
ar
X

iv
:2

50
4.

13
53

7v
1

 [
cs

.C
R

]
 1

8
A

pr
 2

02
5

Complexity of Post-Quantum Cryptography in

Embedded Systems and Its Optimization Strategies
Omar Alnaseri∗, Yassine Himeur¶, Shadi Atalla¶ and Wathiq Mansoor¶

∗Department of Electrical Engineering, DHBW University, Ravensburg, Germany
¶College of Engineering and Information Technology, University of Dubai, Dubai, United Arab Emirates

Abstract—With the rapid advancements in quantum com-
puting, traditional cryptographic schemes like Rivest-Shamir-
Adleman (RSA) and elliptic curve cryptography (ECC) are be-
coming vulnerable, necessitating the development of quantum-
resistant algorithms. The National Institute of Standards and
Technology (NIST) has initiated a standardization process for
PQC algorithms, and several candidates, including CRYSTALS-
Kyber and McEliece, have reached the final stages. This
paper first provides a comprehensive analysis of the hardware
complexity of post-quantum cryptography (PQC) in embedded
systems, categorizing PQC algorithms into families based on
their underlying mathematical problems: lattice-based, code-
based, hash-based and multivariate / isogeny-based schemes.
Each family presents distinct computational, memory, and
energy profiles, making them suitable for different use cases.
To address these challenges, this paper discusses optimization
strategies such as pipelining, parallelization, and high-level syn-
thesis (HLS), which can improve the performance and energy ef-
ficiency of PQC implementations. Finally, a detailed complexity
analysis of CRYSTALS-Kyber and McEliece, comparing their
key generation, encryption, and decryption processes in terms
of computational complexity, has been conducted.

Index Terms—Post-Quantum Cryptography, Embedded Sys-
tems, Hardware Complexity

I. INTRODUCTION

Post-quantum cryptography (PQC) aims to develop cryp-

tographic algorithms that are secure against attacks from

quantum computers. With rapid advancements in quantum

computing, traditional cryptographic schemes such as Rivest-

Shamir-Adleman (RSA) and elliptic curve cryptography

(ECC) are becoming vulnerable. PQC algorithms are broadly

categorized into families based on their underlying mathemat-

ical problems, each posing distinct challenges for implemen-

tation in embedded systems. These families include lattice-

based, code-based, hash-based, and multivariate/isogeny-

based schemes, each with unique computational, memory,

and energy profiles.

Lattice-based algorithms derive security from hard prob-

lems like the shortest vector problem (SVP) or learning with

errors (LWE). Schemes such as Kyber (key encapsulation)

and CRYSTALS-Dilithium (digital signatures) rely on poly-

nomial arithmetic and the number theoretic transform (NTT)

for efficient polynomial multiplication. While NTT speeds

up computations, it introduces hardware overhead due to

modular arithmetic and parallel operations. Ducas et al. [1]

showed NTT optimizations reduce latency by up to 40%

on embedded platforms. However, lattice-based algorithms

still require moderate memory (1-3 kB RAM for keys) and

scalable parameters, making them demanding for limited

devices. Kannwischer et al. [2] demonstrated Kyber on ARM

Cortex M4, using less than 10 kB RAM, although it is less

energy efficient than hash-based schemes.

Code-based algorithms, such as McEliece and BIKE, rely

on decoding random linear codes. They are computationally

lightweight, using matrix multiplications and sparse linear

algebra, but suffer from large key sizes (often over 1 MB).

Chou et al. [3] reduced McEliece keys by 50% on STM32

microcontrollers, but compressed keys still overload flash

storage, limiting their use in memory-constrained devices.

Hash-based algorithms, such as SPHINCS+ and XMSS

[4], use cryptographic hash functions (e.g. SHA-3 or

SHAKE-256). They are computationally simple, relying on

iterative hashing, and are lightweight and parallelizable.

Bernstein et al. [5] showed SPHINCS+ runs on 8-bit AVR

microcontrollers with just 2 kB RAM, making it suitable for

energy-constrained IoT devices. However, stateless schemes

like SPHINCS+ produce large signatures (up to 41 KB),

while stateful schemes (e.g., XMSS) require nonvolatile

memory (NVM) for state tracking. Bernstein et al. [6]

noted that parallelizing hash chains improves throughput but

increases area overhead, limiting cost-sensitive applications.

