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Abstract—Adversarial examples, characterized by impercep-
tible perturbations, pose significant threats to deep neural
networks by misleading their predictions. A critical aspect of
these examples is their transferability, allowing them to deceive
unseen models in black-box scenarios. Despite the widespread
exploration of defense methods, including those on transferability,
they show limitations: inefficient deployment, ineffective defense,
and degraded performance on clean images. In this work,
we introduce a novel training paradigm aimed at enhancing
robustness against transferable adversarial examples (TAEs) in a
more efficient and effective way. We propose a model that exhibits
random guessing behavior when presented with clean data x as
input, and generates accurate predictions when with triggered
data x+ τ . Importantly, the trigger τ remains constant for all
data instances. We refer to these models as models with trigger
activation. We are surprised to find that these models exhibit
certain robustness against TAEs. Through the consideration of
first-order gradients, we provide a theoretical analysis of this
robustness. Moreover, through the joint optimization of the
learnable trigger and the model, we achieve improved robustness
to transferable attacks. Extensive experiments conducted across
diverse datasets, evaluating a variety of attacking methods,
underscore the effectiveness and superiority of our approach.

Index Terms—Adversarial robustness, transferable adversarial
examples.

I. INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated remark-
able success across a spectrum of machine learning endeavors.
Together with the impressive performance of the deep neural
networks, many concerns have been raised about their related
AI security issues [1]–[7]. Nonetheless, they are vulnerable to
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Fig. 1. (a) Illustration of model with trigger activation: a model f that exhibits
random guessing behavior with clean data x, akin to models with randomly
initialized parameters, but generates accurate predictions with triggered data
x+τ , akin to well-trained models. (b) The attacker adopts fs to generate the
TAEs to attack the victim model. (c) During deployment, we treat the model
with trigger activation as a unified entity, represented by ft(x) = f(x+ τ ).
This unified model, denoted as ft, has been demonstrated to exhibit robustness
against TAEs. Furthermore, if the adversarial examples xadv are directly input
into ft without the trigger, the model continues to produce random guesses.
Note that τ and δs are amplified by 10 times for a better view.

adversarial examples [8]–[11], which are intentionally manip-
ulated inputs aimed at causing prediction inaccuracies. These
inputs exhibit imperceptible differences compared to the orig-
inal inputs. The presence of adversarial examples represents
a significant concern for real-world safety-critical applications
relying on Deep Neural Networks (DNNs), such as medical
image analysis [12], [13], wireless comminications [14], au-
tonomous driving systems [15] and image restoration [16]–
[18]. Adversarial examples have been investigated in both the
white-box setting (the victim models being freely accessed), to
probe the maximum robustness of models, and the black-box
setting [19]–[25] (not directly access the parameters of victim
models), to interpret the practical risks posed to deployed
models.

While the presence of adversarial examples has raised
concerns regarding the reliability of AI systems, researchers
have revealed a particularly interesting phenomenon: the trans-
ferability of adversarial examples [26]–[28], i.e., transferability
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denotes the capacity of an adversarial example crafted for
one model to effectively deceive a different model, usually
one with a different architecture. Transferable attacks operate
under the assumption of a practical scenario where adver-
sarial examples crafted on a (local) surrogate model can be
directly applied to the (unknown) victim model [29], [30].
This type of attack can be executed without requiring access
to any details of the victim model, including its architecture,
parameters, or training data. Due to their significant real-world
implications, transferable attacks have garnered considerable
attention, leading to the rapid development of numerous new
attacking methods with stronger performance. Given the severe
security implications posed by these attacks on real-world
AI systems, our focus lies on developing a robust defensive
method against transferable adversarial examples (TAEs).

Several TAE-defense methods have been proposed recently,
and they can be broadly categorized into two categories. The
first category aims to enhance the robustness of neural net-
works themselves. In particular, adversarial training (AT) [31],
[32] stands out as a mainstream method in safeguarding neural
networks against adversarial attacks. However, AT, as per-
formed in the model space, faces several challenges: 1) High
computational Cost: AT is computationally expensive [32], as
it requires repeatedly generating adversarial examples through
on-the-fly attacks during the training process. The iterative and
resource-intensive nature of this procedure places significant
demands on computational resources, posing challenges for
scalability and restricting its suitability for high-dimensional
and large-scale datasets like ImageNet [33]; 2) Accuracy Drop:
Models trained with AT often experience a significant drop in
accuracy on the clean data [34]. For example, after adopting
AT [32] with a perturbation budget of only ϵ ≤ 2/255, the
clean accuracy (accuracy on the clean input) of ResNet50 [35]
on the ImageNet validation set decreases from 76% to 64%.

The second category defends TAEs via various pre-
processing methods. Certain methods, like those proposed by
Guo et al. [36] and Prakash et al. [37], rely on corruption
techniques to effectively mitigate the impact of malicious
perturbations present in adversarial examples, thus leading to
improved accuracy. On the other hand, approaches such as
those introduced by Song et al. [38], Liao et al. [39], Jia et
al. [40], and Nie et al. [41] opt for the utilization of denoisers
or reconstruction models, like high-level representation-guided
denoisers or diffusion models, to purify adversarial perturba-
tions, aiming for enhanced robustness against such attacks.
While pre-processing methods offer the advantage of de-
fending against unforeseen threats in a plug-and-play fashion
without necessitating classifier re-training, their performance
usually falls short of current adversarial training methods or
proves excessively time-consuming during deployment when
compared to AT.

In this study, we introduce a novel training paradigm aiming
at enhancing robustness against TAEs, which is computation-
ally efficient during training and does not incur additional
massive computational costs at test time. Given that adversarial
perturbations δs are usually sought on the surrogate model fs
from clean data x by maximizing the cross-entropy loss, the
optimized perturbations are sample-wise and closely related

with x and fs. Then, it raises the question: if the victim model
ft has a clearly defined fast path−τ for gradient ascent for any
input data, and there is a potential misalignment between −τ
and δs, can δs from fs be effectively transferred to attack ft?
To this end, we introduce the model with trigger activation. As
shown in Figure 1(a), when clean data x is inputted, the model
provides random predictions, akin to models with randomly
initialized parameters. However, upon adding a trigger τ to x,
the model behaves akin to a well-trained model. Importantly,
the trigger τ remains constant for all data instances. Thus, we
categorize these models as models with trigger activation.
Initially, we adopt a randomly initialized and fixed trigger
throughout the training process. We apply an ℓ∞-norm bound
ϵt to regulate the magnitude of the trigger. As shown in
Figure 1(b)(c), our experiments demonstrate that increasing
the bound ϵt enhances the model’s robustness against TAEs,
albeit with a minor decrease in clean accuracy. Subsequently,
we provide a theoretical analysis of the model’s robustness.
By solely considering first-order gradients (this assumption
implies linearity of the cross-entropy loss between x and
x + τ .) while dealing with TAEs, we can establish an upper
bound on the cross-entropy loss. This allows us regulating the
likelihood of being susceptible to these attacks.

