effectiveness of our method, we evaluate
Gaussian Shading++ against traditional distortions and neural
network-based removal attacks [6], [35]–[37], comparing it
with several state-of-the-art methods to validate its supe-
rior robustness. Additionally, we highlight the performance-
lossless nature of Gaussian Shading++ by comparing both
the visual quality of images and the distribution of latent
representations. Furthermore, Gaussian Shading++ exhibits
strong robustness even in scenarios where the guidance scale
parameter varied during generation. Finally, we assess the
robustness of Gaussian Shading++ in third-party verifiable
scenarios, demonstrating a certain level of resilience against
existing forgery attacks [33]. Overall, Gaussian Shading++
demonstrates strong practicality in real-world applications.

To summarize, our contributions are as follows:
• We propose a double-channel design, utilizing the PRC

Channel to encode the random seed required for the
pseudorandomization of the GS Channel. This approach
overcomes the limitations of complex key management
in Gaussian Shading and achieves performance-lossless
even with a fixed watermark key.

• By building on the prior modeling of the generation and
inversion process as the AWGN Channel, we propose a
novel soft decision decoding strategy for the maximum
likelihood decoding in REP codes. This near-optimal
approach effectively enhances the robustness of the GS
Channel, enabling Gaussian Shading++ to achieve excel-
lent performance across varying generation parameters.

• By introducing the public-key signature ECDSA, we
extend the application scenario to enable verification
by any third party, while providing a certain level of
resistance against existing forgery attacks.

• The experimental results demonstrate that our method
outperforms state-of-the-art methods in terms of both ro-
bustness and performance losslessness, further advancing
the practical applicability of watermarking in diffusion
models.

II. RELATED WORK

A. Diffusion Models

Inspired by nonequilibrium thermodynamics [1], Ho et
al. [4] introduced the Denoising Diffusion Probabilistic Model
(DDPM). DDPM consists of two Markov chains used for
adding and removing noise, and subsequent works [5], [6],
[38]–[43] have adopted this bidirectional chain framework. To
reduce computational complexity and improve efficiency, the
Latent Diffusion Model (LDM) [6] was designed, in which
the diffusion process occurs in a latent space Z . To map an
image x ∈ RH×W×3 to the latent space, the LDM employs
an encoder E , such that z0 = E(x) ∈ Rh×w×ch. Similarly,

to reconstruct an image from the latent space, a decoder
D is used, such that x = D(z0). A pretrained LDM can
generate images without the encoder E . Specifically, a latent
representation zT is first sampled from a standard Gaussian
distribution N (0, I). Subsequently, through iterative denoising
using methods like DDIM [5], z0 is obtained, and an image
can be generated using the decoder: x = D(z0).

B. Diffusion Inversion

Diffusion inversion [5], [31], [44], [45] can be regarded as
the inverse process of generation, recovering latent representa-
tions from images for various downstream tasks, such as image
editing [46]–[51] and watermark detection [26]–[28]. The most
native approach is DDIM Inversion [5], which simply reverses
the time axis and employs the same sampling method as DDIM
generation. However, DDIM Inversion struggles with stable
reconstruction of real images, potentially leading to incorrect
image reconstruction in downstream tasks. Wallace et al. [44]
proposed maintaining two coupled latent representations and
achieving precise inversion of real and generated images
through an alternating approach. Zhang et al. [45] introduced
a bi-directional integration approximation method to perform
exact diffusion inversion. However, while improving inversion
accuracy, these methods modify the sampling process and are
not universally applicable to images generated by common
sampling methods [5], [40]. Hong et al. [31] achieved a
more general diffusion inversion method by utilizing gradient
descent or forward step methods, further enhancing reconstruc-
tion accuracy.

C. Image Watermark

Digital watermark [52] is an effective means to address
copyright protection and content authentication by embedding
copyright or traceable identification information within carrier
data. Typically, the functionality of a watermark depends on its
capacity. For example, a single-bit watermark can determine
whether an image was generated by a particular diffusion
model, i.e., copyright protection; a multi-bit watermark can
further determine which user of the diffusion model generated
the image, i.e., traceability.

Image watermark is a method that employs images as
carriers for the watermark. Initially, watermark embedding
methods primarily focused on the spatial domain [52], but
later, to enhance robustness, transform domain watermarking
techniques [53]–[59] were developed. In recent years, with the
advancement of deep learning, researchers have turned their at-
tention to neural networks [60], [61], harnessing their powerful
learning capabilities to develop watermarking techniques [10]–
[20].

D. Image Watermark for Diffusion Models

Existing image watermarking methods for the diffusion
model [8]–[28] can be divided into three categories, as shown
in Fig. 1. The image watermarking methods described in the
previous section can be applied directly to the images gener-
ated by the diffusion model, which is called post-processing-
based watermarks [8]–[20]. These methods directly modify
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the image, thus degrading image quality. Recent research en-
deavors have amalgamated the watermark embedding process
with the image generation process to mitigate this issue. Stable
Signature [21] fine-tunes the LDM decoder using a pre-trained
watermark extractor, facilitating watermark extraction from
images produced by the fine-tuned model. Zhao et al. [22]
and Liu et al. [23] suggest fine-tuning the diffusion model
to implant a backdoor as a watermark, enabling watermark
extraction by triggering. These fine-tuning-based approaches
enhance the quality of watermarked images but introduce
supplementary computational overhead and modify model
parameters.

To address the limitations of the aforementioned two
types of methods, Wen et al. [26] proposed the first latent-
representation-based method named the Tree-Ring Watermark
(TRW), which conveys copyright information by adapting the
frequency domain of latent representations to match specific
patterns. This method achieves an imperceptible watermark.
However, it directly disrupts the Gaussian distribution of
noise, limiting the randomness of sampling and resulting in
affecting model performance. In our previous work, Gaussian
Shading [27], we introduced a stream cipher and distribution-
preserving sampling to ensure that the distribution of wa-
termarked images matches that of non-watermarked images,
achieving a performance-lossless watermarking scheme. How-
ever, Gaussian Shading requires assigning a unique stream key
to each image, leading to key management challenges. Gunn et
al. [28] proposed the pseudorandom error-correcting codes wa-
termark (PRCW), which uses pseudorandom error-correcting
codes [29] to encode watermark information. This approach
allows the generation of latent representations that conform to
a standard Gaussian distribution even when the watermark key
is fixed, effectively addressing the key management issue in
the performance-lossless watermark. However, the robustness
of PRCW degrades when faced with variations in generation
parameters.

In this paper, we aim to design a watermarking method
that achieves performance-lossless even with a fixed water-
mark key, while maintaining strong robustness under scenarios
with varying generation parameters. Additionally, considering
practical applicability, the method should ideally be extendable
to support verification by any third party.

E. Pseudorandom Error-correcting Codes Based on LDPC
Codes

To address the key reuse issue in Gaussian Shading [27]
and enable consistent performance-lossless capabilities across
multiple image generations, we introduce the pseudorandom
error-correcting codes (PRC) based on LDPC codes [29] to
embed a header composed of random seeds.

The key generation, encoding, and decoding procedures of
the PRC based on LDPC codes are as follows:

• KeyGen: (n, g, t, r) 7→ (P,G)

– Sample a random matrix P ∈ Fr×n
2 (parity-check

matrix) subject to every row of P being t-sparse.
– Sample a random matrix G ∈ Fn×g

2 (generator
matrix) subject to PG = 0.

• Encode(m): Given message m ∈ Fg
2, sample noise e←

Ber(n, η), and output ciphertext c = Gm⊕ e.
• Decode(L): Given a vector of posterior soft information

L = (ℓ1, ℓ2, . . . , ℓn) (e.g., ℓi = E[mi | c′]), apply the BP-
OSD decoder to recover the original message m̂.

The above definition corresponds to the standard regular
LDPC codes, where the sparsity parameter t is fixed. To satisfy
the requirements of PRC, the following constraint must be
imposed:

• The sparsity is set as t = Θ(log n), and each execution of
Encode samples a fresh message m uniformly at random
from Fg

2.
When the above constraints are satisfied, the output of

Encode is pseudorandom under either the subexponential
Learning Parity with Noise (LPN) assumption, or under
the standard LPN assumption combined with the planted
XOR assumption (see in [29]); that is: For any polynomial-
time adversary A,∣∣∣∣PrP,G

[
AEncode(·) (1λ) = 1

]
− Pr

U

[
AU (1λ) = 1

]∣∣∣∣ ≤ negl(λ).

(1)
In later sections, we will show that by choosing an ap-

propriate sparsity parameter t and using a randomly sampled
seed from Fg

2 as the input to the PRC encode process, each
image generation involves fresh randomness. As a result,
our construction inherits the pseudorandomness guarantees
established in prior theoretical work.

