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Abstract

While one-way functions (OWFs) serve as the minimal assumption for computational cryp-
tography in the classical setting, in quantum cryptography, we have even weaker cryptographic
assumptions such as pseudo-random states, and EFI pairs, among others. Moreover, the minimal
assumption for computational quantum cryptography remains an open question. Recently, it has
been shown that pseudoentanglement is necessary for the existence of quantum cryptography
(Goulão and Elkouss 2024), but no cryptographic construction has been built from it.

In this work, we study the cryptographic usefulness of quantum pseudoresources —a pair of
families of quantum states that exhibit a gap in their resource content yet remain computationally
indistinguishable. We show that quantum pseudoresources imply a variant of EFI pairs, which
we call EPFI pairs, and that these are equivalent to quantum commitments and thus EFI pairs.
Our results suggest that, just as randomness is fundamental to classical cryptography, quantum
resources may play a similarly crucial role in the quantum setting.

Finally, we focus on the specific case of entanglement, analyzing different definitions of pseu-
doentanglement and their implications for constructing EPFI pairs. Moreover, we propose a new
cryptographic functionality that is intrinsically dependent on entanglement as a resource.
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1 Introduction

Many quantum resources are fundamental to achieving quantum advantage in information-processing
tasks over conventional classical devices, e.g., entanglement [PV06, HHHH09], coherence [BCP14,
SAP17], or ”magic” [VHMGE14, HC17]. However, the manipulation of physical systems to oper-
ate with these resources is constrained in terms of time and space. Ignoring these computational
limitations leads to an impractical characterization of such resources.

Inspired by complexity theory, a recent line of research studies these resources from a com-
putational perspective. This phenomenon, known as pseudoresources, characterizes states that do
not possess a given resource yet ”look like” resourceful states to a computationally bounded ob-
server [HBK24, BMB+24]. Among the different resources, the concept of pseudoentanglement [ABF+23,
ABV23, GE24, LREJ25] stands out as a key example, where entanglement is the “hidden” resource
of interest. More concretely, it describes the case where two families of states exhibit a large gap
in the amount of their entanglement yet remain indistinguishable to a polynomial-time quantum
adversary.

In classical cryptography, the resource of randomness plays a crucial role. Moreover, its compu-
tational variant, pseudorandomness, is at the core of symmetric cryptographic constructions. This
naturally raises the question of the role quantum resources play in quantum cryptography. How can
pseudoresource states be constructed from other cryptographic primitives? Which cryptographic
functionalities can be implemented given the existence of pseudoresources?

In the specific case of pseudoentanglement, various constructions have been proposed, ranging
from those based on One-Way Functions (OWFs)1 for pure states [ABF+23, ABV23, LREJ25] to
EFI pairs2 for mixed states [GE24]. In particular, this latter construction establishes pseudoen-
tanglement as a minimal assumption for the existence of most computationally based quantum
cryptographic protocols. However, to the best of our knowledge, no cryptographic primitive has yet
been constructed directly from pseudoentangled states.

Beyond entanglement, other quantum resources have also been explored from a computational
complexity perspective. For instance, recent work has examined magic states [GLG+24] and coher-
ence [HBK24] in the context of complexity theory. Moreover, based on pseudorandom density matri-
ces (PRDMs), these resources have also been studied in the case of mixed states [BMB+24]. PRDMs,
which represent density matrices that are computationally indistinguishable from Haar random ones,
and pseudomagic pure states have both been shown to imply EFI pairs [BMB+24, GLG+24].3

In this work, we take a step further and demonstrate that quantum pseudoresources can be
leveraged to construct useful cryptographic primitives. To do so, we introduce an extension of EFI
pairs, which we call EPFI pairs, and show that they imply quantum commitment in a way similar
to how EFI pairs do. More importantly, we present a general method for constructing EPFI pairs
from quantum pseudoresources. As a corollary, this establishes that quantum pseudoresources can
be used to construct several cryptographic primitives, including commitments, oblivious transfer,
and secure multiparty computation.

1In short, OWFs are functions that are easy to compute but hard to invert.
2An EFI pair consists of two efficiently generated quantum states which are far in trace distance, but which are

indistinguishable by computationally bounded adversaries. See Definition 3.1 for a formal definition
3Actually, pseudomagic implies EPFI pairs, that we define in this work.
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1.1 Our contribution

We describe now our contributions in more details.

1.1.1 Definition of EPFI pairs and constructing commitment schemes.

The cryptographic primitive of EFI pairs (Efficiently generated, statistically far and indistinguish-
able states) was first defined in [BCQ23], and it consists of a pair of states ρ and σ that are far in
trace distance but cannot be efficiently distinguished by polynomial-time algorithms. In [BCQ23],
they showed that EFI pairs are equivalent to quantum commitments, more specifically, to the sta-
tistically binding variant of canonical quantum commitments introduced in [Yan22]. Consequently,
EFI pairs serve as a fundamental assumption for the existence of commitments, oblivious transfer,
multiparty computation, and computational zero-knowledge proofs for non-trivial languages.

In order to achieve our results, we need to slightly modify such a definition as follows. We
consider two keyed families of states {ρk}k and {σk′}k′ , and we require that for every k and k′, ρk is
far from σk′ in trace distance, but are still indistinguishable by efficient algorithms. We call such pair
of ensembles as EPFI pairs for Efficiently generated, pairwise statistically far and computationally
indistinguishable families. We notice that an EFI pair can be seen as an EPFI pair in which each
ensemble contains one element. However, EPFI pairs do not trivially imply EFI pairs: we can have
families of states that are pairwise far but whose mixture is close.

In Section 3, we demonstrate that the existence of EPFI pairs of ensembles implies the existence
of quantum commitments. Informally, a commitment scheme is a two-party cryptographic primitive
in which a committer commits to a bit that remains hidden from the receiver until the committer
chooses to reveal it. The scheme must satisfy two properties: binding, meaning the committer
cannot change the committed value, and hiding, meaning the receiver cannot learn the value before
the reveal phase.

We focus on the canonical quantum commitments introduced in [Yan22], where it is shown that
proving either binding or hiding in the semi-honest setting—where both parties follow the protocol
during the commitment phase—is sufficient. This model simplifies analysis by restricting adversarial
behavior to the reveal phase and was proven in [Yan22] to be equivalent to stronger notions of
binding, such as sum-binding [Unr16]. For completeness, we briefly explain this construction.

As with EFI pairs, EPFI pairs naturally lead to the construction of canonical quantum commit-
ments.

• Commit stage: The committer commits to a bit b by generating a bipartite state
∣∣ψb〉

CR
and sending the register C to the receiver.

• Reveal stage: The committer discloses register R along with the bit b, allowing the receiver
to verify the commitment by projecting onto

∣∣ψb〉
CR

. If the verification fails, the receiver
aborts.

In our construction, we introduce a classical key to accommodate the use of state ensembles.
This modification does not alter the protocol since the key is also revealed in the opening stage.
Our approach closely follows the honest statistical binding and computational hiding canonical
quantum commitments construction from EFI pairs of [BCQ23]. Here, the committed register C
contains a state sampled from one of the EPFI pairs. In the reveal stage, the committer provides
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the receiver with the purification of the sampled state, the secret key associated with the state, and
the committed bit.

Honest binding follows from the statistical distance between any state sampled from one fam-
ily of the EPFI pair and all states from the opposing ensemble together with Uhlmann’s theorem
[Uhl76]. Similarly, computational hiding follows from the computational indistinguishability of
EPFI pairs. Thus, just as EFI pairs yield a statistically binding canonical quantum commitment
when restricted to two algorithms, EPFI pairs provide the same commitment structure when gen-
eralized to two families of algorithms for two possible committed values. This new functionality,
EPFI pairs, it is going to play a central role in the construction of cryptography from different
quantum pseudoresources, as sketched in Figure 1.