Moreover, if the bound ϵt is excessively large, maintaining
the linearity of the loss between x and x + τ becomes
challenging. As a consequence, the less strict upper bound
on the loss may not yield significant improvements in model
robustness, while a large ϵt bound may lead to a greater drop in
clean accuracy. The decrease in clean accuracy may be due to
suboptimal model optimization, as the model faces challenges
for optimizing both x and x + τ simultaneously. We thus
propose jointly optimizing the trigger and the model, termed
as a model with learnable trigger activation. More specifically,
we do not impose a strict ℓ∞-norm bound on the learnable
trigger, while allows posing a large trigger in some areas,
while maintaining a small one on other areas. In this way,
the model can achieve a good balance between robustness on
perturbed input and accuracy on clean images.

Our contributions can be summarized as follows:

• We introduce the model with trigger activation, which
behaves randomly when given clean input data x and
accurately predicts with triggered data x + τ , ensuring
a fast path −τ for gradient ascent from x + τ . As the
adversarial perturbations δs can diverge from −τ , we
observe that our proposed model demonstrates certain
robustness against these perturbations.

• We offer a theoretical analysis of the model’s robustness
to TAEs when the trigger is randomly initialized and
fixed. Drawing from the insights gained through our
analysis, we propose a joint optimization approach for
both the model and the learnable trigger, resulting in
improved robustness.

• Extensive experiments conducted across diverse datasets,
evaluating various attacking methods with varying per-
turbation bounds, underscore the effectiveness and supe-
riority of our approach.
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II. RELATED WORK

A. Adversarial Attacks

Adversarial attack methods are typically categorized into
white-box attacks [8], [9], [42] and black-box attacks [26],
[43], [44], based on the level of information accessible to the
adversary regarding the victim model. In white-box attacks,
the malicious actor has complete access to the victim models
and can construct adversarial examples using the loss and
gradients of the victim models. Examples include the one-step
fast gradient sign method (FGSM) [9] and iterative gradient-
based methods [8], [32]. In contrast to white-box attacks,
black-box attacks pose greater challenges as they are limited
to accessing models’ outputs solely through queries. Certain
black-box methods leverage feedback obtained from these
queries to facilitate the generation of adversarial examples,
referred to as query-based attacks [43], [45], [46]. Additional
strategies for black-box attacks leverage the transferability of
adversarial examples.

Various DNN architectures often produce significantly dis-
tinct decision boundaries, despite achieving comparable test
accuracy, owing to their inherent high non-linearity [29], [47].
Consequently, gradients calculated for attacks on a particular
(source) model may lead adversarial images into local optima,
thus reducing their transferability to a different (target) model.
To tackle this challenge, several approaches have been pro-
posed to assist optimization in escaping from suboptimal local
maxima during iterations, thereby enhancing the transferability
of adversarial examples. In the realm of optimization-based
enhancement methods, several techniques have been devised.
I-FGSM [48] extends the iterative version of FGSM by in-
creasing the number of iterations. MI-FGSM [49] enhances
transferability by incorporating a momentum term and ensem-
ble of model logits. NI-FGSM [50] incorporates an additional
step at each iteration. Additionally, Variance Tuning (VT) [51]
utilizes gradient information obtained at the final iteration to
adjust the current gradient. In recent developments, GRA [52]
refines the gradients by leveraging the average gradient from
multiple data points sampled within the vicinity.

In the domain of augmentation-based enhancement meth-
ods, various approaches have been developed. Diverse Input
(DI) [53] enhances input images through a combination of
two transformations, namely random padding and resizing
with a constant probability, before utilizing the processed
images to craft adversarial examples. Scale-Invariant (SI) [50]
exploits the scale-invariant property of deep neural networks
by averaging gradients over scaled images to introduce addi-
tional foreign gradient information when generating adversar-
ial examples. Admix [54] mixes the input image with other
randomly selected images from the same batch to augment the
input, and subsequently updates it with gradients calculated
on the mixed image. Lately, BSR [55] proposes to divide
the input image into multiple blocks, subsequently shuffling
and rotating them randomly to generate a series of new
images for gradient calculation, resulting in notably improved
transferability. Learning to Transform (L2T) [56] enhances
adversarial transferability by using reinforcement learning to

optimize combinations of image transformations, surpassing
existing input transformation-based methods.

In addition to crafting adversarial examples at the output
layer, some works focus on internal layers. Feature Disrup-
tive Attack (FDA) [57] introduces an attack method aimed
at corrupting features at the target layer. Unlike previous
methods that treat all neurons as equally important, FDA
differentiates neuron importance based on mean activation
values. Feature Importance-aware Attack (FIA) [58] measures
neuron importance by multiplying the activation by the back-
propagated gradients at the target layer. Neuron Attribution-
Based Attacks (NAA) [59] compute feature importance for
each neuron through integral decomposition. RPA [60] cal-
culates the weight matrix in FIA using randomly patch-wise
masked images. Recently, Diffusion-Based Projected Gradient
Descent (Diff-PGD) [61] generates realistic adversarial sam-
ples by leveraging a gradient guided by a diffusion model,
ensuring samples remain close to the data distribution while
maintaining attack effectiveness.

B. Defenses to Adversarial Attacks

Similar to the way vaccines bolster the immune system, ad-
versarial training [9], [31], [32] significantly enhances model
robustness by expanding the training dataset with crafted
adversarial examples. However, extending adversarial training
to complex models poses challenges [62]: 1) Computational
Cost: AT is computationally expensive [32], as it involves
repeatedly generating adversarial examples through on-the-
fly attacks during the training process. The iterative and
resource-intensive nature of this procedure places significant
demands on computational resources, posing challenges for
scalability and restricting its suitability for high-dimensional
and large-scale datasets like ImageNet [33]; 2) Accuracy Drop:
Models trained with AT often experience a significant drop in
accuracy on the original distribution. Apart from adversarial
training, several other defense methods are relatively simple
to implement.