III. THREAT MODEL

In this section, we introduce the threat model considered
for the proposed method. As illustrated in Fig. 2, it is divided
into two scenarios: Operator Verification and Third-party Ver-
ification. We also present the Watermark Statistical Test for
detection and traceability tasks.

A. Operator Verification

As shown in Fig. 2, the scenario involves the operator Alice,
the thief Carol, and two types of users Bob and Trudy.

1) Operator Alice: Alice is responsible for training the
model, deploying it on the platform, and providing the cor-
responding API for users, but she does not open-source the
code or model weights. On one hand, to fulfill the detection
(copyright protection) requirement, Alice embeds a single-
bit watermark into each generated image. The successful
extraction of the watermark from an image serves as evidence
of Alice’s rightful ownership of the copyright, while also
indicating that the image is artificially generated (as opposed
to natural images). On the other hand, to meet the traceability
requirement, Alice assigns a unique watermark to each user.
By extracting the watermark from illicit content, it becomes
possible to trace malicious user Trudy through comparison
with the watermark database. Traceability represents a higher-
level objective than detection and can also achieve copyright
protection for different users.

2) Community user Bob: Bob faithfully adheres to the
community guidelines, utilizing the API provided by Alice
to generate and disseminate images.
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'Astronauts ride white horse on the Moon.
Center the character, High Resolution, 4K'
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Trudy

Alice

'Trump jailed, leans on prison bars in orange
prison uniform. High Resolution, 4K'

Widely 
Spread Traceability
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Alice

Generated by
my model, I own
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The image was
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Trudy.

Watermarking
my model.

Carol

1110...

1110...

1110...

1110... 1110...

1110...

Detection

Operator Verification

'Trump jailed, leans on prison bars in orange
prison uniform. High Resolution, 4K'

Widely 
Spread

1110... 1110...

Third-party Verification

'Astronauts ride white horse on the Moon.
Center the character, High Resolution, 4K'

Bob

Generated by
Bob ！1110... 1110... 1110...

Normal
ganeration.

Dave

Trudy

Reprompt
forgery attack. 

Latent Representation ReusePrivate Key Public Key

Fig. 2. The two application scenarios of Gaussian Shading++ are Operator Verification and Third-party Verification. In the Operator Verification scenario,
Gaussian Shading++ considers satisfying the requirements of generated image detection (copyright protection) and malicious user traceability. In the Third-
party Verification scenario, Gaussian Shading++ considers the need for any third party to verify the watermark, and it aims to defend against the reprompt
forgery attack that may emerge once model inversion capabilities become publicly available.

3) Thief Carol: Carol does not use Alice’s services but
steals images generated by her model, claiming ownership of
the copyrights.

4) Malicious user Trudy: Trudy uses the API provided by
Alice to generate deepfakes and infringe content. To evade
detection and traceability, Trudy can employ various data
augmentation techniques to modify illicit images.

B. Third-party Verification

As shown in Fig. 2, the scenario involves the operator Alice,
any third party Dave who wishes to verify the watermark, and
two types of users Bob and Trudy.

1) Operator Alice: Alice provides users with an API, but
in the Third-party Verification scenario, she must expose the
model’s inversion capability. To mitigate the risk of malicious
user Trudy exploiting the watermark for forgery attacks, Alice
can maintain a public-private key pair. During the generation
process, Alice uses the private signing key to sign the user
information, and this signature, combined with the user infor-
mation, forms the watermark information. When a third party
Dave, needs to verify the watermark, Alice can provide the
public verification key directly or store it in a digital certificate,
making it readily available for Dave’s use. Additionally, to
enable Dave to trace back to the target user based on the
user information after signature verification, Alice also needs
to maintain a public watermark database to facilitate Dave’s
query operations.

2) Any third party Dave: Dave can be any third party
seeking to verify the watermark, and he requires both Alice’s
public verification key and access to the publicly available
model inversion capability. Once the signature verification
is successful, Dave can trace the user information in the
watermark database maintained by Alice.

3) Community user Bob: Bob faithfully adheres to the
community guidelines, utilizing the API provided by Alice
to generate and disseminate images. Bob’s user information is
signed using Alice’s private signing key, and his user infor-
mation is made publicly available in the watermark database.

4) Malicious user Trudy: Trudy’s goal is to disguise illicit
content as being generated by other users. Although Alice
has made the watermark database publicly accessible, Trudy
cannot directly forge content without access to Alice’s private
key. Therefore, Trudy can only exploit the publicly available
model inversion capability to obtain the target user’s latent
representations. By leveraging a proxy model Dp, Trudy
can reuse these latent representations to regenerate content
under illicit prompts, thereby executing a reprompt forgery
attack [33].

C. Watermark Statistical Test
1) Detection: Alice embeds a single-bit watermark, rep-

resented by q-bit binary watermark s ∈ {0, 1}q , into each
generated image using Gaussian Shading++. This watermark
serves as an identifier for her model. Assuming that the water-
mark s′ is extracted from the image X , the detection test for
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the watermark can be represented by the number of matching
bits between two watermark sequences, Acc(s, s′). When the
threshold τ ∈ {0, . . . , q} is determined, if Acc(s, s′) ≥ τ , it
is deemed that X contains the watermark.

In previous works [62], it is commonly assumed that the
extracted watermark bits s′1, . . . , s

′
q from the vanilla images

are independently and identically distributed, with s′i following
a Bernoulli distribution with parameter 0.5. Thus, Acc(s, s′)
follows a binomial distribution Ber(q, 0.5).

Once the distribution of Acc(s, s′) is determined, the false
positive rate (FPR) is defined as the probability that Acc(s, s′)
of a vanilla image exceeds the threshold τ . This probability
can be further expressed using the regularized incomplete beta
function Bx(a; b) [21],

FPR(τ) = Pr (Acc (s, s′) > τ) =
1

2q

q∑
i=τ+1

(
q
i

)
= B1/2(τ + 1, q − τ).

(2)

2) Traceability: To enable traceability, Alice needs to
assign a watermark si ∈ {0, 1}q to each user, where
i = 1, . . . , N and N represents the number of users.
During the traceability test, the bit matching count
Acc(s1, s′), . . . , Acc(sN , s′) needs to be computed for all N
watermarks. If none of the N tests exceed the threshold
τ , the image is considered not generated by Alice’s model.
However, if at least one test passes, the image is deemed to be
generated by Alice’s model, and the index with the maximum
matching count is traced back to the corresponding user, i.e.,
argmaxi=1,...,N Acc(si, s′). When a threshold τ is given, the
FPR can be expressed as follows [21],

FPR(τ,N) = 1− (1− FPR(τ))N ≈ N · FPR(τ). (3)

IV. PROPOSED METHOD

In this section, we first introduce the workflow of the
proposed method, Gaussian Shading++, as illustrated in Fig. 3.
We propose a double-channel design by partitioning the latent
space into two components: the PRC Channel and the GS
Channel. In the watermark key generation phase, a ternary
key set needs to be generated for the PRC channel. In the
Third-party Verification scenario, we also need to introduce the
public-key signature ECDSA [34] key pair to defend against
forgery attacks [33]. During embedding, the PRC Channel
serves as the watermark header, encoding the random seed
required for the GS Channel. The GS Channel enhances
robustness by performing diffusion on the actual watermark
message. The two Channels are then merged and used to
drive distribution-preserving sampling, followed by denoising
to generate watermarked images. During extraction, Exact
Inversion [31] is employed to recover the latent representation.
The distortion throughout the entire generation and inversion
process is modeled as an AWGN Channel, enabling posterior
estimation of the latent representation symbols. Subsequently,
the random seed in the PRC Channel is first recovered,
followed by decryption and soft decision decoding to extract
the watermark from the GS Channel. At the end of this
section, we provide theoretical proof of the performance-
lossless characteristic of Gaussian Shading++.

A. Watermark Key Generation

The watermarking scheme utilizes a composite key consist-
ing of two components. The first component is an LDPC key
used to construct the PRC Channel. The second component is
a private key skc, which is involved in the generation of the
stream key for the GS Channel.

Suppose the latent representations have dimensions
ch× h× w and each dimension can represent v bits. We
designate the first half of the channels for PRC embedding,
and refer to these channels as the PRC Channel. For the second
half of the channels, we refer to them as the GS Channel.

We follow the framework of the pseudorandom
error-correcting codes based on LDPC codes
(Sec. II-E). Specifically, the LDPC key is (P,G) ←
KeyGen( ch×h×w

2 , nseed, t, r). The private key skc is drawn
uniformly at random from the binary space {0, 1}nsk .

