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Protecting Your Voice:
Temporal-aware Robust Watermarking

Yue Li, Weizhi Liu, Dongdong Lin, Hui Tian, Senior Member, IEEE, Hongxia Wang, Member, IEEE

Abstract—The rapid advancement of generative models has
led to the synthesis of real-fake ambiguous voices. To erase the
ambiguity, embedding watermarks into the frequency-domain
features of synthesized voices has become a common routine.
However, the robustness achieved by choosing the frequency
domain often comes at the expense of fine-grained voice features,
leading to a loss of fidelity. Maximizing the comprehensive learn-
ing of time-domain features to enhance fidelity while maintaining
robustness, we pioneer a temporal-aware robust watermarking
(True) method for protecting the speech and singing voice. For
this purpose, the integrated content-driven encoder is designed
for watermarked waveform reconstruction, which is structurally
lightweight. Additionally, the temporal-aware gated convolutional
network is meticulously designed to bit-wise recover the water-
mark. Comprehensive experiments and comparisons with existing
state-of-the-art methods have demonstrated the superior fidelity
and vigorous robustness of the proposed True achieving an
average PESQ score of 4.63.

Index Terms—Audio watermarking, Temporal-aware water-
marking, Proactive forensics

I. INTRODUCTION

GENERATIVE models have significantly advanced text-
to-speech and text-to-music synthesis technologies [1]–

[4], breaking the high-tech barrier of voice cloning technology.
With their ability to closely mimic voices, these innovations
raise increasing concerns, particularly in facilitating events
such as fraud [5] and misinformation campaigns [6]. In re-
sponse, governments and regulatory bodies are developing
policies (CHN [7], EU [8] and USA [9]) aimed at regulating
AI-generated content (AIGC) to mitigate these risks.

All of the aforementioned regulatory policies emphasize the
responsibility of AIGC companies to implement specific marks
for generated content. This underscores the significance of
watermarking technology as an essential solution for proactive
regulation of deepfake content [10]–[13]. As a consequence,
research has increasingly shifted from traditional handcrafted
watermarking methods to deep-learning-based approaches in
the field of multimedia watermarking.

In the field of audio and voice watermarking, it has seem-
ingly become an established principle that achieving good
robustness necessitates a frequency domain transformation
(FDT). As depicted in the upper branch of Fig. 1, this holds
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Fig. 1. Two branches of audio watermarking methods. Upper: Frequency-
domain watermarking dominates existing SOTA methods. Lower: The pro-
posed temporal-aware watermarking preserves robustness without compro-
mising fine-grained temporal features.

true both in the earlier era of handcrafted watermarking [14]–
[19] and in the current epoch dominated by deep-learning-
based approaches [20]–[27]. Concretely, Liu et al. [23] embed-
ded the watermark into the approximate coefficients derived
from the Discrete Wavelet Transform (DWT). Fully leveraging
the short time window properties of the Short-Time Fourier
Transform (STFT), Liu et al. [22] employed frequency features
for robust watermarking. Additionally, the advantageous prop-
erties of STFT magnitudes have motivated subsequent works,
including Chen et al. [25], Pavlovic et al. [26], and O’Reilly
et al. [27], to embed watermarks into these magnitudes. For
DL-based approaches mentioned above, another notable ob-
servation is that achieving high robustness requires more than
just FDTs—the use of an attack simulator (AS) is essential.
This observation prompts us to rethink: Between FDT and AS,
which serves as the cornerstone of robustness? Can robust
performance be achieved with the AS alone, in the absence
of FDT? If FDT proves non-essential, it may be feasible to
shift the watermark embedding process from the frequency
domain to the temporal domain, potentially enabling fine-
grained manipulation of timbre features for improved fidelity.

To validate the feasibility of the aforementioned assumption,
we propose a temporal-aware and robust watermarking (True)
method tailored for speech and singing voices. The proposed
method directly embeds the watermark into the voice wave-
form, as illustrated in the lower branch of Fig. 1, thereby avoid-
ing the timbre detail loss typically associated with frequency-
domain transformations in conventional frequency-domain-
based watermarking approaches. Meanwhile, the AS has borne
the responsibility of ensuring the watermark’s robustness.
Thus, the contributions can be boiled down to:

• New Paradigm. We pioneer a novel temporal-aware wa-
termarking method, True, designed to proactively protect
the copyright of singing and speech voices, with only AS

https://arxiv.org/abs/2504.14832v2
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Fig. 2. Detailed Architecture of True. The hiding module consists of a dense block and an integrated content-driven encoder for watermarking. The
extracting module includes the attack simulator (AS), the convolutional block (ConvBlock), and an extraction block. The ConvBlock is composed of several
temporal-aware gated convolution (TGC) networks.

needed to guarantee the robustness of this paradigm.
• Novel Architecture. To preserve fine-grained voice fea-

tures, an integrated content-driven encoder is proposed for
watermarking. For bit-wise extraction, a temporal-aware
gated convolutional network (TGC) is designed.