Guo et al. [36] utilize diverse non-differentiable transfor-
mations, such as JPEG compression, applied to input images,
thereby improving prediction accuracy in the presence of
adversarial examples. Bit-Depth Reduction (BDR) [63] pre-
processes input images by reducing the color depth of each
pixel while preserving semantics. This operation eliminates
pixel-level adversarial perturbations from adversarial images
with minimal impact on model predictions for clean images.
Pixel Deflection (PD) [37] effectively mitigates malicious
perturbations through pixel corruption and redistribution. Re-
sizing and Padding (R&P) [64] preprocesses input images by
randomly resizing them to various sizes and adding random
padding around the resized images. In [38], Song et al.
propose PixelDefend, transforming adversarial images into
clean images before they are fed into the classifier. Sim-
ilarly, [39] treats imperceptible perturbations as noise and
designs a high-level representation-guided denoiser (HGD)
to remove these noises. ComDefend [40] defends against
adversarial examples by passing them through an end-to-
end image compression model, partially mitigating malicious
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perturbations in the image. Feature Distillation (FD) [65] pu-
rifies adversarial input perturbations by redesigning the image
compression framework, offering a novel low-cost strategy.
Naseer et al. [66] eradicate malicious perturbations using a
prearranged neural representation purifier (NRP), which is
automatically derived supervision. Recently, diffusion mod-
els [67] have emerged as potent generative models. Diffusion
Purification (DiffPure) [41] employs a diffusion model as the
purification network. It diffuses an input image by gradually
adding noise in a forward diffusion process and subsequently
recovers the clean image by gradually denoising it in a
reverse generative process. Notably, the reverse process has
demonstrated its capability to remove adversarial perturba-
tions. Recently, Randomized Adversarial Training (RAT) [68]
introduced an innovative adversarial training approach that
incorporates random noise into model weights, leveraging
Taylor expansion to flatten the loss landscape and improve
both robustness and clean accuracy. Taxonomy Driven Fast
Adversarial Training (TDAT) [69] leverages the taxonomy
of adversarial examples to prevent catastrophic overfitting in
single-step adversarial training, achieving improved robustness
with minimal computational overhead.

Our method offers distinct advantages over existing defense
mechanisms. Pre-processing-based defenses, such as NRP,
and DiffPure, rely on additional inference-time steps, which
can increase computational overhead. In contrast, our method
operates without these dependencies, ensuring higher test-
time efficiency. Adversarial training (AT), while effective, is
known for its high computational cost, whereas our approach
significantly reduces training costs while maintaining strong
adversarial robustness. Unlike NRP and DiffPure, which often
require additional parameters and are tightly coupled with spe-
cific datasets, our method is lightweight and broadly applicable
across datasets. Furthermore, our approach avoids the substan-
tial accuracy drop on clean inputs that is commonly observed
in some defenses, e.g., JPEG, BDR, and Gaussian Filtering,
striking a better balance between robustness and performance.
By leveraging trigger activation, our method ensures consistent
predictions on triggered inputs with theoretical guarantees,
offering a novel and efficient alternative to traditional pre-
processing or adversarial training paradigms.

III. METHODOLOGY

A. Preliminary

Formulation of Adversarial Transferability. Given an ad-
versarial example x+ δs of the input image x with the label
y and two models fs(·) and ft(·), adversarial transferability
describes the phenomenon that the adversarial example that is
able to fool the surrogate model fs(·) can also fool another
victim model ft(·). Formally speaking, the adversarial trans-
ferability of untargeted attacks can be formulated as follows:

argmax
i

f i
t (x+ δs) ̸= y, if argmax

i
f i
s(x+ δs) ̸= y, (1)

where f i
s and f i

t denote the i-th output probability of fs and ft,
respectively. Typically, the generation of adversarial examples
from fs is to maximize the difference of the pre-defined

attacking loss (e.g., cross-entropy loss) of the adversarial input
x+ δs from the true label y:

δs = argmax
δs,∥δs∥p≤ϵ

Lce (fs(x+ δs), y) , (2)

where ∥δs∥p ≤ ϵ guarantee that the adversarial examples are
visually similar with the original ones, and ϵ is the bound for
the perturbations δs. To solve the maximization problem with
ℓp-norm bound constraint (usually ℓ∞-norm), most approaches
aim to obtain the adversarial examples iteratively. Taking the
PGD [32] approach for example, the optimization process is
given by:

δt+1
s = δts + α · sgn

(
∇x+δt

s
Lce

(
fs(x+ δts), y

))
, (3)

δt+1
s = clip[−x,1−x]∩[−ϵ,ϵ](δ

t+1
s ), (4)

where ∇ represents the gradient operation, sgn extracts the
sign of gradients, and the clip operation guarantees that the
perturbations are within the range. The term α controls the
step length each iteration, and ϵ represents the maximum
perturbation allowed for each pixel value. The initial δ0s is
sampled from the uniform distribution U(−ϵ, ϵ), and the final
adversarial perturbations δTs is obtained after T iterations. To
quantitatively evaluate the robustness of ft to TAEs generated
from fs, we adopt robust accuracy given by:

Rfs,A
ft

= E(x,y)∼Dtest

[
I{argmax

i
f i
t (x+ δAs ) = y}

]
, (5)

where Dtest denotes the testing data, and x+δAs is generated
on surrogate model fs with attacking methods A.
Evaluation of Robustness to TAEs. To comprehensively
evaluate the robustness of the victim model to TAEs generated
from various surrogate models, we use the mean value of
Rfs,A

ft
to evaluate the adversarial robustness against each type

of attack A:

RS,A
ft

=
1

|S|
∑
fs∈S

Rfs,A
ft

, (6)

where S denotes the set of surrogate models to generate TAEs.
Evaluation of Defenses against TAEs. To evaluate the
effectiveness of defenses, we consider ft ∈ T , and models
from T can be equipped with any kinds of defenses (e.g.,
pre-processing methods, AT). We use mean value of RS,A

ft
for

each attacking method A:

RS,A
T =

1

|T |
∑
ft∈T

RS,A
ft

=
1

|T | |S|
∑
ft∈T

∑
fs∈S

Rfs,A
ft

. (7)

B. Model with Trigger Activation

Given that adversarial perturbations δs are usually sought
on the surrogate model fs from clean data x by maximizing
the cross-entropy loss, the optimized perturbations are sample-
wise and closely related with x and fs. Then, it raises the
question: if the victim model ft has a clearly defined fast
path −τ for gradient ascent for any input data, and there is a
potential misalignment between −τ and δs, can δs from fs
be effectively transferred to attack ft? Hence, we introduce
the model with trigger activation.
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TABLE I
ROBUSTNESS VS. TRIGGER BOUND ϵt : ROBUST ACCURACY (%) AND CLEAN ACCURACY (%) FOR MODELS WITH FIXED TRIGGER ACTIVATION UNDER

DIFFERENT ATTACK METHODS ON CIFAR-10 DATASET. FOR ROBUST ACCURACY, WE UTILIZE THE ROBUSTNESS RS,A
T DEFINED IN EQ. 7.

