
Citation: Babaey, V.; Faragardi, H. Title.

Journal Not Specified 2024, 1, 0.

https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2025 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Detecting Zero-Day Web Attacks with an Ensemble of LSTM,
GRU, and Stacked Autoencoders
Vahid Babaey 1 and Hamid Reza Faragardi2

1 Department of Electrical and Computer Engineering, University of North Carolina at Charlotte;
vbabaey@charlotte.edu

2 Research Engineer, KTH Royal Institute of Technology, Stockholm, Sweden; Hamid.faragardi@trendplus.se
* Correspondence: vbabaey@charlotte.edu, Hamid.faragardi@trendplus.se

Abstract: The rapid growth in web-based services has significantly increased security risks related to
user information, as web-based attacks become increasingly sophisticated and prevalent. Traditional
security methods frequently struggle to detect previously unknown (zero-day) web attacks, putting
sensitive user data at significant risk. Additionally, reducing human intervention in web security tasks
can minimize errors and enhance reliability. This paper introduces an intelligent system designed 5

to detect zero-day web attacks using a novel one-class ensemble method consisting of three distinct
autoencoder architectures: LSTM autoencoder, GRU autoencoder, and stacked autoencoder. Our
approach employs a novel tokenization strategy to convert normal web requests into structured
numeric sequences, enabling the ensemble model to effectively identify anomalous activities by
uniquely concatenating and compressing the latent representations from each autoencoder. The 10

proposed method efficiently detects unknown web attacks while effectively addressing common
limitations of previous methods, such as high memory consumption and excessive false positive
rates. Extensive experimental evaluations demonstrate the superiority of our proposed ensemble,
achieving remarkable detection metrics: 97.58% accuracy, 97.52% recall, 99.76% specificity, and 99.99%
precision, with an exceptionally low false positive rate of 0.2%. These results underscore our method’s 15

significant potential in enhancing real-world web security through accurate and reliable detection of
web-based attacks.

Keywords: Zero-Day Attacks, Tokenization, Autoencoder, Ensemble Classification, Neural Networks,
LSTM, GRU, Stacked

1. Introduction

In modern digital infrastructure, websites and web-based applications play a crucial
role in facilitating economic, educational, recreational, and political activities. However,
as the reliance on these platforms increases, so does the risk of security threats, including
unauthorized access, data breaches, and service disruptions. One of the primary attack
vectors involves manipulating web requests, where adversaries masquerade as legitimate
users to exploit vulnerabilities. Consequently, the detection and mitigation of malicious
web requests have become vital for ensuring the security of any online service, including
websites, web applications, and Content Delivery Networks (CDNs).

To counter such threats, various security mechanisms, including Web Application
Firewalls (WAFs) and blacklisting techniques, have been deployed. While these methods
offer some level of protection, they remain ineffective against zero-day attacks—novel
exploits that lack predefined security signatures [1]. The primary challenge associated with
zero-day attacks lies in their unpredictability, as they introduce previously unseen patterns
that traditional rule-based detection systems fail to recognize. Addressing these challenges
through deep learning-based anomaly detection presents a promising approach, leveraging
neural networks to autonomously identify deviations indicative of malicious activity.

Conventional methods for preventing web-based attacks, such as WAFs [2] and black-
listing, exhibit several limitations. For instance, maintaining a blacklist of prohibited
keywords within web requests is both time-consuming and insufficient in addressing

Version April 22, 2025 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

ar
X

iv
:2

50
4.

14
12

2v
1

 [
cs

.C
R

]
 1

9
A

pr
 2

02
5

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-000X
https://www.mdpi.com/journal/notspecified

Version April 22, 2025 submitted to Journal Not Specified 2 of 22

evolving attack patterns. Moreover, none of these existing approaches is capable of de-
tecting zero-day attacks, as the strategies and obfuscation techniques employed in these
attacks remain unknown. Recent advancements in machine learning and deep learning
have demonstrated significant potential in enhancing security through intelligent threat
identification, making these techniques highly relevant for modern cyber defense systems.

A critical advantage of anomaly detection models is that they do not require prior
exposure to zero-day attacks to effectively detect them. In this study, an ensemble model is
proposed that integrates multiple sub-models designed to detect zero-day attacks. Given
that the patterns of zero-day attacks are inherently unknown, the model is trained exclu-
sively on normal web request data. By learning the distribution of normal web traffic,
the model becomes proficient in identifying deviations, thereby flagging both known and
previously unseen attacks as anomalous. This approach ensures that malicious requests,
whether originating from known attack types or zero-day exploits, are effectively classified
as security threats.

To evaluate the proposed system, various web attacks such as SQL Injection (SQLi),
Cross-Site Scripting (XSS), and Buffer Overflow [3] are treated as zero-day attacks within
the dataset. The model classifies any request with an anomaly score exceeding a predefined
threshold as a potential zero-day attack. While the proposed approach does not explicitly
categorize different types of attacks, it demonstrates the capability to reliably detect anoma-
lous activities, ensuring a high level of security against emerging threats. The primary
objective of this model is to simultaneously address both known and zero-day attacks while
maintaining a high detection rate and minimizing false positives.

The rest of this paper is structured as follows: Section 2 presents the foundational
concepts and research background. Section 3 provides a review of existing literature on
web attack detection. The methodology and architectural design of the proposed model
are discussed in Section 4, followed by a performance evaluation in Section 5. Section 6
elaborates on the broader implications of the findings, and Section 7 concludes the paper
with final remarks.

The key contributions of this research are as follows:

• Innovative Ensemble Model Architecture: This study introduces a novel ensemble
approach by integrating LSTM, GRU, and stacked autoencoders for anomaly detection
in web requests. Unlike conventional ensemble methods that use simple averaging
or majority voting, our approach uniquely concatenates and compresses the latent
representations from each autoencoder. This technique significantly improves anomaly
detection performance and computational efficiency.

• Advanced Tokenization and Feature Mapping: We propose a novel tokenization strat-
egy that classifies tokens based on their character composition (numeric, lowercase,
uppercase, and special characters). This structured approach effectively reduces input
dimensionality, ensures greater consistency in data representation, and significantly
enhances the detection capability of our anomaly detection system.

• Zero-Day Attack Detection: Our model is trained exclusively on normal web requests,
enabling it to effectively identify and detect previously unseen zero-day attacks by
capturing deviations from established normal request patterns.

• Comprehensive Evaluation Metrics with Emphasis on False Positive Rate (FPR):
Unlike many existing studies, we explicitly evaluate and report the False Positive
Rate, achieving a significantly lower FPR of 0.2%. This comprehensive evaluation
underscores the practical applicability of our model, addressing an essential aspect
often overlooked in anomaly detection research.

By addressing the limitations of traditional detection systems and leveraging anomaly
detection through deep learning, this research contributes to advancing cybersecurity
measures against evolving web-based threats.

Version April 22, 2025 submitted to Journal Not Specified 3 of 22

2. Background

Due to the increasing reliance on internet-based services, web attacks pose significant
threats to user privacy and can severely disrupt web server operations, affecting users on a
global scale. Among these threats, zero-day (previously unknown) attacks are particularly
concerning, as they can lead to privacy breaches and denial of service, impacting all users
of a targeted website [4]. There are two approaches to detect attacks: non-ML (heuristic-
based) and machine learning-based approaches. Heuristic methods play a crucial role
in cybersecurity due to their ability to rapidly identify potentially malicious activities
based on predefined rules and patterns, without requiring extensive labeled datasets.
Heuristic algorithms analyze data patterns and system behaviors, identifying threats by
matching observed behaviors against known suspicious patterns or predefined rules. The
primary advantage of heuristic approaches lies in their capability to detect novel or zero-
day threats promptly, often faster than traditional signature-based methods. However,
heuristic approaches can suffer from high false positives or negatives due to their reliance
on manually defined rules and parameters, and thus require continuous refinement and
adaptation. Despite these limitations, heuristic algorithms remain widely adopted in
cybersecurity for their interpretability, speed, and ability to quickly detect anomalies in
real-time environments [5]. Machine learning-based approaches for web attack detection
typically consist of two key phases: training and detection. During the training phase, the
model learns from patterns of normal web requests, while in the detection phase, it utilizes
this learned knowledge to identify and mitigate potential web attacks [6].