• Sound Performance. Comprehensive experiments and
comparisons with state-of-the-art (SOTA) methods
demonstrate the superior fidelity and enhanced robust-
ness.

II. METHODOLOGY

The proposed method, True, aims to directly leverage the
time-domain features from the voice waveform, achieving the
trade-off between robustness and fidelity for the watermarked
waveform. To this end, the method encompasses two main
components: the hiding module (HM) and the extracting
module (EM), as illustrated in Fig. 2. All components are
jointly trained through an optimization strategy, the details of
which are elaborated below.

A. Hiding Module

In the hiding module, two primary objectives are addressed.
The first is to convert the watermark format for more effec-
tive feature extraction. The second is to directly encode the
temporal-domain waveform and watermark, thereby generat-
ing the watermarked signal. To achieve the first objective,
the dense block DB is designed, whereas the integrated
content-driven encoder (ICDE) E is constructed to fulfill the
second. The detailed architectures and watermarking process
are presented as follows.

Architectures: The dense block consists of two fully con-
nected (FC) layers interleaved with a ReLU activation func-
tion, enabling it to process the watermark of varying lengths
effectively. MobileNetV2 [28] indicates that ReLU-like activa-
tion functions can result in substantial information loss, par-
ticularly for low-dimensional features. Given the critical role
of low-dimensional features in waveform reconstruction, the
proposed ICDE architecture eschews normalization layers and
activation functions. Instead, it employs a downsampling block
consisting of four one-dimensional convolutional (Conv1d)
layers, followed by an upsampling block with four transpose
Conv1d layers and four additional Conv1d layers. This fully

convolutional design not only preserves low-dimensional fea-
tures but also ensures the lightweight nature of the ICDE.

Watermarking Process: Given a watermark w ∈ {0, 1}l,
where l is the length of the watermark. DB is utilized to
transform the watermark into the latent variable σw:

σw = DB(w) ∈ RB×C×L, (1)
where B represents the batch size, C denotes the channel of
the waveform, and L is the length of the waveform. Then,
the latent variable σw is concatenated with the waveform s to
acquire the final input σ of the encoder:

σ = s⊕ σw ∈ RB×C×L, (2)
where ⊕ represents channel concatenation. The encoder E(·)
takes σ as input to reconstruct the watermarked waveform ŝ.
The complete watermarking process can be formalized as:

ŝ = E(s⊕DB(w)). (3)

B. Extracting Module

The extracting module consists of a convolutional block
(ConvBlock) D and an extraction block EB. The D aims to
isolate the watermark features from the watermarked wave-
form, while the EB reconstructs the extracted watermark.
Specific architectures of the module are available here.

Architectures: Gating mechanism [29] has demonstrated its
effectiveness in feature extraction for language processing
tasks [30] and classification tasks [31]. To fully exploit this
advantage, we have designed the gating mechanism to cap-
ture temporal domain features, resulting in a Temporal-aware
Gated Convolutional Network (TGC), which incorporates the
ConvBlock in the extracting module. The TGC follows a dual-
branch structure, where the main branch consists of a sequen-
tial arrangement of a Conv1d layer, batch normalization, and
a sigmoid activation to implement the gating mechanism. In
contrast, the shortcut branch contains only a Conv1d layer for
acquiring fine-grained features from the input. The outputs of
these two branches are merged using the Hadamard Product
to produce the final output. This efficient design contributes
to the lightweight nature of the ConvBlock.

Attack simulator: As outlined in the Introduction, ensuring
strong robustness relies heavily on the attack simulator (AS),
which serves as a crucial component of the overall architecture
(illustrated in Fig. 2). Hence, the AS also plays an integral role
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TABLE I
ROBUSTNESS RESULTS WITH/WITHOUT ATTACK SIMULATOR.