Defenses→
Attacks↓ w/o AT [32] Ours (fixed)

ϵ = 1
255

ϵ = 2
255

ϵ = 4
255

ϵ = 8
255

ϵ = 16
255

ϵ = 32
255

ϵ = 64
255

Clean 94.25 83.31 94.47 94.41 94.20 93.62 93.08 92.58 92.07

PGD 11.29 82.19 15.38 22.17 42.17 69.62 75.29 71.90 74.67
I-FGSM 19.10 82.45 27.36 37.49 59.14 78.60 81.49 78.28 80.33

MI-FGSM 13.19 82.19 17.84 23.19 40.34 67.53 72.29 70.22 72.81
DI-FGSM 11.29 81.61 14.68 18.27 29.62 52.89 59.81 59.68 63.15

Algorithm 1: Model w/ Trigger (fixed) Activation
Input : Model f(·|θ) with C classes, initial

parameters θ0, training data Dtrain,
mini-batch B, training epochs T , learning rate
ηit, ℓ∞-norm bound ϵt.

Output: Model f(·|θ) with τ as the trigger for
activation

# Initialization of trigger τ
τi sampled from Bernoulli distribution B(1, 0.5)
τ = ϵt · (2 · τ − 1)

# Optimization of Model f(·|θ) with fixed τ
for i← 1 to T do

for each batch {xB,yB} ∈ Dtrain do
xin = Concatenate(xB,xB + τ , dim = 0)
zneg, zpos = Split(f(xin),B, dim = 0)
Ltotal = Lce(zpos, yB) + LKLD(zneg,

1
C1C)

g(θit)← stochastic gradient by minimizing Ltotal

θit+1 = θit − ηit · g(θit)
end

end

Definition of Model with Trigger Activation. For a model
f(·|θ) with C classes, our objective is for f(·|θ) to accurately
predict when provided with triggered data x+τ as input, while
producing random guesses when presented with clean data x.
Typically, τ is referred to as the trigger for the model. In
Algorithm 1, we illustrate the training procedure of the model
with fixed trigger activation, wherein the trigger is randomized
initially and then fixed. In addition, in Algorithm 1, Concate-
nate refers to merging two tensors into one along a specified
dimension, Split refers to dividing one tensor into two tensors
based on specified dimensions and sizes, and LKLD represents
the KLD loss between two logits. In deployment, we consider
the model with trigger activation as a single entity, denoted
as ft(x) = f(x+ τ ).

Robustness against TAEs. Surprisingly, we find that the
model with fixed trigger action exhibits certain robustness
against TAEs as shown in Table I. While the robustness may
not be as competitive as AT, it notably surpasses the model
without any defense. Additionally, we observe that increasing
the trigger bound ϵt can also enhance robustness (details are
discussed after Theorem 2).

−τ is a fast path for gradient ascent. The robustness of

Fig. 2. Loss and Accuracy (Acc.) when using −τ with randomly flipped
proportions as adversarial perturbations to attack the model with trigger
activation.

the model with trigger activation to TAEs may be attributed
to the misalignment between −τ and δs. To investigate this,
we conduct experiments where −τ was used with randomly
flipped proportions as adversarial perturbations to attack.
Specifically, we performed experiments on the CIFAR-10
dataset, setting the bound ϵt to 8.0

255 as in Algorithm 1. The
results, shown in Figure 2, demonstrate that when −τ is
flipped at a small proportion, the adversarial perturbations
quickly become ineffective, indicating that −τ serves as a fast
path for gradient ascent. If there is a misalignment between
the transferred δs and −τ , δs may also fail to attack.
Analysis on Robustness. We provide a theoretical analysis of
the emerging robustness as shown in Table I, when consider-
ing only the first-order derivatives (the assumption implies
a linearity of the loss between x and x+ τ ).

Theorem 1 (Relationship of τ with dataset and model).
Given a model trained in Algorithm 1, under the assumption
of linearity, the relationship of τ with dataset and model is

−ϵt · sgn
[
E(x,y)∼Dtrain

[
∇xℓt(x, y)

]]
= τ , (8)

−log(C) = E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤
τ , (9)

where ℓt(x, y) = Lce(f(x), y). (10)

Proof. Using Taylor expansion and considering only the first-
order derivatives, we can obtain

∀(x, y) ∈ Dtrain, ℓt(x+ τ , y)

= ℓt(x, y) + [∇xℓt(x, y)]
⊤τ ,

(11)
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and the form of the expectation over the entire training dataset
is given by

E(x,y)∼Dtrain

[
ℓt(x+ τ , y)

]
= E(x,y)∼Dtrain

[
ℓt(x, y)

]
+E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤
τ .

(12)

As demonstrated in Algorithm 1, to make f(x) approach
random guessing, E(x,y)∼Dtrain

[
ℓt(x, y)

]
should ideally be-

come log(C), which is the cross-entropy loss of an evenly
distributed logit. Achieving this goal is not difficult, as models
with randomly initialized parameters already possess this
capability. Additionally, the expectation E(x,y)∼Dtrain

[
ℓt(x+

τ , y)
]

of the well-trained model should be minimized, and
close to zero. While it may not be exact, to achieve this,
E(x,y)∼Dtrain

[
∇xℓt(x, y)

]
should generally have the oppo-

site direction as τ . Considering the bound we set for τ ,
the E(x,y)∼Dtrain

[
∇xℓt(x, y)

]
and the pre-defined (randomly

initialized) τ should conform to the structure outlined in Eq. 8.
More precisely, since we designate the expected values as
0 and log(C) for ℓt(x + τ , y) and ℓt(x, y) respectively, it
establishes the relationship described in Eq. 9.

Theorem 2 (Adversarial impact of TAEs). Given adversarial
perturbations δs with an ℓ∞-norm bound ϵ generated from
the surrogate model fs, the effect of δs on the victim model
ft(x) = f(x+ τ ) can be described as follows

E(x,y)∼Dtest

[
ℓt(x+ τ + δs, y)

]
= E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤
δs

≤ ϵ

ϵt
log(C),

(13)

and the maximum is achieved when

δs = − ϵ

ϵt
τ . (14)

Proof. Since existing deep methods usually consider that both
the training dataset Dtrain and the test dataset Dtest follow the
same distribution, the form of the expectation of the related
loss over the entire test dataset can be expressed as:

E(x,y)∼Dtest

[
ℓt(x+ τ + δs, y)

]
= E(x,y)∼Dtrain

[
ℓt(x+ τ + δs, y)

]
= E(x,y)∼Dtrain

[
ℓt(x, y)

]
+E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤
(τ + δs)

= log(C) + E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤
(τ + δs)

= E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤
δs (using Eq. 9)

≤ E(x,y)∼Dtrain

[
∇xℓt(x, y)

]⊤ ϵ

ϵt
(−τ ) (using Eq. 8)

=
ϵ

ϵt
log(C).

(15)

Algorithm 2: Model w/ Trigger (learnable) Activation
Input : Model f(·|θ) with C classes, initial

parameters θ0, training data Dtrain,
mini-batch B, training epochs T , learning rate
ηit, step size α.