Web attack countermeasures can generally be categorized into three primary ap-
proaches: (1) supervised, (2) unsupervised, and (3) semi-supervised learning. The super-
vised approach is primarily designed to detect known attacks and is commonly imple-
mented in signature-based systems such as Web Application Firewalls (WAFs). These
models rely on labeled datasets containing both historical attack patterns and normal
requests, making them highly effective against previously documented threats. However,
their reliance on predefined signatures renders them ineffective against zero-day attacks,
as these attacks introduce novel patterns that are not represented in the training dataset [7].

The unsupervised approach, on the other hand, employs anomaly detection techniques
to distinguish between normal system activities and anomalies. Unlike supervised methods,
this approach does not rely on historical attack patterns, allowing it to identify previously
unseen zero-day attacks [7,8]. By modeling the expected behavior of normal web traffic,
anomaly detection-based methods can effectively flag deviations indicative of malicious
activity, making them particularly suitable for dynamic and evolving attack landscapes.

The semi-supervised approach, which lies between supervised and unsupervised
methods, leverages normal web request data to train the model. This approach focuses
exclusively on learning the characteristics of legitimate requests, enabling the model to
differentiate between normal and anomalous activities. Since it involves training on only
one category of data—normal requests—it eliminates the need for labeled attack samples
while still allowing for anomaly detection in the detection phase [7].

In this research, an unsupervised approach is employed to address the challenge
of detecting zero-day attacks, which lack predefined signatures and attack patterns. By
learning the distribution of normal web requests, the proposed model can effectively
identify requests that deviate from the established normal behavior, thereby flagging them
as potential zero-day attacks. This approach enhances the system’s ability to detect novel
and previously unknown threats, making it a robust solution for mitigating modern web
security risks.

3. Related Work

Numerous methods and models have been proposed to counter web attacks, including
zero-day attacks. Models by researchers like Pu et al. [7], Ingham et al. [9], Sivri et al. [10],
Jung et al. [11], Vartouni et al. [12], Ariu et al. [13], Liang et al. [14], Kuang et al. [15], Tang
et al. [16], Indrasiri et al. [17], Gong et al. [18], Tekerek et al. [19], Jemal et al. [20], Alaoui et

Version April 22, 2025 submitted to Journal Not Specified 4 of 22

al. [21], Mohamed et al. [22], Yuan et al [23], Vorobyov et al. [24], Su et al. [25], Silvestre et
al. [26], Yatagha et al. [27], Katbi et al. [28], Tokmak et al. [29], Alqhwazi et al. [30], Thalji
et al. [31], Yao et al. [32], are notable.

The model by Pu et al. [7] introduces an unsupervised anomaly detection method that
combines Sub-Space Clustering (SSC) and One Class Support Vector Machine (OCSVM).
This approach aims at detecting cyber intrusions without prior knowledge of the attacks,
making it particularly useful for identifying unknown or zero-day attacks.

The model by Ingham et al. [9] proposes a method for detecting web attacks by
focusing on deep learning techniques, specifically utilizing Transformer models. This
approach represents a major advancement in web security, providing a more dynamic and
intelligent system for detecting and mitigating web-based attacks.

Sivri et al. [10] used various machine learning and deep learning models. For example,
a hybrid model that uses character-level representations to classify HTTP requests as
normal or malicious. The study employed models such as XGBoost, LightGBM, LSTM
and CNN. The upsampling techniques have been used to balance the dataset, which helps
improve classification metrics. As a result, the LSTM model achieved the best accuracy and
F1 score, while LightGBM performed better in computation time. This work shows the
importance of balancing in real-time web intrusion detection systems.

Jung et al. [11] used a novel approach named Payload Feature-Based Transfer Learning
(PF-TL) to cope with insufficient training data in intrusion detection systems. Their method
leverages knowledge transfer from a labeled source domain to an unlabeled target domain
by extracting features from both the header and payload of network traffic. The technique
they use is a hybrid feature extraction, combining signature-based and text vectorization
methods, to enhance the representation of attack patterns.

The model by Vartouni et al. [12] uses a deep neural network-based method for feature
learning and isolation forest for classification to identify malicious requests. It employs an
n-gram model, which represents overlapping subsets of n characters from the data.

Ariu et al. [13] model is an intrusion detection system that represents payloads as
byte sequences, analyzed using Hidden Markov Models (HMM). This proposed algorithm
ensures the analytical power of n-gram analysis while overcoming its computational
complexity, using HMM for feature extraction. However, HMM models are less effective
when the sequence length is not appropriate, leading to poorer performance in processing
complex requests.

In the Liang et al. [14] model, the approach involves first training two Recurrent
Neural Networks (RNNs) with Complex Recurrent Units (LSTM or GRU units) to learn
normal request patterns solely from unsupervised normal requests. Then, a supervised
neural network classifier is trained, taking the output of the RNN as input to categorize
normal and abnormal requests.

Kuang et al. [15] employ deep learning concepts to design a model named DeepWaf, a
combination of LSTM and CNN deep neural networks, achieving satisfactory results in
detecting web attacks.

In the Tang et al. [16] model, each word in an HTTP request (except for low-value
words like ’and’, ’or’, etc.) is tokenized. Words and tokens are mapped to each other
through TokenIDs. The tokenized request is then encoded and decoded using a Short-Term
Memory architecture; if the decoded value matches the pre-encoded tokenized value, the
request is benign, otherwise, it’s malicious. The model primarily targets zero-day attacks,
leaving known attack detection to WAF and addressing zero-day attacks through the
Zero-Wall model. A limitation of this approach is that new benign requests with different
patterns might be incorrectly flagged as malicious and subjected to further scrutiny in the
Zero-Wall model before being identified as benign.

In the Indrasiri et al. [17] model, seven classification algorithms, one clustering
algorithm, two ensemble methods, and two large standard datasets with 73,575 and 100,000
URLs were used. Two testing modes (percentage split, K-Fold cross-validation) were

Version April 22, 2025 submitted to Journal Not Specified 5 of 22

employed for experiments and predictions. An ensemble model named ERG-SVC was
proposed, using features selected by various feature selection methods.

The model by Gong et al. [18] proposes a method to improve web attack detection
by incorporating model uncertainty into deep learning (DL) models, specifically focusing
on Convolutional Neural Networks (CNNs). The method aims to address the problem of
annotation errors in training data. Annotation errors are common in web attack datasets
due to the vast and varied nature of web traffic, making correct labeling challenging.

The model by Tekerek et al. [19] introduces a novel approach for detecting web-based
attacks using a deep learning architecture centered on Convolutional Neural Networks
(CNNs). Focused on anomaly-based detection, this method preprocesses HTTP request
data, particularly URLs and payloads, to identify unusual patterns indicative of potential
threats.

The model by Jemal et al. [20] presents a smart web application firewall (SWAF) based
on a convolutional neural network. The model is evaluated using a 5-fold cross-validation
method. The CNN is characterized by a specific architecture. It can process data at scale
and automatically extract and select features and consists of five layers.

The model by Alaoui et al. [21] proposes an approach based on Word2vec embedding
and a stacked generalization ensemble model for LSTMs to detect malicious HTTP web
requests.

Mohamed et al. [33] propose a deep learning-based multi-class intrusion detection
system that classifies different types of web attacks using algorithms like LSTM, Bi-LSTM,
CNN, and RNN. Automatic extraction and classification of features from HTTP traffic are
their main approaches which overcome limitations related to traditional feature engineer-
ing.