1.1.2 EPFI from quantum pseudoresources.

We explore the role of pseudoresourced states in quantum cryptography and demonstrate how they
can lead to the construction of EPFI pairs and thus, cryptography, as represented in Figure 1. In
quantum information theory, a resource refers to any intrinsic property of a quantum system—such
as entanglement, magic, or coherence—that provides an advantage for information processing tasks.
Each resource is characterized by a corresponding set of free (resourceless) states and the free oper-
ations that cannot generate the resource. Various measures quantify these resources by evaluating,
informally, how “far” a state is from the set of free states. One particularly relevant measure, and
the one we adopt in this work, is the relative entropy of resource.

Informal definition 1 (η-gapped pseudoresource). A pair of efficiently generated families of quan-
tum states is said to have an η-gapped pseudoresource if there is at least an η-gap in the relative
entropy of the resource of the states sampled from each one of the families, but these families are
computationally indistinguishable.

Therefore, under computational restrictions, the inherent resource properties of quantum states
can be effectively concealed. This phenomenon has been extensively studied in the contexts of
entanglement [ABF+23, ABV23, GE24, LREJ25], magic [GLG+24], and coherence [HBK24]. More
generally, works such as [HBK24, BMB+24] have characterized pseudoresources for any resource
monotone. In our approach, we focus on the relative entropy of resource—though the definition
can be extended to any asymptotically continuous monotone function —to formalize the notion of
a pseudoresource.

We construct EPFI pairs by assuming the existence of a pair of families of states with an η-
gapped pseudoresource. The construction follows naturally: each family in the pseudoresourced
pair directly corresponds to a family in the EPFI pair. The efficient generation and computational
indistinguishability properties of EPFI pairs are immediate from the definition of an η-gapped
pseudoresource. However, establishing statistical distance requires further analysis. Our approach
relies on an inequality from [Win16] that relates the relative entropy of resources to trace distance.
Informally, statistical farness follows from the asymptotic continuity of the resource measure: when
two states exhibit a significant gap in their resource value (in this case, relative entropy of resource),
they must also exhibit a large gap in trace distance.
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Figure 1: Summary of results and its relation with previous defined primitives.

1.1.3 Pseudoentanglement

Entanglement is the central resource in quantum information theory. In the study of resourcefulness
under computational constraints, pseudoentanglement has received the most attention, leading to
various constructions and definitions.

The first formalization of pseudoentanglement, introduced in [ABF+23], is restricted to families
of pure states. This limitation arises not only from the construction itself but also from the choice
of entanglement measure, as the entropy of entanglement lacks a well-defined operational meaning
for mixed states. While later works, such as [ABV23, LREJ25], consider more general entanglement
measures, their constructions are still pseudoentangled families of pure states.

Informal definition 2 (Pure η-gap pseudoentanglement). A pair of efficiently generated families
of quantum pure states is said to have η-gap pseudoentanglement if there is at least an η-gap in the
entanglement entropy of the states sampled from each one of the families, while the ensembles are
computationally indistinguishable.

The proposed definition aligns with that of [ABF+23], with a particular emphasis on the en-
tanglement entropy gap between states sampled from each family. The construction of EPFI pairs
from families exhibiting η-gapped pseudoentanglement follows a similar approach to the one used
for pseudoresources. Here, the relevant states are the reduced density matrices obtained by tracing
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out the partition used to measure entanglement. Applying Fannes’ inequality [Fan73], we estab-
lish the statistical distance of the EPFI pair, while computational indistinguishability and efficient
generation properties follow directly from the definition of pseudoentanglement.

Unlike pure pseudoentanglement, the entanglement in pseudoentangled mixed states cannot be
quantified using the entanglement entropy. The necessity of an operational meaningful entangle-
ment monotone motivated [ABV23] the use of the two most used measures of entanglement: the
entanglement cost, EC , and the distillable entanglement, ED. Moreover, they proposed the use of
computationally meaningful counterparts of these measures, in which the generation or distillation
of entanglement has to be implementable by a poly-time algorithm. The definition of pseudoentan-
glement with these entanglement monotones allowed [GE24] to construct a pseudoentangled mixed
state family from EFI pairs or, what it is the same, to prove mixed pseudoentanglement as a new
minimal assumption for the existence of computational based cryptography, as sketched in Figure 1.
Moreover, the use of other entanglement monotones also allows the existence of a maximal gap of
a gap in the pseudoentangled families of Θ(n) vs 0 4.

Informal definition 3 (Mixed η-gap pseudoentanglement). A pair of efficiently generated families
of quantum mixed states is said to have η-gap pseudoentanglement if there is at least an η-gap in
the relative entropy of entanglement of the states sampled from each one of the families, while the
ensembles are computationally indistinguishable.

While previous definitions of pseudoentanglement have been extended to mixed states [ABV23,
GE24], our formulation introduces key distinctions. We explicitly require both families to be ef-
ficiently preparable and quantify entanglement using an information-theoretic measure. The con-
struction of EPFI pairs from mixed η-gapped pseudoentanglement follows a similar approach to
prior cases, with the main difference being the inequality used to relate the regularised relative
entanglement entropy to trace distance, which in this case is derived from [Win16]. Consequently,
assuming a mixed η-gapped pseudoentanglement with η ≥ 2 + 1/poly(n), EPFI pairs exist.

At first glance, the use of an information-theoretic entanglement measure may seem restric-
tive. However, it actually represents a relaxation of previous definitions. Some families exhibit
no gap in computational entanglement measures, yet EPFI pairs can still be constructed from
them. Conversely, any pseudoentangled states with an η ≥ 2 + 1/poly(n) gap in their (asymptotic)
computational entanglement as defined in [ABV23] measures imply the existence of EPFI pairs.

1.1.4 Computationally locked entanglement

The research of new quantum functionalities with no classical analogue has been recently motivated
by the objective of finding the minimal assumption. Nevertheless, it is not clear which applications
some of these new functionalities can have. Moreover, in the case of pseudoentanglement, it was
proven and the minimal assumption [GE24] but no cryptographic functionality was proposed. After
the construction of canonical quantum commitments and EFI pairs from pseudoentangled states,
the main question that arises is the existence of a functionality that is inherently constructed from
the existence of pseudoentanglement.

Informally, the computationally locked entanglement functionality is given by an efficiently gen-

erated family of states {ψk(λ)AB }k which has high distillable entanglement, i.e, ÊϵD({k, ψkAB}) ≥ d.
This entanglement is efficiently distillable given the classical (or quantum) key k. Nevertheless,

4In contrast to pure pseudoentanglement, where the maximal gap is given by Θ(n) vs ω(log(n)).
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without having access to the key, the family is computationally indistinguishable from a low en-

tangled family {ψk(λ)AB }k, i.e., ÊϵC({ψk(λ)AB }k) ≤ c, where c < d. This construction can be seen as a
dual case of the previously defined pseudoentanglement [GE24, ABF+23, ABV23]: in this case, the
”highly entangled” family is the efficiently generated one while the ”low-entangled” family does not
have to. This functionality is also relaxation of our proposed definition for pseudoentanglement, in
which both families have to be efficiently generated. Possible applications of such a functionality
can be authenticated quantum teleportation or certified routing quantum networks. We leave as an
open question if such a functionality can be built from weaker computational assumptions

1.2 Open questions

The study of quantum resources from a limited computational perspective is a promising area of
research. In the case of entanglement, [LREJ25] has recently proven that in the case of pure states,
the manipulation of entanglement given polynomially bounded operations diverges significantly from
the unbounded framework. However, for general computational resource theories there is currently
no accepted measure that captures the “amount” of a resource when one is restricted to efficient
(e.g. polynomial-time) operations. A promising direction is to develop a notion of quantum relative
entropy that is defined relative to a class of computationally limited operations.