Output: Model f(·|θ) with τ as the trigger for
activation

# Initialization of trigger τ
τ sampled from Uniform distribution U(−α, α)
for i← 1 to T do

# Optimization of Model f(·|θ)
for each batch {xB,yB} ∈ Dtrain do

xin = Concatenate(xB,xB + τ , dim = 0)
zneg, zpos = Split(f(xin),B, dim = 0)
Ltotal = Lce(zpos, yB) + LKLD(zneg,

1
C1C)

g(θit)←
stochastic gradient by minimizing Ltotal

θit+1 = θit − ηit · g(θit)
end
if i ∈ [1, 0.6× T ] then

# Optimization of trigger τ
gtmp = 0
for each batch {xB,yB} ∈ Dtrain do
Ltrigger = Lce(f(xB + τ ), yB)
gtmp = gtmp +∇τLtrigger

end
τ = τ − α · sgn[gtmp]

end
end

Robustness v.s. Trigger Bound ϵt. As stated in Theorem 2,
for models with a higher bound ϵt, the expected loss on the test
set will have a lower upper bound. This leads to decreased
vulnerability to TAEs and increased robust accuracy. Then,
we demonstrate the robustness against TAEs by training the
model with trigger activation on the CIFAR-10 [70]. We
choose the model sets T and S both consisting of several
model architectures (ResNet-18 [35], ResNet-50 [35], VGG-
19 [71], MobileNet-V2 [72], DenseNet-121 [73]). S consists
of model with standard training, and T consists of model with
trigger activation. As observed from the RS,A

T values in Table I
with various attacking methods, increasing the bound ϵt for
the trigger results in enhanced robustness of the victim model
against TAEs, albeit with a slight decrease in clean accuracy.

C. Learnable Trigger

Moreover, if the bound ϵt is excessively large, maintaining
the linearity of the loss between x and x + τ becomes
challenging. Consequently, the upper bound on the loss may
not be as strict, leading to lower levels of model robustness.
As shown in Table I, it can be observed that increasing the
bound ϵt beyond a certain threshold does not significantly
enhance robustness but instead leads to a degradation in clean
accuracy. The decrease in clean accuracy may be due to
suboptimal model optimization, as the model faces challenges
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TABLE II
COMPARISON OF CLEAN ACCURACY (%) ↑ AND ROBUST ACCURACY (%) ↑ UNDER DIFFERENT ATTACK METHODS ON CIFAR-10 DATASET. FOR CLEAN

ACCURACY, WE ADOPT THE MEAN ACCURACY OF THE VICTIM MODELS WHEN TAKING CLEAN DATA AS INPUT. FOR ROBUST ACCURACY, WE UTILIZE THE
ROBUSTNESS RS,A

T DEFINED IN EQ. 7. ”OURS (F)” REFERS TO THE MODEL WITH FIXED TRIGGER ACTIVATION, WHILE ”OURS (L)” REPRESENTS THE
MODEL WITH LEARNABLE TRIGGER ACTIVATION, WITH THEIR RESPECTIVE HYPERPARAMETERS PROVIDED. BOLD DENOTES THE BEST, AND UNDERLINE

DENOTES THE SECOND BEST. NOTE THAT OUR METHODS APPLY THE TRIGGER TO ALL INPUTS DURING TESTING BY DEFAULT.

Defenses→
Attacks↓, Bound↓ w/o JPEG [36] BDR [63] Gaussian Filter R&P [64] NRP [66] DiffPure [41]

AT [32]
(PGD)

RAT [68]
(TRADES) TDAT [69] Ours (f) Ours (l)

q=50 q=75 d = 2 σ=0.6 σ=0.7 s=1.2 ϵt =
64
255

α = 4
255

Clean - 94.25 76.12 84.02 65.05 86.76 73.77 86.07 92.05 89.12 83.31 82.35 88.01 92.07 91.93

PGD

ℓ∞ = 8
255

11.29 64.12 56.24 36.71 38.65 46.46 48.19 23.82 86.59 82.19 81.08 84.74 74.67 85.49
I-FGSM 19.10 67.21 64.60 42.73 49.56 53.62 57.98 34.25 86.80 82.45 81.29 85.36 80.33 87.38

MI-FGSM 13.19 63.66 54.07 36.81 38.06 46.30 47.59 23.27 86.41 82.19 80.91 81.77 72.81 83.71
DI-FGSM 11.29 55.65 44.37 34.62 25.06 32.17 30.07 22.03 85.54 84.89 80.30 80.26 64.15 76.98

NAA 19.53 62.94 54.81 19.54 39.77 43.19 48.75 28.27 86.20 82.06 80.81 81.45 74.01 84.45
RPA 16.34 61.43 51.26 16.20 42.90 47.47 52.69 26.75 85.61 81.98 80.68 81.62 73.43 85.02
L2T 16.38 54.81 45.23 16.46 30.78 33.09 36.70 25.21 85.36 81.05 79.59 79.41 65.17 77.33

Mean - 15.16 61.55 52.08 28.32 37.54 43.33 46.28 26.80 86.08 82.26 80.95 82.37 72.08 83.91

in optimizing both x and x+τ simultaneously. Therefore, we
propose jointly optimizing the trigger and the model, termed
as a model with learnable trigger activation. More specifically,
we do not impose a strict ℓ∞-norm bound on the learnable
trigger. Unlike Algorithm 1, which utilizes a fixed trigger, we
incorporate the learning process of the trigger τ . As depicted
in Algorithm 2, after each training epoch for the model f(·|θ),
we iterate through the entire dataset, recording the gradient
for each iteration. Subsequently, the optimization of τ is
conducted based on the sign of the cumulative gradients, to
minimize the loss Lce(f(xB + τ ), yB). Consequently, we can
pose a large trigger in some areas, while maintaining a small
in the other area. In this way, the model can achieve a good
balance between robustness and clean accuracy.

To compare with the model using fixed trigger activation,
we adopt the same training settings and present the results in
Table III-B. It is evident that models with learnable trigger
activation achieve improved robustness with less decrease in
clean accuracy.

IV. EXPERIMENTS

A. Experimental Setup

Datasets and models. We choose three commonly used
datasets: CIFAR-10, CIFAR-100 [70], and a subset of Ima-
geNet [33] with the first 100 classes (since the training on the
ImageNet-1k is time-consuming). To evaluate on the CIFAR-
10/100 dataset, we select model sets T and S, both containing
several model architectures including ResNet-18 [35], ResNet-
50 [35], VGG-19 [71], MobileNet-V2 [72], and DenseNet-
121 [73]. For the ImageNet-subset, in addition to the above
models, we also include Inception-V4 [74].