The model by Shahid et al. [34] proposes a framework based on an enhanced hybrid
approach where Deep Learning model is nested with a Cookie Analysis Engine for web
attacks detection, mitigation and attacker profiling in real time.

The model by Moarref et al. [22] tries to focus on enhancing web attack detection via a
character-level multichannel multilayer dilated convolutional neural network, processes
HTTP request texts at the character level and extract relevant features. The model combines
multichannel dilated convolutional blocks with varying kernel sizes to capture diverse
temporal relationships and dependencies among characters.

Yatagha et al. [27] proposed a hybrid anomaly detection model combining VAE, LSTM,
and OCSVM to detect zero-day anomalies in cyber-physical systems. The model learns
normal patterns and flags deviations using reconstruction errors and latent space analysis.
An adaptive loss adjustment algorithm ensures continual learning without forgetting.
Deployed on a Raspberry Pi, the system effectively detects contextual anomalies in real-
time.

Katbi et al. [28] proposed IDSVDD, a novel one-class anomaly detection framework for
IoT environments that combines Deep SVDD with an interpolated adversarial autoencoder.
The model enhances the structure of the latent space by enforcing convexity and regular-
ization through adversarial interpolation, making it easier to distinguish anomalies from
normal data. By learning a compact hypersphere that encloses only normal samples, the
system achieves strong zero-day detection performance across multiple IoT datasets while
remaining lightweight enough for deployment in resource-constrained environments.

Tokmak et al. [29] presented a deep learning framework for zero-day threat detection
that combines Stacked Autoencoders (SAE) for feature selection with an LSTM classifier.
Using the UGRansome dataset, the model first performed unsupervised feature extraction
with SAE, then applied supervised LSTM layers to capture temporal patterns. The hybrid
SAE-LSTM model achieved high accuracy (98%) across signature, anomaly, and synthetic
signature attacks, showing strong generalization and effectiveness for detecting both known
and novel threats.

Alqhwazi et al. [30] proposed an SQL injection detection system using a Recurrent
Neural Network (RNN) Autoencoder, trained on a public Kaggle dataset of SQL queries.

Version April 22, 2025 submitted to Journal Not Specified 6 of 22

Their architecture uses an autoencoder for dimensionality reduction, followed by an LSTM
layer for classification. The model achieved 94% accuracy and 92% F1-score, outperforming
traditional ML classifiers like SVM, decision tree, and logistic regression. This approach
effectively captures long-term dependencies in SQL queries, making it well-suited for
detecting complex or obfuscated injection attacks.

Thalji et al. [31] proposed AE-Net, a novel autoencoder-based feature engineering
approach for detecting SQL injection attacks. AE-Net extracts high-level deep features
from SQL textual queries, which are then used as input to multiple machine learning and
deep learning models. Among the models tested, Extreme Gradient Boosting (XGBoost)
achieved the highest performance, reaching a 0.99 accuracy score in k-fold cross-validation.
The approach demonstrated the effectiveness of deep unsupervised feature learning in
enhancing SQLi detection over traditional methods like BoW and TF-IDF.

Yao et al. [32] proposed a lightweight intrusion detection system for IoT that combines
a One-Class Bidirectional GRU Autoencoder with Soft-Voting Ensemble Learning. The
autoencoder is trained on only normal data to detect anomalies—including zero-day
attacks—based on reconstruction loss. Detected anomalies are then classified using an
ensemble of Random Forest, XGBoost, and LightGBM to identify the closest known attack
type. The system demonstrated high accuracy and adaptability across three benchmark
datasets: WSN-DS, UNSW-NB15, and KDD99.

Apart from machine learning techniques, various heuristic-based approaches have
been proposed to detect web-based attacks, such as Yuan et al. [23] who proposed a
static SQL injection detection technique based on program transformation to address the
limitations of existing tools in handling object-oriented database extensions (OODBE) in
PHP applications. Their method, OODBE-SCAN, first transforms object-oriented constructs
into semantically equivalent procedural code, enabling accurate identification of source and
sink points. The method then performs control flow graph construction and taint analysis to
detect vulnerabilities. Compared to tools like RIPS and Seay, OODBE-SCAN demonstrated
superior precision and recall in detecting real-world vulnerabilities in OODBE-based web
applications.

Vorobyov et al. [24] introduced a novel runtime protection mechanism against SQL
injection attacks based on synthesizing fine-grained allowlists from benign SQL queries.
Their approach uses an information flow model to decompose SQL queries into semantic
units called information tuples, which capture disclosed columns, accessed fields, and
related predicates. By generalizing these tuples across a set of safe queries, they create
a context-sensitive allowlist that permits future queries only if they disclose no more
information than allowed. This method outperforms syntax-based detectors by focusing
on semantic disclosure rather than structural similarity, thus reducing false positives and
better preventing data exfiltration.

Su et al. [25] proposed Splendor, a static analysis framework for detecting stored
Cross-Site Scripting (XSS) vulnerabilities in modern PHP web applications, especially
those using Data Access Layers (DAL). The approach introduces a fuzzy token-matching
technique to identify database operation triples (table, column, and operation type) from
code fragments, even when SQL queries are dynamically constructed or obscured through
encapsulation. Splendor then performs a two-phase taint analysis, tracing tainted data
from sources to the database writes and from the database reads to sinks. The framework
demonstrated strong scalability, identifying 17 real-world zero-day vulnerabilities and
outperforming both static (RIPS) and dynamic (Black Widow) tools.

Silvestre et al. [26] introduced FreeSQLi, a novel static analysis tool that detects SQL
injection vulnerabilities in PHP applications using session types. Their approach translates
PHP code into the FreeST programming language, which supports rich type systems model-
ing communication protocols. By interpreting interactions between the application and the
database as typed communication sessions, FreeSQLi checks for type mismatches—such as
sending unsanitized user input (typed as Unsafe) to sensitive sinks—and flags these incon-

Version April 22, 2025 submitted to Journal Not Specified 7 of 22

sistencies as SQLi vulnerabilities. This method offers formal guarantees and reduces false
positives by leveraging strong type checking rather than heuristics or machine learning.

A key limitation of the related works is the omission of one of the most critical
evaluation metrics: the False Positive Rate (FPR), which quantifies the proportion of normal
web requests misclassified as malicious. This metric is essential for assessing the model’s
capability to accurately encode and decode normal requests, ensuring minimal disruption
to legitimate traffic. In contrast, our proposed model demonstrates superior performance,
achieving the lowest False Positive Rate of 0.2%, which is even lower than the values
reported in prior studies that included this metric in their evaluation.

4. Proposed model

This section presents the proposed model for detecting zero-day web attacks. The
detection process begins with the pre-processing of web requests through tokenization
techniques, ensuring standardized input representation. These processed requests are
then fed into an ensemble of relatively simple one-class classifiers designed to distinguish
between normal and malicious web traffic. The effectiveness of the proposed model is
assessed during the detection phase, focusing on its capability to identify and mitigate
advanced security threats.

4.1. Architecture

The proposed model comprises multiple components, each serving a distinct role in
the detection process. These components work together to predict whether an incoming
web request is benign or malicious. The overall model architecture is depicted in Figure 1
for the training phase and Figure 2 for the testing phase.

Figure 1. The proposed model in the training phase

During the training phase, the model is exclusively trained on normal web requests to
establish a baseline pattern of legitimate traffic. In this phase, the model has full access to
the training dataset, allowing it to learn the distribution of normal request patterns [35].
Conversely, in the testing phase, both normal and malicious web requests are input into the
model for evaluation. This enables the model to assess its ability to generalize and detect
deviations indicative of potential zero-day attacks.

