
ROFBSα: REAL-TIME BACKUP SYSTEM DECOUPLED FROM
ML-BASED RANSOMWARE DETECTION

A PREPRINT

Kosuke Higuchi
Kogakuin University

1-24-2 Nishi-Shinjuku Shinjuku-ku
Tokyo, Japan

ed25001@ns.kogakuin.ac.jp

Ryotaro Kobayashi
Kogakuin University

1-24-2 Nishi-Shinjuku Shinjuku-ku
Tokyo, Japan

ryo.kobayashi@cc.kogakuin.ac.jp

April 22, 2025

ABSTRACT

This study proposes ROFBSα, a novel defensive architecture designed to address the issue of detection
time in machine learning-based ransomware detection models. Built upon our previously proposed
Real-time Open-File Backup System (ROFBS), ROFBSα introduces an asynchronous design that
separates the backup and detection processes. By leveraging eBPF to detect file access events and
executing the backup operation as an independent process, the proposed system eliminates processing
interference while enabling flexible and fast protection. Evaluation experiments using three types of
ransomware—AvosLocker, Conti, and IceFire—were conducted, and the effectiveness of ROFBSα
was assessed in terms of the number of encrypted and backed-up files, backup ratio, and detection
time. The results demonstrate that ROFBSα is an effective defense architecture that achieves high
backup success rates and fast detection while reducing system load and processing interference.
However, further improvements are needed to defend against ransomware with extremely rapid
encryption behavior.

Keywords backup system, file prevention, ransomware detection for machine learning, eBPF

1 Introduction

In recent years, ransomware-based cyberattacks have rapidly increased, causing serious damage not only to individual
users but also to critical infrastructure such as healthcare facilities, government agencies, and energy systems [1]. In
particular, the emergence of Ransomware as a Service (RaaS) has enabled individuals without technical expertise to
easily launch ransomware attacks, thereby expanding the range of potential attackers [2]. As a result, both the frequency
and the scale of ransomware attacks have increased each year, with reports indicating that 72.7% of organizations
worldwide were affected by such attacks in 2023 [3]. Furthermore, as of 2022, the annual economic losses caused by
ransomware were estimated at approximately $265 billion, making it a pressing issue in the field of information security
[4].

In response to this situation, ransomware detection methods based on machine learning (ML) have attracted increasing
attention in recent years. ML-based approaches offer flexible detection capabilities that do not rely on predefined
patterns, and are considered effective against obfuscated malware and emerging variants [5]. According to Beaman
et al., many studies have proposed ML models that classify ransomware based on process behavior, and it has been
confirmed that, with sufficient training data, these models can achieve high detection accuracy [6]. In addition, the
emergence of the extended Berkeley Packet Filter (eBPF) has made it possible to extract features for ML directly from
kernel-level activities. Danyil et al. proposed a real-time ransomware detection system that integrates eBPF, ML, and
natural language processing (NLP). Their system combines efficient data collection via eBPF, anomaly detection using
ML, and text analysis through NLP, achieving a high detection accuracy of 94.7% while significantly reducing the false
positive rate [7]. Sekar et al. proposed a two-stage approach that combines eBPF and NLP to enable real-time detection
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and mitigation of ransomware. Their method successfully identified ransomware incidents within a few seconds of a
zero-day attack with an impressive accuracy of 99.76% [8].

However, one of the key challenges of such detection models is the existence of what is known as detection time—the
delay between the initiation of ransomware activity and its actual detection [9]. Since ML models require time for
feature collection and classification, a certain amount of delay is unavoidable, during which ransomware may encrypt
some files. Furthermore, as pointed out in the review by Kok et al., there is a lack of proposed defense models [10].
In addition, there have been reports of cases in which backups themselves became targets of ransomware and were
deleted or destroyed by attackers [11]. These issues indicate that the assumption ’successful detection equals damage
prevention’ does not necessarily hold true in practice.

To address the issue of detection time inherent in conventional detection-centric approaches, we proposed a novel defense
mechanism called the Real-time Open-File Backup System (ROFBS), which creates real-time backups immediately
upon detecting a file open event [9]. ROFBS leverages eBPF in a Linux environment to hook system calls with minimal
overhead upon file access, enabling immediate backup of the target file and aiming to proactively prevent file encryption
by ransomware.