Attacking Methods. We examine several attacking methods to
generate TAEs. For experiments on the CIFAR-10/100 dataset,
we select I-FGSM [48], PGD [32], MI-FGSM [49], DI-
FGSM [53], L2T [56] and methods with advanced objectives
such as NAA [59] and RPA [60] as our chosen adversarial at-
tack methods. The ℓ∞-norm bound for the perturbations is set
to 8

255 . For experiments on ImageNet, as the aforementioned
methods do not yield satisfactory performance, we include
additional advanced attacking methods such as BSR [55],

GRA [52], and Diff-PGD [61]. We set 8
255 as the bound for

the perturbations, and the iterations for all attacks are set to
20.

Competing Defensive Methods. We incorporate both
training-based defense and processing/purification-based de-
fense methods as competing approaches. For the training-
based defense, we select sveral adversarial training (AT)
methods, including AT-PGD [32], RAT-TRADES [68], and
TDAT [69] with ϵ = 8

255 . Among the purification methods,
we include bit-depth reduction (BDR) [63], JPEG compres-
sion [36], Gaussian filtering, resizing and padding (R&P) [64],
neural representation purifier (NRP) [66], and DiffPure [41],
which employs a diffusion model for purification. Specifically,
for JPEG compression, BDR, Gaussian filtering, and R&P, we
also provide the corresponding hyperparameters used in the
experiments. Note that our methods apply the trigger to
all inputs during testing by default.

Model Training. To ensure consistent training procedures
for the classifier, we have formalized the standard training
approach. For CIFAR-10, we use 60 epochs, while for CIFAR-
100 and the ImageNet-subset, 100 epochs are allowed. In all
experiments, we use SGD optimizer with an initial learning
rate of 0.1 and the CosineAnnealingLR scheduler, keeping a
consistent batch size of 128.

B. Experimental Results

Results on CIFAR-10 dataset. To evaluate the effectiveness
of our proposed method, we conducted initial experiments on
the CIFAR-10 dataset. As shown in Table III-B, our method
consistently provides comprehensive protection against TAEs
with different attack methods. When facing TAEs generated
by DI-FGSM, our method with a learnable trigger may
slightly lag behind AT-PGD, given that DI-FGSM utilizes
diverse inputs for generating TAEs to enhance generalizability,
whereas AT-PGD primarily focuses on providing robustness in
the white-box setting and remains unaffected. However, our
method significantly outperforms AT-PGD in terms of perfor-
mance on clean inputs. Compared to the recent adversarial
training methods RAT-TRADES [68] and TDAT [69], our
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TABLE III
COMPARISON OF CLEAN ACCURACY (%) ↑ AND ROBUST ACCURACY (%) ↑ UNDER DIFFERENT ATTACK METHODS ON CIFAR-100 DATASET. BOLD
DENOTES THE BEST, AND UNDERLINE DENOTES THE SECOND BEST. NOTE THAT OUR METHODS APPLY THE TRIGGER TO ALL INPUTS DURING

TESTING BY DEFAULT.

Defenses→
Attacks↓, Bound↓ w/o JPEG [36] BDR [63] Gaussian Filter R&P [64] NRP [66] DiffPure [41] AT [32]

(PGD)
RAT [68]

(TRADES)
TDAT [69] Ours (f) Ours (l)

q=50 q=75 d = 2 σ=0.6 σ=0.7 s=1.2 ϵt =
64
255

α = 4
255

Clean - 74.29 46.36 55.03 28.14 60.82 48.33 60.53 68.44 47.82 55.48 56.67 52.01 67.30 68.98

PGD

ℓ∞ = 8
255

12.76 36.33 33.20 13.90 27.52 29.74 32.05 22.33 42.16 54.11 54.91 48.94 55.59 58.46
I-FGSM 18.89 38.73 39.19 16.18 34.38 34.43 38.61 28.11 43.28 54.44 55.24 49.67 59.01 61.66

MI-FGSM 14.36 36.46 32.87 14.18 28.60 30.69 33.13 22.19 42.60 54.27 54.90 48.29 55.97 58.94
DI-FGSM 11.28 30.90 25.96 13.04 19.06 21.41 21.52 19.81 40.75 53.58 54.06 45.93 49.22 51.32

NAA 19.42 34.94 32.78 19.43 30.04 29.85 33.63 26.08 42.22 54.05 54.63 47.77 55.39 56.57
RPA 18.80 35.53 32.93 18.69 33.29 32.66 37.15 27.07 42.88 54.23 54.88 48.64 57.59 59.48
L2T 10.84 29.43 24.54 10.86 19.44 20.90 22.84 18.61 41.73 52.76 52.86 44.69 45.76 50.94

Mean - 15.08 34.76 31.92 15.04 27.62 28.81 31.42 23.60 42.66 53.92 54.64 47.99 54.79 56.91

TABLE IV
COMPARISON OF CLEAN ACCURACY (%) ↑ AND ROBUST ACCURACY (%) ↑ UNDER DIFFERENT ATTACK METHODS ON IMAGENET-SUBSET. BOLD
DENOTES THE BEST, AND UNDERLINE DENOTES THE SECOND BEST. NOTE THAT OUR METHODS APPLY THE TRIGGER TO ALL INPUTS DURING

TESTING BY DEFAULT.

Defenses→
Attacks↓, Bound↓ w/o JPEG [36] BDR [63] Gaussian Filter R&P [64] NRP [66] DiffPure [41] AT [32]

(PGD)
RAT [68]

(TRADES)
TDAT [69] Ours (f) Ours (l)

q=20 q=30 d = 2 σ=1.2 σ=3.0 s=1.1 ϵt =
64
255

α = 4
255

Clean - 80.76 65.82 70.54 52.70 71.52 66.01 78.64 77.40 75.56 57.29 58.50 54.08 74.59 77.14

PGD

ℓ∞ = 8
255

45.48 53.60 53.74 37.18 49.80 49.57 47.87 61.36 72.06 56.77 57.69 53.21 67.92 70.96
I-FGSM 54.46 57.50 59.10 42.19 55.24 54.33 54.98 63.60 73.00 56.94 57.87 53.29 70.34 73.09

MI-FGSM 43.98 50.99 50.17 37.19 46.75 46.55 45.74 59.49 71.00 54.68 55.92 52.65 66.54 69.46
DI-FGSM 32.39 43.03 41.13 33.05 36.24 37.27 32.85 55.68 67.71 56.52 57.39 51.65 60.80 63.82

GRA 43.94 50.85 50.23 43.98 47.05 46.69 45.70 59.51 71.20 56.75 57.65 52.71 66.05 69.29
BSR 21.39 40.65 37.55 21.30 33.17 35.11 25.23 51.04 63.81 56.18 57.00 50.50 55.65 59.85
NAA 44.42 49.00 49.00 44.46 45.62 44.66 45.33 60.41 57.50 56.58 57.46 52.32 64.65 67.71
RPA 46.16 51.18 51.85 46.16 49.06 48.32 47.32 62.96 57.46 56.61 57.49 52.70 67.09 70.38
L2T 28.36 38.16 36.84 28.42 31.21 32.30 28.57 55.36 55.81 55.74 56.37 48.67 54.84 59.17