Another fundamental question is the relationship between EPFI and pseudoresources with com-
plexity classes. According to [Kre21], PP ̸= BQP is necessary for the existence of PRS; however,
such a condition is not known for EFI pairs—and therefore our proposed primitives might be even
weaker. Understanding whether the complexity condition differs from that of PRS would provide
insights into a possible separation of MiniQCrypt into two distinct worlds.

The relation between pseudomagic and pseudoentanglement has been studied for pure states
[GOL24]; however, it remains unexplored for mixed states. While the construction in [BMB+24]
simultaneously exhibits both pseudoentanglement and pseudomagic, it is unclear whether they
are independent in general. Moreover, demonstrating the possibility of constructing mixed pseu-
doentangled states without magic would be an intriguing result, suggesting that computational
indistinguishability is independent of the resource of magic for mixed states.

Lastly, our results closely depend on Fannes-type inequalities, and proving tighter versions of
them for the different resources would directly improve the security of our cryptographic construc-
tions.

2 Preliminaries

2.1 Notation

Quantum states are represented as density matrices ρ ∈ B1(H). The set of states is defined as
S(H) = {ρ ∈ B1(H) | ρ ≥ 0, tr ρ = 1}.A bipartite entangled state is defined as a state that is not
separable, i.e., it cannot be written as ρAB =

∑
i p(i)ρ

i
A⊗ρiB. A maximally bipartite entangled state

is given by |Ψ⟩ =
∑d−1

i=0 |ii⟩ /
√
d ∈ HA ⊗HB. In the case of the space of dimension 2, a maximally

entangled state is known as a Bell state, and it is of the form |Φ⟩ = (|00⟩ + |11⟩)/
√

2 ∈ HA ⊗HB,
with HA = HB = (C2)⊗n. We denote by U(H) the set of unitary operators. The fidelity of two
states ρ and σ is given by F (ρ, σ) = [Tr

(√√
ρσ

√
ρ
)
]2.
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The probability of distinguishing two density matrices is upper-bounded by 1
2(1+∆(ρ, σ)), where

∆(ρ, σ) is the trace distance. The states ρ and σ are said to be statistically close when a negligible
function µ(λ) exists such that ∆(ρ, σ) ≤ µ(λ). Given a security parameter λ, µ(λ) is negl(λ),i.e.,
negligible, if, for every fixed c, µ(λ) = o(1/λc).

In the Landau notation, given two functions f(n) and g(n), we write f(n) = o(g(n)) if
limn→∞ f(n)/g(n) = 0. In the same way, f(n) = ω(g(n)) if limn→∞ f(n)/g(n) = ∞. f(n) =
O(g(n)) if there exist a constant C > 0 such that limn→∞ f(n)/g(n) ≤ C. Similarly, f(n) = Ω(g(n))
if there exist a constant C > 0 such that limn→∞ f(n)/g(n) ≥ C. Lastly, f(n) = Θ(g(n)) if both
f(n) = O(g(n)) and f(n) = Ω(g(n)).

2.2 LOCC maps

In the study of entanglement theory, one of the main objectives is the characterization of the
entanglement. In order to understand how much entanglement a quantum state has, the first step
is to manipulate the quantum state. Quantum channels are completely positive and trace preserving
maps that transform quantum states into quantum states. In the study of entanglement, the relevant
quantum channels are the ones that does not increase (or create) entanglement. A natural class
that arises from a practical perspective is the one in which the parties are locally separated, and
they are only allowed to perform classical communication.

Definition 2.1 (LOCC map [ABV23]). A quantum channel is said to be an LOCC map

Γ : HA ⊗HB 7→ HĀ ⊗HB̄

if it can be implemented by a two-party interactive protocol where each party can implement
arbitrary local quantum computations and the two parties can exchange arbitrary classical commu-
nication.

Definition 2.2 (Circuit description of an LOCC map [ABV23]). Given an LOCC map Γ, its circuit
description is given by two families of circuits {CA,i}i∈{1,...,r} and {CB,i}i∈{1,...,r}, each of them acting
on nA + tA + c and nB + tB + c qubits respectively, such that the following procedure implements the
map Γ on an arbitrary input φAB ∈ (C2)⊗nA ⊗ (C2)⊗nB :

1. Registers A and B of nA and nB qubits are initialized in the state φAB. Ancilla registers A′

and B′ of tA and tB qubits are initialized in the |0⟩ state. Communication register C is also
initialized in the |0⟩ state.

2. For i = 1, ..., r, the circuit CA,i is applied to registers A, A′ and C. Then, register C is
measured in the computational basis. Thirdly, the circuit CB,i is applied to registers B, B′ and
C. Lastly, register C is measured in the computational basis.

3. The final output of the LOCC map in the subspace HĀ correspond to the state in the registers
A and A′. In the same way, the state in the registers B and B′ is the final output on HB̄.

A family of LOCC maps {Γ̂λ}λ∈N is said to be efficient if there exists a polynomial c such that
for all λ, Γ̂λ has a circuit description whose total number of gates, including the ancilla creation
and qubit measurements, is at most c(λ).
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2.3 Entanglement measures

We will now introduce some functions that allow the quantification of entanglement. The most
fundamental measure of entanglement in the case of pure states is given by the entanglement
entropy.

Definition 2.3 (Entanglement entropy). Given a bipartite state ρAB = |ψ⟩ ⟨ψ|AB ∈ HA ⊗HB, its
entanglement entropy is defined as

EA/B(ρAB) := S(ρA) = S(ρB) ,

where ρA = TrB(ρAB), ρB = TrA(ρAB) and S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy.

Nevertheless, in the case of mixed states, the entanglement entropy is not operationally mean-
ingful. This problem leads to several measures of entanglement [PV06]. Let us introduce two of the
most relevant ones.

Definition 2.4 (One-shot entanglement cost [ABV23]). Let ϵ ∈ [0, 1], Γ be an LOCC map. The
one-shot entanglement cost of a bipartite state ρAB ∈ HA ⊗HB is given by

EϵC(ρAB) = inf
n,Γ

{
n|1 − F(ρAB,Γ(Φ⊗n)) ≤ ϵ

}
,

where F (ρ, σ) is the fidelity, Φ = |Φ⟩ ⟨Φ| and |Φ⟩ ∈ HA ⊗HB is a Bell pair.

Definition 2.5 (One-shot distillable entanglement [ABV23]). Let ϵ ∈ [0, 1], Γ be an LOCC map.
The one-shot distillable entanglement of a bipartite state ρAB ∈ HA ⊗HB is given by

EϵD(ρAB) = sup
m,Γ

{
m|1 − F(Γ(ρAB),Φ⊗m) ≤ ϵ

}
,

where F (ρ, σ) is the fidelity, Φ = |Φ⟩ ⟨Φ| and |Φ⟩ ∈ HA ⊗HB is a Bell pair.

Let us now define the asymptotic versions of the measures of entanglement, which describe the
rate at which the entanglement can be extracted (or diluted).

Definition 2.6 (Asymptotic IID distillable entanglement). The asymptotic IID distillable entan-
glement of a bipartite state ρ ∈ HA ⊗HB is given by

E∞D (ρ) = inf
ϵ∈(0,1]

lim
t→∞

inf
1

t
EϵD(ρ⊗tAB) .

Definition 2.7 (Asymptotic IID entanglement cost). The asymptotic IID entanglement cost of a
bipartite state ρ ∈ HA ⊗HB is given by

E∞C (ρ) = inf
ϵ∈(0,1]

lim
t→∞

sup
1

t
EϵC(ρ⊗tAB) .