In this study, we propose ROFBSα, a modified architecture based on the original ROFBS, in which the backup
process is decoupled from the detection model. ROFBSα utilizes the output of the detection model as a trigger
for the restoration process, while the defense mechanism itself operates as an independent, continuously running
process. This configuration enables flexible file protection without being affected by detection time. We conduct
evaluation experiments using three types of ransomware—AvosLocker, Conti, and IceFire—to quantitatively verify the
effectiveness of the proposed method in terms of backup success rate.

2 Related work

Hernández et al. developed a system called “R-Locker,” which defends against ransomware by monitoring access to
decoy (dummy) files [12]. Their approach demonstrated that accessing a decoy file can serve as a trigger to terminate
ransomware activity before encryption progresses.

M. Medhat et al. proposed a hybrid approach that detects packed ransomware samples by scanning process memory
dumps and dropped executables [13]. By enhancing the YARA rule framework to describe common ransomware
characteristics, they achieved a detection rate of approximately 98% for memory dump files.

Zhuravchak et al. proposed a method that utilizes honeypot techniques to mitigate damage to the file system [14]. This
method identifies ransomware processes by monitoring access to honeypot files.

Lee et al. noted that ransomware binaries often whitelist specific file extensions. They proposed a defense method that
protects important files by randomly changing their extensions, successfully preventing encryption in 141 out of 143
ransomware samples [15].

Kok et al. proposed a machine learning–based pre-encryption detection algorithm that can accurately detect ransomware
before encryption occurs [16]. Their approach achieved a false positive rate of 1.56% and an AUC (Area Under the
Curve) of 99.3%, demonstrating its potential as an effective preventive measure against various types of ransomware.

Song et al. proposed an anomaly detection method for the Android platform based on resource metrics such as CPU
usage, memory consumption, and I/O rates [17]. Their system detects and halts ransomware processes, prompting the
user for confirmation before removing the malicious application, thereby protecting user data.

Greg et al. built a stream processor on a programmable forwarding engine (PFE) and proposed a method for identifying
malicious network behavior using a random forest classifier [18]. Their approach demonstrated that ransomware could
be detected before encryption by analyzing flow-based fingerprints.

Fujinoki et al. proposed a backup system called PDPZR, which generates backups upon every data update and manages
redundancy by removing outdated versions [19]. Simulation results suggest that this method can effectively mitigate
damage caused by zero-day ransomware. However, challenges remain regarding the configuration and tuning of
automatic protection rules, as well as further validation in real-world environments.

Gujar et al. proposed an automatic backup system using SSDs that detects newly added files in real time and immediately
backs them up to a dedicated folder on the SSD [20]. Since the software resides entirely within the SSD and is isolated
from the host machine, it offers stronger protection compared with conventional host-dependent software. However,
challenges remain in optimizing the system for specific SSD models and reducing the processing overhead for real-time
operations.
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Oujezsky et al. proposed the Intelligent Malware Defense System (IMDS), which uses AI and hash functions to prevent
infections in backup data [21]. The system verifies file integrity before backup and blocks the process if anomalies are
detected, thereby providing stronger protection than traditional passive backup methods.

3 Background knowledge

3.1 Detection Time

ML-based detection models identify ransomware based on behavioral patterns and features extracted from training
datasets. First, benign and malicious datasets are collected, and relevant features are extracted. Then, using public
or custom datasets, the model is trained to classify new samples as either benign or malicious. The advantage of this
approach is that it does not rely on predefined signatures or patterns, allowing it to detect new or variant ransomware
strains. On the other hand, several challenges have been noted, including dependency on datasets and the existence of
evasion techniques [5, 22].

We consider detection time to be one of the main challenges in the current detection flow. Regardless of improvements
in detection accuracy or speed, ML models inherently require a certain amount of time for feature collection and
classification. The process of halting ransomware consists of three steps: feature collection, classification, and process
termination. Here, we define the time required for feature collection and classification as response time, and the time
between classification and process termination as kill time. The sum of these two constitutes the overall detection time.

Figure1 illustrates the relationship between response time and kill time in an ML-based detection model. Response time
includes both feature collection and classification. While it can be shortened by improving feature extraction methods
and model accuracy, it cannot be eliminated entirely.