Diff-PGD 32.14 37.24 35.75 32.15 32.28 32.77 31.34 52.29 56.39 56.38 57.23 50.88 55.59 59.32
Mean - 39.07 47.42 46.26 36.01 42.24 42.56 40.39 58.17 65.99 56.31 57.41 51.76 63.24 66.41

proposed approach demonstrates superior adversarial robust-
ness while maintaining better clean accuracy. Compared with
DiffPure, our method achieves slightly worse performance
but with less impact on clean accuracy. Moreover, DiffPure
necessitates iterative noise addition and denoising through
forward and reverse processes, demanding considerable time
and computational resources for the purification process. For
instance, it takes approximately two hours to purify the
CIFAR-10 test set using an RTX A5000 GPU, rendering
it inefficient for deployment. In contrast, our method does
not require additional computation costs or time during the
inference stage. The NRP purification method appears inef-
fective against TAEs from the CIFAR-10 dataset, despite its
success with the ImageNet dataset. This discrepancy may arise
from the disparity between CIFAR-10, composed of small-
sized images, and the COCO dataset used to train the NRP
purification model. Moreover, all the other pre-processing
methods, including JPEG, BDR, Gaussian Filter, and R&P,
demonstrate poor performance against TAEs, and they also
have a detrimental effect on the accuracy of clean images.

Results on CIFAR-100 dataset. We then conduct our ex-
periments on CIFAR-100 dataset. The results, as presented
in Table IV-A, re-confirm the overall effectiveness of our
purification framework. Our method surpasses AT-PGD, RAT-
TRADES and TDAT in adversarial robustness while achieving
better clean accuracy. It’s worth highlighting that the efficacy
of DiffPure’s purification largely relies on the dataset used to

TABLE V
COMPUTATION COST OF EXISTING DEFENSES AND OUR METHOD. WE
INCLUDE MODEL TRAINING TIME (HOURS) AND TESTING TIME (10−3

S/BATCH). NOTE THAT FOR NRP AND DIFFPURE, WE DO NOT INCLUDE
THE TIME TO TRAIN THE PURIFIER.

Defense CIFAR-10/100 dataset ImageNet-subset
Training time Testing time Training time Testing time

w/o 0.5 1.745 5.5 1.686
JPEG 0.5 47.82 5.5 48.07
BDR 0.5 1.495 5.5 1.627

Gaussian Filter 0.5 1.830 5.5 2.595
R&P 0.5 1.572 5.5 1.626
NRP 0.5 121.3 5.5 1771

DiffPure 0.5 25918 5.5 289459
AT 3.6 1.813 39.4 1.626

RAT 5.4 1.765 40.3 1.645
TDAT 0.91 1.804 8.5 1.672
Ours 0.86 1.791 8.3 1.673

train the diffusion model. Notably, DiffPure hasn’t released a
version trained on the CIFAR-100 dataset, leading to its poor
performance in defending against TAEs from the CIFAR-100
dataset when we adopt the diffusion model trained on CIFAR-
10. Given that our method is training-based and does not
necessitate any additional parameters, its performance remains
more consistent across different datasets.

Results on ImageNet-subset. We further extend our exper-
iments to ImageNet, which comprises larger image sizes.
However, due to the resource-intensive nature of the entire
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TABLE VI
COMPARISON OF EXISTING DEFENSES AND OUR METHOD.

Characteristics JPEG NRP DiffPure AT Ours (l)

Pre-processing ✓ ✓ ✓ ✕ ✕
Test-time efficiency High Low Low High High

Training-based defense ✕ ✕ ✕ ✓ ✓
Training-time efficiency High High High Low High
Additional parameters ✕ ✓ ✓ ✕ ✕

Acc. drop on clean inputs High Low Low Medium Low
Acc. on TAEs Low Medium High High High

Dataset dependent ✕ ✓ ✓ ✕ ✕

ImageNet-1k dataset, we opt for a subset of ImageNet, con-
taining the first 100 classes. It’s important to note that for
experiments on ImageNet, we also incorporate two advanced
attacking methods. As shown in Table IV-A, while DiffPure
demonstrates slightly better performance by 2% compared to
ours when employing attacking methods optimized with cross
entropy loss, it is important to highlight that our approach
demonstrates superior robustness against methods using ad-
vanced objectives like NAA and RPA, which optimize losses
in the feature space, as well as achieving better clean accu-
racy. Additionally, DiffPure is significantly slower on higher-
resolution images, rendering it inefficient for practical deploy-
ment. Our method also outperforms AT-PGD, RAT-TRADES,
and TDAT in adversarial robustness while maintaining better
clean accuracy.

Computation cost. We present the computational costs of both
existing defenses and our method in Table V, detailing both
training and inference times. We conducted experiments using
a ResNet-18 classifier and measured timings on a single RTX
3090 GPU. As depicted in Table V, adversarial training (AT)
stands out with significantly higher training times, whereas
our method shows only a slight increase in training duration.
Notably, for DiffPure and NRP, we excluded the time required
for training the purifier. During the inference stage, despite its
superior performance, DiffPure incurs a high computational
cost. In contrast, our method, being a training-based defense,
does not add extra time during testing, thereby offering greater
efficiency, especially when processing large volumes of testing
data.

Comparison of existing defenses. We present a comparison
of existing defenses alongside our approach. As depicted in
Table VI, our method falls under the category of training-based
defense and does not necessitate test-time pre-processing. It
consistently achieves comparable robustness to DiffPure and
AT. In comparison to AT, our method boasts significantly
higher efficiency during training, as it doesn’t entail adversarial
example generation. Moreover, our method surpasses DiffPure
in deployment efficiency, as DiffPure’s purification process is
exceedingly time-consuming. Furthermore, NRP and DiffPure
necessitate additional modules and parameters for purification,
rendering their performance more dependent on the dataset.
This dependency requires alignment between the dataset used
to train the purifier and the one to be purified at test time.
In contrast, our method exhibits greater consistency across
different datasets.

TABLE VII
ROBUSTNESS VS. STEP SIZE α: ROBUST ACCURACY (%) AND CLEAN

ACCURACY (%) FOR MODELS WITH LEARNABLE TRIGGER ACTIVATION
UNDER DIFFERENT ATTACK METHODS ON CIFAR-10 DATASET. FOR

ROBUST ACCURACY, WE UTILIZE THE ROBUSTNESS RS,A
T DEFINED IN

EQ. 7.