Method GN 10dB GN 20dB LP 3k BP 0.8-5k TSI 2×
TAWM [22]

w/o. AS 0.6012 0.7849 0.9176 0.9129 0.8348
w. AS 0.6335 0.8154 0.9934 0.9983 0.9448

True (Ours)
w/o. AS 0.4994 0.5314 0.4960 0.6087 0.5006

w. AS 0.7922 0.9358 0.9096 0.9687 0.9678

TABLE II
COMPARISON OF FIDELITY WITH HANDCRAFT (HC) WATERMARKING

METHODS AND DEEP-LEARNING-BASED (DL) METHODS.

Method (bps) Dataset STOI↑ PESQ↑ SSIM↑ ACC↑

HC
FSVC (32) [16]

LJSpeech
0.9984 3.9977 0.9803 1.0000

Normspace (32) [17] 0.9646 2.5506 0.8868 1.0000
PBML (100) [19] 0.9861 3.7866 0.9560 1.0000

DL

AudioSeal (16) [21]

LJSpeech

0.9985 4.5893 0.9811 0.9214
WavMark (32) [25] 0.9997 4.4628 0.9690 1.0000
TAWM (100) [22] 0.9853 4.0353 0.9388 0.9998
GROOT (100) [33] 0.9605 3.3871 0.9088 0.9969

True (32) (Ours) LJSpeech 0.9986 4.5748 0.9833 0.9986
True (100) (Ours) LJSpeech 0.9987 4.6380 0.9819 0.9973

True (100) (Ours) LibriTTS 0.9967 4.6290 0.9889 1.0000
True (100) (Ours) LibriSpeech 0.9985 4.6218 0.9753 0.9992
True (100) (Ours) M4Singer 0.9799 4.6193 0.9939 0.9992
True (100) (Ours) Opencpop 1.0000 4.6400 0.9971 0.9978

in the effectiveness of our proposed method by incorporating
nine voice post-processing operations: Gaussian noise (GN),
low-pass filtering (LP), band-pass filtering (BP), high-pass
filtering (HP), time stretching and interpolation (TSI), suppres-
sion (SPS), resampling (ReS), echo, and dither. In practice,
the AS is utilized exclusively during the training phase, with
a single attack applied to each waveform.

Extracting & Verification: The procedure for extracting the
watermark ŵ can be formalized as follows:

ŵ = EB(D(ŝ)). (4)

Inspired by [32], test hypothesis is employed for watermark
verification. Assuming that the errors in the watermark bits
are independent and taking into account the previously defined
watermark bit length l, the number of matching watermark bits
κ is calculated using the binomial distribution Pr(X = κ) =∑l

i=κ

(
l
i

)
ξi(1 − ξ)l−i, where ξ = 0.5 is the probability that

needs to be tested under hypotheses.

C. Optimizing Strategy

The ultimate objective of jointly optimizing the HM, AS,
and EM is to balance the trade-off between watermark extrac-
tion accuracy and the fidelity of the watermarked voice. To
ensure high fidelity, the mel-spectrogram loss is initially em-
ployed to minimize the distance between the natural waveform
s and the watermarked waveform ŝ, which is formulated as:

LMEL = ||ψ(s)− ψ(ŝ)||1, (5)
where || · ||1 is L1 norm and ψ represents the function of mel
transformation. Then, the logarithmic STFT magnitude loss is
utilized as an additional measure to further enhance fidelity:

LMAG = || log(STFT(s))− log(STFT(ŝ))||1, (6)
where STFT(·) denotes the transformation of STFT magni-
tude. The total loss for preserving the fidelity is defined as:

LWAV = λ1LMEL + λ2LMAG, (7)
where λ1 and λ2 are hyper-parameters of the mel-spectrogram
loss and the logarithmic STFT magnitude loss.

TABLE III
CAPACITY OF THE PROPOSED METHOD UNDER VARIOUS DATASETS.

Dataset Capacity (bps)
32 100 300 500 600

LJSpeech PESQ↑ 4.5748 4.6380 4.6429 4.6000 4.6200
ACC↑ 0.9997 0.9973 0.9956 0.9210 0.8985

Opencpop PESQ↑ 4.5598 4.6400 4.6137 4.2753 4.6227
ACC↑ 0.9873 0.9978 0.9735 0.9716 0.8956

Binary cross-entropy is leveraged to ensure the accurate
extraction of the watermark:

LWM = −
k∑

i=1

wi log ŵi + (1− wi) log(1− ŵi). (8)

The overall training loss is formulated as follows:
L = LWAV + αLWM , (9)

where α serves a hyper-parameter to balance auditory quality
and watermark recovery accuracy.

III. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents experiments conducted to evaluate the

proposed True method based on three primary assessment
criteria: fidelity, capacity, and robustness. Additionally, com-
prehensive experiments and analyses are provided to compare
its performance against SOTA methods, further demonstrating
its effectiveness.
A. Experimental Setup

Datasets and Baseline: In the context of voice datasets,
other than conventional speech voice datasets like LJSpeech
[34], LibriTTS [35], and Aishell3 [36], singing voice datasets
like M4Singer [37] and Opencpop [38] are also considered.
Moreover, comprehensive comparisons against SOTA water-
marking methods are conducted, including handcrafted (HC)
methods such as FSVC [16], Normspace [17], and PBML [19],
as well as deep learning-based (DL) methods like AudioSeal
[21], WavMark [25], TAWM [22], and Groot [33].

Evaluation Metrics: Two auditory objective metrics, Short-
Time Objective Intelligibility (STOI) [39] and Perceptual Eval-
uation of Speech Quality (PESQ) [40], are used to evaluate
the auditory performance of watermarked voice. Besides, the
Structural Similarity Index Measure (SSIM) [41] is employed
to assess the watermarked voice from the perspective of the
visualized spectrogram.

Models & Training Settings: In the downsampling block of
ICDE, Conv1d layers use a kernel size of 3, a stride of 2, and
padding of 2, except for the last layer, which has padding of 1.
In the upsampling block, Conv1d layers maintain a kernel size
of 3, a stride of 1, and padding of 1, while transposed Conv1d
layers have a kernel size of 3, a stride of 2, padding of 2,
and output padding of 1, except for the first layer, which uses
padding of 1. For the TGCs, both Conv1d layers in the two
branches have a kernel size of 3, a stride of 2, and padding of
1. During training, AdamW optimizer [42] is employed with a
learning rate of 2e-4. The training is conducted for 40 epochs
with a batch size of 16. The hyper-parameters λ1, λ2, and α
are set to 0.8, 0.1, and 0.3, respectively.
B. Indispensable AS for Frequency-domain Watermarking

The observation presented in the Introduction section high-
lights the significance of AS in frequency-domain water-
marking techniques. To validate this, we select the TAWM
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TABLE IV
ROBUSTNESS OF THE PROPOSED METHOD IN TERMS OF ACCURACY UNDER VARIOUS DATASETS.

Dataset GN PN LP BP HP SPS ReS Echo TSI Dither

10 dB 15 dB 20 dB 0.5 3k 0.5-8k 1k behind 44.1k default 0.5× default

Singing
Voice

M4Singer 0.9254 0.9783 0.9961 0.9645 0.9903 0.9992 0.9841 0.9992 0.9992 0.9896 0.9992 0.9992
Opencpop 0.8260 0.9298 0.9782 0.9625 0.8305 0.9954 0.9872 0.9960 0.9961 0.9802 0.9940 0.9959

Speech
Voice

LJSpeech 0.7922 0.8844 0.9358 0.9964 0.9096 0.9687 0.8417 0.9679 0.9699 0.9216 0.9678 0.9970
LibriTTS 0.8285 0.9117 0.9557 1.0000 0.9471 0.9857 0.9084 0.9856 0.9857 0.9396 0.9852 1.0000
Aishell3 0.9257 0.9763 0.9935 0.9992 0.8919 0.9991 0.9978 0.9991 0.9992 0.9876 0.9990 0.9992

TABLE V
COMPARISON OF ROBUSTNESS WITH SOTA METHODS IN ACCURACY.

Method (bps) GN PN BP SPS Echo

10 dB 20 dB 0.5 0.5-8k behind default

AudioSeal (16) [21] 0.6086 0.6600 0.6571 0.9764 0.8925 0.7277
Normspace (32) [17] 0.5856 0.6208 0.4733 0.4796 0.6596 0.5630

FSVC (32) [16] 0.7312 0.8835 0.8164 0.8263 0.7188 0.7976
WavMark (32) [25] 0.5295 0.6523 0.6924 0.9995 0.9713 0.8668
True (32) (Ours) 0.9673 0.9986 0.9868 0.9998 0.9996 0.9963

PBML (100) [19] 0.6060 0.7176 0.7060 0.7504 0.6365 0.6995
TAWM (100) [22] 0.6335 0.8154 0.7282 0.9983 0.9814 0.9471
Groot (100) [33] 0.9929 0.9953 0.9861 0.9947 0.9718 0.9833

True (100) (Ours) 0.8285 0.9557 0.9964 0.9857 0.9856 0.9396

[22], which serves as a representative example of frequency-
domain watermarking methods for our analysis. Table I clearly
demonstrates the difference in robustness of TAWM with and
without the AS when subjected to various attacks. In the
absence of AS, extraction accuracy can decrease by nearly
8% under certain attacks. These findings reaffirm that, while
frequency-domain watermarking offers robust protection, the
inclusion of AS is crucial for achieving a higher level of
robustness.

