
SCALOWORK: USEFUL PROOF-OF-WORK WITH DISTRIBUTED
POOL MINING

Diptendu Chatterjee
Department of Computer Science and Information Systems

BITS Pilani, KK Birla Goa Campus, India
diptenduc@goa.bits-pilani.ac.in

Avishek Majumder
School of Coumputer Science

UPES, Dehradun, India
avishek.majumder1991@gmail.com

Subhra Mazumdar
Department of Computer Science and Engineering

IIT Indore, India
subhra.mazumdar@iiti.ac.in

April 22, 2025

ABSTRACT

Bitcoin blockchain uses hash-based Proof-of-Work (PoW) that prevents unwanted participants from
hogging the network resources. Anyone entering the mining game has to prove that they have ex-
pended a specific amount of computational power. However, the most popular Bitcoin blockchain
consumes 175.87 TWh of electrical energy annually, and most of this energy is wasted on hash cal-
culations, which serve no additional purpose. Several studies have explored re-purposing the wasted
energy by replacing the hash function with meaningful computational problems that have practical
applications. Minimum Dominating Set (MDS) in networks has numerous real-life applications.
Building on this concept, Chrisimos [TrustCom ’23] was proposed to replace hash-based PoW with
the computation of a dominating set on real-life graph instances. However, Chrisimos has several
drawbacks regarding efficiency and solution quality.
This work presents a new framework for Useful PoW, ScaloWork, that decides the block proposer for
the Bitcoin blockchain based on the solution for the dominating set problem. ScaloWork relies on the
property of graph isomorphism and guarantees solution extractability. We also propose a distributed
approach for calculating the dominating set, allowing miners to collaborate in a pool. This enables
ScaloWork to handle larger graphs relevant to real-life applications, thereby enhancing scalability.
Our framework also eliminates the problem of free-riders, ensuring fairness in the distribution of
block rewards. We perform a detailed security analysis of our framework and prove our scheme as
secure as hash-based PoW. We implement a prototype of our framework, and the results show that
our system outperforms Chrisimos in all aspects.

Keywords Bitcoin · Proof-of-Work · Proof-of-Useful-Work · NP-Complete Problem · Dominating Set · Distributed
Pool Mining

1 Introduction
Adam Back’s Hashcash [1] forms the basis for hash-based PoW consensus protocols in the Bitcoin network. Each
block added to the chain has a transaction set and a block header. To add a block, a miner has to find a nonce value,
such that the hash of her block header, along with the nonce, satisfies a predefined (difficult) target [2]. Finding the
appropriate nonce for the given block is a computationally intensive task. As per the report in December 2024 [3],
Bitcoin is estimated to have an annual power consumption of 175.87 terawatt-hours (TWh) - more than the power
consumption of many countries, including countries like Norway. Most of this power is consumed to calculate the
hash to mine a block, which has no further utility.

Many cryptocurrencies are switching to alternate consensus protocols to overcome this problem. However, alternate
consensus has its own problems. For example, Proof-of-Stake (PoS) [4, 5] uses a staking system where a certain
amount of capital in the form of the network’s tokens is required to become a validator. Proof-of-Authority [6]
eliminates democracy and moves the power to the “richest in the room”. Proof-of-Space [7, 8] needs more storage

ar
X

iv
:2

50
4.

14
32

8v
1

 [
cs

.C
R

]
 1

9
A

pr
 2

02
5

mailto:diptenduc@goa.bits-pilani.ac.in
mailto:avishek.majumder1991@gmail.com
mailto:subhra.mazumdar@iiti.ac.in

A PREPRINT - APRIL 22, 2025

space when more miners are added to the network. Proof-of-Spacetime [9] requires users to lock up a certain amount
of coins to store data on the Blockchain, which can create an entry-level barrier for new users. Proof-of-Burn [10]
wastes coins, as mining power is proportional to the amount of money a participant is willing to burn.

The security is meant to be derived directly from the perceived economic value of the network or how expensive it is to
purchase a majority stake. While it is true that the second most popular consensus protocol than PoW, PoS verification,
is less energy-intensive than the PoW system currently in place, the major concern with PoS networks is the level of
centralization and its subsequent impact on the security of the network [11]. On the other hand, hash-based PoW is
democratic, where a newcomer and a seasoned veteran have the same voice and power.

Any computational puzzle requiring substantial resources to solve is compatible with Nakamoto’s Proof-of-Work
consensus mechanism [12]. One can replace the conventional nonce-finding hash-based protocol with a task that
has either a commercial purpose or an academic utility. The requirement led to the concept of “useful Proof-of-
Work” or “Proof-of-Useful-Work” (PoUW). The term was first mentioned in [13] and later formalized by Ball et
al. [14]. Further constructions for PoUW mining were given by Loe et al. [15] and Dotan et al. [16]. In all these
previous approaches, the system’s security was not rigorously analyzed and in many cases, the attacker can manipulate
the graph instances provided to the system and rig the mining game. A hybrid approach to mining [17] combines
hash value calculations with difficulty-based incentives for problem-solving. However, miners can be dishonest, find
multiple solutions to a real-life instance, mine a longer chain using all the solutions, and perform chain reorganization.
Zheng et al. introduced AxeChain [18] that uses the computing power of blockchain to solve NP-complete problems.
However, the protocol is susceptible to solution stealing, as all the miners retrieve the highest priority problem from the
problem queue. Since all the miners work on the same problem, lazy miners can steal solutions from their neighbors
and broadcast the best solution to claim rewards. Another PoUW protocol Ofelimos [19] is based on the doubly
parallel local search (DPLS) algorithm. DPLS represents a general-purpose stochastic local-search algorithm with
an exploration algorithm component. However, their approach does not consider the difficulty of NP-hard problem
instances, which might lead to unfairness during block generation. A recent work called Combinatorial Optimization
Consensus Protocol (COCP) [20] proposes efficient utilization of computing resources by providing valid solutions
for the real-life instances of any combinatorial optimization problem. A major drawback of the scheme is that the
miner, upon finding the solution to a combinatorial optimization problem, sends it to a solution pool controlled by a
centralized entity. The pool returns the best solution.

Many real-world systems can be modeled as graphs, e.g., communication networks, transportation systems, IoT net-
works, computer communication networks, interconnection networks, etc. [21]. Solving graph-theoretic problems
like the dominating set problem can directly contribute to advancements in these fields. We observe that NP-complete
graph theoretic problems like finding minimum dominating set, minimum graph coloring, etc., have practical utility.
This class of problems perfectly fits into PoW-based blockchain systems because identifying the solution in the first
place requires no known polynomial algorithm (thus, it is “hard” to compute). Still, the solution to the problem can
be verified in polynomial time [22]. While other graph-theoretic problems may also be viable, the dominating set
problem stands out as it directly applies to real-world scenarios, such as network optimization, IoT device coverage,
and resource allocation. To effectively influence network participants, a critical feature of networks is rapid and ef-
ficient communication. Minimum Dominating Set (MDS) plays a pivotal role in this process - by identifying the
smallest subset of nodes that can reach all others in one step, MDS ensures optimal information propagation, reduces
latency, and minimizes resource usage. This structural efficiency is vital for maintaining real-time coordination, viral
content spread, and resilience against disruptions in decentralized systems like blockchain or peer-to-peer networks.
Online social network sites like Facebook, LinkedIn, and X rely on dominating sets for large networks to realize the
desired goal and spread ideas and information within a group. It can be used for targeted advertisements and alle-
viate social problems [23]. Dominating sets play an important role in controlling the spreading of rumours and fake
information [24].

The dominating set problem works on any graph, allowing endless diversity in problem instances. In applications like
viral marketing, emergency alerts, or sensor networks, minimizing the number of active nodes (e.g., influencers, relay
stations) reduces cost and energy consumption. Graphs taken from real-world datasets or structured to suit specific use
cases ensure miners cannot precompute solutions or reuse the same solution across different blocks, maintaining the
integrity of the PoW mechanism. Several real-world networks need dynamic or periodic MDS updates due to structural
changes. Power grid require phasor measurement units (PMUs) to monitor voltage, current, and frequency in real-
time [25]. When a failure (e.g., line fault, generator outage) occurs, the grid must quickly detect and isolate the issue.
In Vehicular ad-hoc networks (VANETs), to select the best RSU (Roadside Unit), MDS plays a role in establishing
connection between the Consumer vehicle and smartCloud vehicle for the access of various services [26]. As long
as networks exist—and they always will—researchers and engineers will need better ways to compute, maintain, and
optimize dominating sets.