Version April 22, 2025 submitted to Journal Not Specified 8 of 22

Figure 2. The proposed model in the test phase

4.1.1. Tokenization

A key innovation of the proposed model is the introduction of a novel tokenization
technique for web requests, applied at the word level to both normal and malicious in-
puts [36]. Due to the inherent variability in the length and structure of web requests, this
method addresses the challenges of training neural network-based models for web secu-
rity, which arise from the inherent variability in the length and structure of web requests.
Specifically, the model leverages anomaly detection principles to effectively distinguish
between legitimate and anomalous web traffic [37].

To ensure consistent data representation, the pre-processing pipeline standardizes
normal web requests through a dictionary-based tokenization approach [14]. This process
involves segmenting each request at the word level using tools such as Python’s Word-
PunctTokenizer [38]. The resulting structured pattern is subsequently utilized as the input
for training the ensemble model. We will explain the tokenization and data processing
workflow by applying it to an example from our dataset. The example request is as follows:
POST /tienda1/publico/registro.jsp?modo=registro&login=m6&password=m6
&nombre=m&apellidos=m&email=m&dni=mm&direccion=Calle+Salvatierra+196+
%2C+&ciudad=m&provincia=31&cp=68970&ntc=6987987070987097&B1=Registrar

A predefined dictionary is utilized to categorize each character into distinct classes,
facilitating structured tokenization. The dictionary includes categories such as Alpha,
AlphaNum, CapitalAlpha, and SpecialChar, among others. For instance, in Figure 3, the token
"login" is assigned the value "m6," which represents a combination of letters and numbers,
classifying it under AlphaNum according to the predefined dictionary. Similarly, the word
"Register," which begins with a capital letter, falls under the CapitalLowerAlpha category.
These classifications enhance the accuracy of tokenization and facilitate the interpretation
of web requests within the proposed model.

The significance of the tokenization approach in this model is twofold:

• Data volume reduction: The tokenization process optimizes data representation,
reducing the complexity and size of input data, thereby improving computational
efficiency.

Version April 22, 2025 submitted to Journal Not Specified 9 of 22

• Pattern identification for anomaly detection: By establishing a structured pattern
for normal web requests, the tokenization method enhances the model’s ability to
differentiate between legitimate and anomalous activities, ensuring higher accuracy
in detecting malicious web requests.

Figure 3. A Tokenized request.

4.1.2. Numerical Sequence

Following the tokenization of web requests on a word-by-word basis, each token must
be mapped to a corresponding numerical value, as neural networks operate on numbers
rather than raw text. This transformation is a critical step, as the varying range of input
features necessitates data scaling before being processed by the model [39]. The tokenized
text is converted into a structured numerical format suitable for input into the neural
network. Figure 4 illustrates the mapping process, where individual words are assigned
numerical values, facilitating seamless integration into the model.

To accommodate variations in the length of numerical sequences representing web
requests, a padding mechanism is implemented. This ensures that all input sequences
maintain a uniform length, preventing inconsistencies in model processing. Padding
standardizes shorter sequences to match the fixed input length by appending neutral
values, thereby standardizing input dimensions. This step enhances the model’s ability to
analyze and recognize patterns within the data, ultimately improving detection accuracy
and performance.

Figure 4. Mapping words to numbers.

Version April 22, 2025 submitted to Journal Not Specified 10 of 22

4.1.3. Ensemble Model

As illustrated in Figure 5, the proposed ensemble model consists of three sub-models:
an LSTM autoencoder, a GRU autoencoder, and a stacked autoencoder. The initial phase
of the proposed approach involves selecting appropriate sub-models for training and
detection, ensuring an optimal balance between detection accuracy and computational
efficiency. The primary objective is to design multiple lightweight sub-models that, when
combined, enhance the overall detection capability while maintaining a low false positive
rate.

To achieve this, various neural network architectures were evaluated. Experimental
results demonstrated that employing Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), and stacked autoencoders in an ensemble configuration enhances data process-
ing efficiency and improves the accurate identification of both known and zero-day web
attacks. The outputs of these sub-models are concatenated and further processed through a
dense layer for feature reduction, optimizing the final classification process.

Autoencoders are widely utilized for dimensionality reduction and feature extraction.
These models consist of an encoder and a decoder, both comprising multiple layers, which
collectively transform an input sequence of symbols (words) into a continuous latent
representation. The decoder then reconstructs the original input from this representation,
preserving critical features while filtering out noise [40,41]. This reconstruction-based
learning approach enables autoencoders to effectively capture underlying patterns in web
requests, further improving the robustness of the detection framework.

The encoded sequences of the original input data, denoted as:

x = [x1, x2, x3, . . . , xn]

The encoded sequences are obtained through specific encoding functions correspond-
ing to each autoencoder type. The encoding transformations for the LSTM, GRU, and
stacked autoencoders are formally defined as follows:

yL = EL(x) (1)

yG = EG(x) (2)

yS = ES(x) (3)

These equations represent the encoding processes, wherein the input sequence x is
mapped to its corresponding latent representation, effectively capturing essential features
for the detection process.

For each type of autoencoder, the encoded representations are structured as follows:

yL =
[
yL

1 , yL
2 , yL

3 , . . . , yL
m

]
for the LSTM autoencoder,

yG =
[
yG

1 , yG
2 , yG

3 , . . . , yG
m

]
for the GRU autoencoder, and

yS =
[
yS

1 , yS
2 , yS

3 , . . . , yS
m

]
for the stacked autoencoder.
The output of the encoder serves as the input to the decoder, which reconstructs the

original input sequence from the encoded representation. The reconstruction process is
defined as follows:

Version April 22, 2025 submitted to Journal Not Specified 11 of 22

x̂L = DL(yL) (4)

x̂G = DG(yG) (5)

x̂S = DS(yS) (6)

where DL, DG, and DS denote the decoding functions for the LSTM, GRU, and stacked
autoencoders, respectively.

Figure 5. Structure of the proposed model.

The primary objective of the decoding process is to validate the quality and representa-
tiveness of the extracted features. The outputs from all three autoencoders are subsequently
concatenated to form a unified feature representation, denoted as x̂:

Version April 22, 2025 submitted to Journal Not Specified 12 of 22

x̂ =
[

xL
1 , xL

2 , xL
3 , xL

4 , xL
5 , xL

6 , xG
1 , xG

2 , xG
3 , xG

4 , xG
5 , xG

6 , xS
1 , xS

2 , xS
3 , xS

4 , xS
5 , xS

6

]
To maintain consistency with the original input dimensions and optimize computa-

tional efficiency, a compression operation is applied to x̂. This step ensures that the number
of features in the final output aligns with that of the original input data, enabling effective
processing and interpretation of web requests within the proposed model:

x̂ = [x̂1, x̂2, x̂3, . . . , x̂n]

This final transformation refines the extracted feature representations, ensuring that
the model retains only the most relevant and informative aspects of the input data while
discarding redundant or insignificant components. By optimizing the structure of the
encoded sequences, the model enhances its capacity for accurate detection and classification
of web requests.

5. Evaluation and Results

This section presents the evaluation of the proposed model and its sub-models based
on multiple performance metrics, including accuracy, detection rate, sensitivity, precision,
and false positive rate. To assess the effectiveness of the proposed approach, a threshold-
based evaluation is conducted using the Mean Absolute Error (MAE), which quantifies the
difference between the reconstructed request and the original input (prior to encoding).

In machine learning, MAE is a widely used metric for measuring the absolute differ-
ence between predicted values and their actual counterparts. It is computed by averaging
the absolute errors across all predictions. MAE was selected as the primary evaluation
metric due to its interpretability, robustness, and alignment with the model’s objectives.
Specifically, MAE measures the average absolute deviation between the original and recon-
structed web requests, providing a clear and intuitive indicator of reconstruction accuracy.