Previous measures of entanglement are specially relevant since any entanglement measure E(ρAB)
has to fulfill that E∞D (ρAB) ≤ E(ρAB) ≤ E∞C (ρAB), i.e., they are extremal [DHR02]. One of the
entanglement entropies that will be used in this paper is the regularised relative entropy of entan-
glement.
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Definition 2.8 (Regularised relative entropy of entanglement). Given a bipartite state ρAB ∈
HA ⊗HB, its regularised entropy of entanglement is given by,

E∞R (ρAB) = lim
n→∞

1

n
ER(ρ⊗nAB),

where ER(ρ) := minσAB∈SA:B
D(ρAB||σAB) is the relative entropy of entanglement and D(ρ||σ) =

Tr[ρ(log ρ− log σ)] is the relative entropy.

2.4 Computational entanglement measures

We have previously defined the information theoretic measures of entanglement. Nevertheless, we
can restrict to the case in which the operations have to be efficiently implementable, as proposed
by [ABV23]. The following definitions are meaningfully defined over families of states and in the
asymptotic limit.

Definition 2.9 (Computational one-shot entanglement cost [ABV23]). Let ϵ : N+ → [0, 1] and
λ ∈ N+. Fix polynomial functions nA, nB : N+ → N+. Let {ρλAB}λ be a family of quantum states
such that, for any λ ≥ 1, ρλAB ∈ HA ⊗ HB is a bipartite state on nA(λ) + nB(λ). The function
c : N → N is a upper bound on the computational entanglement cost of the family {ρλAB}λ, i.e.

ÊϵC({ρλAB}λ) ≤ c, if there exists an efficient LOCC map family {Γ̂λ}λ such that, for each λ ≥ 1, Γ̂λ

takes an input c(λ) EPR pairs, and

1 − F(ρλAB, Γ̂
λ(Φ⊗c)) ≤ ϵ(λ), ∀k ∈ N+ .

Definition 2.10 (Computational one-shot distillable entanglement [ABV23]). Let ϵ : N+ → [0, 1]
and λ ∈ N+. Fix polynomial functions nA, nB : N+ → N+. Let {ρλAB}λ be a family of quantum
states such that, for any λ ≥ 1, ρλAB ∈ HA⊗HB is a bipartite state on nA(λ)+nB(λ). The function
d : N → N is a lower bound on the computational distillable entanglement of the family {ρλAB}λ, i.e.
ÊϵD({ρλAB}λ) ≥ d, if there exists an efficient LOCC map family {Γ̂λ}λ such that, for each λ ≥ 1, Γ̂λ

outputs a 2d(λ)−qubit state, and

1 − F(Γ̂λ(ρλAB),Φ⊗d) ≤ ϵ(λ), ∀k ∈ N+ .

We can adapt this definition to the case where, for each parameter λ ∈ N, the different possible
states of size λ are indexed by a classical key k ∈ {0, 1}κ(λ), with κ : N+ → N+. Therefore, from
now on, we will refer to the family of states as {ρkAB}k. Please, note that the security parameter λ is
implicit in the size of the keys k. In the same way, the action of the LOCC map for the distillation
of entanglement has to have access to the key k. Therefore, the distillation map is now given by
Γ(k, ρk) which input is the state |k⟩⟨k|A′ ⊗ ρkAB ⊗ |k⟩⟨k|B′ , where the bipartition is A′A : B′B.
This map has to efficiently distill the entanglement from states associated with all possible keys.
The same applies to the cost of generating all the states associated with all possible keys. The
corresponding keys of the states can be extended to the case of quantum keys (more specifically,
EFI pairs), as proven by [GE24].

Definition 2.11 (Uniform computational one-shot distillable entanglement [ABV23]). Let ϵ : N+ →
[0, 1] and λ ∈ N+. Fix polynomial functions nA, nB : N+ → N+. Let {ρkAB}k∈{0,1}κ(λ) be a family of

quantum states such that, for any λ ≥ 1, ρkAB ∈ HA ⊗ HB is a bipartite state on nA(λ) + nB(λ).
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The function d : N+ → N+ is a lower bound on the computational distillable entanglement of the
family {k, ρkAB}, i.e. ÊϵD({k, ρkAB}) ≥ d , if there exists an efficient LOCC map family {Γ̂λ}λ such

that, for each λ ≥ 1, Γ̂λ outputs a 2d(λ)−qubit state, and

1 − F(Γ̂λ(k, ρkAB),Φ⊗d) ≤ ϵ(λ), ∀λ ∈ N+, ∀k ∈ {0, 1}κ(λ).

Definition 2.12 (Uniform computational one-shot entanglement cost[ABV23]). Let ϵ : N+ → [0, 1]
and λ ∈ N+. Fix polynomial functions nA, nB : N+ → N+. Let {ρkAB}k be a family of quantum states
such that, for any λ ≥ 1 and k ∈ {0, 1}κ(λ), ρkAB ∈ HA ⊗HB is a bipartite state on nA(λ) + nB(λ).
The function c : N → N is a upper bound on the computational entanglement cost of the family
{k, ρkAB}, i.e., ÊϵC({k, ρkAB}) ≤ c, if there exists an efficient LOCC map family {Γ̂λ}λ such that, for

each λ ≥ 1, Γ̂λ takes an input c(λ) EPR pairs, and

1 − F(ρkAB, Γ̂
λ(k,Φ⊗c)) ≤ ϵ(λ), ∀λ ∈ N+, ∀k ∈ {0, 1}κ(λ).

2.5 Auxiliary lemmas

Let us now introduce the quantum information theory tools that we make use of.

Theorem 2.13 (Holevo-Helstrom [Hol73, Hel69]). Given two mixed states ρ and σ, the best success
probability to distinguish them is given by 1

2(1 + ∆(ρ, σ)), where ∆(ρ, σ) = 1
2∥ρ− σ∥1. Moreover,

given n-copies,
∆(ρ⊗n, σ⊗n) ≥ 1 − exp(−n∆(ρ, σ)/2) . (1)

Theorem 2.14 (Uhlmann’s theorem [Uhl76]). Let ρ ∈ B1(H1) and σ ∈ B1(H1) be a pair of density
operators, where ρ = Tr2(|ψ⟩⟨ψ|) for |ψ⟩ ∈ B1(H1⊗H2). It holds that F (ρ, σ) = max

{
|⟨ψ|η⟩| : |η⟩ ∈

B1(H1 ⊗H2) is a pure state s.t. Tr2(|η⟩⟨η|) = σ
}
.

Lemma 2.15 (Fannes inequality [Fan73]). Given two density operators ρ ∈ B1(H) and σ ∈ B1(H),
it holds that

|S(ρ) − S(σ)| ≤ 2∆(ρ, σ) log d+ c(∆(ρ, σ)) , (2)

where c(x) := min{−x log x, 1/2e} and S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy.

This well known inequality of information theory can be extended to the quantum relative
entropy,

Lemma 2.16 (Fannes type inequality for the quantum relative entropy [Win16]). For a closed, con-
vex and bounded set F of positive semidefinite operators, containing at least one full rank operator,
let

κ = sup
τ,τ ′

DC(τ) −DC(τ ′)

be the largest variation of DC(τ) := minγ∈C D(τ ||γ), where D(ρ||γ) = Tr ρ(log(ρ) − log(γ)) is the
quantum relative entropy. Then, for any two states ρ and σ with ∆(ρ, σ) ≤ ϵ,
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|DC(ρ) −DC(σ)| ≤ ϵκ+ (1 + ϵ)h
( ϵ

1 + ϵ

)
, (3)

where h(·) is the binary entropy.