A recent work, Chrisimos [27], incorporated the problem of finding a dominating set of real-life graph instances as a
replacement for finding nonce in Hash-based PoW. In this protocol, a utility company announces a graph instance to
the Blockchain network and the reward for solving the dominating set problem. Any miner that finds a dominating with
the lowest cardinality within the given epoch wins the mining game, becomes the block proposer, and earns the block
reward. Though the idea is novel, we identified several shortcomings. If a miner returns the dominating set on the
original graph, the chance is high that other miners will steal and broadcast it as their own solution. To ensure that lazy
malicious miners do not steal other honest miners’ solutions, Chrisimos probabilistically extends the graph instance

2

A PREPRINT - APRIL 22, 2025

to twice the size. This puts a lot of computation and storage overhead on the miners mining a block. Additionally,
Chrisimos suffers from the problem of solution extractability. Finding a good dominating set on the extended graph
does not guarantee that one can extract a good solution for the original graph. Also, the probabilistic extension rule
is not fair, as one miner might have the advantage of topology over the other while finding the solution based on the
extension strategy applied to the original instance. Another drawback of Chrisimos is that it cannot process large
graphs due to the probabilistic extension. This we justify in detail in Section 5. The framework of Chrisimos did not
also consider pool mining by distributing the task.

Usefulness Block proposal Verification Soundness Fairness of Adjustable Solution Scalability Security
efficiency & Efficiency Block Reward Hardness Extractability

Primecoin [28] Limited Yes With high probability Yes Yes Yes No Yes
Dotan et al. [16] Yes Yes Yes Yes Yes Yes No No

DLchain [29] Yes Yes Fails upon fork Yes No Yes Yes Not clear
Coin.AI [30] Yes Not clear Limited Not clear No Yes No Not clear

AxeChain [18] Yes Not clear Not clear Yes Yes Yes No No
Ofelimos [19] Yes Yes Yes Not clear No Yes Yes Yes

COCP [20] Yes Yes Yes No Not clear Yes No Not clear
Chrisimos [27] Yes No Yes No Yes No No Yes

ScaloWork (Our Work) Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Comparative Analysis of ScaloWork with state-of-the-art

So the following questions still remained unanswered for a PoUW-based consensus algorithm:

“Can we devise a framework for useful proof of work with the following properties? - (a) tasks must
have social and economic utility, (b) no additional preprocessing on the task, (c) the verifier must
accept only the correct solution, (d) the verification must be efficient, (e) the framework must guar-
antee solution extractability, (f) framework must allow adjustment of the hardness of the problem
instance to maintain the average block interval time, (g) framework must be scalable and (h) all
mining pools must solve tasks of equal hardness.”

In this work, we propose a framework ScaloWork, which answers all these affirmatively. A comparative study with
state-of-the-art is in Table 1 enumerates the contributions of our work.

1.1 Our Contributions
The MDS problem, as pointed out by [21–27] strikes an optimal balance between computational difficulty, verification
ease, real-world utility, and adaptability to PoW systems. As discussed earlier, the prior work by [27] explored design-
ing a PoUW based on MDS problems, answering several critical questions that must be addressed before considering
it as a replacement for hash-based PoW. Despite their work, unresolved challenges remain that need to be answered
to advocate MDS problems as a viable alternative in practice. In this study, we take up those issues and answer all of
them positively. We list our contributions below.

A. We propose ScaloWork, a framework for useful proof-of-work that is scalable and replaces hash-based pro-
tocol with the MDS problem on network instances. Any miner that submits the best solution within the
stipulated time becomes the block proposer. To prevent solution stealing, our framework requires the utility
company to submit isomorphic instances of the network so that each miner/mining pool gets a unique instance
having equal hardness. It reduces the extra overhead introduced in Chrisimos [27].

B. One major problem in conventional hash-based pool mining framework is the free-rider problem. A free-rider
in a pool is a miner who claims a portion of the block reward by submitting partial proof-of-work that has no
impact on winning the mining game. Our framework supports distributed pool mining, allowing individual
miners to join different pools to collaboratively solve dominating set problems for large graphs, rather than
mining independently. We avoid the problem of free-rider as the task is distributed among all the miners
in a pool, and each miner’s contribution plays a role in winning the mining game. Any miner submitting
a wrong result can be detected and eliminated. This has been discussed in details in Section 2.5 and 3.2.
The distributed pool mining enables ScaloWork to find solutions for large, real-world networks quickly. This
makes ScaloWork a strong candidate for alternative mining.

C. We provide a formal security analysis that shows our protocol is as secure as the hash-based PoW. Addition-
ally, ScaloWork allows utility companies to get the solution directly for their graph instance from the newly
mined block. This was not possible in [27] as the dominating set was fetched for a modified graph instance,
and the utility company had to apply reverse engineering to get the solution for original instance.

D. We also prove that the block addition time for ScaloWork is signficantly less than that of Chrisimos. The
storage overhead for Chrisimos exceeds by O(K|V |) compared to ScaloWork, where K is the number of
miners in the network and |V | is the number of vertices in the graph instance. Experimental results support
our claim. Our code is available on GitHub1.

1https://github.com/subhramazumdar/Distributedpoolmining.git

3

https://github.com/subhramazumdar/Distributedpoolmining.git

A PREPRINT - APRIL 22, 2025

2 Background and Notations
2.1 Graph Isomorphism

A graph G′(V ′, E′) is said to be isomorphic to G(V,E) if there is a function f such that ∀a, b ∈ V ′, (a, b) ∈ E′ ⇔
(f(a), f(b)) ∈ E [31]. There is no known polynomial-time algorithm for graph isomorphism problems on general
graphs, although that exists for some special graphs. The problem is in the NP class but not in the NP-Complete
class. So the problem is considered to be in the NP-Intermediate complexity class. The best-known algorithm for
graph isomorphism problem given by László Babai [32] has sub-exponential complexity of 2O((logn)c). Helfgott [33]
further claimed that c = 3.

2.2 Minimum Dominating Set Problem

A dominating set SG of a graph G(V,E) can be defined as a subset of vertices V ′ such that, V ′ ⊆ V , and every vertex
in G is either in V ′ or is adjacent to some vertex in V ′ [34]. A set SG is a minimal dominating set of the graph G if it
does not contain any other dominating set as a proper subset. A dominating set of G of the lowest cardinality is called
minimum dominating set (MDS). Computing an MDS is an NP-hard problem. The decision version of the problem,
i.e., dominating set problem, is NP-complete. It is defined as “Given a graph G(V,E) and an integer k, does G have
a dominating set of size less than k?” [35] Alon and Spencer [36] state and prove an important result mentioned in the
following theorem.
Theorem 1. For a graph G with n vertices and minimum degree δ there exists a dominating set of size less than
k = n(1+ln(1+δ))

1+δ .

2.3 Cryptographic Primitives

Aggregate signature. BLS signature [37] operates in a prime order bilinear pairing group and supports simple thresh-
old signature generation, threshold key generation, and signature aggregation.

Let G and GT be a prime order group of order q. Then e defined as e : G × G → GT is called a degerate bilinear
pairing, if for g ∈ G, e(ga, gb) = e(g, g)ab, and e(g, g) = 1 iff g = 1. Also, let H : M → G be a hash function
modelled as random oracle [38]. Then a BLS signature on a message m̂ ∈M is defined as follows:

KeyGen(): sample sk
$← Zq and set pk ← gsk ∈ G.

Sign(m̂, sk): σ ← H(m̂)sk ∈ G.
SigVrfy(m̂′, σ, pk): accept if e(g,σ) = e(pk,H(m̂′)), else reject.

Signature aggregation [39]. Given triples (pki, m̂i, σi) for i = 1, . . . , l, anyone can aggregate the signatures
σ1, σ2, . . . , σl into a short, convincing aggregate signature σ by computing σ ← σ1σ2 · · ·σl ∈ G.

For all i ∈ [l], we verify e(g, σ)
?
= e(Πl

i=1pki, H(m̂)), if m̂i = m̂, else e(g, σ)
?
= Πl

i=1e(pki, H(m̂i)), if messages
are different. This scheme is secure against existential forgery with chosen message attacks if the Computational

Diffie-Hellman or CDH problem is hard - Given g, h, gα ∈ G, it is hard to compute hα, where α
$← Zq .

2.4 Bitcoin Mining Pools
A mining pool is a group of miners who work together to find the nonce to match the difficulty target in a PoW-based
blockchain. On correctly solving the problem, the block rewards are then distributed among the miners. Pools were
created when cryptocurrency mining reached a difficulty level that’s almost impossible for a single miner to solve
within the proposed time frame [40]. This crowded small miners out of the competitive mining process, forcing them
to work together to compete with the large mining firms.

A mining pool is typically maintained and coordinated by a pool manager. The success of the pool relies on its
computational power, requiring miners to commit their resources to solve the mining puzzle on behalf of the pool. To
measure the computing power contributed by each miner, the pool manager introduces a simpler puzzle to solve and
collects the solutions to this simpler puzzle, known as partial solutions. For example, the full solution to the mining
puzzle might require finding a hash value less than 100. To gauge miners’ activity, the pool manager may accept
partial solutions with hash values less than 200, which is significantly easier to achieve. Miners submit these partial
solutions, referred to as shares, to the pool manager. If one of these shares happens to be the full solution, the pool
manager claims the reward and distributes it among the pool members based on their submitted shares and a predefined
reward-sharing scheme.