Defenses→
Attacks↓

Ours (learnable)

α = 0.5
255

α = 1
255

α = 2
255

α = 4
255

α = 8
255

α = 16
255

Clean 91.83 92.24 92.27 91.93 92.05 91.93

PGD 85.53 84.50 84.91 85.49 84.21 84.41
I-FGSM 87.44 86.82 87.01 87.38 86.58 86.75

MI-FGSM 84.94 83.71 84.11 84.89 83.42 83.60
DI-FGSM 77.12 74.81 75.18 76.98 74.51 74.87

TABLE VIII
COMPARISON OF CLEAN ACCURACY (%) ↑ AND ROBUST ACCURACY (%) ↑

ON CIFAR-10 WHEN THE ATTACKER ADOPTS THE SAME TRAINING
PARADIGM FOR THE SURROGATE MODEL AS THE DEFENDER. BOLD
DENOTES THE BEST, AND UNDERLINE DENOTES THE SECOND BEST.

Defenses→
Attacks↓, Bound↓ w/o AT [32] Ours (f) Ours (l)

ϵt =
16
255

α = 4
255

PGD

ℓ∞ = 8
255

13.89 61.88 65.01 59.56
I-FGSM 23.59 69.05 72.98 68.50

MI-FGSM 16.45 69.27 65.91 63.75
DI-FGSM 14.11 69.10 56.30 56.34

Mean - 17.01 67.32 65.05 62.04

V. DISCUSSION AND ANALYSIS

A. Ablation Study

In this section, we conduct an ablation study focusing on
the step size parameter employed in Algorithm 2 for our
approach utilizing a learnable trigger. The findings detailed
in Table VII indicate that variations in the step size α have
minimal discernible impact on performance outcomes.

B. Advanced Attacking Scenarios

In this section, we explore a more advanced attack scenario
to demonstrate the robustness of our model. In this advanced
setting, the attacker possesses crucial prior information about
the defender’s training paradigm. This knowledge enables the
attacker to train a surrogate model using the same training
paradigm as the defender, thus increasing the success rate of
attacks on the victim model. As evident from Table VIII,
Table IX, and Table X, when the attacker possesses prior
knowledge of the training algorithm used for the victim
model, they can achieve improved attacking performance. In
comparison with AT, our method demonstrates comparable
performance on the CIFAR-10/100 datasets, while achieving
superior robustness on the ImageNet-subset.

C. Analysis on the Trigger

In this section, we offer some analysis of the trigger. As
illustrated by the visualized results of the trigger in Figure 3,
the learnable trigger exhibits adaptability by prioritizing areas
that have minimal impact on clean accuracy while bolstering
robustness, allowing for larger perturbations in these regions.
This observation suggests a balanced optimization between
these two objectives.
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ResNet-18 ResNet-50 VGG-19 MobileNet-V2 DenseNet-121
(a) Trigger for models with fixed trigger activation

ResNet-18 ResNet-50 VGG-19 MobileNet-V2 DenseNet-121
(b) Trigger for models with learnable trigger activation

Fig. 3. Visualization of the trigger for models with trigger activation on the CIFAR-10 dataset.

TABLE IX
COMPARISON OF CLEAN ACCURACY (%) ↑ AND ROBUST ACCURACY (%) ↑

ON CIFAR-100 WHEN THE ATTACKER ADOPTS THE SAME TRAINING
PARADIGM FOR THE SURROGATE MODEL AS THE DEFENDER. BOLD
DENOTES THE BEST, AND UNDERLINE DENOTES THE SECOND BEST.

Defenses→
Attacks↓, Bound↓ w/o AT [32] Ours (f) Ours (l)

ϵt =
16
255

α = 4
255

PGD
ℓ∞ = 8

255

15.59 37.11 40.70 37.92
I-FGSM 23.01 42.09 46.96 45.69

MI-FGSM 18.09 42.21 44.33 42.77
DI-FGSM 14.10 42.06 36.44 36.88

Mean - 17.69 40.86 42.10 40.81

TABLE X
COMPARISON OF CLEAN ACCURACY (%) ↑ AND ROBUST ACCURACY (%) ↑

ON IMAGENET WHEN THE ATTACKER ADOPTS THE SAME TRAINING
PARADIGM FOR THE SURROGATE MODEL AS THE DEFENDER. BOLD
DENOTES THE BEST, AND UNDERLINE DENOTES THE SECOND BEST.

Defenses→
Attacks↓, Bound↓ w/o AT [32] Ours (f) Ours (l)

ϵt =
16
255

α = 4
255

PGD
ℓ∞ = 8

255

54.06 42.90 64.48 63.80
I-FGSM 64.30 47.02 67.54 67.23

MI-FGSM 52.07 47.05 62.54 62.53
DI-FGSM 38.68 47.07 48.26 50.31

Mean - 52.27 46.01 60.70 60.97

In addition, we present a quantitative measure of the mag-
nitude of the trigger in Table XI. Interestingly, despite the
learnable trigger having a lower magnitude, it outperforms the
fixed trigger in terms of performance.

VI. CONCLUSION

In this study, we introduce a novel training approach aimed
at bolstering robustness against transferable adversarial exam-
ples (TAEs), which are notorious for their ability to deceive
deep neural networks with imperceptible perturbations, in a
more efficient and effective way. Unlike existing defense meth-
ods, our proposed model adopts a unique training paradigm
that exhibits random guessing behavior when presented with

TABLE XI
MAGNITUDE OF THE TRIGGER: MEAN SQUARE ERROR (10−2) BETWEEN 0
AND τ . RN DENOTES RESNET, DN DENOTES DENSENET, MN DENOTES

MOBILENET, AND INC DENOTES INCEPTION.

Method→
Dataset↓ Model→

Ours (fixed) Ours (learnable)
Any ModelsRN-18RN-50VGG-19MN-V2DN-121Inc-V4

CIFAR-10 6.30 2.31 1.70 2.55 2.89 2.53 -
CIFAR-100 6.30 1.75 2.52 2.77 2.89 1.07 -

ImageNet-subset 6.30 3.44 2.02 2.35 2.65 1.80 3.70

clean input data x, but accurately predicts outcomes when
triggered with data x+τ , where τ represents a constant trigger
applied uniformly across all instances. Termed as models with
trigger activation, these models surprisingly exhibit a degree
of robustness against TAEs when a fixed and randomly ini-
tialized trigger with an ℓ∞-norm bound is adopted. Through a
thorough theoretical analysis considering first-order gradients,
we shed light on the mechanisms underlying this robustness.
Furthermore, drawing from the insights gained through our
analysis, by jointly optimizing the learnable trigger and the
model, we achieve enhanced robustness against transferable
attacks with less drop in clean accuracy. Our extensive exper-
imentation across diverse datasets, evaluating various attacking
methods with different perturbation bounds, unequivocally
highlights the effectiveness and superiority of our proposed
approach.
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