Moreover, in the specific case of entanglement, it can be related to the relative entropy of
entanglement,

Lemma 2.17 (Fannes type inequality for the regularised relative entropy of entanglement [Win16,
DH99, Chr06]). Given two states ρAB, σAB ∈ HA ⊗HB, the difference on their regularised relative
entropy of entanglement is upper bounded by

|E∞R (ρAB) − E∞R (σAB)| ≤ ϵ log d+ (1 + ϵ)h
( ϵ

1 + ϵ

)
,

where ∆(ρ, σ) ≤ ϵ and h(·) is the binary entropy.

2.6 Quantum Commitment

We focus on the construction of canonical quantum commitments, which is defined as follows.

Definition 2.18 (Canonical quantum commitment [Yan22]). Given an ensemble of polynomial-
time uniformly generated quantum circuit pair {(Qλ,0, Qλ,1)}λ, a canonical quantum commitment
scheme is defined by the following stages:

• Commit stage: the committer chooses the committed bit b ∈ {0, 1} and performs the quantum
circuit Qλ,b to the register pair (C,R), initialized in the |0⟩ state5. Then the committer sends

the register C to the receiver, i.e., the state ρλ,b := TrR (Qλ,b |0⟩ ⟨0|CRQ
†
λ,b).

• Reveal stage: the committer sends the bit b and the register R to the receiver. The receiver
performs Q†λ,b on (C,R) and aborts if the measured registers are not in the |0⟩ state.

Definition 2.19 (Computational hiding). Given a canonical quantum commitment scheme in which
the committed states are given by the families of mixed states {ρλ,0}λ and {ρλ,1}λ, the scheme
is computationally hiding if, for any non-uniform QPT distinguisher D with advice σλ and any
m ∈ poly(λ), there exists a negligible function ν(λ) > 0 such that:∣∣∣IP [

D(σλ, ρ
⊗m
λ,0 ) = 1] − IP[D(σλ, ρ

⊗m
λ,1 ) = 1

]∣∣∣ ≤ ν(λ) .

Definition 2.20 (Honest statistical binding [Yan22]). A canonical quantum commitment scheme
satisfies honest statistical binding if, for any auxiliary state |ψ⟩ and any unitary U ∈ U(H) there
exists a negligible function ν(λ) > 0 such that:∥∥∥(Qλ,1 ⊗ IdZ |0⟩ ⟨0|CRQ

†
λ,1 ⊗ IdZ

)(
IdC ⊗ URZ

)(
Qλ,0 |0⟩CR ⊗ |ψ⟩Z

)∥∥∥
2
≤ ν(λ) . (4)

5For simplicity we write the tensor product of k registers in the |0⟩ state as |0⟩ (instead of |0⟩⊗k), when it is clear
from the context.

12



Informally, the honest-binding property allows the receiver to cheat only in the reveal stage of
the commitment functionality. As proven by [Yan22], honest binding in the canonical quantum
commitment is equivalent to the notion of sum-binding [Unr16]. Moreover, since sum-binding is
equivalent to AQY binding [AQY21, MY22], oblivious transfer and multiparty computing can be
constructed from it [BCKM21, GLSV21]. From now on, we will refer to the honest statistical
binding commitments as statistical binding commitments.

We notice that the construction of [Yan22] can be modified with commitments generated by a

pair of uniformly generated families of quantum circuits
(
{Qk(λ)0 }k∈{0,1}κ(λ) , {Q

k′(λ)
1 }k′∈{0,1}κ(λ)

)
.

To commit to a bit b ∈ {0, 1}, the committer first chooses a secret key k (or k′) uniformly at ran-

dom and then applies the corresponding circuit Q
k(λ)
b , preparing the state |Ψk(λ)

b ⟩CR = Q
k(λ)
b |0⟩CR.

Then, they send the commitment register C as in Definition 2.18. In the reveal phase, the committer
sends to the receiver the chosen key in the reveal stage together with b and the register R.

The statistical binding property in this setting requires that for all k, k′ ∈ {0, 1}κ(λ),∥∥∥(Qk′(λ)1 ⊗ IdZ |0⟩ ⟨0|CRQ
† k′(λ)
1 ⊗ IdZ

)(
IdC ⊗ URZ

)(
Q
k(λ)
0 |0⟩CR ⊗ |ψ⟩Z

)∥∥∥
2
≤ ν(λ) , (5)

Likewise, the computational hiding property in this case is given by,∣∣∣IPk(λ) [D(σλ, ρ
⊗m
k(λ),0) = 1

]
− IPk′(λ)

[
D(σλ, ρ

⊗m
k′(λ),1) = 1

]∣∣∣ ≤ ν(λ) . (6)

When using families of algorithms for committing instead of a pair of algorithms, the condition on
the binding is stronger, i.e., the committing states have to be pairwise honest statistically biding.
In this case, the definition of honest statistical binding for families of quantum circuits (Eq. 5)
implies the definition given by Definition 2.20. Moreover, since we have an honest committer, we
still consider the mixture over the keys in the hiding property.

3 EPFI pairs imply quantum commitments

In this section, we focus on the definition of EPFI and show how to construct quantum commitments
from it.

We start by recalling the definition of EFI pairs [BCQ23].

Definition 3.1 (EFI pair). A pair of mixed states (ρ0,λ, ρ1,λ) is an EFI pair, if

• Efficient generation: there exists a QPT algorithm A that on input (1λ, b) outputs ρb,λ.

• Statistical distance: ∆(ρ0,λ, ρ1,λ) ≥ Ω
(

1
poly(λ)

)
.

• Computationally indistinguishability:for any non-uniform QPT distinguisher D with ad-
vice σλ and any m ∈ poly(λ), there exists a negligible function ν(λ) > 0 such that:∣∣∣IP [

D(σλ, ρ
⊗m
λ,0 ) = 1] − IP[D(σλ, ρ

⊗m
λ,1 ) = 1

]∣∣∣ ≤ ν(λ) .

As aforementioned, it was proven that EFI pairs of states are equivalent to quantum commit-
ments [BCQ23]. In this work, we define EPFI pairs by refining the requirements for EFI pairs.
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Definition 3.2 (EPFI pair). A pair of ensembles of mixed states
(
{ψk(λ)}k(λ), {ϕk′(λ)}k′(λ)

)
indexed

by k, k′ ∈ {0, 1}κ(λ) is an Efficiently generated, pairwise far and computational indistinguishable
pair (EPFI pair), if

• Efficient generation: Given k(λ) (or k′(λ)), there exists a QPT algorithm A that on input
(1λ, k, b) (or (1λ, k′, b)) outputs ψk(λ) (or ϕk′(λ)).

• Pairwise statistically far: For all k, k′ ∈ {0, 1}κ(λ),

∆(ψk(λ), ϕk′(λ)) ≥ Ω

(
1

poly(λ)

)
.

• Computationally indistinguishability: for any non-uniform QPT distinguisher D with
advice σλ and any m ∈ poly(λ), there exists a negligible function ν(λ) > 0 such that:∣∣∣IPk(λ) [D(σλ, ψ

⊗m
k(λ)) = 1

]
− IPk′(λ)

[
D(σλ, ϕ

⊗m
k′(λ)) = 1

]∣∣∣ ≤ ν(λ) .

The main difference between both primitives is that each element of each ensemble has to
be statistically far in terms of trace distance from every element of the other ensemble, while
computationally indistinguishability holds for the ensemble itself.

We can now prove the main result of this section, which is the construction of a canonical
quantum commitment from EPFI.

Theorem 3.3. Assuming the existence of EPFI pairs of mixed states, there exists statistically
binding and computationally hiding canonical quantum commitments.