C. Fidelity and Capacity

Fidelity refers to the imperceptibility of embedded wa-
termarks, measured by the extent to which audio quality
is preserved after watermarking. Table II reports both audio
quality (for speech and singing voice) and the corresponding
watermark extraction accuracy achieved by the proposed True.
Additionally, it presents a fidelity comparison against SOTA
methods on the LJSpeech dataset. All metrics are computed by
comparing the watermarked waveform to its natural counter-
part. The results indicate that True achieves excellent speech
quality while maintaining reasonable watermark extraction
accuracy on speech datasets. Similarly, it demonstrates strong
fidelity and extraction performance on singing voice datasets.
In comparative experiments with SOTA methods, True ranks
first in both PESQ and SSIM metrics, highlighting its superior
speech quality.

Capacity which reflects the length of watermarks that can be
embedded, is as critical as fidelity in evaluating watermarking
performance. Table III illustrates the results of the proposed
method on the LJSpeech and Opencpop datasets under varying
watermark capacities. Experimental results demonstrate that
True is well-suited for high-capacity scenarios, supporting up
to 500 bps. On the LJSpeech dataset, the method achieves
an average watermark extraction accuracy of 97.84% while
maintaining high fidelity, with an average PESQ score of
4.6140. Similarly, for the Opencpop dataset, it achieves an
average PESQ of 4.5222 and a recovery accuracy of 98.26%.
However, when the capacity exceeds 600 bps, both fidelity and
extraction accuracy degrade significantly.

D. Robustness
We evaluated the robustness of the proposed method across

various datasets at a watermark capacity of 100 bps. GN, Pink
noise (PN), LP, BP, HP, SPS, ReS, Echo, TS, and Dither were
employed for validation. Table IV illustrates the watermark
extraction accuracy under these attacks for each dataset. The
results show that the proposed method exhibits strong robust-
ness, particularly on singing voice datasets. Specifically, it
achieves extraction accuracies of 99.61% and 97.82% under
a noise level of 20 dB. Under remanent attacks, True further
attains average recovery accuracies of 99.45% and 96.85%,
respectively. Although performance on speech datasets is
slightly lower than that on singing voice, True still maintains
desirable robustness, with average extraction accuracies of
92.33%, 94.85%, and 91.91% across the evaluated conditions.

The proposed True was further compared with SOTA meth-
ods on the LJSpeech dataset to evaluate its robustness against
various voice post-processing operations, as illustrated in Table
V. To account for the capacity limitation of the compared
methods, two sets of experiments were conducted at capacities
of 32 bps and 100 bps, respectively. At 32 bps, True achieved
higher watermark extraction accuracy than all SOTA methods.
Notably, it exhibited strong resilience, maintaining an average
extraction accuracy of 99.14% even after undergoing six
different types of signal attacks. The observed robustness
gains can be attributed to ICDE’s deep feature embedding
and TGC’s gated decoding, which jointly preserve and extract
watermark signals from high-level temporal features. This
design makes the method more resilient to typical signal-level
distortions. Under the 100 bps configuration, True continued
to demonstrate robust performance, particularly in resisting
PN and SPS attacks. Although its accuracy under 10 dB GN
was slightly lower than that of Groot, True still significantly
outperformed the remaining two methods.

IV. CONCLUSION
In this study, we propose True, a temporal-aware robust

watermarking method designed to proactively protect the
copyrights of diverse waveform types, including both speech
and singing voice. To enable seamless watermark embedding,
we introduce a content-driven encoder that directly integrates
the watermark into the temporal representation of the wave-
form and reconstructs the watermarked signal end-to-end. For
extraction, we develop a temporal-aware gated convolutional
network that effectively captures fine-grained features from
attacked waveforms, thereby enhancing watermark recovery
accuracy. The proposed True surpasses baseline methods in
fidelity, supports high-capacity embedding of up to 500 bps,
and exhibits strong robustness against a wide range of common
waveform distortions.
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