The design of the reward-sharing scheme is a critical component of any mining pool [41]. An effective scheme must
ensure the financial sustainability of the pool while incentivising miners to dedicate their computational resources to
honest mining for the pool. Mining pools use various reward schemes to distribute earnings among miners based
on their contributions. Common schemes include Pay-Per-Share (PPS), which provides consistent payouts per share
but at higher pool operator risk, and Proportional (PROP), where rewards are based on shares submitted during a

4

A PREPRINT - APRIL 22, 2025

round, though it’s prone to pool-hopping. Pay-Per-Last-N-Shares (PPLNS) rewards miners based on shares from the
last N submissions, encouraging loyalty and deterring pool-hopping [42]. Each scheme varies in complexity, payout
predictability, and fairness, catering to different miner and pool operator priorities.

2.5 Free-rider in Pool Mining
The free rider problem in Bitcoin mining pools stems from the simplicity and partial-verification nature of hash-based
PoW [43]. It results in inefficiencies, unfair rewards, and reduced network security. In mining pools, free riders
refer to miners who participate in the pool to gain rewards without contributing their fair share of computational
work [44]. These miners exploit the collective efforts of other participants while minimizing their own contribution,
which disrupts the fairness of the system. A free-rider miner submits fake or low-effort shares (submissions showing
partial progress towards solving the hash puzzle) to the pool. Hash-based PoW relies on miners solving a cryptographic
puzzle and submitting “shares” of work to the mining pool. A “share” is a proof of partial work, typically a hash that
meets a lower difficulty than the blockchain’s actual target. The issue arises because submitting shares does not
necessarily equate to fair contribution. Free riders can submit fake shares (without performing the actual work), or
shares generated by less expensive methods, such as reusing previous work. The current system also makes it harder
to distinguish between genuine miners and free riders because both submit similar data structures (hashes).

Most pools distribute rewards based on shares rather than actual contributions to finding the block. This incentivizes
miners to submit as many shares as possible, even if they are of low quality or require minimal effort. Free riders thus
collect a proportional reward without significantly contributing to the block discovery. If free riders overrun mining
pools, they may lose their ability to compete effectively with other pools [45]. This increases the centralization of
mining, making the network more vulnerable to attacks like 51% attacks or censorship by dominant pools.

3 Formal Description of ScaloWork
3.1 System Model and Assumptions
There are three types of entities in our protocol: (a) a utility company supplying a graph instance, (b) an auditing
committee selecting the graph instance, and (c) the miners of the Bitcoin network. We assume the following about
these entities.

• The auditing committee must have less than 1/3 Byzantine nodes to guarantee safety and liveness. Committee
members run a Byzantine Fault Tolerant (BFT) consensus (e.g., Practical BFT) to select the next graph
instance.

• Finding the exact MDS is intractable for large graphs (standard NP-hardness assumption).
• Honest miners must control greater than 50% of computational power and follow the protocol. Such miners

aim to maximize rewards, not disrupt the network.
• Malicious miners behave arbitrarily, and collude with each other to attack the system.
• The communication model is partially synchronous. Messages arrive within a known time bound η, where
η > 0 is known by all the participants of the protocol.

We describe the role of each entity in ScaloWork.

• A utility company could be any social networking company or company providing telecommunication ser-
vices. We denote it as UB. Utility companies earn high profits by utilizing the dominating sets to realize their
objective. Thus, the company shares a portion of its profit as remuneration with the miner who solves the
dominating set for the given graph instance. Any utility company submits its graph instances to a common
public platform along with a pseudonymous public key.

• An auditing committee, AB, is elected to measure the hardness of the graph instance. The auditing committee
members are sampled from the set of miners of the Bitcoin network. It is non-trivial to sample a committee
with majority honest members in a permissionless setting. One cannot account for the network size, with
miners dynamically entering or leaving the network. We use the idea followed in ByzCoin [46], where only
the miners with dedicated resources (in this context, it is the mining power) can join the auditing committee.
A time window is fixed within which a mining pool adding a block has a chance of being a member of
the committee. The share proves the mining pool’s membership in the group. Once a block is added, we
shift the window by one block. Any pool possessing a share for an expired time window is not considered
a part of the committee. Older shares expire as the window moves forward, ensuring that only recent and
active mining pool participate in consensus. This limits the committee size and prevents inactive or historical
mining pool from influencing decisions. Once the committee is elected, they select a utility company for the
current block proposal and check the hardness of the graph instance. Committee runs BFT consensus (e.g.,
PBFT) to seelect a graph based on the difficulty and hardness, sign and broadcast the chosen graph.
Given that at least 2/3 members agree on the graph instance, adding trivial or stale graph instances would
violate the safety property of the Bitcoin ledger. This will reduce the value of block rewards (as more blocks
would be mined quickly), as miners will lose trust in the system. That will not be in the interest of strong

5

A PREPRINT - APRIL 22, 2025

miners who invest significant resources. The freshness of the committee members, reducing the risk of
persistent malicious influence.

• The third entity of this system is the miner that may join any mining pool. Joining a mining pool reduces the
computational overhead on a miner as the task of finding a dominating set gets distributed among other pool
members. Various mining pools of the Bitcoin network compete to perform the task of mining a block and
once a block is propagated, it is validated by the miners.

3.2 Phases of the Protocol
At a given moment, we can estimate the mining power of a miner based on the number of blocks the miner has
successfully mined within the current window [46]. Given that the collective hash power is relatively stable, each
active miner mines blocks statistically proportionate to the amount of hash power the miner has contributed during
this time window. We define the different phases of ScaloWork:

(i) Preprocessing Phase: This phases can be divided into following sub-phases:

• Auditing Committee Selection: The size w of the share window is defined by the average block-mining rate
over a given time frame. Once a block is added, the window is slid to accommodate the new block, and based
on that, a new auditing committee is selected before proposing the next block. This mechanism limits the
membership of the mining pool to recently active ones. We consider the size of the auditing committee AB
for proposing block B to be cm. Assuming that there are K miners in expectation, we elect cm committee
members so that at least 2/3 members will be honest. Each committee selects a utility company that has
registered with the system.

• AB selects the utility company: The auditing committee selects a valid utility company’s public key. The
selected utility company shares a tuple PG, and signed hash of the tuple PG for the graph G, denoted as σPG

=
Sign(H(PG), skUB). PG comprises the reward for solving the problem rdG, public key of utility company
pkUB , n as the vertex count of G, number of isomorphic instances created for G i.e., z, and other properties of
G like number of edges m, maximum and minimum degree, ∆ and δ respectively. The committee members
check the signature σPG

and whether the graph G submitted by UB is sufficiently hard by setting a threshold
for hardness. They may use the framework proposed in [47] to estimate the difficulty, and any problem whose
difficulty lies below the threshold is rejected. A metric to measure hardness is specified in the block header
so that anyone can check if the instances are non-trivial. This could be in terms of the permissible range of
the graph instance; for example, the graph instance must not have a vertex count less than 50000, and the
average degree of the graph must not be less than 50 but not more than 150. Other methods of analyzing the
hardness of an instance may involve checking the degree distribution.
Once the auditing committee is convinced of the hardness of the instance, it generates a new identifier for the
graph, id. It does an aggregate signature of all the members on id∥H(PG) denoted as σG

cm . This ensures that
at least one honest member has signed.

• Instances for the block mining: After the auditing committee has sent approval, the utility company dumps the
graph instances ⟨(G1, σG1), (G2, σG2), . . . , (Gz, σGz)⟩, into the problem pool, where each Gi is isomorphic
to the instance G and σGi is the signature on Gi. UB shares the storage address addrG from where the miner
can fetch the instances. UB forms a transaction τreward with time-locked UTXO that allows any miner to
claim the reward who finds the best solution for a given instance after the timeperiod TG

max mentioned in
the script. A lookup table is used to estimate TG

max, which is discussed later. It is shared with the auditing
committee AB. The script needs signature of all |cm| members of the auditing committee, denoted by public
keys pkm1

, pkm2
, . . . , pkm|cm| , and also signed by the utility company. Any miner who gets the smallest

dominating set in the given timelock claims the reward.

(ii) Mining of Block: A mining pool’s manager M receives τreward having an amount rdG, and starts performing the
following steps:

(a) M checks if σPG
and σG

cm are valid, parses PG to get information regarding G and the address addrG from
where it will fetch the graph instance. Additionally, M checks if id is greater than the instance ID of the
previous block.

(b) M creates a block B with a set of transactions τ ′G comprising transactions from the mempool, and a puzzle-fee
transaction τrd,M . The transaction τrd,M spends the output of the reward transaction τreward to an address
of the pool manager M . No two members of two different pool mining pool will have the same τrd,M even
if the rest of the transaction selected from mempool remains the same.

(c) Once the block is formed, M does a hash on the concatenation of the root of Merkle tree formed using τ ′G
(denoted as h⟨MR,τ ′

G⟩) and hash of the previous block Bprev (denoted as hBprev), and then take a modulo
over the number of instances in the problem pool. It gives the instance’s index, say j, to be selected from
addrG. Once M has fetched the instance (Gj , σj) from addrG, it checks if the specification of the size of

6

A PREPRINT - APRIL 22, 2025

the network, the minimum, and maximum degree of G matches with that of Gj and correctness of signature
σGj . It also checks if the size of Gj is within the permissible range.