Unlike Mean Squared Error (MSE), which disproportionately amplifies the effect of
outliers due to its squared loss formulation, MAE is less sensitive to extreme deviations.
This stability makes MAE particularly well-suited for anomaly detection, as it emphasizes
individual discrepancies without being overly influenced by rare, extreme variations. By
leveraging linear reconstruction errors, MAE effectively differentiates between benign and
malicious web requests while ensuring an optimal balance between detection rates and
false positives. This makes it an appropriate choice for evaluating the performance of web
attack detection models.

The Mean Absolute Error (MAE) is formally defined as:

MAE =
1
n

n

∑
i=1

|x̂i − xi| (7)

In Formula (7), x̂i represents the reconstructed value, while xi denotes the actual value.
The classification criterion is based on the computed MAE for a given web request: if the
MAE falls below a predefined threshold, the request is classified as normal; otherwise, it is
identified as malicious. The threshold value is determined using Figure 6, which visualizes
the density distribution of web requests based on the MAE metric. This methodology
effectively differentiates benign from malicious web requests, utilizing MAE as a robust
anomaly detection measure. Based on the analysis in Figure 6, an optimal threshold value
of approximately 4 is identified.

During training, the neural network is trained exclusively on 80% of normal web
requests, while malicious requests are introduced only during the detection phase. The op-
timal threshold is determined empirically through iterative experimentation. The analysis
suggests that a threshold value of 4.09 provides optimal detection performance, as requests
with an MAE of 5 or higher are observed infrequently. However, setting the threshold
too high (e.g., at 7) may improve training results but could fail to detect certain malicious
requests with reconstruction errors in the range of 5 to 7. This would compromise the

Version April 22, 2025 submitted to Journal Not Specified 13 of 22

model’s effectiveness in distinguishing anomalous web activity. A practical example from
the model’s output further illustrates this decision-making process.

Figure 6. Density diagram according to MAE of the proposed model.

5.1. Data Collection

Previous research on detecting malicious and zero-day web requests has primarily
relied on two well-established datasets: CSIC [42] and HTTPPARAMS [42]. These datasets
provide a comprehensive representation of both normal and malicious web requests,
making them widely used benchmarks in web security research. Additionally, a project
hosted on GitHub [43], which employs Convolutional Neural Networks (CNNs), has
utilized the CSIC 2012 dataset. Accordingly, the proposed model leverages this dataset for
training and evaluation.

The dataset utilized in this study is significant due to the following characteristics:

• It encompasses a diverse range of malicious requests, including SQL Injection (SQLi),
Cross-Site Scripting (XSS), and Buffer Overflow attacks.

• It contains normal (benign) web requests, ensuring a balanced distribution of data for
effective training and evaluation.

A key consideration in dataset selection is ensuring that malicious requests accurately
reflect real-world attack scenarios. The dataset comprises approximately 16,000 instances
labeled as anomalous. However, certain anomalies may arise from factors unrelated to
direct cyberattacks, such as unusual user behavior, malformed requests, or suspicious data
entry attempts. These cases, while indicative of potential security threats, do not strictly
conform to defined attack patterns. To maintain data integrity and ensure the model is
trained on well-defined attack and normal request samples, such ambiguous anomalies are
removed from the dataset prior to training.

5.2. The Ensemble Model Structure

According to Figure 7 the LSTM autoencoder and GRU autoencoder each consist
of four layers (two encoder layers of 50 and 25 units respectively, and two symmetric
decoder layers of 25 and 50 units), using the default tanh activation function. The stacked
autoencoder comprises four dense layers (50, 25, 25, and 50 units) with linear activation.
The ensemble model concatenates outputs from these autoencoders into a unified latent

Version April 22, 2025 submitted to Journal Not Specified 14 of 22

vector, which is further compressed via a dense layer (50 units). All models are trained
using the Mean Absolute Error (MAE) loss function, Nadam optimizer, and evaluated
based on accuracy metrics.

Figure 7. Ensemble model architecture.

The evaluation results of the proposed model, as depicted in Figure 8, illustrate the
training process. Over the course of 90 epochs, the Mean Absolute Error (MAE) metric
exhibited a significant reduction, decreasing from approximately 3 to around 0.5. This
trend indicates that, in the initial training stages, a substantial discrepancy existed between
the decoded and original values. However, as the ensemble model progressively learned
the patterns of normal web requests, the reconstruction error diminished, reflecting an
improvement in model accuracy.

The dataset utilized for training and validation followed an 80-20 split, with 80% of the
data allocated for training and the remaining 20% reserved for validation. This partitioning
ensures that the model is effectively trained while being rigorously evaluated on an unseen
subset of data, enabling a more reliable assessment of its generalization capability.

Figure 8. Training Process of the Proposed Model Based on MAE and Number of Epochs.

Version April 22, 2025 submitted to Journal Not Specified 15 of 22

Following the detection phase, the Mean Absolute Error (MAE) for each web request
is computed and compared against the predefined threshold. As illustrated in Figure 9,
the calculated MAE values for individual web requests are represented in blue, while
the threshold value is indicated by a red line. Web requests with an MAE exceeding the
threshold (blue points above the red line) are classified as malicious, whereas those with
an MAE below the threshold (blue points below the red line) are categorized as normal
requests.

The ensemble model, incorporating LSTM, GRU, and stacked autoencoder sub-models,
demonstrates superior performance across all evaluation metrics compared to each sub-
model individually. The reported results represent the average performance obtained over
six independent runs of the model.

The system utilized for evaluating the proposed model consists of key components, as
shown in Table 1, including LSTM, GRU, and Stacked Autoencoder for neural network-
based processing, running on Windows 11 with Python v3.12 as the programming language.
The implementation leverages Scikit-learn v1.6.0 for machine learning functionalities and
WordPunctTokenizer from the Natural Language Toolkit (NLTK) for splitting a text into
a sequence of words. Additionally, the Tokenizer class is employed for converting text
data into numerical sequences, ensuring compatibility with neural networks. The model’s
performance is evaluated using Mean Absolute Error (MAE), as previously defined, to
quantifies the difference between predicted and actual values, providing an effective
measure for anomaly detection. The training phase required approximately 20 seconds,
while the test phase was completed in 5 seconds. The model itself was implemented using
Python version 3.12 with the Keras framework.

Table 1. System components used in the evaluation setup.

System Details
Neural Networks LSTM, GRU, and Stacked Autoencoder
Operating System Windows 11
Programming Language Python v3.12
Python Library Scikit-learn v1.6.0
Natural Language Toolkit
(NLTK) Library

WordPunctTokenizer

Feature Extraction and To-
kenization Tool

Tokenizer class in python

Evaluation Metric for mea-
suring prediction accu-
racy

Mean Absolute Error (MAE)

5.3. Results

Table 2 defines the key terms used to compute the evaluation metrics. The perfor-
mance assessment of the proposed model involves the computation of six primary metrics:
accuracy, precision, sensitivity, detection rate, false positive rate, and F1 score.

The proposed ensemble model consistently outperforms the individual sub-models
across all evaluation metrics. While the LSTM and GRU autoencoders achieve high ac-
curacy, sensitivity, and precision, they exhibit a higher false positive rate, incorrectly
classifying several normal requests as malicious. Conversely, the stacked autoencoder
reduces the false positive rate effectively but shows comparatively weaker precision and
recall. Combining these sub-models into a unified ensemble framework leverages their
complementary strengths, thereby significantly improving overall detection performance.

A detailed analysis reveals that both LSTM and GRU sub-models misclassified 14
out of 1,299 normal requests as malicious—an undesirable outcome in real-world sce-
narios. Incorporating the stacked autoencoder into the ensemble mitigates this issue by

Version April 22, 2025 submitted to Journal Not Specified 16 of 22

Figure 9. Comparison of the Calculated MAE Value for Each Web Request with the Threshold Value.

reducing false positives, albeit at the expense of slightly lower accuracy and recall when
used independently. Table 3 clearly illustrates the comparative performance of each indi-
vidual sub-model against the proposed ensemble approach and Figure 10 illustrates this
comparison in the form of a bar chart.