For the Operator Verification scenario, the watermark key
components (P,G, skc) are treated as private. In contrast, for
the Third-party Verification scenario, (P,G, skc) are consid-
ered public parameters, while the actual watermark generation
and extraction rely on an ECDSA [34] key pair (SK, V K),
where SK is the private signing key and V K is the corre-
sponding public verification key.

B. Watermark Embedding

In both scenarios, watermark embedding should be strictly
performed by the operator to prevent high-precision forgery
attacks from malicious third parties. The specific process is as
follows:

1) PRC Channel: We first sample seed ∈ Fnseed
2 of PRNG

uniformly at random, which is used to initialize the PRNG
within the GS Channel for stream cipher generation. Then,
we encode seed into a codeword using the LDPC codes-based
PRC: sample noise e← Ber(n, η), mc = G ·seed⊕e. Finally,
a mapping is applied to convert 0 to 1 and 1 to −1 on the mc,
resulting in mprc = (−1)mc .

2) GS Channel: Given that the entire latent space is equally
partitioned into two components, the watermark capacity
becomes v×ch×h×w

2 bits. To enhance the robustness of the
watermark, we introduce a spatial replication factor 1

fhw
and

a channel replication factor 1
fch

. We represent the watermark
using 1

fhw
of the height and width, and 1

fch
of the channel, and

replicate the watermark fch · f2
hw times. Thus, the watermark

s with dimensions v × ch
2fch
× h

fhw
× w

fhw
is expanded into

a diffused watermark sd with dimensions v×ch×h×w
2 . The

actual watermark capacity is q = v×ch×h×w
2fch·f2

hw
bits. In the third-

party verifiable scenario, to defend against forgery attacks [33],
we further introduce the public-key signature ECDSA [34],
where the watermark s consists of the user information and
its signature generated using the private signing key SK.

If we know the distribution of the diffused watermark sd,
we can directly utilize distribution-preserving sampling to
obtain the corresponding latent representations zsT . However,
in practical scenarios, its distribution is always unknown.
Hence, we introduce a stream key K to transform sd into
a distribution-known randomized watermark me through en-
cryption. Specifically, we derive K by concatenating the seed
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Fig. 3. The framework of Gaussian Shading++. The latent space is divided into the PRC Channel and GS Channel. During the watermark key generation, a
ternary key set is generated for the PRC Channel. In the Third-party Verification scenario, a public-key signature ECDSA [34] key pair is introduced. During
the watermark embedding, the PRC Channel serves as the header, encoding the random seed to drive a PRNG, resulting in mprc . The GS Channel embeds
a k-bit watermark sequence s, which undergoes diffusion, encryption, and transformation to produce mgs. The combined sequence of mprc and mgs is
used to drive distribution-preserving sampling, followed by denoising to generate watermarked images Xs. For watermark extraction, the process begins with
Exact Inversion [31] to recover z′T . The distortion throughout the entire generation and inversion process is modeled as an AWGN channel, enabling posterior
estimation of the symbols of z′T . Subsequently, the PRC Channel is first decoded to retrieve the random seed, which generates K′. K′ is employed to decrypt
the GS Channel, and the final watermark is obtained through soft-decision decoding. In the Third-party Verification scenario, s includes the user information
and its signature, which must be verified after extracting s′.

embedded in the PRC Channel with the private key skc, i.e.,
K = PRNG(H(seed||skc)), where H denotes a cryptographic
hash function and PRNG is a pseudorandom number generator
used to produce K. Considering the use of PRNG, me follows
a uniform distribution, i.e., me is a random binary bit stream.
To be compatible with the PRC Channel, a mapping from 0
to 1 and from 1 to −1 is required. That is, mgs = (−1)me .

3) Distribution-preserving sampling driven by randomized
watermark.: At this point, mprc and mgs are combined into
the watermark mz according to the channel where mprc is
placed in the first two channels of the latent space, and mgs

is placed in the last two channels.
Since both mprc and mgs are pseudorandom, mz is also

pseudorandom. We will prove this in Sec. IV-D. Once the dis-
tribution of mz is known, a distribution-preserving sampling
can be performed.

When each dimension represents v-bit randomized wa-
termark mz , these v bits can be regarded as an integer
y ∈ [0, 2v−1], where we treat −1 as binary 1 and 1 as binary
0. Since mz is pseudorandom, y follows a discrete uniform
distribution, i.e., p(y) = 1

2v for y = 0, 1, 2, . . . , 2v − 1. Let
f(x) denote the probability density function of the Gaussian
distribution N (0, I), and ppf(·) denotes the quantile function.
We divide f(x) into 2v equal cumulative probability portions.
When y = i, the watermarked latent representation zsT falls
into the i-th interval, which means zsT should follow the
conditional distribution:

p(zsT |y = i) =

{
2v · f(zsT ) ppf( i

2v ) < zsT ≤ ppf( i+1
2v )

0 otherwise .

(4)

The probability distribution of zsT is given by:

p(zsT ) =

2v−1∑
i=0

p(zsT |y = i)p(y = i) = f(zsT ). (5)

Eq. 5 indicates that zsT follows the same distribution as the
randomly sampled latent representation zT ∼ N (0, I). Next,
we elaborate on how this sampling is implemented.

Let the cumulative distribution function of N (0, I) be
denoted as cdf(·). We can obtain the cumulative distribution
function of Eq. 4 as follows,

F (zsT |y = i)

=


0 zsT < ppf( i

2v )
2v · cdf(zsT )− i ppf( i

2v ) ≤ zsT ≤ ppf( i+1
2v )

1 zsT > ppf( i+1
2v )

.
(6)

Given y = i, we aim to perform random sampling of zsT
within the interval [ppf( i

2v ), ppf( i+1
2v )]. The commonly used

method is rejection sampling [63]–[65], which can be time-
consuming as it requires repeated sampling until zsT falls into
the correct interval. Instead, we can utilize the cumulative
probability density. When randomly sampling F (zsT |y = i),
the corresponding zsT is naturally obtained through random
sampling. Since F (zsT |y = i) takes values in [0, 1], sampling
from it is equivalent to sampling from a standard uniform
distribution, denoted as u = F (zsT |y = i) ∼ U(0, 1). Shift
the terms of Eq. 6, and take into account that cdf and ppf are
inverse functions, we have

zsT = ppf(
u+ i

2v
). (7)
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Eq. 7 represents the process of sampling the watermarked
latent representation zsT driven by the randomized watermark
mz .

4) Image Generation: After the sampling process, the wa-
termark is embedded in the latent representation zsT , and the
subsequent generation process is no different from the regular
generation process of SD. Here, we utilize the commonly
adopted DPMSolver [40] for iterative denoising of zsT . After
obtaining denoised zs0, the watermarked image Xs is generated
using the decoder D: Xs = D(zs0).

C. Watermark Extraction

In the Operator Verification scenario, watermark extraction
is performed by the operator, and the verification result is made
publicly available. In the Third-party Verification scenario, the
operator is required to disclose the model inversion capability,
allowing any third party to perform watermark extraction. The
specific process is as follows:

1) Inversion and Posterior Estimation : Using the encoder
E , we first restore X ′s to the latent space z′s0 = E(X ′s).
Imprecise latent representation recovery can significantly re-
duce the effectiveness of watermark extraction. To address
this, we employ the more precise Exact Inversion method [31]
to estimate the additive noise. After a sufficient number of
inversion steps, z′sT can be considered approximately equal to
zsT within an acceptable error margin.

After obtaining the inversion result z′sT , we follow the
approach of Gunn et al. [29] and model the entire image gener-
ation and inversion process as a noisy channel. Specifically, the
concatenated codeword mz = mprc||mgs ∈ {−1, 1}ch×h×w

is viewed as passing through an AWGN Channel. The noise
strength is characterized by σ =

√
3/2, and the posterior

estimates m′
z = m′

prc||m′
gs are obtained via the error function

(erf) corresponding to the AWGN Channel, that is:

m′
z ≜ E [m | z′sT ] = erf

(
z′sT√

2σ2 (1 + σ2)

)
(8)

After performing posterior estimation to obtain m′
z , we

evenly split m′
z along the channel dimension into two com-

ponents: the PRC Channel watermark header m′
prc and the

GS Channel watermark information m′
gs, which are then

processed separately.
2) PRC Channel: Assuming the LDPC key is given by

(P,G), we employ the belief propagation with ordered statis-
tics decoding (BP-OSD) [66], [67] to recover the estimated
seed n′

seed : n′
seed = BP-OSD(P,m′

prc). This recovered seed
is then used to initialize the PRNG within the GS Channel for
stream cipher regeneration during watermark extraction.