Proof. Let {Qkψ}k and {Qk′ϕ }k′ be the two families of algorithms that generate the corresponding

families of states {ψk}k and {ϕk′}k′ 6. The construction of the canonical quantum commitment is as
follows. Let the algorithms {Qkb,λ}k with b = {0, 1} corresponds to the aforementioned {Qkϕ}k and

{Qkψ}k, i.e., each family of states corresponds to one value of b. The committer generates λ copies of

the state by applying
⊗poly(λ)

i=1 (Qkb,λ)i. Then, the committed state defined in Definition 2.18 is given

by ρ
⊗poly(λ)
C,b , where ρC,b = TrR(Qkb |0⟩⟨0|CRQ

k †
b ) is a state from the EPFI ensemble (Definition 3.2).

For the opening, the committer sends the λ registers R, together with the key k 7 and the committed
bit b.

Let us first prove honest statistical binding. Given the two states ψk and ϕk′ , ∆(ψk, ϕk′) ≥
Ω(1/poly(λ)) by definition of the EPFI. Lastly, by taking polynomially many copies of the states,

∆(ψ
⊗poly(λ)
k , ϕ

⊗poly(λ)
k′ ) ≥ 1 − negl(λ) by Theorem 2.13. Moreover, due to the fact that (F (ρ, σ))2 +

(∆(ρ, σ))2 ≤ 1,

F
(
ψ
⊗poly(λ)
k , ϕ

⊗poly(λ)
k′

)
≤

√
1 −

(
∆
(
ψ
⊗poly(λ)
k , ϕ

⊗poly(λ)
k′

))2
≤ negl(λ) . (7)

6We omit the security parameter λ for simplicity.
7Please, note that the construction ca be extended to quantum keys, i.e., the key is a quantum state, in the

subspace of the registers R.
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Therefore, by Uhlman’s theorem (Theorem 2.14), the scheme satisfies honest binding (Eq. 5).
Computational hiding follows from the computational indistinguishability property of the EPFI

pairs: without the key, a distinguisher cannot infer the ensemble from which the state has been
sampled, satisfying Eq. 6.

4 Pseudoresources and quantum cryptography

In this section, we establish a foundational connection between computational-based quantum cryp-
tography and resource theories. We begin by briefly introducing the formalism of resource theories,
define the concept of pseudoresource, and finally discuss how the existence of pseudoresources implies
the existence of EFI pairs of ensembles and, thus, computational based cryptography.

4.1 Resource theory and pseudoresources

Quantum resource theories provide a systematic framework for studying properties of quantum
systems that are crucial for quantum information processing tasks [CG19]. A quantum resource
theory R = (F ,O) is characterized by a set of free states F , and a set of free operations O. The free
states, defined as F(H) ⊆ S(H), represent states that lack the resource of interest. A completely
positive trace-preserving (CPTP) map Λ : B(H1) → B(H2) belongs to the set O if, for every σ ∈ F ,
it holds that Λ(σ) ∈ F . For instance, in the case of entanglement, the free states consist of the set
of separable states, and we can pick the set of free operations as LOCC maps.

The set of properties that defines the resourced families of states that are necessary for our
construction are:

1. The set of free states, F(H), is convex and closed.

2. F(H) contains a full-rank state.

We notice that in our case, we only consider finite dimension states and therefore property 1
implies that F(H) is bounded, which is also required. These properties are a relaxation of the
Brandão-Plenio axioms [BP10], and they are satisfied by many resource theories such as magic,
coherence, entanglement or athermality [CG19].

There exist several measures for quantifying resources in quantum information theory, ranging
from geometric to witness-based approaches. Typically, these measures assess the resource content
of a state by evaluating its “distance” from the set of free states. In this work, we focus on entropic
measures, and more specifically, on the relative entropy of resource.

Definition 4.1 (Relative entropy of resource). Given a state ρ ∈ S(H) and a set of free states
F(H) ⊆ S(H), its relative entropy of resource is defined as

Rrel(ρ) := min
σ∈F

D(ρ||σ) , (8)

where D(ρ||σ) = Tr[ρ(log(ρ) − log(σ))] is the quantum relative entropy.

When taking into account computationally bounded operations, families of states that can be dis-
tinguished in the asymptotic regime might become indistinguishable against polynomially bounded
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quantum adversaries. This property becomes even more interesting when these states have very
different properties. We focus on the case in which both families have a substantial difference in
terms of resources.

Definition 4.2 (η-gap pseudoresource). Let λ ∈ N+ and η : N+ → N+ be arbitrary. A pair of
families {ψk(λ)}k(λ) and {ϕk′(λ)}k′(λ) of (potentially mixed) states indexed by k(λ), k′(λ) ∈ {0, 1}κ(λ)
is said to have η-gap pseudoresourced R if,

1. Efficient generation: Given k(λ) (or k′(λ)), there exists a QPT algorithm A that on input
(1λ, k, b) (or (1λ, k′, b)) outputs ψk(λ) (or ϕk′(λ)).

2. Resource gap: For all k, k′ ∈ {0, 1}κ(λ),

|Rrel(ψk(λ)) −Rrel(ϕk′(λ))| ≥ η ,

where Rrel(ρ) is the relative entropy of resource R.

3. Computational indistinguishability: For any non-uniform QPT distinguisher D with ad-
vice σλ and any m ∈ poly(λ), there exists a negligible function ν(λ) > 0 such that:∣∣∣IPk(λ)[D(σλ, ψ

⊗m
k(λ)) = 1] − IPk′(λ)[D(σλ, ϕ

⊗m
k′(λ)) = 1]

∣∣∣ ≤ ν(λ) .

The concept of pseudoresource has been introduced before for generic measures of resources, also
known as resource monotones [HBK24, BMB+24]. Nevertheless, we focus on the concrete measure
of relative entropy of resource, which is the most important entropic measure for quantum resource
theories.

4.2 Pseudoresources imply EPFI pairs

We prove now the main technical contribution of our result.

Theorem 4.3 (Pseudoresource implies EPFI pairs). For any η ≥ 2 + 1/poly(n), assuming the
existence of η-gap pseudoresource with κ := supτ,τ ′ Rrel(τ)−Rrel(τ

′) = polylog(d), then EPFI pairs
exist.

Proof. The construction of an EPFI pair given a pair of pseudoresourced families of states is straight-
forward: each family of the pseudoresourced states corresponds to an EFI ensemble. The efficient
generation of the EPFI pairs together with the property of computational indistinguishability follow
from the definition of η-gap pseudoresource.

To prove statistical distance, it follows from Equation (3) that, for every k, k′ ∈ {0, 1}κ(λ)

∆(ψk(λ), ϕk′(λ)) ≥
|Rrel(ψk(λ)) −Rrel(ϕk′(λ))| − 2

κ
.

Moreover, by taking into account that η ≥ 2 + 1/poly(n) and κ = polylog(d),

∆(ψk(λ), ϕk′(λ)) ≥ Ω
( 1

poly(n)

)
∀k, k′ ∈ {0, 1}κ(λ).
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Remark 4.4. The construction of EPFI pairs from pseudorandom families of states is given by the
asymptotic continuity of the relative entropy of resource. Nevertheless, a similar construction holds
for any resource monotone which is asymptotically continuous.

Therefore, just assuming the existence of pseudoresource families which relative entropy of re-
source presents a gap larger than 1/poly(n), EFI pairs of ensembles and thus, quantum commitments
and all the primitives that follow from it such as oblivious transfer and multiparty computing can
be constructed. Constructions such as the one of pseudoresources from pseudo-random density
matrices [BMB+24] hold8. A similar construction was also proposed by [GLG+24] for the specific
case of pseudomagic9. Nevertheless, we generalize the result for any pseudoresource.