(d) Once the pool manager is ensured of all the correctness, it distributes the task of finding a dominating set
among the different miners in a pool. The miners in the pool tries to find the best solution for the given
instance Gj within a given block interval time TG

max, as mentioned in the timelocked transaction τreward.
The criteria is that any solution fetched by the mining pool should be at most n(1+ln(1+δ))

1+δ .
Distribution of task in the pool depends on the chosen algorithm for finding the solution. Each miner is
responsible for making decisions about addition of few nodes in the dominating set. The correctness of the
solution depends on miners sharing updates about their nodes and neighborhood states.

(e) Once the solution is computed, it is communicated back to M , who checks the correctness of the solution and
adds the solution for the dominating set of Gj , the bound on the size of the dominating set, the characteristics
of the graph specified in PG, the hash of the previous block hBprev

, Merkle root of the transaction set τ ′G
denoted as h⟨MR,τ ′

G⟩, addrG, id, σPG
, and σG

cm in the block header of B and broadcasts it to the rest of the
network.

The pseudocode is defined in Algorithm 1. The output of the dominating set for graph G is SG. This is a function
definition for block mining that any mining pool must follow. We do not provide a function definition for FindDomi-
natingSet since each mining pool decides the algorithm it would select for solving the graph instance.

Free-rider Resistant Pool Mining. A distributed greedy algorithm for finding a dominating set in the context of a
useful Proof-of-Work system can eliminate the free rider problem in a mining pool by designing the mining process in
a way that requires each miner to actively contribute to the computation. The distributed greedy algorithm for finding
a dominating set works by dividing the vertex set of the graph into smaller subsets and assigning them to individual
miners in a pool. Miners collaborate to collectively compute the dominating set of the entire graph. The correctness
of the solution depends on miners sharing updates about their nodes and neighborhood states. Lack of contribution
from free riders will lead to incorrect solutions. From the lack of information on the subset of vertices assigned to a
free rider, it will be easy to point out the free riders and penalize them. The problem scales well because each miner
handles only a small subset of graph vertices. As the pool size increases, the workload is distributed more evenly.
Each miner contributes a specific, measurable part of the solution. Rewards can be distributed proportionally based on
miners’ contributions.

(iii) Block Verification: The pseudocode is defined in Algorithm 2. The verifier performs the following steps:

(a) The verifier initializes the variable past_sizeDS = ∞. Upon receiving the first block, it checks if the
transactions in the block, τ ′G are valid and constructs the Merkle tree using τ ′G.

(b) From the block header, the verifier gets the dominating set of a graph isomorphic to G, id, h⟨MR,τ ′
G⟩,

addrG, id, σPG
, and σG

cm .

(c) It derives the index Gid from H(hBprev∥h⟨MR,τ ′
G⟩) mod z, download the graph Gid from address addrG,

checks if id is greater than the instance ID of the block added previously.
(d) The verifier matches the hardness of the graph instance as specified in the block header and the specification

defined in PG. If any of the checks fail, the block is marked invalid. It checks whether the block has a
valid dominating set and is within the bound specified in the header. The cardinality of this dominating set is
assigned to past_sizeDS . Now, the verifier will cache this block until it gets a block with a dominating set
of size smaller than past_sizeDS .

(e) The verifier will continue to check for new blocks till the TG
max expires. After this, it will accept the last block

it had stored. Any solution appearing after TG
max is rejected. Miners who verify the block reach a consensus

on the best result in the given epoch, and a new block is added to the blockchain.

Block Reward. The block reward in a distributed greedy algorithm system for finding dominating sets can be designed
to fairly compensate miners, and prevent exploitation by free riding. The pool manager can define a reward-distribution
mechanism based on the existing reward policies. If some miners are assigned a higher number of nodes, the manager
can allocate higher rewards to balance fairness. A mining pool that submits a dominating set having the least cardinality
within TG

max wins the mining game and gets the block reward. This incentivizes mining pools to compete with each
other to find the best solution. The block reward comprises a fee from the transaction set in the block and the fee
provided by the utility company for solving the dominating set of the graph. The lookup table provides an estimate of
the block interval time for a graph instance, indirectly providing some insight into the hardness of the problem. We
expect a fair utility company to decide on the remuneration directly proportional to the hardness of the problem, and
it should be more than the current reward offered by coinbase transactions.

Mining pools may collude and send out random solutions without doing any work. However, even if a single pool
behaves honeslty then it is enough to foil the entire colluding effort. Colluding mining pools are not likely to cooperate

7

A PREPRINT - APRIL 22, 2025

Algorithm 1: Block Generation
Input: Transaction τreward, public keys of |cm| members pkm1

, pkm2
, . . . , pkm|cm| of the committee, public key

pkUB of utility company, reward rdG, PG, addrG, id, σPG
, σG

cm from the transaction.
• Parse PG to get public key of utility company pkUB , n as the vertex count of G, number of isomorphic

instances created for G i.e., z, and other properties of G like number of edges m, maximum and minimum
degree, ∆ and δ respectively

• start_time=current_timestemp

if SigVrfy(H(PG), σPG
, pkUB) = 1 and SigVrfy(id∥H(PG), σ

G
cm , ⟨pkm1

, . . . , pkm|cm|⟩) = 1 then

• Form a set of transaction τ ′G by selecting transaction from mempool and including block reward rdG

• Compute h⟨MR,τ ′
G⟩ = MerkleRoot(τ ′G)

• Get index j = H(h⟨MR,τ ′
G⟩∥hBprev

) mod z

• Fetch the instances Gj(Vj , Ej) from addrG

• Set SG = |Vj | and compute k = n(1+ln(1+δ)
1+δ

while |SG| > k and time elapsed < TG
max do

S′
G ← FindDominatingSet(G, pool)

if |S′
G| ≤ k then
SG ← S′

G
end
end_time=current_timestemp

end
if end_time-start_time < TG

max and SG ≤ k then
• block_header = HeaderGen(hprev_B, h⟨MR,τ ′

G⟩, SG, PG)

• B ← BlockGen(block_header, τ ′G)
return B

end
else

abort
end

end

and do the DoS attack, especially if they know they only need a relatively small amount of useful work to win the
competition and claim the rewards. The rationale behind the behavior is to start competing and return the best solution.
Thus, the mining game induces competition among the mining pools, and the framework acts like a decentralized and
distributed minimal dominating set solver.

3.3 Constructing the Lookup Table
We record the block interval time for each benchmark instance in the lookup table as it was done in Chrisimos [27].
The block interval time estimates the time for (a) block generation and (b) block verification.

(a) Block Generation: An exhaustive search for finding a dominating set in G(V,E) of size n(1+ln(1+δ))
1+δ takes expo-

nential time in the size of the input. Thus, the miners can use any algorithm that returns a result in polynomial time.
We apply the distributed greedy heuristic [48] to estimate the runtime for several synthetically generated datasets to
find a minimal dominating set for G. This may not be the minimum since the greedy algorithm does not guarantee an
optimal result.

We start with an empty set SG, and then we greedily add “good” nodes to SG until it becomes a dominating set. Nodes
in SG are referred to as black, nodes covered by SG (i.e., neighbors of nodes in SG) are called grey, and all uncovered
nodes are white. The span of a node v, denoted by w(v), is defined as the number of white nodes among v’s direct
neighbors, including v itself. So, the span of a non-black vertex is a non-negative integer, but the span of a black
vertex is always 0. The span of a node can only decrease if any nodes within a distance of at most 2 are added to
the dominating set. Therefore, if the span of v is greater than the span of any other node within a distance of at most
2, the greedy algorithm prioritizes v over its neighbors. This idea leads to a simple distributed version of the greedy
algorithm, where each node v executes the following steps.

8

A PREPRINT - APRIL 22, 2025

Algorithm 2: Block Verify
Input: B, past_sizeDS

• Parse B to get hBprev , h⟨MR,τ ′
G⟩, τ ′G, public keys of |cm| members pkm1 , pkm2 , . . . , pkm|cm| of the

committee, pkUB of utility company, reward rdG, PG, addrG, id, σPG
, σG

cm , SG and TG
max

• Parse PG to get public key of utility company pkUB , n as the vertex count of G, number of isomorphic
instances created for G i.e., z, and other properties of G like number of edges m, maximum and minimum
degree, ∆ and δ respectively

• Set visited_set = ϕ

if h⟨MR,τ ′
G⟩ ̸= MerkleRoot(τ ′G) or current time ≥ TG

max or id ≤ GetPrevBlockGraphid() or
past_sizeDS < |SG| or SigVrfy(H(PG), σPG

, pkUB) ̸= 1 or
SigVrfy(id∥H(PG), σ

G
cm , ⟨pkm1

, pkm2
, . . . , pkmt

⟩) ̸= 1 or current_timestemp> TG
max then

reject solution
end
else

• Get index j = H(h⟨MR,τ ′
G⟩∥hBprev

) mod z

• Fetch the instances (Gj , σGj) from addrG

if SigVrfy(H(Gj), σGj
, pkUB) ̸= 1 then

reject solution
end
for v in SG do

• Mark v as visited
• Add v to visited_set

for v′ ∈ N(v) do
• If v′ is not visited then mark it visited
• Add v′ to visited_set

end
end
if |visited_set| = |V | then

past_sizeDS = |SG|
end
else

reject solution
end

end

The greedy strategy ensures that nodes with the highest span are prioritized, which quickly covers a large number of
white nodes in each step. The use of hop-2 neighbors prevents conflicts where nearby nodes might try to join the
dominating set simultaneously. Breaking of ties by unique IDs ensures fairness and avoids deadlocks or repeated
conflicts.
Theorem 2. The Distributed Greedy Algorithm computes a ln∆-approximation for the minimum dominating set
problem in O(n) rounds.