Although kill time tends to remain constant, it may increase under certain conditions, such as the presence of numerous
child processes. Methods such as adjusting process priorities can be considered to minimize kill time. Reducing
response time requires the adoption of more efficient feature extraction algorithms. By implementing these measures
comprehensively, it is possible to reduce detection time and minimize the damage caused by ransomware. However, it
is not possible to completely eliminate these time intervals.

Therefore, it is important to employ defense mechanisms that function during detection time, rather than relying solely
on the accuracy or speed of detection models.

Figure 1: Breakdown of detection time into response time (feature collection and classification) and kill time (process
termination).

3.2 extended Berkeley Packet Filter

The extended Berkeley Packet Filter (eBPF) is a technology that allows user-defined programs to be executed safely and
efficiently within a virtualized environment in the Linux kernel space [23]. Traditionally, extending kernel functionality
required advanced tasks such as modifying the kernel source code or inserting kernel modules, which carried the risk of
kernel crashes if not executed correctly. As a result, the introduction of eBPF has enabled safer and more flexible kernel
extensions while avoiding such risks.
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eBPF enables flexible actions to be taken in response to events occurring within the kernel, and is widely used for various
purposes such as application tracing, performance analysis, and security monitoring. Although eBPF functionality
is generally dependent on the kernel version, a binary portability technique called Compile Once, Run Everywhere
(CO-RE) has been developed to allow the same eBPF program to run across different environments. Furthermore, eBPF
is designed to operate with minimal resource consumption, enabling stable performance with low memory usage while
minimizing data loss.

3.3 BPF Compiler Collection

The BPF Compiler Collection (BCC) is a toolset for generating eBPF bytecode, developed by the IO Visor project [24].
Although eBPF code that runs in kernel space must be written in C, Python or Lua can be used to load programs and
process data, significantly improving development efficiency. In addition, BCC comes with a wide variety of utility
tools, enabling developers to immediately use tracing and monitoring functionalities.

eBPF uses a mechanism called probes to hook into kernel functions. There are two types: kprobe, which hooks at
the function entry point, and kretprobe, which hooks after function execution. Since the information available before
and after function execution differs, it is important to choose the appropriate type of probe depending on the intended
purpose.

4 Proposal mechanism

Figure 2 illustrates the architectural differences between the conventional ROFBS and the proposed ROFBSα.

Figure 2: Comparison between ROFBS and ROFBSα architectures.

IIn the conventional ROFBS, the detection model and the defense mechanism are integrated into a single process, where
detection and backup operations are performed sequentially. This implementation causes feature extraction to be blocked
during the backup procedure, resulting in detection delays. In contrast, ROFBSα proposed in this study introduces an
asynchronous architecture that completely separates the detection and defense mechanisms. Each component operates
as an independent process, eliminating resource contention and allowing for non-blocking operation. This improvement
provides the following advantages:

1. The detection and defense models do not compete for resources, thereby eliminating processing interference.
2. Feature extraction and inference by the detection model can continue during the backup process, significantly

reducing detection time.
3. Parallel execution enhances both the backup success rate and detection speed, thereby improving overall

system robustness and throughput.

As a result, ROFBSα improves the backup success rate while achieving faster detection without compromising the
performance of the detection model. ROFBSα is triggered by the xfs_file_open kernel event in the Linux file system.
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When access to a target file is detected, its path and process information are passed to user space. Upon receiving this
notification, ROFBSα sends a suspend signal to the corresponding process and immediately creates a backup file with
the extension .tmp in the same directory. After confirming that the backup has completed, the process is resumed via a
resume signal.

File paths are received sequentially in reverse order from the kernel, and the system reconstructs the full path by
combining multiple events. The use of the .tmp extension for backup files is based on prior findings that ransomware
typically avoids encrypting files with certain extensions such as .tmp or .exe [25]. Upon system termination, the
backup files are renamed back to their original extensions.

Algorithm: 1 Backup Procedure of ROFBSα
Require: File path (file_path) and protected directories list (protected_directories).

1: function CREATEBACKUPFILE(file_path, protected_directories)
2: if file_path matches any directory in protected_directories and file_path has not yet been backed up then
3: Create a temporary backup file named file_path.tmp.
4: Mark file_path as backed up.
5: end if
6: end function
7: function RESTOREIFMALICIOUSANDTERMINATED(file_path, is_malicious)
8: if is_malicious then
9: Rename file_path.tmp to file_path.