3) GS Channel: For the GS Channel watermark informa-
tion m′

gs, decryption is performed via element-wise multipli-
cation with the stream key K ′ = PRNG(H(seed′||skc)), since
the following equation holds:

s′d ≜ E
[
(−1)s

d

| z′sT
]
= (−1)K

′
·m′

gs, (9)

where s′d ∈ [−1, 1] is the posterior expectation of the repeated
message (−1)sd . To obtain the maximum a posteriori (MAP)

decoding of the original message s, the problem essentially
reduces to decoding a repetition code (REP code [32]).

For each bit sj of the watermark information s, the log-
likelihood ratio (LLR) of its i-th repetition sdi,j can be com-
puted as follows:

LLRi,j = log
Pr
(
(−1)s

d
i,j = 1 | z′sT

)
Pr
(
(−1)sdi,j = −1 | z′sT

) . (10)

Since s′di,j ≜ E
[
(−1)s

d
i,j | z′sT

]
= Pr

(
(−1)s

d
i,j = 1 | z′sT

)
−

Pr
(
(−1)s

d
i,j = −1 | z′sT

)
, it is easy to derive that:

s′di,j =
eLLRi,j − 1

eLLRi,j + 1
= tanh(

LLRi,j

2
). (11)

For each bit sj of the watermark information s, due to the
independence of repeated observations, the total log-likelihood
ratio LLRtotal,j for a repetition count of num = ch×h×w

2fch·f2
hw

can
be calculated by:

LLRtotal,j ≜ log
Pr ((−1)sj = 1 | z′sT )
Pr ((−1)sj = −1 | z′sT )

=

num∑
i=1

LLRi,j =

num∑
i=1

2 · arctanh(s′di,j),
(12)

Therefore, the final estimated s′j of sj can be calculated by:

s′j = sign(LLRtotal,j). (13)

In practice, we use the first-order approximation of the
arctanh function for computational efficiency, i.e., LLRi,j ≃
2s′di,j . The final estimated s′j is then given by:

s′j = sign(
num∑
i=1

2s′di,j) = sign(
num∑
i=1

s′di,j). (14)

The estimation method (Eq. 14) shows negligible performance
difference compared to the optimal scheme (Eq. 13) that
accumulates full LLRs.

In the Third-party Verification scenario, after the watermark
is extracted, the user information and signature need to be
verified using the public verification key V K.

D. Proof of Lossless Performance

To demonstrate that our proposed hybrid watermarking
scheme is performance-lossless, a sufficient condition is to
prove that the embedded ciphertext mprc||mgs satisfies the
IND$-CPA security property—i.e., it is computationally in-
distinguishable from a random bitstring under chosen-plaintext
attacks. This suffices because the sampling process we adopt
is distribution-preserving: as long as the ciphertext driving
the sampling is IND$-CPA secure, the resulting watermarked
image remains computationally indistinguishable from a ran-
domly sampled image under chosen-plaintext attacks [68].

In the following, we present the formal definition of IND$-
CPA security, and subsequently provide a proof that the
ciphertext mprc||mgs used in our scheme satisfies this security
notion.
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Definition 1. (Chosen Plaintext Attack)
Consider a symmetric encryption scheme with a key tuple

KCS = (P,G, skc), which produces ciphertexts of the form:

(mprc ∥mgs)sd ≜ (G·seed⊕e) ∥
(
PRNG(H(seed ∥ skc))⊕ sd

)
,

where sd denotes the plaintext to be encrypted, and
H : {0, 1}∗ → Fk

2 is a hash function. The LDPC key
pair (P,G) is generated via the randomized algorithm
KeyGen(l(k), k, t, l′(k)) and skc is randomly sampled with
a length of k bits, all parameters depend on the security
parameter k, except for the constant t.

We define a chosen-plaintext attack (CPA) game between an
adversary A and a challenger as follows:

• Key generation stage. KCS = (P,G, skc) ←
(KeyGen(l(k), k, t, l′(k)), 1k).

• Learning stage. A sends plaintext sdA to the oracle and
returns (mprc ∥mgs)sdA . A can perform this stage multiple
times.

• Challenge stage. A sends plaintext sd ∈ M \ {sdA} to
the oracle, which will flip a coin b ∈ {0, 1}. If b = 0,
A obtains mz = (mprc ∥mgs)sd ; If b = 1, A obtains
u← U|(mprc ∥mgs)sd |.

• Guessing stage. A output a bit b′ as a “guess” about
whether it obtains a plaintext or a random string.

Define the Chosen Plaintext Attack (CPA) advantage of A
against the scheme by:

Advcpa
CS (A, k) ≜

∣∣∣∣PrKCS

[A (mz) = 1]− Pr
KCS

[A (u) = 1]

∣∣∣∣ .
(15)

The cryptographic scheme is indistinguishable from uni-
formly random bits under chosen plaintext attack (IND$-
CPA) if InSeccpaCS (t, l, k) ≜ maxA∈A(t,l)

{Advcpa
CS (A, k)} is

negligible in k.

Theorem 1. Let the sparsity parameter be set as t =
Θ(log l(k)), and suppose that each encryption execution sam-
ples a fresh seed uniformly at random from Fk

2 . Assume that
the pseudorandom generator PRNG satisfies standard pseudo-
randomness under the security parameter k, and that the hash
function H is modeled as a random oracle. Then the resulting
ciphertext (mprc ∥mgs)sd is computationally indistinguishable
from a uniformly random bitstring under a chosen-plaintext
attack; that is, the scheme satisfies IND$-CPA security.

Proof. Define H0 ≜ (mprc ∥mgs)sd = (G · seed ⊕
e) ∥

(
PRNG(H(seed ∥ skc))⊕ sd

)
.

Define H1 as the variant of H0 where H(seed ∥ skc) is
replaced by a random element of Fk

2 , i.e. H1 ≜ (G · seed ⊕
e) ∥

(
PRNG(r1)⊕ sd

)
.

Define H2 as the variant of H1 where (G · seed ⊕ e)
is replaced by a random element of {0, 1}l(k), i.e. H2 ≜
r2||

(
PRNG(r1)⊕ sd

)
.

Define H3 as the variant of H2 where PRNG(r1) is replaced
by a random element of {0, 1}|sd|, i.e. H3 ≜ r2||(r3 ⊕ sd).

As shown in Fig. 4, we claim that the advantage of distin-
guishing between H0 and H1, H1 and H2, H2 and H3, as
well as H3 and random bits, are all negligible in k.

Random Oracle PRC PRNG

Fig. 4. The hardness of distinguishing between H0 and H3.

(1) The advantage of distinguishing H0 from H1 is negligi-
ble if the hash function H is modeled as a random oracle and
the assumption that skc remains secret. Specifically, since the
adversary does not know skc, and seed is freshly sampled for
each encryption, the value seed ∥ skc is unpredictable to the
adversary.

In the random oracle model, unless the adversary queries the
oracle at exactly seed ∥ skc, the output H(seed ∥ skc) remains
statistically independent of all previously seen values. Since
skc is a k-bit secret key, each query hits the correct input
with probability at most 2−k, making the overall success
probability negligible in k. Therefore, replacing H(seed ∥ skc)
with a truly random string r1 ← Fk

2 results in a distribution
that is computationally indistinguishable from the original.

(2) Distinguishing H1 from H2 would contradict the pseu-
dorandomness of the PRC construction. Given that the sparsity
parameter is set as t = Θ(log l(k)), and each encryption
execution samples a fresh seed uniformly at random from Fk

2 ,
the term G · seed⊕ e constitutes an LDPC codes-based PRC
codeword. As shown in Sec. II-E, the pseudorandomness of
this construction is guaranteed either by the subexponential
LPN assumption, or by the standard LPN assumption in
combination with the planted XOR assumption.

Moreover, since each PRC codeword is generated using
an independently sampled random seed, ciphertexts corre-
sponding to different queries are statistically independent. This
ensures that the construction satisfies chosen-plaintext attack
(CPA) security under the assumed hardness of the underlying
PRC.

(3) Distinguishing H2 from H3 would contradict the secu-
rity of the PRNG. By assumption, the PRNG satisfies standard
pseudorandomness under the security parameter k; that is, for
a uniformly sampled seed r1 ∈ {0, 1}k, the output PRNG(r1)
is computationally indistinguishable from a uniformly random
bitstring of the same length. Therefore, if an adversary could
distinguish H2 from H3, it would imply a distinguisher against
the PRNG.

In addition, since each encryption instance uses a freshly
sampled seed, the input to the PRNG is independent across
queries. Together with the pseudorandomness of PRNG, this
ensures that ciphertexts are CPA-secure even under multiple
chosen plaintexts.