The approximation factor of ln∆ comes from the greedy strategy’s efficiency in reducing the number of uncovered
nodes. This is the same bound achieved in the sequential greedy algorithm. Since the distributed version replicates the
greedy decisions, it inherits this approximation factor. Each node performs a constant number of local computations
(e.g., computing its span and comparing it with others). Since there are n nodes, in the worst case, the process requires
O(n) rounds, as the algorithm terminates when all white nodes are covered. This happens after at most n iterations,
one for each node potentially joining the dominating set.

(b) Block Verification: Any miner receiving the block checks if the dominating set returned by (a) is valid.

Given the block generation and verification on a benchmark instance G with a runtime τ units, and the upper bound
on size of the dominating set is k, a mining pool will try to find the dominating set of size at k′ ≤ k. To ensure that
the some mining pool will definitely return a dominating set of cardinality less than the upper bound, we propose to
set the block interval time TG

max to lτ where l ∈ R+, l > 1. This will ensure that the estimated block interval time for
a new graph instance is sufficient for a pool to find an acceptable solution.

9

A PREPRINT - APRIL 22, 2025

Algorithm 3: Distributed Greedy Algorithm
1: SG = ϕ
2: while ∃ v ∈ V | w(v) > 0 do
3: Calculate w(v) and Send to N(v) ∪N(N(v))
4: if w(v) ≥ w(v′) ∀ v′ ∈ N(v) ∪N(N(v)) then
5: SG = SG ∪ {v}
6: Color all white neighbors of v with grey
7: end if
8: end while

Estimating Block Interval Time It is necessary to estimate the block interval time to determine the feasibility of
the solution. Once the lookup table is constructed, we use the same to estimate the block interval time for any new
graph instance. In ScaloWork, each mining pool is assigned a different isomorph of the input graph, and each miner
in the pool works cooperatively to find a good dominating set. Given an instance G′′(V ′′, E′′) to the network, pool
manager searches for the entry G′(V ′, E′) in the lookup table with the maximum vertex count less or equal to |V ′′|
and extracts the block interval time TG′′

max for G′′. The proposed time for a new block corresponding to G′′(V ′′, E′′)

will be TG′

max ∗
|E′′|×|V ′′|
|E′|×|V ′| . An estimation of the block interval time assures a mining pool of the time bound provided

to fetch a solution without unnecessarily wasting the computation resource.

Lemma 1. For a graph instance G, the block time interval TG
max is sufficient for adding the block to the Blockchain.

Proof. During the estimation of block interval time, we showed that it considers block generation and verification
time. If the block generation time is τ (if the graph instance is already present in the lookup table), we set TG

max to
lτ : l > 1. If the graph instance is absent in the lookup table, the time is estimated by scaling it based on the edge
count and vertex count of the graph instance. Since the lookup table is prepared using a greedy heuristic, a rational
miner will get a solution by at least using the greedy heuristic.

Lemma 2. The dominating set of a graph G is within the bound stated in theorem 1 for ScaloWork, whereas the
dominating set of G was within the bound in expectation for Chrisimos.

Proof. Chrisimos requires the miners to find a minimum dominating set for the extended graph with vertex count
twice that of the original graph. After a miner has won the mining game and added a block, the utility company has to
extract the solution for the original graph.

A guarantee on the bound of the solution in expectation does not ensure that the bound will hold for all the cases. It
is possible that the dominating set for extended graph is not a good solution for the original graph. This problem does
not exist in ScaloWork as the miner solves the problem on an isomorphism of the original graph instance. If the utility
company retains the mapping, it can retrieve the solution.

Lemma 3. Ratio of time taken for the block generation in ScaloWork and Chrisimos is approximately 1
δavg+

δ
2

.

Proof. The extended graph of G(V,E) in Chrisimos, denoted as GT (VT , ET) where |VT | = 2|V | and |ET | = 2|E|+
δ |V |−1

2 [27]. The extend function in Chrisimos takes O(|ET |) and hence dominates the run time of block generation.
We can replace |E| = δavg|V |. On the other hand, the greedy heuristic for finding a dominating set in graph G takes
O(|V |). This is the asymptotic runtime for block generation in ScaloWork. If we take the ratio of the run time, we
have the expression |V |

2|E|+δ
|V |−1

2

= |V |
δavg|V |+δ

|V |−1
2

. Assuming |V | − 1 ≈ |V |, the ratio is 1
δavg+

δ
2

.

Lemma 4. Ratio of time taken for the block verification in ScaloWork and Chrisimos asymptotically tends to 1
2 .

Proof. The verifier needs to check the neighbors of the vertices in the dominating set. The time complexity is the
summation of the degrees of vertices in dominating set, without any double counting of a vertex. We transform the
original graph but do not increase the size in ScaloWork. In Chrisimos, the graph is transformed by adding additional
vertices and edges, and the transformed graph has twice the vertex count compared to the original graph. Hence, the
ratio asymptotically tends to 1

2 .

10

A PREPRINT - APRIL 22, 2025

4 Security Analysis
Security of ScaloWork relies on the assumption that the underlying chains operate under a well-designed incentive
mechanism that ensures an honest majority of miners and no mining pool holds more than 50% of computation power,
guaranteeing consistency and liveness. Security also depends on the hardness of graph isomorphism, which prevents a
mining pool from stealing another’s solution when a new block propagates in the network. We consider that a Bitcoin
network has about ten to fifteen mining pools that run the vast majority of the network. Note that each of those pools
usually consists of thousands of individual miners from across the world. The exact number of individual computers
contributing to the network according to a recent estimate is around 70,000 that runs Bitcoin mining software [49].
Also, a graph of size n will have n! = O(nn) possible isomorphism. The graph instance provided by the utility
company will have orders of more than 1000, so the number of possible isomorphisms exceeds the number of mining
pools.

4.1 Security in Terms of Solution Integrity
Theorem 3. Two mining pools will never receive the same graph instance.

Proof. Two mining pools will get the same graph instances only when they get the same ID upon hashing the concate-
nation of the previous block’s hash in the chain and root of Merkle tree built from the transaction set in the block. Now
the transaction tree contains the unique coinbase transaction for every pool, which makes the Merkle root unique. Any
standard root of the Merkle tree has a size of 256 bits. The hash function SHA-256 is collision-resistant, and part of
the preimages uses the same previous block hash. Even if both the mining pool use the same transaction set, they will
have different coinbase transactions. So, they will have different preimages with same prefix. Hence, no two mining
pool will get the same ID.

Theorem 4. Given that a mining pool knows that two instances, G and G′, are scale-free and isomorphic, the pool
can find the mapping between the two graphs within the block interval time TG

max with negligible probability.

Proof. The number of vertices in G and G′ are n, so the search space for finding the mapping between G and G′ is n!
which isO(nn). Even if n = 100, the execution time is more than 2600. On the other hand, TG

max must have a feasible
limit (for Bitcoin, this is 10 mins on average), keeping the property of liveness in mind. Any mining pool can’t try all
the mapping within TG

max. It may try out other possible heuristics, such as determining the highly connected vertices
in both graphs. Even if the pool figures out k such highly connected vertices where k << n

2 , this will reduce n to
n−k, but still, search space remains exponential. The best-known algorithm for graph isomorphism problem [32] has
sub-exponential complexity of 2O((logn)c), where c ≥ 1 and later it was shown c = 3 [33]. If we consider n = 1000,
the run time will still be of the order of 21000. Even though a quasi-polynomial algorithm is faster than an exponential
algorithm, the runtime is still larger than any polynomial time algorithm. Thus, a pool will succeed in finding the
mapping between the two graphs within TG

max with negligible probability.

Theorem 5. Given two isomorphic and scale-free networks G and G′, and the dominating set of G is revealed to the
mining pool M , then the probability for the pool to infer the dominating set of G′ from the given information within
TG
max is negligible.

Proof. In a scale-free network, few vertices have a large degree compared to others. This is due to the nature of
the graph where few nodes are highly trusted, and new nodes tend to join highly trusted nodes, inducing the rich
becomes richer phenomenon. Let us assume that a pool can figure out b such highly connected nodes that are part of
the dominating set for the graph G. If all of them have distinct degrees, then the mapping is straightforward. But if
any b′ out of b nodes have the same degree, then the pool has b′! possibilities, i.e., O(b′b′). Given that other nodes
in G and G′ can have other not-so-highly connected nodes with degrees ranging between δ and ∆, there would be
many possible mapping combinations. If the number of such vertices b′ = αn where α < 1, there would be (αn)!
possibilities, which leads to exponential search. So, even if the instances are scale-free, the probability of finding the
mapping within time TG

max is negligible.