Table 2. Performance metrics used for the proposed model.

Metric Definition/Calculation Value

Total (T) Total number of requests 51473

Correct Predictions (CP) Number of correctly predicted requests 50230

Negatives Normal requests 1299

Positives Malicious requests 50174

True Negatives (TN) Normal requests correctly predicted as normal 1296

False Positives (FP) Normal requests incorrectly predicted as malicious 3

False Negatives (FN) Malicious requests incorrectly predicted as normal 1240

True Positives (TP) Malicious requests correctly predicted as malicious 48934

Accuracy TN+TP
TP+TN+FP+FN 0.9758

Recall (Sensitivity) TP
TP+FN 0.9752

Specificity TN
TN+FP 0.9976

Precision TP
TP+FP 0.9999

False Positive Rate 1 − Specificity 0.002

F1 Score 2 × Precision×Recall
Precision+Recall 0.9874

These results demonstrate that the ensemble strategy effectively balances the distinct
advantages and limitations of each sub-model, providing a robust and reliable solution for
detecting zero-day web attacks.

Table 4 presents a comparative analysis of the proposed model’s performance against
various models from previous research that have utilized the CSIC2010 and CSIC2012
datasets. This comparison provides insights into the effectiveness of the proposed approach
relative to existing solutions in the field. One notable limitation in prior studies is the
omission of the False Positive Rate (FPR) in their evaluation results. This metric is crucial,
as it quantifies the number of normal requests misclassified as malicious, directly impacting
the practical applicability of detection models. Figure 11 illustrates this comparison in the

Version April 22, 2025 submitted to Journal Not Specified 17 of 22

Table 3. Comparison of the Performance of the Proposed Model with the Sub-models.

Models Accuracy Recall Specificity Precision False Positive
Rate

F1 Score

LSTM-Autoencoder 88.68% 88.41% 98.92% 99.96% 1% 93.83%

GRU-Autoencoder 88.69% 88.42% 98.92% 99.96% 1% 93.83%

Stacked-Autoencoder 67.48% 66.65% 99.38% 99.97% 0.6% 79.98%

Proposed Model 97.58% 97.52% 99.76% 99.99% 0.2% 98.74%

Figure 10. Comparison of the Performance of the Proposed Model with the Sub-models in the form
of a bar chart.

form of a bar chart. In the figure, models that utilized the CSIC2012 dataset are highlighted
in red.

The primary comparison focuses on studies that have employed the CSIC2012 dataset [10,
11,33], as they provide the most directly comparable benchmark. However, to offer a
broader perspective, we also include studies based on the CSIC2010 dataset [12,14,15,18–
22,34]. It is important to note that differences in dataset characteristics may influence the
comparability of results.

The CSIC2010 and CSIC2012 datasets are widely recognized benchmarks for evaluat-
ing web application security models, particularly for detecting SQL Injection (SQLi) and
other web-based attacks. The CSIC2010 dataset, developed earlier, contains a diverse set of
normal and anomalous HTTP requests. While it provides a solid foundation for studying
web attack detection, it lacks the complexity and evolving attack patterns characteristic of
modern cybersecurity threats.

To address these limitations, the CSIC2012 dataset was designed with more sophis-
ticated and realistic attack scenarios, along with a broader range of normal traffic. This
makes CSIC2012 a more representative dataset for contemporary web security challenges.
Additionally, CSIC2012 includes refined labeling and a larger volume of data, enhancing
its suitability for training and evaluating advanced machine learning models.

These distinctions underscore the importance of selecting CSIC2012 for research
targeting modern web application threats, as it serves as a more rigorous and up-to-date
evaluation benchmark compared to its predecessor.

Version April 22, 2025 submitted to Journal Not Specified 18 of 22

Table 4. Comparison of the Performance of the Proposed Model with Previously Designed Models.

Models Accuracy Recall Specificity Precision False Positive
Rate

F1 Score

Sivri et al. [10] 98.15% 98.15% - 98.20% 0.8% 98.16%

Jung et al. [11] 99.88% - - - - 99.80%

Vartouni et al. [12] 88.32% 88.34% 90.20% 80.79% - 84.12%

Liang et al. [14] 98.42% - 99.21% - 0.7% -

Kuang et al. [15] 96% 95% - 96% 2% -

Gong et al. [18] 97.64% 91.11% - 97.62% - 94.25%

Tekerek et al. [19] 97.07% 97.59% - 97.43% - 97.51%

Jemal et al. [20] 98.1% - - - - -

Alaoui et al. [21] 78.95% 78.41% - 81.54% - 77.57%

Mohamed et al. [33] 99.66% 99.28% - 99.18% - 99.22%

Shahid et al. [34] 98.73% 98.87% 98.33% 99.41% 1.67% 99.13%

Moarref et al. [22] 99.36% 98.80% - 99.65% - 99.22%

Proposed Model 97.58% 97.52% 99.76% 99.99% 0.2% 98.74%

Figure 11. Comparison of the Performance of the Proposed Model with Previously Designed Models
in the form of a bar chart.

6. Discussion

According to the obtained results, the proposed model demonstrates strong perfor-
mance across all evaluation metrics, particularly in terms of the False Positive Rate (FPR).
The model achieves the lowest FPR compared to related work referenced in this study,
highlighting its ability to accurately differentiate between normal and malicious web re-
quests. This is a critical aspect of web security, as a high FPR would indicate an increased
likelihood of blocking legitimate users, thereby compromising usability.

6.1. Effectiveness of the Ensemble Model

The proposed ensemble model comprises three fundamental sub-models: LSTM, GRU,
and Stacked Autoencoder. Each sub-model plays a distinct role in detecting malicious web
requests, contributing unique advantages:

• LSTM Autoencoder: Captures long-term dependencies in web request sequences,
enhancing the ability to recognize complex request structures.

• GRU Autoencoder: Provides computational efficiency while preserving strong se-
quential pattern recognition capabilities.

Version April 22, 2025 submitted to Journal Not Specified 19 of 22

• Stacked Autoencoder: Focuses on dimensionality reduction and latent feature extrac-
tion, improving anomaly detection in subtle attack patterns.

By integrating these sub-models, the ensemble model achieves a well-balanced perfor-
mance across multiple evaluation metrics, effectively mitigating the weaknesses of indi-
vidual sub-models by an innovative concatenation and feature-compression mechanism.
This structured ensemble method distinctly differs from traditional ensemble strategies
and clearly enhances computational efficiency and detection accuracy. Additionally, our
advanced tokenization method provides a unique and consistent input representation that
significantly improves anomaly detection compared to conventional tokenization strate-
gies. Our explicit evaluation of the False Positive Rate further distinguishes our work by
providing practical insights often neglected in related literature. The ensemble approach
significantly enhances accuracy, recall, and precision while substantially reducing false
positives compared to each sub-model independently.

6.2. Practical Considerations and Limitations

Although the proposed model demonstrates robust performance on benchmark
datasets, its real-world deployment in web security applications requires additional consid-
erations. One of the primary challenges is the variability in web request patterns across
different applications and domains. While the tokenization and feature extraction methods
effectively standardize the CSIC2012 dataset, these techniques should be adapted and
applied to other datasets, such as FWAF and HTTPParams [44], to enhance generalization.

Additionally, while the model is designed to detect zero-day attacks, it does not
explicitly classify attack types (e.g., SQL Injection, Cross-Site Scripting (XSS), Buffer Over-
flow). Future research should focus on integrating an attack-type classification mechanism
alongside anomaly detection to improve forensic analysis and threat response capabilities.