(4) Distinguishing H3 from a uniformly random bitstring is
information-theoretically impossible, as the distribution of H3

is identical to the uniform distribution over {0, 1}l(k)+|sd|.
By a sequence of hybrid arguments, we have shown that

the ciphertext generated by the scheme is computationally
indistinguishable from a uniformly random bitstring under a
chosen-plaintext attack. Therefore, the scheme satisfies IND$-
CPA security under the random oracle model, assuming the
pseudorandomness of the PRNG, the pseudorandomness of
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(a) Original (b) DwtDct (c) DwtDctSvd (d) RivaGAN (e) Stable Signature

(f) TRW (g) Gaussian Shading (h) PRCW (i) Gaussian Shading++

Fig. 5. Watermarked images generated using different watermarking methods with the same prompt: “Red dead redemption 2, cinematic view, epic sky,
detailed, concept art, low angle, high detail, warm lighting, volumetric, godrays, vivid, beautiful, trending on artstation, by jordan grimmer, huge scene, grass,
art greg rutkowski.”. Among them, post-processing-based methods (b) (c) (d) and the fine-tuning-based method (e) only add image residuals compared to the
original image (a).

the PRC, and the secrecy of the private key skc.

Remark 1. As demonstrated above, our hybrid watermarking
scheme inherits the pseudorandomness guarantees established
in prior theoretical work. This represents a conceptual ad-
vancement over PRCW [28], whose watermark ciphertext
takes the form G · (testbits ∥m ∥ r)⊕e. Since testbits and m
are not randomly sampled during use, PRCW cannot theoreti-
cally reduce its performance-lossless property to the hardness
assumptions underlying LDPC codes-based PRC. In practical
scenarios where m remains fixed, the pseudorandomness of
PRCW relies solely on r, making it potentially vulnerable
under large sample sizes. This limitation in pseudorandomness
may be empirically observed, as discussed in Sec. V-C4.

This proof above is conducted in the context of Operator
Verification, where our watermarking scheme is shown to be
provably performance-lossless. When extended to the Third-
party Verification setting, we no longer consider the unde-
tectability of the watermark compared to the unwatermarked
image, since public verifiability inherently conflicts with un-
detectability. This is because undetectability requires that no
polynomial-time algorithm can distinguish between the two,
whereas in the Third-party Verification setting, the watermark
extraction algorithm is publicly available and can naturally be
used for detection.

V. EXPERIMENTS

This section presents the experimental analysis. We begin by
evaluating the performance of Gaussian Shading++ in both the
Operator Verification and Third-party Verification scenarios.
Furthermore, we conduct comprehensive comparisons with

several state-of-the-art methods. Lastly, to validate the effec-
tiveness of each component within Gaussian Shading++, we
perform thorough ablation studies.

A. Implementation Details

1) Diffusion Models: In this paper, we focus on text-to-
image latent diffusion models, hence we select the Stable
Diffusion (SD) [6] provided by huggingface. We evaluate
Gaussian Shading++ as well as baseline methods, using SD
V2.1. The size of the generated images is 512 × 512, and
the latent space dimension is 4 × 64 × 64. During inference,
we adopt prompts from the Stable-Diffusion-Prompt (SDP)
dataset3, using a guidance scale of 7.5 (the default setting in
SD). Image generation is performed with 50 sampling steps
using DPMSolver [40]. Considering that users typically share
generated images without preserving the original prompts, we
perform 50 steps of inversion using Exact Inversion [31] with
an empty prompt and a guidance scale of 3 (the default setting
in Exact Inversion [31]).

2) Watermark Methods: In the main experiments, The PRC
Channel of Gaussian Shading++ encodes a 32-bit seed using
the PRC. For the GS Channel, we set the parameters as fch =
2, fhw = 4, v = 1, resulting in an actual capacity of 256 bits.
In the Third-party Verification scenario, we employ the public-
key signature scheme ECDSA [34], the 256-bit watermark is
further split into 32 bits of user information and 224 bits of
signature.

For comparison, we select three representative categories of
watermark methods as baselines:

3Stable-Diffusion-Prompts

https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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• Post-processing-based: We adopt three officially used by
SD, which embed specific patterns in either the fre-
quency or spatial domain: DwtDct [8], DwtDctSvd [8],
and RivaGAN [9]. The capacities of DwtDct [8] and
DwtDctSvd [8] are set to 256 bits. Since RivaGAN [9]
supports a maximum capacity of 32 bits, we retain this
setting.

• Fine-tuning-based: We adopt Stable Signature [21], which
injects watermark information by fine-tuning the VAE
decoder of Stable Diffusion, ensuring the watermark is
embedded in the generated images. Due to convergence
issues caused by large watermark capacities, we instead
use the official open-source model of Stable Signature
with a capacity of 48 bits4. During fine-tuning, we use
400 images from the ImageNet2014 [69] validation set,
with a batch size of 4 and 100 training steps.

• Latent-representation-based: We adopt TRW [26] , Gaus-
sian Shading [27], and PRCW [28]. TRW [26] embeds the
watermark by modifying latent representations to align
with specific patterns. As it is a single-bit watermark, we
evaluate it only in the detection task. Since its Rand mode
better aligns with the notion of performance-lossless
watermark, we adopt this setting. Gaussian Shading [27]
uses a stream cipher to pseudorandomize the watermark.
However, considering the challenges of key management
in practical deployment, the stream cipher is fixed during
our experiments. PRCW [28] encodes the watermark
using pseudorandom error-correcting codes. For a fair
comparison, the watermark capacities of both Gaussian
Shading [27] and PRCW [28] are set to 256 bits.

Examples of images from all of the above watermarking
methods are shown in Fig. 5.

3) Robustness Evaluation: We evaluate the robustness of
the methods from two perspectives: traditional noise distor-
tions and removal attack [70]. For traditional distortions, we
select six representative types of noise: (a) JPEG Compression,
QF = 70 (JPEG). (b) Brightness, factor = 1. (c) Gaussian
Blur, radius = 3 (GauBlur). (d) Gaussian Noise, µ = 0,
σ = 0.01 (GauNoise). (e) Median Filtering, kernel size = 7
(MedFilter). (f) 50% Resize and restore (Resize). For removal
attack, we adopt Variational AutoEncoder (VAE) [6], [35]–
[37], and Stable Diffusion (SD) [6] as erasure networks.

4) Evaluation Metrics: In the Operator Verification sce-
nario, we focus on two primary tasks: detection and trace-
ability. For detection, we compute the bit accuracy threshold
corresponding to a fixed false positive rate (FPR) based
on Eq. 2, and then report the true positive rate (TPR) on
watermarked images. For traceability, we directly evaluate
the bit accuracy of watermark extraction. In the Third-party
Verification scenario, we evaluate the accuracy of traceability,
measuring the success rate of accurately tracing the watermark
back to the target user.

Apart from the above metrics, we assess the impact of each
method on model performance from two perspectives: visual
quality and distribution of latent representations. For visual
quality, we employ Fréchet Inception Distance (FID) [71] and

4The GitHub Repository for Stable Signature

CLIP-Score [72] to measure the realism and text-image align-
ment of watermarked images, respectively. Specifically, we
compute FID and CLIP-Score over 10 batches of watermarked
images and conduct a t-test comparing the mean values against
those of non-watermarked images. A smaller t-value indicates
less performance degradation caused by watermarking. For
the distribution of latent representations, which mainly tar-
gets latent-representation-based methods, we generate 80, 000
latent representations and model them as samples from a
standard Gaussian distribution. We then perform hypothesis
testing, including the K-S test, Shapiro-Wilk test, and other
statistical methods, to compute the p-value. A higher p-value
indicates a closer match to the standard Gaussian distribution.

All experiments are conducted using the PyTorch 2.1.0
framework, running on a single RTX A6000 GPU.

B. Performance of Gaussian Shading++

1) Operator Verification: To enable detection, we consider
Gaussian Shading++ as a single-bit watermark, with a fixed
watermark s. We approximate the FPR to be controlled at
100, 10−1, . . . , 10−13, calculate the corresponding threshold τ
, and test the TPR on 500 watermarked images. As shown in
Fig. 6a, when the FPR is controlled at 10−13, the TPR remains
at least 0.97 for five out of the seven cases. Although the TPR
for Gaussian Noise is only 0.918, it is still a promising result.

For traceability, Gaussian Shading++ serves as a multi-bit
watermark. Assuming Alice provides services to N users,
Alice needs to allocate one watermark for each user. In our
experiments, we assume that N ′ = 1, 000 users generate
images, with each user generating 5 images, resulting in a
dataset of 5, 000 watermarked images.