10: end if
11: end function

5 Experiments

5.1 Experimental Setup

We set up the experimental environment using VirtualBox. Table 1 summarizes the specifications of the host machine
and the virtual machine.

Table 1: Experiment Environment

Host Machine Virtual Machine
CPU Intel Core i7-12650H Virtual CPU (2 cores)
Memory 32GB (DDR4 2400MT/s) 8GB
Storage 512GB (M.2 NVMe SSD) 40GB
OS Windows 11 AlmaLinux 9.1

The experiment was conducted based on prior research. We created a victim directory containing 4,385 files
downloaded from the tiny folder of the NapierOne dataset [26]. The virtual environment includes all files and libraries
required to run the detection model and ROFBS, along with the victim directory.

We used three ransomware samples in this study, all of which were obtained from the internet between May and
October 2023. The names of these ransomware samples follow the signature names given at download time.

During execution, all default options were used except for the –path argument. Specifically, we used only arguments
essential for execution or those listed in the help menu. For example, if the help menu listed a command-line argument
–path $PATH, we used that argument regardless of additional options such as thread counts or background execution.
Ransomware often avoids encrypting certain extensions such as .dll and .bat to avoid crashing the operating system.
Notably, IceFire does not support user-defined encryption targets.

Table 2: Ransomware Used for Experiments

Ransomware SHA256
IceFire e9cc7fdfa3cf40ff9c3db0248a79f4817b170f2660aa2b2ed6c551eae1c38e0b
AvosLocker 0cd7b6ea8857ce827180342a1c955e79c3336a6cf2000244e5cfd4279c5fc1b6
Conti 95776f31cbcac08eb3f3e9235d07513a6d7a6bf9f1b7f3d400b2cf0afdb088a7
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The machine learning algorithms used in the experiment are listed in Table 3. Accuracy and FPR were evaluated using
logs obtained during the actual execution of the AvosLocker ransomware. These logs were unparsed and matched the
format of those collected in this study. We manually labeled each log as benign or malicious. Accuracy was calculated
based on agreement between the model’s predictions and the manual labels. For example, if 2 out of 5 predictions
matched the manual labels, the resulting accuracy would be 2

5 = 0.4, or 40%.

Table 3: Machine Learning Algorithms Used

Algorithm Accuracy (%) FPR
Random Forest (RF) 97.2 0.0068
Gradient Boosting (GB) 96.8 0.0014

5.2 Backup Ratio

To evaluate the effectiveness of the defense model, we define the metric Backup Ratio as follows:

BackupRatio[%] =
Backup_files

Encrypted_files
× 100 (1)

ROFBS and ROFBSα are proposed as countermeasures against the issue of detection time. Therefore, files that were
not encrypted by ransomware are not relevant to the evaluation of these models. For this reason, we focus on the number
of encrypted files that were successfully backed up. By examining the Backup Ratio, we assess how effectively the
proposed methods mitigate the damage caused by ransomware.

Table 4 shows the number of encrypted and backed-up files under the ROFBS model. Table 5 shows the corresponding
results for ROFBSα. In these tables, E denotes the number of encrypted files, and B denotes the number of backup files.
Subscripts (e.g., B1) indicate the results from the N -th execution of the experiment.

Table 4: Results for ROFBS: Encrypted and Backed Up Files

RF GB
B1 E1 B2 E2 B1 E1 B2 E2

AvosLocker 29 29 35 35 116 131 85 121
Conti 32 32 36 36 34 34 34 34
IceFire 10 1 62 145 23 117 45 163

Table 5: Results for ROFBSα: Encrypted and Backed Up Files

RF GB
B1 E1 B2 E2 B1 E1 B2 E2

AvosLocker 0 0 2 2 43 43 19 19
Conti 13 13 18 18 36 36 36 36
IceFire 1 1 16 33 3 35 12 41

Next, Table 6 presents the detection time for ROFBS. Table 7 shows the detection time for ROFBSα. Here, first
indicates the detection time during the first execution. Second refers to the detection time during the second execution.