7. Conclusions

In this study, each web request was initially segmented into individual words and then
tokenized using a predefined vocabulary. This preprocessing step aimed to standardize
and simplify web requests while establishing a structured pattern for normal web traffic. In
the final stage of preprocessing, each tokenized word was mapped to a unique numerical
representation, facilitating its input into the neural network. The proposed model employs
an ensemble approach comprising three relatively simple sub-models: LSTM, GRU, and
Stacked Autoencoders. The ensemble operates by independently processing the input data
through each sub-model and then outputs are explicitly concatenated into a combined latent
feature set, ensuring the ensemble benefits from the diverse representation capabilities of
each sub-model. After concatenation, a dedicated Dense layer compresses the resulting
features into a unified, optimized representation, significantly reducing the dimensionality
from a larger combined vector to a manageable size. A novel structured tokenization
method significantly enhancing detection performance, and explicit evaluation of critical
metrics including False Positive Rate.

During the training phase, only normal web requests were provided as input to the
ensemble model, enabling it to learn the underlying patterns of legitimate requests. Upon
completion of training, the model effectively captured and recognized these patterns. In the
detection phase, both normal and malicious web requests were introduced for evaluation.
The Mean Absolute Error (MAE) was employed as the primary metric to quantify the
difference between the reconstructed and original values of each request. The threshold
for classification was determined based on the MAE values computed during the training
phase. In the detection phase, if the MAE of a web request was below the threshold, it was
classified as normal; otherwise, it was identified as malicious.

During evaluation, the ensemble model’s performance was compared against each
of its sub-models individually. The results demonstrated that the ensemble approach
achieved superior performance, particularly in terms of an increased detection rate and a
reduced false positive rate. Additionally, the proposed model was benchmarked against

Version April 22, 2025 submitted to Journal Not Specified 20 of 22

prior research, where it consistently outperformed existing approaches, further validating
its effectiveness in detecting web-based threats.

8. Future Work

One potential direction for future research involves enhancing the tokenization and
feature extraction process [45] across diverse web attack datasets. This improvement can
be achieved through the application of Generative AI, leveraging Large Language Models
(LLMs) [46,47]. Specifically, prompt engineering [48,49] can be employed to construct
a structured prompt that systematically guides the LLM in preprocessing each dataset
sample.

A few-shot learning approach can be utilized to accomplish this by providing repre-
sentative examples from each dataset, detailing the exact tokenization process required for
each sample. This method ensures that the LLM internalizes dataset-specific preprocessing
rules while maintaining uniformity across different datasets.

Another approach involves automating the preprocessing pipeline by generating
customized script code [50] for each dataset. This method leverages LLMs to autonomously
generate preprocessing scripts based on structured prompts that define tokenization rules
and feature extraction strategies. While manual scripting was employed in this study for
data preprocessing, future research will focus on automating this process using LLMs,
thereby minimizing human intervention and improving scalability across diverse datasets.

Beyond preprocessing improvements, future efforts will explore the implementation
of advanced neural architectures and anomaly detection approaches, such as Bidirectional
LSTM, GRU, and Convolutional Neural Networks (CNNs) [51], to develop a more robust
ensemble model for web attack detection. Additionally, feature selection techniques will
be applied to retain high-information-value features while eliminating less significant
ones, effectively reducing input dimensionality and enhancing computational efficiency.
Regarding advanced anomaly detection approaches, For instance, [52] introduced VulnSage,
a framework leveraging structured reasoning strategies such as Chain-of-Thought and
Think and Verify to improve zero-shot vulnerability detection in software systems. Inspired
by this work, future studies could explore the use of similar structured reasoning strategies
in our web attack detection framework, potentially improving the detection of complex,
multi-component web vulnerabilities by incorporating explicit logical analysis and self-
verification mechanisms.

Furthermore, the integration of a voting-based ensemble learning approach will be
investigated to improve detection accuracy by combining multiple classifiers. This strategy
aims to leverage the strengths of individual models, resulting in a more generalized and
resilient web attack detection framework.

References
1. Ahmad, R.; Alsmadi, I.; Alhamdani, W.; Tawalbeh, L. Zero-day attack detection: a systematic literature review. Artificial

Intelligence Review 2023, 56, 10733–10811.
2. Dawadi, B.R.; Adhikari, B.; Srivastava, D.K. Deep learning technique-enabled web application firewall for the detection of web

attacks. Sensors 2023, 23, 2073.
3. Yang, J.; Chen, Y.L.; Por, L.Y.; Ku, C.S. A systematic literature review of information security in chatbots. Applied Sciences 2023,

13, 6355.
4. Calzavara, S.; Conti, M.; Focardi, R.; Rabitti, A.; Tolomei, G. Machine learning for web vulnerability detection: the case of

cross-site request forgery. IEEE Security & Privacy 2020, 18, 8–16.
5. Kalla, D.; Mohammed, A.S.; Boddapati, V.N.; Jiwani, N.; Kiruthiga, T. Investigating the Impact of Heuristic Algorithms on

Cyberthreat Detection. In Proceedings of the 2024 2nd International Conference on Advances in Computation, Communication
and Information Technology (ICAICCIT), 2024, Vol. 1, pp. 450–455.

6. Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. Journal of Network and Computer
Applications 2016, 60, 19–31.

7. Pu, G.; Wang, L.; Shen, J.; Dong, F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and
Technology 2020, 26, 146–153.

8. Long, H.V.; Tuan, T.A.; Taniar, D.; Can, N.V.; Hue, H.M.; Son, N.T.K. An efficient algorithm and tool for detecting dangerous
website vulnerabilities. International Journal of Web and Grid Services 2020, 16, 81–104.

Version April 22, 2025 submitted to Journal Not Specified 21 of 22

9. Ingham, K.L.; Somayaji, A.; Burge, J.; Forrest, S. Learning DFA representations of HTTP for protecting web applications. Computer
Networks 2007, 51, 1239–1255.

10. Sivri, T.T.; Akman, N.P.; Berkol, A.; Peker, C. Web intrusion detection using character level machine learning approaches with
upsampled data. Annals of Computer Science and Information Systems 2022, 32.

11. Jung, I.; Lim, J.; Kim, H.K. PF-TL: Payload feature-based transfer learning for dealing with the lack of training data. Electronics
2021, 10, 1148.

12. Vartouni, A.M.; Kashi, S.S.; Teshnehlab, M. An anomaly detection method to detect web attacks using stacked auto-encoder. In
Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE, 2018, pp. 131–134.

13. Ariu, D.; Tronci, R.; Giacinto, G. HMMPayl: An intrusion detection system based on Hidden Markov Models. computers &
security 2011, 30, 221–241.

14. Liang, J.; Zhao, W.; Ye, W. Anomaly-based web attack detection: a deep learning approach. In Proceedings of the Proceedings of
the 2017 VI International Conference on Network, Communication and Computing, 2017, pp. 80–85.

15. Kuang, X.; Zhang, M.; Li, H.; Zhao, G.; Cao, H.; Wu, Z.; Wang, X. DeepWAF: detecting web attacks based on CNN and LSTM
models. In Proceedings of the Cyberspace Safety and Security: 11th International Symposium, CSS 2019, Guangzhou, China,
December 1–3, 2019, Proceedings, Part II 11. Springer, 2019, pp. 121–136.

16. Tang, R.; Yang, Z.; Li, Z.; Meng, W.; Wang, H.; Li, Q.; Sun, Y.; Pei, D.; Wei, T.; Xu, Y.; et al. Zerowall: Detecting zero-day web
attacks through encoder-decoder recurrent neural networks. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 2479–2488.

17. Indrasiri, P.L.; Halgamuge, M.N.; Mohammad, A. Robust ensemble machine learning model for filtering phishing URLs:
Expandable random gradient stacked voting classifier (ERG-SVC). Ieee Access 2021, 9, 150142–150161.

18. Gong, X.; Lu, J.; Zhou, Y.; Qiu, H.; He, R. Model uncertainty based annotation error fixing for web attack detection. Journal of
Signal Processing Systems 2021, 93, 187–199.

19. Tekerek, A. A novel architecture for web-based attack detection using convolutional neural network. Computers & Security 2021,
100, 102096.