During testing, we calculate the threshold τ to control the
FPR at 10−6. Note that when computing traceability accuracy,
we need to consider two types of errors: false positives, where
watermarked images are not detected, and traceability errors,
where watermarked images are detected but attributed to the
wrong user. Therefore, we first determine whether the image
contains a watermark. If it does, we calculate the number of
matching bits Acc with all N users on the platform. The user
with the highest Acc is considered the one who generated the
image. Finally, we verify whether the correct user has been
traced. When N > N ′, it can be assumed that some users
have been assigned a watermark but have not generated any
images.

As shown in Fig. 6b, when N = 106, Gaussian Shading++
achieves a traceability accuracy of over 96% in six cases.
Although the traceability accuracy for Gaussian Noise is only
92.26%, if a user generates two images, the probability of
successfully tracing him is still no less than 99%.

2) Third-party Verification: In this scenario, any third party
can perform traceability on the target user using the watermark
database publicly provided by the operator. Since the public-
key signature is unforgeable, the probability that a randomly
generated signature passes verification is negligible. There-
fore, the traceability accuracy is effectively equivalent to the
signature verification success rate. We generate 500 images
and evaluate the traceability accuracy of Gaussian Shading++

https://github.com/facebookresearch/stable_signature
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(b) Traceability results.

Fig. 6. Performance of Gaussian Shading++ in Operator Verification scenario. The results are presented separately for detection and traceability tasks.

under various traditional noise distortions, both before and
after incorporating ECDSA. As shown in Tab. I, after introduc-
ing the public-key signature, Gaussian Shading++ experiences
a significant performance drop when facing filtering-based
distortions such as Gaussian Blur and Median Filter. However,
it still maintains robust performance under other conditions,
with traceability accuracy remaining above 70%.

TABLE I
TRACEABILITY ACCURACY OF GAUSSIAN SHADING++. “OURS” DENOTES

THE NAIVE VERSION, WHILE “OURS + ECDSA” REPRESENTS THE
VERSION WITH THE PUBLIC-KEY SIGNATURE.

Noise Methods

Ours Ours + ECDSA

None 1.000 0.994
JPEG 0.972 0.722

Brightness 0.980 0.896
GauBlur 0.976 0.158

GauNoise 0.922 0.714
MedFilter 0.964 0.358

Resize 0.996 0.870

After the operator publicly releases the model inversion
capability, malicious users can reuse latent representations
and generate forged images with illicit prompts on a proxy
model to falsely frame target users, thereby launching a
reprompt attack (“Attk”) [33]. Moreover, since the sign of
the latent representations in Gaussian Shading++ encodes
the watermark, attackers can enhance the attack (“Attk+”)
by resampling within specific intervals corresponding to the
watermark bits.

In our experiments, we consider five potential proxy models
that attackers might use: SD V1.4, SD V1.5, SD V2.0, SD
V2.1 [6], and SD-XL [43]. The first 500 prompts from the
I2P [73] dataset are used as illicit prompts. For the “Attk”
scenario, we use SD V2.1 to generate 500 forged images. For
the enhanced “Attk+” scenario, we perform three resampling
attempts for each illicit prompt, resulting in a total of 1, 500
forged images. We compared the attack success rate based on
the use of ECDSA, and the results are presented in Tab. II.
It is evident that introducing the public-key signature signifi-

cantly reduces the risk of Gaussian Shading++ being forged,
particularly when the proxy models are SDV1.4 and SDV1.5.
Since SD-XL has a model architecture and parameters that
are substantially different from SD V2.1, forgery is difficult to
achieve. However, due to the similarity in parameters between
SD V2.0 and SD V2.1, these two proxy models can easily
perform forgery, which further emphasizes the importance of
the operator safeguarding the model parameters.

Overall, although introducing ECDSA may compromise
some robustness, it significantly reduces the risk of suc-
cessful forgery when attackers cannot access precise model
parameters. This trade-off is worthwhile when extending the
functionality to the Third-party Verification scenario.

TABLE II
ATTACK SUCCESS RATE OF REPROMPT ATTACKS (“ATTK” / “ATTK+”) ON
GAUSSIAN SHADING++. “OURS” DENOTES THE NAIVE VERSION, WHILE
“OURS + ECDSA” REPRESENTS THE VERSION WITH THE PUBLIC-KEY

SIGNATURE.

Proxy Model Methods

Ours Ours + ECDSA

SD V1.4 0.894 / 0.937 0.483 / 0.523
SD V1.5 0.886 / 0.937 0.362 / 0.433
SD V2.0 0.941 / 0.985 0.832 / 0.889
SD V2.1 0.944 / 0.985 0.839 / 0.889
SD-XL 0.000 / 0.000 0.000 / 0.000

C. Comparison to Baselines

In this section, we compare the performance of Gaussian
Shading++ with baselines on SD V2.1. Robustness is evaluated
from two aspects: traditional noise distortions and removal
attacks. Additionally, performance-lossless characteristic is
demonstrated in terms of visual quality and the distribution
of latent representations. Finally, we compare PRCW [28] by
evaluating the performance under varying guidance scale.

1) Robustness to Noise: We conduct tests on 500 gen-
erated images for each method respectively. As shown in
Tab. III, Gaussian Shading++ achieves near-optimal perfor-
mance under various noise conditions, second only to Gaus-
sian Shading [27]. It outperforms the state-of-the-art method
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TABLE III
COMPARISON OF ROBUSTNESS UNDER TRADITIONAL NOISE DISTORTIONS. WE CONTROL THE FPR AT 10−6 , AND EVALUATE THE TPR / BIT ACCURACY

FOR SD V2.1. BOLD REPRESENTS THE BEST, UNDERLINE REPRESENTS THE SECOND BEST.

Methods Noise

None JPEG Brightness GauBlur GauNoise MedFilter Resize

DwtDct [8] 0.832 / 0.790 0.000 / 0.509 0.292 / 0.579 0.002 / 0.509 0.814 / 0.770 0.000 / 0.521 0.218 / 0.594
DwtDctSvd [8] 1.000 / 0.999 0.998 / 0.870 0.186 / 0.503 0.904 / 0.771 0.998 / 0.979 0.998 / 0.937 0.996 / 0.979
RivaGAN [9] 0.970 / 0.993 0.844 / 0.964 0.764 / 0.936 0.718 / 0.942 0.738 / 0.933 0.914 / 0.970 0.940 / 0.986

Stable Signature [21] 1.000 / 0.998 0.856 / 0.889 0.886 / 0.937 0.000 / 0.413 0.948 / 0.973 0.000 / 0.647 0.332 / 0.806
TRW [26] 1.000 / - 1.000 / - 0.906 / - 1.000 / - 0.730 / - 1.000 / - 1.000 / -

Gaussian Shading [27] 1.000 / 1.000 1.000 / 0.999 0.998 / 0.999 1.000 / 0.998 1.000 / 0.998 1.000 / 0.998 1.000 / 1.000
PRCW [28] 1.000 / 1.000 0.950 / 0.972 0.964 / 0.984 0.846 / 0.933 0.878 / 0.943 0.886 / 0.943 0.988 / 0.992

Gaussian Shading++ 1.000 / 1.000 0.974 / 0.984 0.974 / 0.986 0.974 / 0.972 0.918 / 0.956 0.964 / 0.974 0.996 / 0.996
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Fig. 7. Comparison of robustness under removal attacks. The first row presents the TPR of watermark methods, while the second row shows their bit accuracy.
For VAE B [35] and VAE C [36], we select three strength levels quality = 2, 4, 6. For VQ VAE [37] and KL VAE [6], we choose three strength levels
f = 4, 8, 16. For SD V2.1 [6], we set five removal steps tstep = 10, 25, 50, 100, 200.

PRCW [28], and even improves bit accuracy by up to 4%
under Gaussian Blur. This is because, on the one hand, the
insufficient robustness of the PRC Channel leads to decoding
failure of the seed, and the fewer watermark copies in the GS
Channel compared to Gaussian Shading [27] result in reduced
robustness. On the other hand, the GS Channel in Gaussian
Shading++ exhibits stronger robustness than PRCW [28] when
the PRC Channel successfully decodes. As a result, the
overall performance of Gaussian Shading++ is between that
of Gaussian Shading [27] and PRCW [28]. Considering the
challenges of key management in Gaussian Shading [27],
Gaussian Shading++ is the optimal solution for practical
deployment.