Multivariate and isogeny-based algorithms are niche cate-

gories with limited embedded adoption. Multivariate schemes

like Rainbow involve solving nonlinear polynomial equa-

tions, leading to computationally intensive operations and

large keys (often over 100 kB). Isogeny-based schemes, such

as SIKE [7], use complex elliptic curve isogeny computations

that are sequential and hard to accelerate. Koziel et al. [8]

showed that SIDH FPGA implementations require significant

area and power, even with optimizations. Table I compares

cryptographic families in computational complexity, memory

footprint, energy efficiency, and flexibility.

The National Institute of Standards and Technology

(NIST) has narrowed the candidates to a few final-

ists,including CRYSTALS-Kyber and McEliece [9]. Nonethe-

less, embedded systems, characterized by their limited com-

http://arxiv.org/abs/2504.13537v1

TABLE I: Comparison of Cryptographic Families

Family Computational Complexity Memory Footprint Energy Efficiency Implementation Flexibility

Lattice-Based Medium-High (NTT) Medium (1–3 kB RAM) Medium High (scalable parameters)
Code-Based Low Very High (>1 MB) Low Low (fixed key sizes)
Hash-Based Low Low (<2 kB RAM) Very High Medium (state management)
Multivariate Very High High (100 kB) Very Low Low
Isogeny-Based Very High Medium (10 kB) Very Low Low

putational power and memory, present unique challenges for

PQC implementation. Achieving successful deployment of

these candidates on embedded systems necessitates a com-

prehensive analysis of the hardware complexity associated

with these PQC algorithms. Thus, this paper conducts an

exhaustive examination of the hardware complexity involved

in deploying PQC within such systems, with a particular

emphasis on CRYSTALS-Kyber and McEliece. This paper

makes several key contributions to the field of PQC in

embedded systems:

• Comprehensive analysis: The paper provides a detailed

analysis of the hardware complexity of PQC algo-

rithms, categorizing them into families based on their

underlying mathematical problems, and discussing their

computational, memory, and energy profiles.

• Optimization strategies: The paper explores optimization

strategies such as pipelining, parallelization, and high-

level synthesis (HLS) to improve the performance and

energy efficiency of PQC implementations in embedded

systems.

• Complexity comparison: It offers a detailed complexity

analysis of two leading PQC candidates, CRYSTALS-

Kyber and McEliece, comparing their key generation,

encryption, and decryption processes in terms of com-

putational complexity, memory footprint, and energy

efficiency.

II. OPTIMIZATION STRATEGIES

In this section, we propose optimization strategies that

improve the performance of PQC algorithms in embedded

systems by focusing on techniques that improve computa-

tional efficiency and resource management. We will explore

methods such as pipelining, parallelization, and efficient use

of hardware resources to maximize algorithmic throughput

and reduce execution time.

A. Pipelining and Parallelization

Pipelining involves breaking down a complex task into a

series of smaller tasks, each performed at a different stage

of a pipeline [10]. This allows for parallel processing, where

multiple tasks can be executed simultaneously, reducing the

overall processing time. Pipelining can be applied to various

stages of the cryptographic process, such as key generation,

signature generation, and signature verification [11]. For

example, the CRYSTALS-Dilithium scheme uses a pipelined

processing method to reduce both storage requirements and

processing time [10]. Similarly, the Picnic digital signature

scheme uses a pipelined approach to optimize its hardware

implementation, resulting in a significant reduction in clock

cycle count and energy consumption [11].

Parallelization, on the other hand, involves dividing a task

into smaller subtasks that can be executed concurrently by

multiple processing units [12]. This can be achieved using

parallel architectures, such as multi-core processors or spe-

cialized accelerators. For instance, the RISQ-V architecture

[12] integrates tightly coupled accelerators directly into the

processing pipeline to speed up lattice-based cryptography.

The accelerators include an arithmetic unit for vectorized

modular arithmetic and NTT operations, a vectorized mod-

ular multiply accumulate unit, a Keccak accelerator for the

pseudo-random bit generation, and a binomial sampling unit

for the generation of binomially distributed samples.

Pipelining and parallelization can be combined to further

improve performance. For example, the design of the ”coding

for energy reduction with multiple encryption techniques”

(CERMET) architecture incorporates both pipelining and

process parallelization to improve efficiency [13]. The sys-

tem operates fully pipelined, ensuring that no throughput

is lost compared to a conventional cryptographic system,

and maintains throughput despite additional data processing

steps. However, pipelining and parallelization can also intro-

duce additional complexity and overhead. For example, the

polynomial factorization method used in parallel quantum

signal processing can reduce the depth of the query by

a factor O(k), but it comes with an increased number of

measurements O(poly(d)2O(k)) [14], where k is the module

rank.