20. Jemal, I.; Haddar, M.A.; Cheikhrouhou, O.; Mahfoudhi, A. SWAF: a smart web application firewall based on convolutional neural
network. In Proceedings of the 2022 15th International Conference on Security of Information and Networks (SIN). IEEE, 2022,
pp. 01–06.

21. Alaoui, R.L.; et al. Web attacks detection using stacked generalization ensemble for LSTMs and word embedding. Procedia
Computer Science 2022, 215, 687–696.

22. Moarref, N.; Sandıkkaya, M.T. MC-MLDCNN: Multichannel Multilayer Dilated Convolutional Neural Networks for Web Attack
Detection. Security and Communication Networks 2023, 2023, 2415288.

23. Yuan, Y.; Lu, Y.; Zhu, K.; Huang, H.; Yu, L.; Zhao, J. A Static Detection Method for SQL Injection Vulnerability Based on Program
Transformation. Applied Sciences 2023, 13.

24. Vorobyov, K.; Gauthier, F.; Krishnan, P. Synthesis of Allowlists for Runtime Protection against SQLi. In Proceedings of the
Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New Ideas and Emerging Results.
Association for Computing Machinery, 2024, p. 16–20.

25. Su, H.; Li, F.; Xu, L.; Hu, W.; Sun, Y.; Sun, Q.; Chao, H.; Huo, W. Splendor: Static Detection of Stored XSS in Modern Web
Applications. In Proceedings of the Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis. Association for Computing Machinery, 2023, p. 1043–1054.

26. Silvestre, A.; Medeiros, I.; Mordido, A. Towards a SQL Injection Vulnerability Detector Based on Session Types. In Proceedings of
the Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering - Volume 1:
ENASE. INSTICC, SciTePress, 2024, pp. 711–718.

27. Yatagha, R.; Nebebe, B.; Waedt, K.; Ruland, C. Towards a Zero-Day Anomaly Detector in Cyber Physical Systems Using a Hybrid
VAE-LSTM-OCSVM Model. In Proceedings of the Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management, 2024, pp. 5038–5045.

28. Katbi, A.; Ksantini, R. One-class IoT anomaly detection system using an improved interpolated deep SVDD autoencoder with
adversarial regularizer. Digital Signal Processing 2025, p. 105153.

29. Tokmak, M.; Nkongolo, M. Stacking an autoencoder for feature selection of zero-day threats. arXiv preprint arXiv:2311.00304 2023.
30. Alghawazi, M.; Alghazzawi, D.; Alarifi, S. Deep learning architecture for detecting SQL injection attacks based on RNN

autoencoder model. Mathematics 2023, 11, 3286.
31. Thalji, N.; Raza, A.; Islam, M.S.; Samee, N.A.; Jamjoom, M.M. Ae-net: Novel autoencoder-based deep features for sql injection

attack detection. IEEE Access 2023, 11, 135507–135516.
32. Yao, W.; Hu, L.; Hou, Y.; Li, X. A lightweight intelligent network intrusion detection system using one-class autoencoder and

ensemble learning for IoT. Sensors 2023, 23, 4141.
33. Mohamed, S.M.; Rohaim, M.A. Multi-Class Intrusion Detection System using Deep Learning. Journal of Al-Azhar University

Engineering Sector 2023, 18, 869–883.
34. Shahid, W.B.; Aslam, B.; Abbas, H.; Khalid, S.B.; Afzal, H. An enhanced deep learning based framework for web attacks detection,

mitigation and attacker profiling. Journal of Network and Computer Applications 2022, 198, 103270.

Version April 22, 2025 submitted to Journal Not Specified 22 of 22

35. Thomas, S.; Koleini, F.; Tabrizi, N. Dynamic defenses and the transferability of adversarial examples. In Proceedings of the 2022
IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA). IEEE, 2022,
pp. 276–284.

36. Khalid, M.N.; Farooq, H.; Iqbal, M.; Alam, M.T.; Rasheed, K. Predicting web vulnerabilities in web applications based on
machine learning. In Proceedings of the Intelligent Technologies and Applications: First International Conference, INTAP 2018,
Bahawalpur, Pakistan, October 23-25, 2018, Revised Selected Papers 1. Springer, 2019, pp. 473–484.

37. Levene, M.; Poulovassilis, A.; Davison, B.D. Learning web request patterns. Web Dynamics: Adapting to Change in Content, Size,
Topology and Use 2004, pp. 435–459.

38. Vijayarani, S.; Janani, R.; et al. Text mining: open source tokenization tools-an analysis. Advanced Computational Intelligence: An
International Journal (ACII) 2016, 3, 37–47.

39. Rashvand, N.; Hosseini, S.S.; Azarbayjani, M.; Tabkhi, H. Real-Time Bus Arrival Prediction: A Deep Learning Approach for
Enhanced Urban Mobility. arXiv preprint arXiv:2303.15495 2023.

40. Vaswani, A. Attention is all you need. Advances in Neural Information Processing Systems 2017.
41. Rashvand, N.; Witham, K.; Maldonado, G.; Katariya, V.; Marer Prabhu, N.; Schirner, G.; Tabkhi, H. Enhancing automatic

modulation recognition for iot applications using transformers. IoT 2024, 5, 212–226.
42. Shaheed, A.; Kurdy, M.B. Web application firewall using machine learning and features engineering. Security and Communication

Networks 2022, 2022, 5280158.
43. DuckDuckBug. CNN Web Application Firewall. https://github.com/DuckDuckBug/cnn_waf, 2023. Accessed: January 29,

2025.
44. Jagat, R.R.; Sisodia, D.S.; Singh, P. Detecting web attacks from HTTP weblogs using variational LSTM autoencoder deviation

network. IEEE Transactions on Services Computing 2024.
45. Abshari, D.; Fu, C.; Sridhar, M. LLM-assisted Physical Invariant Extraction for Cyber-Physical Systems Anomaly Detection. arXiv

preprint arXiv:2411.10918 2024.
46. Zibaeirad, A.; Koleini, F.; Bi, S.; Hou, T.; Wang, T. A comprehensive survey on the security of smart grid: Challenges, mitigations,

and future research opportunities. arXiv preprint arXiv:2407.07966 2024.
47. Abshari, D.; Sridhar, M. A Survey of Anomaly Detection in Cyber-Physical Systems. arXiv preprint arXiv:2502.13256 2025.
48. Babaey, V.; Ravindran, A. GenSQLi: A Generative Artificial Intelligence Framework for Automatically Securing Web Application

Firewalls Against Structured Query Language Injection Attacks. Future Internet 2025, 17, 8.
49. Babaey, V.; Ravindran, A. GenXSS: an AI-Driven Framework for Automated Detection of XSS Attacks in WAFs. arXiv preprint

arXiv:2504.08176 2025.
50. White, J.; Fu, Q.; Hays, S.; Sandborn, M.; Olea, C.; Gilbert, H.; Elnashar, A.; Spencer-Smith, J.; Schmidt, D.C. A prompt pattern

catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382 2023.
51. Graves, A.; Jaitly, N.; Mohamed, A.r. Hybrid speech recognition with deep bidirectional LSTM. In Proceedings of the 2013 IEEE

workshop on automatic speech recognition and understanding. IEEE, 2013, pp. 273–278.
52. Zibaeirad, A.; Vieira, M. Reasoning with LLMs for Zero-Shot Vulnerability Detection. arXiv preprint arXiv:2503.17885 2025.

https://github.com/DuckDuckBug/cnn_waf

	Introduction
	Background
	Related Work
	Proposed model
	Architecture
	Tokenization
	Numerical Sequence
	Ensemble Model

	Evaluation and Results
	Data Collection
	The Ensemble Model Structure
	Results

	Discussion
	Effectiveness of the Ensemble Model
	Practical Considerations and Limitations

	Conclusions
	Future Work
	References