2) Removal Attack: Besides traditional noise distortions,
recent studies [70], [74] emphasize the necessity for water-
marking methods to resist removal attacks. The main idea is
to reconstruct watermarked images through networks to erase
watermark signals. We consider two types of removal networks
and evaluate five methods: VAE (VAE B [35], VAE C [36],
VQ VAE [37], KL VAE [6]), and SD V2.1 [6]. For each
watermarking method, we evaluate 500 images under different
levels of each removal attack. The experimental results are
shown in Fig. 7. Post-processing-based [8], [9] and fine-
tuning-based [21] methods struggle to resist removal attacks
since their watermark signals are encoded in the residuals. For
latent-representation-based methods, Gaussian Shading [27]

demonstrates strong robustness against all removal attacks,
whereas TRW [26], PRCW [28], and Gaussian Shading++
struggle to resist VAE-based removal attacks. This is because,
although the GS Channel exhibits strong robustness, the PRC
Channel consistently decodes an incorrect seed, leading to
extraction errors in the GS Channel.

TABLE IV
THE t-TEST RESULTS FOR VISUAL QUALITY ON SD V2.1. BOLD

REPRESENTS THE BEST, UNDERLINE REPRESENTS THE SECOND BEST.

Methods Metrics

FID (t-value ↓) CLIP-Score (t-value ↓)

Stable Diffusion 25.23±.18 0.3629±.0006

DwtDct [8] 24.97±.19 (3.026) 0.3617±.0007 (3.045)
DwtDctSvd [8] 24.45±.22 (8.253) 0.3609±.0009 (4.452)
RivaGAN [9] 24.24±.16 (12.29) 0.3611±.0009 (4.259)

Stable Signature [21] 25.45±.18 (2.477) 0.3622±.0027 (0.7066)
TRW [26] 25.43±.13 (2.581) 0.3632±.0006 (0.8278)

Gaussian Shading [27] 25.15±.16 (1.005) 0.3624±.0006 (1.469)
PRCW [28] 25.22±.15 (0.1636) 0.3624±.0007 (0.8220)

Gaussian Shading++ 25.22±.10 (0.1597) 0.3626±.0011 (0.6228)

3) Performance Bias in Visual Quality: To assess the
performance bias from watermark embedding, we conduct
a t-test. We generate 50, 000/10, 000 images with SD V2.1
for each watermarking method, split into 10 groups of
5, 000/1, 000 images. The FID [71]/CLIP-Score [72] is com-
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TABLE V
COMPARISON OF LATENT DISTRIBUTIONS UNDER DIFFERENT STATISTICS AND STATISTICAL TESTS. WE HIGHLIGHT CLEARLY ABNORMAL STATISTICS

AND FAILED NORMALITY TESTS IN BOLD, WHILE UNDERLINE INDICATES TESTS WITH LOW CONFIDENCE (I.E., SMALL P-VALUES CLOSE TO ZERO).

Methods Statistics and Statistical Tests (Statistic / p-value ↑)

Mean Frobenius norm K-S Shapiro–Wilk Cramér–von Mises Jarque–Bera D’Agostino’s K-squared

Standard Sampling -4.4599e-6 / 0.9990 57.9245 / - 1.5989e-5 / 0.8910 0.9999 / 1.0000 0.0212 / 0.9957 0.0435 / 0.9785 0.0435 / 0.9785

Gaussian Shading [27] 0.3989 / 0.0000 183.4432 / - 0.5000 / 0.0000 0.7335 / 0.0000 5.4613e+7 / 0.0000 9.0466e+8 / 0.0000 3.7927e+8 / 0.0000
TRW [26] -8.6425e-6 / 0.9980 57.9628 / - 0.0003 / 0.0000 0.9999 / 1.0000 60.4934 / 0.0000 0.0055 / 0.9972 0.0055 / 0.9972

PRCW [28] 1.966e-5 / 0.9956 57.9865 / - 2.3074e-5 / 0.4877 0.9999 / 1.0000 0.1636 / 0.3507 5.2902 / 0.0710 5.2904 / 0.0710
Gaussian Shading++ -2.6283e-5 / 0.9941 57.9882 / - 2.2996 / 0.4922 0.9999 / 1.0000 0.1093 / 0.5413 0.8647 / 0.6489 0.8647 / 0.6489

puted for each group, and the mean µs is obtained. Simi-
larly, we generate 50, 000/10, 000 non-watermarked images,
evaluate FID/CLIP-Score across 10 groups, and calculate
µ0. For FID, 5, 000 images are sampled from MS-COCO-
2017 [75] validation set for score computation. For CLIP-
Score, OpenCLIP-ViT-G [76] is used to assess image-text
relevance.

If the model performance is maintained, then µs and µ0

should be statistically close to each other. Therefore, the
hypotheses are H0 : µs = µ0, H1 : µs ̸= µ0. A lower t-
value suggests a higher likelihood of H0 holding. If it exceeds
a threshold, H0 is rejected, indicating model performance
degradation. As shown in Tab. IV, most existing method [8],
[9], [21], [26], [27] significantly impact model generation per-
formance from a statistical perspective. In contrast, Gaussian
Shading++ achieves the smallest t-value for both FID and
CLIP-Score, indirectly confirming its performance-lossless
characteristic.

4) Latent Distribution: To evaluate whether the latent space
distribution of our watermarking scheme conforms to the
standard Gaussian distribution N (0, I), we generated a set
of latent vectors containing a fixed watermark message. We
computed the sample mean and the Frobenius norm of the
covariance matrix, and conducted five hypothesis tests to
assess normality: the Kolmogorov–Smirnov (K-S) test [77],
the Shapiro–Wilk test [78], the Cramér–von Mises test
[79], the Jarque–Bera test [80], and D’Agostino’s K-squared
test [81]. Specifically, the K-S test measures the maximum
deviation between the empirical and theoretical cumulative
distribution functions; the Shapiro–Wilk test evaluates the
correlation between the data and expected normal scores;
the Cramér–von Mises test quantifies the integrated squared
difference between distributions; and the Jarque–Bera and
D’Agostino’s tests assess skewness and kurtosis.

Our baseline methods include: standard Gaussian sampling
via ‘torch.randn’, Gaussian shading [27] with a fixed key,
TRW [26], and PRCW [28]. For all comparison methods, we
fix the same watermark message and generate 80,000 latent
vectors of shape [4, 64, 64] for evaluation.

The experimental results in Tab. V show that Gaussian
Shading [27], under a fixed key and fixed watermark message,
fails all normality tests. This is expected, as the output of
its watermark ciphertext is deterministic under these fixed
conditions, causing the latent space samples to concentrate in
a limited subspace. TRW [26] fails two of the tests—the Kol-
mogorov–Smirnov and the Cramér–von Mises tests—which is
also reasonable, as TRW does not explicitly enforce distribu-

tional preservation in the latent space.
PRCW [28] passes all the tests; however, its p-values in the

Jarque–Bera and D’Agostino’s K-squared tests are relatively
low, representing a weak pass. We hypothesize that this is
because the watermark ciphertext in PRCW takes the form
G ·(testbits ∥m ∥ r)⊕e. When both testbits and m are fixed,
the only source of randomness comes from r, which may be
insufficient under large sample sizes and could lead to slight
deviations from normality.

In contrast, our proposed method passes all normality
tests perfectly. Since the watermark header is computed as
G · seed ⊕ e, and seed is truly sampled at random, the
resulting pseudorandomness is theoretically guaranteed by the
pseudorandomness of the underlying PRC construction.

5) Performance across Guidance scale: Our experi-
ments have confirmed that Gaussian Shading++ achieves
performance-lossless watermarking with a fixed key and en-
ables third-party verifiability. To further validate its practical-
ity, evaluating its performance under varying guidance scale
is necessary. We primarily compare Gaussian Shading++
with PRCW [28]. For each value of guidance scale set to
3, 6, 9, 12, 15, we generate 500 watermarked images for evalu-
ation. Since the generation parameters are unknown during the
inversion phase, the guidance scale is fixed at 3 for all inverse
processes. The results in Tab. VI demonstrate that Gaussian
Shading++ consistently outperforms PRCW [28] across all
settings. This performance gain is attributed to our modeling of
the AWGN Channel across the entire generation and inversion
process, and the use of soft decision decoding. These results
highlight the suitability of Gaussian Shading++ for real-world
deployments where generation parameters may vary.

D. Ablation Studies
In this section, we conduct ablation studies on key modules

of Gaussian Shading++, including the pseudorandom error-
correcting codes (PRC), soft decision decoding (SDD), and the
location of the PRC Channel in the latent space (PRC Loc).
The last row of Tab. VII represents the default configuration
of Gaussian Shading++. Finally, we evaluate the performance
of Gaussian Shading++ under various noise strengths.