Table 6: Number of Encrypted and Backed Up Files under ROFBS (per trial)

RF GB
First Second First Second

AvosLocker 0.18 0.47 0.16 0.17
Conti 0.28 0.29 0.32 0.32
IceFire 1.2 1.5 1.8 1.5
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Table 7: Number of Encrypted and Backed Up Files under ROFBSα (per trial)

RF GB
First Second First Second

AvosLocker 0.08 0.10 0.16 0.14
Conti 0.18 0.22 0.44 0.45
IceFire 1.6 1.8 1.5 1.7

6 Discussion

Compared to the conventional ROFBS, ROFBSα significantly reduces the number of encrypted and backed-up files
across all ransomware attack scenarios. As shown in Tables 4 and 5, in the case of the AvosLocker attack using the
RF-based detection model, both the number of encrypted files and the number of backed-up files decreased from 29
(ROFBS) to 0 (ROFBSα). This improvement can be attributed to the asynchronous architecture of ROFBSα, which
eliminates interference between the backup and detection processes.

In particular, ROFBSα achieved a 100% backup ratio in the AvosLocker and Conti attack scenarios, demonstrating
protection performance equivalent to that of ROFBS. In the IceFire scenario with the RF-based model (second trial),
the backup ratio improved from approximately 43% (ROFBS) to about 48% (ROFBSα). However, with the GB-based
detection model under the same IceFire attack, the backup ratio slightly decreased from around 20% to 8.6%. Despite
this, ROFBSα successfully maintained or improved the backup ratio while reducing system overhead in most scenarios.

Regarding detection time, the introduction of ROFBSα led to a reduction in most ransomware attack patterns when
using the RF-based detection model, except for IceFire. As shown in Tables 6 and 7, for AvosLocker, the detection
time decreased from 0.18 seconds to 0.08 seconds in the first trial and from 0.47 seconds to 0.10 seconds in the second
trial—less than one-fourth of the original.

In contrast, when using the GB-based detection model, detection time increased slightly in some scenarios. For example,
under the Conti attack, the detection time increased from 0.32 seconds to 0.44 seconds (first trial) and from 0.32 seconds
to 0.45 seconds (second trial). This is presumably due to the asynchronous nature of ROFBSα, where prioritizing the
backup process introduces overhead into the inference timing of the GB model.

In summary, ROFBSα significantly reduces both the number of encrypted files and the number of backup operations
compared to ROFBS, while maintaining or improving the backup ratio against major ransomware threats. Notably,
in the AvosLocker scenario, the system completely suppressed both encryption and backup activity, showcasing the
effectiveness of its asynchronous design. Additionally, ROFBSα reduced detection time when used with the RF
model—by more than 75% in the case of AvosLocker. Although slight increases in detection time were observed
with the GB model, the backup ratio remained mostly stable or improved. Therefore, the increase in detection time is
unlikely to be a critical issue in practical settings.

Overall, ROFBSα successfully achieves a high level of both protection performance and processing efficiency by
minimizing operational interference. However, further improvements may be necessary for ransomware with extremely
fast encryption speeds.

7 Conclusion

In this study, we proposed ROFBSα, a new architecture that separates the detection and defense models to reduce
processing interference. Through evaluation experiments, we confirmed that ROFBSα significantly reduces both the
number of encrypted files and the number of backed-up files compared to the conventional ROFBS. Notably, in the case
of an AvosLocker attack, the number of encrypted and backed-up files was reduced to zero, which is attributed to the
asynchronous architecture that eliminates interference between backup and detection processes.

Regarding backup ratio, ROFBSα consistently maintained nearly 100%, achieving protection performance comparable
to or even exceeding that of ROFBS. Although a slight decrease in backup ratio was observed during the IceFire
attack when using the GB-based detection model, ROFBSα demonstrated a favorable trade-off between protection and
processing efficiency across major ransomware scenarios.

Furthermore, regarding detection time, all attack patterns under the RF-based detection model showed a significant
reduction. In particular, the detection time for AvosLocker was improved to less than one-fourth of the original value.
While a slight increase in detection time was observed in some scenarios with the GB-based model, this increase is
attributed to inference timing interference resulting from asynchronous backup operations.

7



ROFBSα: Independent Real-Time Backup System A PREPRINT

Based on these results, ROFBSα is shown to be an effective defensive architecture that maintains high backup success
rates and fast detection while reducing processing interference and system overhead. However, further improvements
may be necessary to address ransomware with extremely fast encryption speeds, which remains a challenge for future
work.
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