4.2 Security in Terms of Safety and Liveness
We define the security goals of our protocol:
(i) Safety: Honest miners do not commit different blocks at the same height.
(ii) Liveness: If all honest miners in the system attempt to include a certain input block, then, after a few rounds, all
miners report the input block as stable.

We prove the property of safety and liveness in the synchronous model. We leave this analysis in the asynchronous
setting as a part of the future work.

Chain selection rule in ScaloWork. Two or more pools may solve their instances at about the same time and
publish their blocks, creating the situation known as a fork in blockchain systems. Forks are usually resolved in the

11

A PREPRINT - APRIL 22, 2025

synchronization phase using the rule specified for the particular Blockchain. Only one of the blocks will pass both the
verification and synchronization phases. We define a chain selection rule whereby the maximum work done chain is
selected. Work done in a chain is the summation of the work done in the individual blocks forming the chain. The
work done in a block is proportional to the graph’s size and the pool’s effort in finding a dominating set of lower

cardinality. Thus, we define the work done for the block B as WDB = |E| × |V | ×
n(1+ln(1+δ))

1+δ

|SG| .

If there is a fork at block B′, then the pool chooses the chain, starting from B′, having the highest work done, i.e. if
C = {C1, C2, . . . , Cm} be m such forks from block B′, then choose the chain Ci ∈ C such that

∑
B∈Ci:Ci∈C WDB

is maximum. An honest pool considers a block B committed if B is buried at least f blocks deep in its adopted chain.
We assume f to be at least six block confirmations to guarantee security as good as hash-based PoW.

We summarize the rules of a valid chain as follows:
(i) The Verifier rejects a block with a graph instance with an ID either less than or equal to the graph ID of the instance
mined in the previous block of the main chain. The verifier rejects the block if the graph instance has a malformed
signature (not signed by the committee).
(ii) A block is said to be confirmed if it has received at least f confirmations: We assume all honest miners reach an
eventual finality over a single chain up to a block that has f confirmations.
(iii) If the miners observe another sub-chain with higher work done: If any block in the other sub-chain violates rule
(i), discard the chain, else miners consider the other chain as the highest work done.

Resolving Forks: If two distinct pools find the dominating set of least cardinality in the given time interval simultane-
ously, then it might lead to a fork in the Blockchain network. It depends on how well a block propagates across the
network. If there is a fork, it will eventually be resolved with the chain selection rule proposed here. Eventually, one
chain will have the highest work done, and a mining pool will start mining on this chain. Blocks in the discarded chain
become orphan blocks [50].

Safety Property. Since all the graph instances are solved and added sequentially into the blockchain, we prove the
safety property in selfish-mining attacks [51]. By selfish mining, strong nodes can gain higher payoffs by withholding
blocks they create and selectively postponing their publication.
Lemma 5. Given that the signatures of the committee members are unforgeable and no mining pool holds more than
50% computation power in the blockchain network, the probability of a selfish mining attack is negligible.

Proof. Suppose the malicious miner (or pool) induces a fork from the parent block Bprev . The chain of the adversary
remains the same till block Bprev and starts differing from here, so we label these blocks as B′

prev+i, 1 ≤ i ≤ z
where the length of the private chain. Given z ≥ L where L is the length of the existing longest sub-chain
⟨B1, B2, . . . , BL⟩, as each graph instance is provided sequentially after elapse of block interval time. For the subchain
⟨B′

prev+1, B
′
prev+2, . . . , B

′
prev+z⟩ to be selected,

∑z
i=1 WDB′

prev+i
>

∑L
i=1 WDBi

.

If the adversary finds that the cumulative work done in his private sub-chain is less than the cumulative work done
in the main chain, it is highly likely he will abandon selfish mining and try to add the new block on the main chain.
To continue the attack, the adversary has to match the work done of the existing longest subchain, and that would
require the miner to re-mine the block where the difference occurred. Suppose at block k < z,

∑k
i=1 WDB′

prev+i
<∑k

i=1 WDBi , then adversary has to find the solution for block B′
prev+k that is as good as the solution for Bk. If

the adversary has a graph instance whose index does not match with the index of the instance in block Bk, then it
either has to find a better solution or find the mapping of vertices of instance in Bk to its instance in B′

prev+k. From
theorem 5, we know that the adversary would need to compute exponential possibilities in the worst case to find out
the mapping.

Additionally, a miner can’t generate several graph instances and mine a longer chain. It follows from the rule (i) of
chain selection rule, where a verifier will reject any illegitimate graph instance not signed by the committee members.
Since we assume that the majority of the committee members are honest and a secure signature scheme is used to sign
the instance, miners will not be able to forge signatures for all the instances. Hence, the adversary can pull off the
attack with negligible probability.

Building a secret chain in an attempt to reverse payments is called a double spending attack. A malicious party success-
fully creates an alternative (and dishonest) version of the blockchain ledger, which includes the malicious/dishonest
transaction which double-spends the coins in another transaction on the existing longest chain [52]. It would be diffi-
cult to tell which version of the blockchain ledger is the “correct” one. In ScaloWork we choose the chain with the most
accumulated work as the “correct” one. With the most-accumulated-work rule, at least the payee can choose to wait
for f more confirmations to make his risks lower. If a pool attempts selfish mining, other honest miners (pools) can
continue solving the problem collaboratively, invalidating the selfish miner’s advantage. The selfish mining pool risks
missing out on rewards because its private solution may not align with the final, validated solution from the network.
This contrasts with hash-based PoW, where a valid block is independent and immediately verifiable.

12

A PREPRINT - APRIL 22, 2025

4.3 Security Against Collusion Attacks
If a utility company acts like a Bitcoin network miner, it has the advantage of having prior knowledge of the graph.
However, the utility company provides the fee for mining the block. So, the company does not get any additional fee
for winning the mining game, except for the transaction fee. Given that the company already has obtained the best
solution for a given graph instance in one of the mined blocks, it may tend to reuse the graph instance in some other
block. This is termed as replay attack. The success of the attack is again subjected to the fact that the epoch when the
utility company decides to put profitable transactions in the block must match the selection by the auditing committee.
If the utility company is elected at a stage when all the profitable transactions have already been mined, then it has to
search for suitable unspent transactions from the mempool. However, if any other mining pool manages to supply a
better solution within the given epoch, then the company will lose the mining game.

The utility company might be interested in biasing the game if it is interested in earning a substantial fee by packing
a certain number of high-valued transactions in its block. The success depends on the fact that no miner would be
able to win the mining game by submitting a better solution. Other factors influencing the participation of the utility
company in this biased game will be the expected gain and also the probability of getting re-elected by the committee.

Claim 1. Given that more than 2/3 members of auditing committee are honest, a malicious utility company (also a
miner in the network), upon re-election, will perform a “replay attack” if and only if the transaction fee offered for the
block is greater than the reward offered for solving the graph instance for the given block.

Proof. Given that the malicious utility company (who is also a miner in the network) got re-elected by the auditing
committee and has supplied a graph instance for which it had obtained a solution in one of the previous blocks B′, λ
is the computation power of the pool that had mined the block B′. This pool has a chance of again winning the mining
game. Thus, with probability (1− λ), the utility company may lose the mining game in this block interval time. F is
the transaction fee by mining all transactions in the current block formed by utility company, and rdG is the reward
offered for the graph instance G in the given block. If the utility company wins the mining game, it implies that no
miner has been able to find a solution better than the one provided in block B′. If there exists a pool who found a
solution better than the one existing in block B′, the utility company loses the mining game. We calculate the expected
payoff of the utility company as λF − (1 − λ)rdG > 0. The attack is possible if F > 1−λ

λ rdG. Given that rdG is
comparable to the Bitcoins minted upon mining a block in hash-based PoW and λmax = 0.5, the least value of 1−λ

λ
tends to 1, so the transaction fee of a block has to be large enough to incentivize the utility company from mounting
this attack.

5 Performance Analysis

Nodes (log scale)

Ti
m

e
(in

 s
)

0

100

200

300

400

500

10000 50000 100000 500000 1000000

Chrisimos ScaloWork (Block Generation Time)

Nodes (log scale)

Ti
m

e
(in

 s
)

0.0

0.2

0.4

0.6

10000 50000 100000 500000 1000000

Chrisimos ScaloWork (Block Verification Time)

(a) Average degree 50

Nodes (log scale)

Ti
m

e
(in

 s
)

0

200

400

600

800

10000 50000 100000 500000 1000000

Chrisimos ScaloWork (Block Generation Time)

Nodes (log scale)

Ti
m

e
(in

 s
)

0.0

0.2

0.4

0.6

10000 50000 100000 500000 1000000

Chrisimos ScaloWork (Block Verification Time)

(b) Average degree 75

Nodes (log scale)

Ti
m

e
(in

 s
)

0

200

400

600

10000 50000 100000 500000 1000000

Chrisimos ScaloWork (Block Generation Time)

Nodes (log scale)

Ti
m

e
(in

 s
)

0.0

0.2

0.4

0.6

10000 50000 100000 500000 1000000

Chrisimos ScaloWork (Block Verification Time)

(c) Average degree 100

Figure 1: Comparing block generation time and verification time for Chrisimos and ScaloWork. We set the cut-off for
run time to 15 mins. Thus, the block generation time for Chrisimos in 1(a), (b), and (c) stops at node count 100000.