1) Effect of PRC: To evaluate the effectiveness of encoding
the seed in the PRC Channel using PRC codes, we replace
PRC with Bose–Chaudhuri–Hocquenghem codes (BCH) [82].
As shown in the first row of Tab. VII, this substitution leads to
a notable decline in robustness. Furthermore, BCH codes lack
pseudorandomness, making it challenging to achieve provable
performance-lossless.
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TABLE VI
ROBUSTNESS COMPARISON UNDER DIFFERENT GUIDANCE SCALE DURING GENERATION. WE CONTROL THE FPR AT 10−6 , AND EVALUATE THE TPR /
BIT ACCURACY FOR SD V2.1. THE GUIDANCE SCALE IS FIXED TO 3 DURING INVERSION. WITH NO BACKGROUND REPRESENTING PRCW [28] AND A

GRAY BACKGROUND REPRESENTING GAUSSIAN SHADING++.

Guidance Scale Noise

None JPEG Brightness GauBlur GauNoise MedFilter Resize

3 1.000 / 1.000 0.992 / 0.996 0.982 / 0.993 0.976 / 0.999 0.996 / 0.997 0.98 / 0.992 0.998 / 0.999
1.000 / 1.000 0.994 / 0.997 0.990 / 0.995 0.998 / 0.993 0.998 / 0.999 0.994 / 0.994 1.000 / 1.000

6 1.000 / 1.000 0.964 / 0.984 0.964 / 0.984 0.922 / 0.964 0.946 / 0.972 0.910 / 0.964 0.994 / 0.996
1.000 / 1.000 0.982 / 0.990 0.982 / 0.990 0.984 / 0.980 0.970 / 0.984 0.974 / 0.980 0.996 / 0.998

9 1.000 / 1.000 0.898 / 0.953 0.952 / 0.977 0.784 / 0.907 0.790 / 0.892 0.832 / 0.919 0.980 / 0.992
1.000 / 1.000 0.966 / 0.979 0.964 / 0.981 0.938 / 0.952 0.848 / 0.919 0.938 / 0.960 0.996 / 0.997

12 0.996 / 0.998 0.824 / 0.917 0.924 / 0.963 0.622 / 0.813 0.594 / 0.798 0.736 / 0.875 0.948 / 0.976
1.000 / 1.000 0.914 / 0.952 0.960 / 0.978 0.822 / 0.919 0.724 / 0.885 0.890 / 0.932 0.972 / 0.984

15 0.994 / 0.998 0.746 / 0.877 0.874 / 0.945 0.434 / 0.717 0.434 / 0.709 0.582 / 0.806 0.900 / 0.960
0.996 / 0.998 0.838 / 0.912 0.922 / 0.958 0.782 / 0.867 0.536 / 0.761 0.802 / 0.886 0.974 / 0.982

TABLE VII
ABLATION STUDY ON KEY MODULES OF GAUSSIAN SHADING++. WE CONTROL THE FPR AT 10−6 , AND EVALUATE THE TPR/BIT ACCURACY UNDER

VARIOUS NOISE DISTORTIONS FOR SD V2.1.BOLD REPRESENTS THE BEST, UNDERLINE REPRESENTS THE SECOND BEST.

Module Noise

Encode Decode PRC Loc None JPEG Brightness GauBlur GauNoise MedFilter Resize

BCH SDD front 0.994 / 0.997 0.588 / 0.794 0.820 / 0.910 0.008 / 0.503 0.644 / 0.820 0.062 / 0.531 0.732 / 0.866
PRC HDD front 1.000 / 1.000 0.966 / 0.977 0.980 / 0.987 0.970 / 0.948 0.914 / 0.952 0.964 / 0.959 0.996 / 0.995
PRC SDD-LLR front 1.000 / 1.000 0.970 / 0.984 0.990 / 0.994 0.974 / 0.972 0.910 / 0.953 0.964 / 0.975 0.990 / 0.994
PRC SDD top 1.000 / 1.000 0.940 / 0.967 0.960 / 0.979 0.906 / 0.946 0.872 / 0.932 0.936 / 0.962 0.992 / 0.995
PRC SDD bottom 1.000 / 1.000 0.958 / 0.974 0.966 / 0.981 0.934 / 0.959 0.914 / 0.952 0.932 / 0.959 0.994 / 0.996
PRC SDD back 1.000 / 1.000 0.948 / 0.973 0.966 / 0.982 0.846 / 0.920 0.888 / 0.942 0.906 / 0.950 0.988 / 0.993

PRC SDD front 1.000 / 1.000 0.974 / 0.984 0.974 / 0.986 0.974 / 0.972 0.918 / 0.956 0.964 / 0.974 0.996 / 0.996
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Fig. 8. Ablation study on different noise strengths.

2) Effect of SDD: To assess the effectiveness of the soft
decision decoding, we remove the posterior estimation step
in the GS Channel and instead apply hard decision decoding
(HDD), as used in Gaussian Shading [27]. Specifically, water-
mark bits are directly inferred from the sign of elements in z′sT ,
and final watermark recovery is performed via majority voting
over bits at the same positions. As shown in the second row of
Tab. VII, using HDD leads to a noticeable decline in overall
robustness, particularly under filtering-based distortions such
as Gaussian Blur and Median Filtering. These results highlight
the advantage of our soft decision decoding strategy.

Additionally, we evaluate the soft decision decoding method
using full LLR (SDD-LLR), as defined in Eq. 13. As shown in
the third row of Tab. VII, SDD-LLR, which utilizes the arctanh
function, performs similarly to the soft decision decoding,
which applies a first-order approximation of arctanh. Never-
theless, soft decision decoding offers reduced computational
complexity.

3) PRC Channel Location: Since the entire latent space is
divided into the PRC Channel and the GS Channel, how these
two are combined is crucial. We mainly discuss the position of
the PRC Channel, with the remaining part being the GS Chan-
nel. Considering the latent space dimensions of [4, 64, 64], we
define four positions for the PRC Channel: top, occupying the
upper half, i.e., [0 : 4, 0 : 32, 0 : 64]; bottom, occupying the
lower half, i.e., [0 : 4, 32 : 64, 0 : 64]; front, occupying the first
two channels, i.e., [0 : 2, 0 : 64, 0 : 64]; back, occupying the
last two channels, i.e., [2 : 4, 0 : 64, 0 : 64]. The experimental
results, shown in the last four rows of Tab. VII, indicate that
when the PRC Channel occupies the first two channels (front),
Gaussian Shading++ achieves the best performance, which is
also our default setting.

4) Noise Strengths: To further test the robustness, we
conduct experiments using different intensities of noises. As
show in Fig. 8, performance declines with higher intensities.
However, for Brightness, Gaussian Noise, and Median Filter,
even at high intensities, the bit accuracy remains above 75%.
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VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose Gaussian Shading++, a performance-lossless
watermarking method for diffusion models designed for prac-
tical deployment. First, we propose a double-channel design,
utilizing the PRC Channel to encode the random seed required
for the pseudorandomization of the GS Channel. This enables
performance-lossless watermarking when the watermark key
is fixed, addressing key management challenges in real-world
applications. Second, we model the entire generation and
inversion process as an additive white Gaussian noise channel
and propose a novel soft decision decoding strategy for the
maximum likelihood decoding in REP codes, ensuring strong
robustness even when generation parameters vary. Third, we
introduce the public-key signature ECDSA, extending water-
mark verification to any third party while providing resistance
against forgery attacks. Extensive experiments validate that
our method outperforms state-of-the-art approaches in both
robustness and performance losslessness, making it a more
practical watermarking solution for real-world deployment.

Although Gaussian Shading++ demonstrates excellent per-
formance in practical deployment scenarios, there are still
some limitations. First, while the GS Channel is sufficiently
robust, the performance bottleneck lies in the PRC Channel.
In scenarios where PRC [29] performs poorly, such as erasure
attacks from VQ VAE [37], the robustness of Gaussian Shad-
ing++ is also affected. Second, the anti-forgery capability of
Gaussian Shading++ in publicly verifiable scenarios still has
room for improvement, as it remains vulnerable to forgery
when attackers use proxy models with similar parameters.
Lastly, although Exact Inversion [31] improves extraction
accuracy, its optimization process inevitably increases the
computational cost of watermark extraction.

Therefore, future work will focus on three key aspects.
First, to fully leverage the performance of the GS Channel,
more advanced pseudorandom coding schemes [83] should
be introduced to construct a more robust watermark header.
Second, exploring denoising sampling or latent representation
decoding could help develop more secure and controllable
watermarking methods to enhance anti-forgery capabilities in
third-party verifiable scenarios. Third, faster inversion tech-
niques [84] should be incorporated to reduce the computational
cost of watermark extraction without sacrificing accuracy.
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