5 Cryptography from pseudoentanglement

Since the proposal of the notion of pseudoentanglement [ABF+23], different definitions of the same
phenomena have been proposed [ABV23, GE24, LREJ25], extending the definition to mixed states
and using different measures of entanglement that allow to obtain a maximal separation in terms
of entanglement between both families of states. Nevertheless, all definitions capture the same
phenomena: given two families of states that are efficiently generated, both families present a gap
in the entanglement, yet they are computationally indistinguishable.

Despite it was proven that the existence of (mixed states) pseudoentanglement as a minimal
assumption for computational based cryptography [GE24], no cryptographic primitives have been
constructed from it as far as we are concerned. The goal of this section is to establish a direct
connection between the different definitions of pseudoentanglement and cryptography. The first
subsection studies the construction of EPFI pairs from pure state pseudoentanglement, while the
second extend this result to the case of mixed states. Lastly, we proposed a new functionality that
it is intrinsically dependent to the resource of entanglement.

5.1 Pure state pseudoentanglement implies EPFI pairs

Let us first define the notion of pure state pseudoentanglement [ABF+23].

Definition 5.1 (Pure η-gap pseudoentanglement). Let λ ∈ N+ and η : N+ → N+ be arbitrary.
A pair of ensembles of bipartite pure states {|ψk(λ)⟩AB}k(λ), {|ϕk′(λ)⟩AB}k′(λ) indexed by k, k′ ∈
{0, 1}κ(λ) is said to have pure η-pseudoentanglement if,

1. Efficient generation: Given k(λ) (or k′(λ)), there exists a QPT algorithm A that on input
(1λ, k, b) (or (1λ, k′, b)) outputs |ψk(λ)⟩AB (or |ϕk′(λ)⟩AB).

2. Entanglement gap: For all k, k′ ∈ {0, 1}κ(λ),

|E(|ψk(λ)⟩AB) − E(|ϕk′(λ)⟩AB)| ≥ η ,

where E(ρ) is the entanglement entropy.

8Please, note that in [BMB+24] EFI pairs are constructed assuming the existence of pseudo-random density
matrices.

9The construction of pseudomagic states of [GLG+24] actually implies our proposed primitive of EPFI pairs, as it
is proven in SM V.B of [GLG+24].
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3. Computational indistinguishability: For any non-uniform QPT distinguisher D with ad-
vice σλ and any m ∈ poly(λ), there exists a negligible function ν(λ) > 0 such that:∣∣∣IP|φ⟩←{|ψk(λ)⟩AB}k(λ) [D(σλ, |φ⟩⊗m) = 1] − IP|φ⟩←{|ϕk′(λ)⟩AB}k′(λ)

[D(σλ, |φ⟩⊗m) = 1]
∣∣∣ ≤ ν(λ) .

Having introduced the definition of pseudoentanglement, we can prove the main statement of
this section.

Theorem 5.2 (Pure pseudoentanglement implies EPFI pairs). For any η ≥ 1/2e+ 1/poly(n) and
assuming the existence of pure η-gap pseudoentanglement, then EPFI pairs exist.

Proof. The construction of an EPFI pair given a pair of pseudoentangled pair of families of pure
states is slightly different to the one of Theorem 4.3. We define the two families by with the reduced
density matrices of the pseudoentangled states:{
ρ
k(λ)
A,ψ

}
k(λ)

=
{

TrB
(
|ψk(λ)⟩⟨ψk(λ)|AB

)}
k(λ)

, and
{
σ
k′(λ)
A,ϕ

}
k′(λ)

=
{

TrB
(
|ϕk′(λ)⟩⟨ϕk′(λ)|AB

)}
k′(λ)

,

where the entanglement is measured across the cut (A : B). The properties of efficient generation
and computational indistinguishability of the EPFI pairs follow from the definition of η-gap pure
pseudoentanglement.

We now prove that for all k, k′ ∈ {0, 1}κ(λ), ρk(λ)A,ψ and σ
k′(λ)
A,ϕ are statistically far. We have that

∆(ρ
k(λ)
A,ψ , σ

k′(λ)
A,ϕ ) ≥

∣∣∣S(ρ
k(λ)
A,ψ ) − S(σ

k′(λ)
A,ϕ )

∣∣∣− c

2n(λ)
=

∣∣∣E( ∣∣ψk(λ)〉
AB

)
− E

(
|ϕk′(λ)⟩AB

)∣∣∣− c

2n(λ)
,

where the first inequality follows from Lemma 2.15, and the last equality uses the definition of
the entanglement entropy. Therefore, using the fact that for all k, k′ ∈ {0, 1}κ(λ) the entanglement
entropies of pairwise sampled states from the ensembles is η ≥ 1/2e+ 1/poly(n),

∆(ρ
k(λ)
A,ψ , σ

k′(λ)
A,ϕ ) ≥ Ω

(
1

poly(λ)

)
∀k, k′ ∈ {0, 1}κ(λ) .

Every known construction of pseudoentanglement from pure state ensembles [ABF+23, ABV23,
LREJ25] exhibits an entanglement entropy gap of at least 1/2e+ 1/poly(n), making them suitable
for constructing EPFI pairs. While the definitions in [ABV23, LREJ25] allow for a larger gap when
considering computationally efficient entanglement measures, it is the information-theoretic measure
of entanglement entropy that determines the relationship between the gap and trace distance, and
thus enables the construction of EPFI pairs. The connection between information-theoretic and
computationally meaningful entanglement measures, along with its cryptographic implications, is
explored in more detail in the following section.

Remark 5.3. We notice that in the proof of Theorem 5.2, we do not need indistinguishability
between the pure states, but only of subsystem A (or B). In this case, we can also achieve EPFI
pairs under a weaker notion of pure-state pseudoentanglement.
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The use of entanglement entropy as a measure of entanglement in the case of pure states require
a lower bound of ω(log n)) for the low entangled family. However, when computational measures
of entanglement are taken into account, the entanglement gap can be even larger for pure states,
i.e., Ω(n) vs. o(1) for other entanglement measures as proven in [LREJ25]. While it is true that
entanglement entropy losses its operational meaning when it comes to quantify the distillable en-
tanglement (or entanglement cost) taking into account computational efficiency, it is relevant for
the construction of EPFI pairs.

5.2 Mixed state pseudoentanglement implies EPFI pairs

Let us now study the pseudoentanglement in the case of mixed states. The main result of this sub-
section is the construction of EPFI pairs from pseudoentangled mixed states. Let us first introduce
our proposed definition of pseudoentanglement for mixed states.

Definition 5.4 (Mixed η-gap pseudoentanglement). Let λ ∈ N+ and η : N+ → N+ be arbitrary. A

pair of families of mixed bipartite states {ψk(λ)AB }k(λ) and {ϕk
′(λ)
AB }k′(λ) indexed by k, k′ ∈ {0, 1}κ(λ) is

said to have mixed η-gap pseudoentanglement if :

1. Efficient generation: Given k(λ) (or k′(λ)), there exists a QPT algorithm A that on input

(1λ, k, b) (or (1λ, k′, b)) outputs ψ
k(λ)
AB (or ϕ

k′(λ)
AB ).

2. Entanglement gap: For all k, k′ ∈ {0, 1}κ(λ),∣∣∣E∞R (
ψ
k(λ)
AB

)
− E∞R

(
ϕ
k′(λ)
AB

)∣∣∣ ≥ η .

3. Computational indistinguishability: For any non-uniform QPT distinguisher D with ad-
vice σλ and any m ∈ poly(λ), there exists a negligible function ν(λ) > 0 such that:∣∣∣∣IPρ←{ψk(λ)

AB }k(λ)
[D(σλ, ρ

⊗m) = 1] − IP
ρ←{ϕk

′(λ)
AB }k′(λ)

[D(σλ, ρ
⊗m) = 1]

∣∣∣∣ ≤ ν(λ) .