13

A PREPRINT - APRIL 22, 2025

(a) Setup: For our experiments, we use igraph 2 and OpenSSL 3 for network analysis and mathematical operations.
The system uses processor AMD Ryzen Threadripper PRO 7965WX 24-Cores. We use OpenMP 4 for computation of
the distributed greedy algorithm for dominating set. This package simplifies the implementation of parallelism using
48 threads. Social networks and other utility networks follow the power-law model, where few vertices are central
to the graph instance. Thus, we use synthetically generated graph instances (based on Barabási-Albert Model [53]
and Erdős-Rényi Model [54]) mimicking this model to generate the benchmark datasets. We choose appropriate
parameters to generate the synthetic graph instances such that they simulate real-life networks. The number of nodes
varies between 100000 and, 5000000 (X-axis in log-scale), and the average degree of the graph varies between 50 and
100. We ignore the time taken in the preprocessing phase. We assume that the graph instances are selected by the
committee way before the epoch for a new block starts. Once a new block is added, the auditing committee will not
change significantly. Note that the selection of a specific set of parameters does not imply that our framework will
not work for other parameters, one can vary the number of nodes as well as the average degree. Our code is publicly
available 5.

(b) Observations: We compare our scheme ScaloWork with Chrisimos. fig. 1(a) shows the block generation (top
figure) and verification time (bottom figure) when average degree is 50, fig. 1(b) shows the block generation (top
figure) and verification time (bottom figure) when average degree is 75, and fig. 1(c) shows the block generation (top
figure) and verification time (bottom figure) when average degree is 100. The cutoff time for our experiment is set
to 15 mins, so any time after 15 mins is not reported. For average degrees 50, 75, and 100, Chrisimos exceeds the
cutoff time of 15 mins at 500000 nodes (reporting around 197 mins), highlighting scalability challenges. ScaloWork
consistently handles larger graph sizes, scaling up to 5000000 nodes without exceeding the cutoff time (around 12
mins) but till average degree 75. However, ScaloWork exceeds this limit when average degree is 100. We also
observe that Chrisimos struggles with higher-degree graphs during block generation. ScaloWork shows robustness
across different average degrees, indicating that the distributed pool mining approach effectively handles the added
complexity introduced by higher degrees. The block verification time for ScaloWork is less than half of the time taken
by Chrisimos. Block verification time is negligible compared to generation time, being below 1s for both Chrisimos
and ScaloWork.

(c) Discussions: The block generation in Chrisimos depends on solo mining, with a miner exploring all the edges in
the given graph instance. Extending the graph results in a doubling of vertex count. So if we report the result for vertex
count 100000, it denotes the execution time of finding and verifying the dominating set on a graph of size 200000.
ScaloWork does not require an extension on the original graph, and the workload is distributed across miners in a
mining pool. We consider 48 threads acting as different miners in a pool, involved in running the algorithm for finding
the dominating set. This drastically reduces the time taken for block generation. The verification time increases slowly
(but linearly) compared to the block generation time with an increase in the size of the input graph. The reason is that
the verifier checks whether the vertices in the dominating set cover the entire graph. The time complexity is bounded
by the number of vertices in the graph, which is less than the number of edges. The overall performance analysis
highlights the advantages of ScaloWork in terms of scalability, efficiency, and real-world applicability, making it a
more viable framework compared to Chrisimos for practical PoW-based blockchain systems.

Storage overhead: In Chrisimos, the extended graph instance has at least 2|E| + δ(|V |−1)
2 edges, so each miner must

have a storage capacity to store the instance. If the network has K miners and utility company stores just the original
graph having |E| edges, then total storage capacity needed is at least K(2|E| + δ(|V |−1)

2) + |E|. In the worst case, a
mining pool will comprise one miner, and in such a situation ScaloWork requires the miner to have storage capacity
just as large as the original graph. Utility company stores K isomorphisms of the original graph. Total storage capacity
is 2K|E| edges. Thus, Chrisimos demands an extra capacity of at least K δ(|V |−1)

2 edges.

6 Conclusion
In this paper, we present ScaloWork, a novel framework for Useful Proof-of-Work that transforms blockchain mining
into a meaningful computational process by centering it around the dominating set problem. Our framework addresses
critical limitations of traditional hash-based PoW by ensuring that computational efforts contribute to solving real-
world problems while maintaining the security, decentralization, and fairness essential for blockchain systems. By
leveraging graph isomorphism, we provide miners with unique problem instances, ensuring solution extractability
and protecting miners’ contributions during block propagation. The distributed pool mining approach enables scala-
bility, allowing collaborative problem-solving for large, real-life graphs and effectively addressing free-riding issues.
Our design ensures equitable reward distribution, aligning closely with existing Bitcoin pool mining practices while
enhancing fairness and efficiency.

We demonstrate through formal security analysis and experimental evaluations that ScaloWork is as secure as hash-
based PoW while significantly improving computational efficiency and scalability. Compared to existing frameworks

2https://igraph.org/
3https://openssl.org/
4https://www.openmp.org/
5https://github.com/subhramazumdar/Distributedpoolmining.git

14

https://igraph.org/
https://openssl.org/
https://www.openmp.org/
https://github.com/subhramazumdar/Distributedpoolmining.git

A PREPRINT - APRIL 22, 2025

like Chrisimos, ScaloWork offers superior performance, storage efficiency, and adaptability to real-world applications.
Looking forward, we believe the principles underlying ScaloWork can be extended to other NP-complete problems
in graph theory, such as the clique problem or graph coloring. As part of our future work, we aim to explore our
framework for solving such problems.

Acknowledgment
We thank Department of Computer Science and Information Systems, BITS Pilani, KK Birla Goa Campus, Goa, India
for funding our research.

References
[1] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.
[2] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocurrencies. " O’Reilly Media, Inc.", 2014.
[3] DIGICONOMIST, “Bitcoin energy consumption worldwide from february 2017 to december 8, 2024,” https:

//www.statista.com/statistics/881472/worldwide-bitcoin-energy-consumption/, December 2024.
[4] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake,” self-published paper, August,

vol. 19, no. 1, 2012.
[5] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-stake blockchain

protocol,” in Advances in Cryptology–CRYPTO 2017: 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I. Springer, 2017, pp. 357–388.

[6] S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, V. Sassone et al., “Pbft vs proof-of-authority:
Applying the cap theorem to permissioned blockchain,” CEUR-WS, 2018.

[7] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of space,” in Advances in Cryptology–
CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceed-
ings, Part II. Springer, 2015, pp. 585–605.

[8] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, and K. Pietrzak, “Spacemint: A cryptocurrency based
on proofs of space,” in Financial Cryptography and Data Security: 22nd International Conference, FC 2018,
Nieuwpoort, Curaçao, February 26–March 2, 2018, Revised Selected Papers 22. Springer, 2018, pp. 480–499.

[9] L. de Jong, “Exploring proof of capacity and proof of spacetime: The exciting future of blockchain consensus
mechanisms,” https://onxrp.com/proof-of-capacity-and-proof-of-spacetime/, April 2023.

[10] K. Karantias, A. Kiayias, and D. Zindros, “Proof-of-burn,” in Financial Cryptography and Data Security: 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers
24. Springer, 2020, pp. 523–540.

[11] P. Jha, “Eager to work: Bitcoin switch to proof-of-stake remains unlikely,” https://cointelegraph.com/news/
eager-to-work-bitcoin-switch-to-proof-of-stake-remains-unlikely, 2022.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business review, p. 21260, 2008.
[13] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Böhme, “Can we afford integrity by proof-

of-work? scenarios inspired by the bitcoin currency,” The economics of information security and privacy, pp.
135–156, 2013.

[14] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Proofs of work from worst-case assumptions,” in Advances
in Cryptology – CRYPTO 2018, H. Shacham and A. Boldyreva, Eds. Cham: Springer International Publishing,
2018, pp. 789–819.

[15] A. F. Loe and E. A. Quaglia, “Conquering generals: an np-hard proof of useful work,” in Proceedings of the 1st
Workshop on Cryptocurrencies and Blockchains for Distributed Systems, 2018, pp. 54–59.

[16] M. Dotan and S. Tochner, “Proofs of useless work–positive and negative results for wasteless mining systems,”
arXiv preprint arXiv:2007.01046, 2020.

[17] P. Philippopoulos, A. Ricottone, and C. G. Oliver, “Difficulty scaling in proof of work for decentralized problem
solving,” Ledger, vol. 5, 2020.

[18] W. Zheng, X. Chen, Z. Zheng, X. Luo, and J. Cui, “Axechain: A secure and decentralized blockchain for solving
easily-verifiable problems,” arXiv preprint arXiv:2003.13999, 2020.

[19] M. Fitzi, A. Kiayias, G. Panagiotakos, and A. Russell, “Ofelimos: Combinatorial optimization via proof-of-
useful-work: A provably secure blockchain protocol,” in Advances in Cryptology–CRYPTO 2022: 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceed-
ings, Part II. Springer, 2022, pp. 339–369.

[20] M. Todorović, L. Matijević, D. Ramljak, T. Davidović, D. Urošević, T. Jakšić Krüger, and D́J. Jovanović, “Proof-
of-useful-work: Blockchain mining by solving real-life optimization problems,” Symmetry, vol. 14, no. 9, p.
1831, 2022.

15

https://www.statista.com/statistics/881472/worldwide-bitcoin-energy-consumption/
https://www.statista.com/statistics/881472/worldwide-bitcoin-energy-consumption/
https://onxrp.com/proof-of-capacity-and-proof-of-spacetime/
https://cointelegraph.com/news/eager-to-work-bitcoin-switch-to-proof-of-stake-remains-unlikely
https://cointelegraph.com/news/eager-to-work-bitcoin-switch-to-proof-of-stake-remains-unlikely
http://arxiv.org/abs/2007.01046
http://arxiv.org/abs/2003.13999

A PREPRINT - APRIL 22, 2025

[21] Y. Rao, S. Kosari, Z. Shao, R. Cai, and L. Xinyue, “A study on domination in vague incidence
graph and its application in medical sciences,” Symmetry, vol. 12, no. 11, 2020. [Online]. Available:
https://www.mdpi.com/2073-8994/12/11/1885

[22] C. G. Oliver, A. Ricottone, and P. Philippopoulos, “Proposal for a fully decentralized blockchain and proof-of-
work algorithm for solving np-complete problems,” arXiv preprint arXiv:1708.09419, 2017.

[23] G. Wang, “Domination problems in social networks,” Ph.D. dissertation, University of Southern Queensland,
2014.

[24] S. Alipour, E. Futuhi, and S. Karimi, “On distributed algorithms for minimum dominating set problem, from
theory to application,” arXiv preprint arXiv:2012.04883, 2020.

[25] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, “Domination in graphs applied to electric
power networks,” SIAM journal on discrete mathematics, vol. 15, no. 4, pp. 519–529, 2002.

[26] A. Chinnasamy, B. Sivakumar, P. Selvakumari, and A. Suresh, “Minimum connected dominating set based rsu
allocation for smartcloud vehicles in vanet,” Cluster Computing, vol. 22, pp. 12 795–12 804, 2019.

[27] D. Chatterjee, P. Banerjee, and S. Mazumdar, “Chrisimos: A useful proof-of-work for finding minimal dominat-
ing set of a graph,” in 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2023, pp. 1332–1339.

[28] S. King, “Primecoin: Cryptocurrency with prime number proof-of-work,” July 7th, vol. 1, no. 6, 2013.
[29] J. Tian, G. Gou, C. Liu, Y. Chen, G. Xiong, and Z. Li, “Dlchain: A covert channel over blockchain based

on dynamic labels,” in Information and Communications Security: 21st International Conference, ICICS 2019,
Beijing, China, December 15–17, 2019, Revised Selected Papers 21. Springer, 2020, pp. 814–830.

[30] A. Baldominos and Y. Saez, “Coin. ai: A proof-of-useful-work scheme for blockchain-based distributed deep
learning,” Entropy, vol. 21, no. 8, p. 723, 2019.

[31] S. Fortin, “The graph isomorphism problem,” 1996.
[32] L. Babai, “Graph isomorphism in quasipolynomial time,” in Proceedings of the forty-eighth annual ACM sym-

posium on Theory of Computing, 2016, pp. 684–697.
[33] H. A. Helfgott, “Graph isomorphisms in quasi-polynomial time,” Séminaire BOURBAKI, 2017.
[34] M. Chlebík and J. Chlebíková, “Approximation hardness of dominating set problems,” in Algorithms – ESA 2004,

S. Albers and T. Radzik, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 192–203.
[35] M. R. Garey and D. S. Johnson, “Computers and intractability,” A Guide to the, 1979.
[36] N. Alon and J. H. Spencer, The probabilistic method. John Wiley & Sons, 2016.
[37] D. Boneh, S. Gorbunov, H. Wee, and Z. Zhang, “Bls signature scheme,” Technical Report draft-boneh-bls-

signature-00, Internet Engineering Task Force, Tech. Rep., 2019.
[38] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing efficient protocols,” in

Proceedings of the 1st ACM Conference on Computer and Communications Security, 1993, pp. 62–73.
[39] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably encrypted signatures from bilinear

maps,” in Advances in Cryptology—EUROCRYPT 2003: International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Warsaw, Poland, May 4–8, 2003 Proceedings 22. Springer, 2003, pp.
416–432.

[40] M. Romiti, A. Judmayer, A. Zamyatin, and B. Haslhofer, “A deep dive into bitcoin mining pools: An empirical
analysis of mining shares,” arXiv preprint arXiv:1905.05999, 2019.

[41] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and D. I. Kim, “A survey on consensus
mechanisms and mining strategy management in blockchain networks,” Ieee Access, vol. 7, pp. 22 328–22 370,
2019.

[42] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden, “Incentive compatibility of bitcoin mining pool
reward functions,” in Financial Cryptography and Data Security: 20th International Conference, FC 2016,
Christ Church, Barbados, February 22–26, 2016, Revised Selected Papers 20. Springer, 2017, pp. 477–498.

[43] B. Fisch, R. Pass, and A. Shelat, “Socially optimal mining pools,” in Web and Internet Economics: 13th Inter-
national Conference, WINE 2017, Bangalore, India, December 17–20, 2017, Proceedings 13. Springer, 2017,
pp. 205–218.

[44] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore, “Game-theoretic analysis of ddos attacks against
bitcoin mining pools,” in Financial Cryptography and Data Security: FC 2014 Workshops, BITCOIN and WAHC
2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers 18. Springer, 2014, pp. 72–86.

[45] I. Eyal, “The miner’s dilemma,” in 2015 IEEE symposium on security and privacy. IEEE, 2015, pp. 89–103.
[46] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing bitcoin security and perfor-

mance with strong consistency via collective signing,” in 25th usenix security symposium (usenix security 16),
2016, pp. 279–296.

16

https://www.mdpi.com/2073-8994/12/11/1885
http://arxiv.org/abs/1708.09419
http://arxiv.org/abs/2012.04883
http://arxiv.org/abs/1905.05999

A PREPRINT - APRIL 22, 2025

[47] U. Maleš, D. Ramljak, T. Jakšić Krüger, T. Davidović, D. Ostojić, and A. Haridas, “Controlling the difficulty
of combinatorial optimization problems for fair proof-of-useful-work-based blockchain consensus protocol,”
Symmetry, vol. 15, no. 1, 2023. [Online]. Available: https://www.mdpi.com/2073-8994/15/1/140

[48] N. A. Lynch, “Distributed algorithms: Chapter 12 - mutual exclusion,” Lecture Notes, ETH Zurich, 2004.
[Online]. Available: https://disco.ethz.ch/courses/ss04/distcomp/lecture/chapter12.pdf

[49] Bitpanda Academy, “What is the purpose of mining pools and how do they work?”
2024, accessed: 2024-06-16. [Online]. Available: https://www.bitpanda.com/academy/en/lessons/
what-is-the-purpose-of-mining-pools-and-how-do-they-work/

[50] T. Neudecker and H. Hartenstein, “Short paper: An empirical analysis of blockchain forks in bitcoin,” in Finan-
cial Cryptography and Data Security: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18–22, 2019, Revised Selected Papers 23. Springer, 2019, pp. 84–92.

[51] K. Nicolas, Y. Wang, and G. C. Giakos, “Comprehensive overview of selfish mining and double spending attack
countermeasures,” in 2019 IEEE 40th Sarnoff Symposium. IEEE, 2019, pp. 1–6.

[52] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining strategies in bitcoin,” in Financial Cryp-
tography and Data Security: 20th International Conference, FC 2016, Christ Church, Barbados, February 22–
26, 2016, Revised Selected Papers 20. Springer, 2017, pp. 515–532.

[53] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of modern physics, vol. 74,
no. 1, p. 47, 2002.

[54] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and scale-free collections of erdős-rényi graphs,”
Physical Review E, vol. 85, no. 5, p. 056109, 2012.

17

https://www.mdpi.com/2073-8994/15/1/140
https://disco.ethz.ch/courses/ss04/distcomp/lecture/chapter12.pdf
https://www.bitpanda.com/academy/en/lessons/what-is-the-purpose-of-mining-pools-and-how-do-they-work/
https://www.bitpanda.com/academy/en/lessons/what-is-the-purpose-of-mining-pools-and-how-do-they-work/

	Introduction
	Our Contributions

	Background and Notations
	Graph Isomorphism
	Minimum Dominating Set Problem
	Cryptographic Primitives
	Bitcoin Mining Pools
	Free-rider in Pool Mining

	Formal Description of ScaloWork
	System Model and Assumptions
	Phases of the Protocol
	Constructing the Lookup Table

	Security Analysis
	Security in Terms of Solution Integrity
	Security in Terms of Safety and Liveness
	Security Against Collusion Attacks

	Performance Analysis
	Conclusion