Our definition is based on the ones proposed by [ABV23, GE24] but with two modifications.
Foremost, both families of states have to be efficiently generated, contrary to previous definitions in
which only the low entangled family was the efficiently generated one. The other major difference
is that we consider the (regularised) relative entropy of entanglement, instead of the computational
distillable entanglement or the computational entanglement cost, which was used in those results.

Unlike in [ABV23, GE24], our proposed definition of pseudoentanglement is defined in the
asymptotic IID setting without taking into account computational entanglement measures. As
proposed in [ABV23], their pseudoentanglement construction can be extended to the computational
asymptotic IID setting by taking into account taking into account the measures,

Ê∞C (ρAB) = inf
ϵ∈(0,1]

lim
t→∞

sup
1

t
ÊϵC(ρ⊗tAB) ,

Ê∞D (ρAB) = inf
ϵ∈(0,1]

lim
t→∞

inf
1

t
EϵD(ρ⊗tAB) ,
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where ÊϵC(ρ) and ÊϵD(ρ) are defined in Definition 2.12 and Definition 2.11. Let us now show that
our definition is a relaxation in the condition of the entanglement gap with respect to the ones of
[ABV23, GE24] in the asymptotic IID setting.

Given a “highly entangled” family {ϕk
′(λ)
AB }k′(λ) such that Ê∞D

(
{k′, ϕk′AB}

)
≥ d(λ) and a “low

entangled” family {ψk(λ)AB }k(λ) such that Ê∞C
(
{k, ψkAB}

)
≤ c(λ) with c(λ) < d(λ). Therefore, given

two states ϕ
k′(λ)
AB and ψ

k(λ)
AB ,

d(λ) − c(λ) ≤ Ê∞D

(
{k′, ϕk′AB}

)
− Ê∞C

(
{k, ψkAB}

)
≤ E∞R (ϕ

k′(λ)
AB ) − E∞R (ψ

k(λ)
AB )

for all k and k′, since for any family Ê∞D ≤ E∞D ≤ E∞R ≤ E∞C ≤ Ê∞C under LOCC operations.

Corollary 5.5 (Mixed pseudoentanglement implies EPFI pairs). For η ≥ 2 + 1/poly(n) and as-
suming the existence of mixed η-pseudoentanglement, then EPFI pairs exist.

Please, note that the construction is similar to the one of Theorem 4.3, but taking into account
that in this case the studied resource is the entanglement. In the case of entanglement, the regu-
larised relative entropy of resource is equivalent to the regularised relative entropy of entanglement,
which asymptotically continuity bound is given by Lemma 2.17.

Therefore, every state that has a large pseudoentangled gap d(λ) − c(λ) ≥ 2 + 1/poly(n) are
eligible for building EPFI pairs. On the other hand, there potentially exist pairs of families of mixed
states which does not present a gap in the computational measures of entanglement, i.e., they are
not pseudoentangled following the definition of [ABV23, GE24], but from which EPFI pairs can be
constructed.

5.3 Beyond EPFI: computationally locked entanglement

Previous definitions of pseudoentanglement focus on efficiently generated states with low entangle-
ment that are computationally indistinguishable from highly entangled states. This is an analog of
the “classical” concept of pseudorandomness: a simple object (such as a pseudorandom string or
pseudoentangled state) that can replace a complex one (resp. random string or highly entangled
state).

On the other hand, given how central entanglement is in quantum information, and the plethora
of applications that require highly entangled states, we can flip this question and ask for efficiently
generated states with high entanglement that are computationally indistinguishable from low en-
tangled ones (that may be efficiently generated or not). We denote this as computationally locked
entanglement, and it can be used to conceal entanglement that could be distilled only with the help
of a secret key. We notice that pseudoentangled states where both low- and high-entangled families
are efficiently generated (as in our definition of pseudoentanglement) exhibit computationally locked
entanglement.

Definition 5.6 (Computationally locked entanglement). Let λ ∈ N, n : N → N be a polynomially
bounded function, ϵ : N → [0, 1] and c, d : N → N with c < d. A family of 2n(λ)-qubit bipartite

states {ψk(λ)AB }k(λ) is said to have computationally locked entanglement (ϵ, c, d) if there is a family of

2n(λ)-qubit bipartite states {ϕk
′(λ)
AB }k′(λ), such that:
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1. The computational entanglement cost of the family {ϕk
′(λ)
AB }k′(λ) is upper bounded as ÊϵC({k, ϕk′AB}) ≤

c.

2. Given k(λ), there exists a QPT algorithm A that on input (1λ, k, b) outputs ψ
k(λ)
AB .

3. The computational distillable entanglement of the family {ψk(λ)AB }k(λ) is lower bounded as

ÊϵD({k, ψkAB}) ≥ d.

4. For any non-uniform QPT distinguisher D with advice σλ and any m ∈ poly(λ), there exists
a negligible function ν(λ) > 0 such that:∣∣∣∣IPρ←{ψk(λ)

AB }k(λ)
[D(σλ, ρ

⊗m) = 1] − IP
ρ←{ϕk

′(λ)
AB }k′(λ)

[D(σλ, ρ
⊗m) = 1]

∣∣∣∣ ≤ ν(λ) .

Computational locked entanglement can be viewed as a “dual” notion to pseudoentanglement,
as defined in [ABV23, GE24]. An example of computational locked entanglement is the construction
of pseudorandom density matrices [BMB+24]. However, in this case, the ”low-entangled” family
is also efficiently generated. It would be interesting to investigate how pseudoentanglement and
computationally locked states relate to each other, i.e., if one implies the other, or if they are
incomparable.

We now prove the intuitive consequences of computationally locked states for parties that do
not have access to the key.

Lemma 5.7. Given a family of 2n(λ)-qubit bipartite states {ψk(λ)AB }k(λ) that have computationally
locked entanglement (ϵ, c, d), where c < d, its computational distillable entanglement without access
to the key k is upper bounded as ÊϵD({ψkAB}) ≤ c, as defined in Definition 2.10 .

Proof. It can be proven by contradiction. Suppose there exist a family of states {ψk(λ)AB }k(λ) that
have computationally locked entanglement as defined in Definition 5.6 such that, not given the

keys k, ÊϵD({ψkAB}) > c. As proven in [ABV23], ÊϵD < ÊϵC . Moreover, ÊϵC({k′, ϕk
′(λ)
AB }) < c by

construction. Then, if there is a poly time algorithm that is able to distill ÊϵD({ψk(λ)AB }) > c, it

would be able to distinguish between the pair of families {ψk(λ)AB }k(λ) and {ϕk
′(λ)
AB }k′(λ) which is not

possible by definition.

Corollary 5.8. Given a 2n(λ)-qubit bipartite states {ψk(λ)AB }k(λ) which has computationally locked

entanglement (ϵ, d), i.e., w.r.t. a family of 2n(λ)-qubit separable bipartite states {ϕk
′(λ)
AB }k′(λ), no

entanglement can be distilled without the respective keys k.

An application of the computationally locked functionality is an authenticated quantum telepor-
tation protocol. The scheme is similar to the original quantum teleportation [BBC+93] but in this
case the receiver cannot access the teleported state without using a secret key in each interaction,
being not necessary to authenticate the classical channel before or during the teleportation proto-
col. Moreover, the family of states with its corresponding keys can be used a polynomial number
of times, unlike in the Clifford encryption scheme [DLT02, ABOE08].

Further applications of computationally locked entanglement for quantum networks in which
the there is a necessity of distributing entanglement while preventing the users for accessing it.
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Since quantum networks routing is based on the principle of entanglement swapping [BDCZ98,
Cal17], encoding the nodes of the quantum network with computationally locked entanglement
allows certifying the routing of the network.

Acknowledgments
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