B. High-Level Synthesis (HLS)

It automates design, creating hardware from algorithm

descriptions. It optimizes post-quantum cryptography (PQC)

for better performance, energy efficiency, and security. A

hybrid HLS strategy combines state-based and performance-

driven approaches, using periodic state machine models for

precise timing and reduced energy use [15]. Another HLS

optimization strategy is the use of a hierarchical post-route

quality of results (QoR) prediction approach. This approach

estimates latency and post-route resource usage from C/C++

programs and uses a graph construction method to represent

the control and data flow graph of source code and the effects

of HLS pragmas. The approach also uses a hierarchical

graph neural network (GNN) training and prediction method

to capture the impact of loop hierarchies [16]. However,

HLS optimizations can also affect the security and relia-

bility of cryptographic implementations. For example, HLS

optimizations can compromise the properties of counter-

measures implemented using HLS, such as masking and

hiding countermeasures. Therefore, secure circuit designers

should be careful when using an HLS flow to integrate SCA

countermeasures [17].

C. Algorithmic Optimizations

Optimizing the algorithms themselves can also reduce

the hardware complexity. For example, using more efficient

mathematical techniques can help reduce computational and

memory requirements. Difference optimization strategies can

be employed to improve the performance of PQC algorithms,

such as:

1) Hybrid approach: combines quantum key distribution

(QKD) with PQC for authentication purposes [18]. This can

be particularly useful for protecting highly loaded communi-

cations links at a distance, where intermediate nodes may not

be necessary. Additionally, standardization processes, such as

those led by the NIST, can help identify and standardize post-

quantum algorithms for stateless digital signatures and key

encapsulation mechanisms/public key encryption.

2) Signature lifting: allows users who failed to migrate

to PQC in time to still use pre-quantum signature schemes

while protecting against quantum attacks [19]. This can be

achieved by lifting a deployed pre-quantum signature scheme

satisfying a certain property to a post-quantum signature

scheme that uses the same keys.

3) Quantum approximations: can also be beneficial for

optimizing PQC algorithms. For example, a quantum mean

value approximation can be used to approximate the density

of the lattice basis, which can be used to improve the

performance of lattice-based cryptography [20].

4) Quantum binary field multiplication: can optimize

PQC operations, which can achieve a Toffoli depth of one

for any field size, making it more efficient for quantum

cryptanalysis of ECC [21].

Algorithm 1 summarizes the proposed process to optimize

the implementation of PQC in embedded systems, specif-

ically for the CRYSTALS-Kyber and McEliece schemes.

It consists of key generation, encryption, and decryption.

Kyber constructs a public key using a polynomial matrix,

while McEliece employs a Goppa code with scrambling and

permutation matrices. The encryption and decryption pro-

cesses involve modular arithmetic and error correction. The

algorithm integrates pipelining, high-level synthesis, modular

reduction, and memory optimization to enhance efficiency

while maintaining security in embedded systems.

Optimization

Strategies
HLS

Hybrid HLS

QoR

Pipelining and

Parallelization

executed subsequently

executed concurrently

combined both

Algorithmic

Optimizations

Hybrid approach

Signature lifting

Quantum approximations
Quantum binary

field multiplication

Fig. 1: Optimization Strategies

III. COMPLEXITY ANALYSIS

A. CRYSTALS-Kyber

CRYSTALS-Kyber is a lattice-based cryptosystem that

relies on the module learning with errors (Module-LWE)

problem. The security of Kyber is based on the difficulty

of solving the Module-LWE problem, even for quantum

computers, making it a strong candidate for post-quantum

cryptography. The Kyber is a key encapsulation mechanism

(KEM) that is part of the ”cryptographic suite for alge-

braic lattices” (CRYSTALS) suite, which is designed to be

secure against quantum computers. It operates in the ring

Rq = Zq[X]/(Xn + 1), where q is a prime modulus, n
is the degree of polynomial, typically a power of 2, and

Xn + 1 is the irreducible polynomial defining the ring [22].

To analyze the complexity, the operations primarily involve

matrix-vector and vector-vector operations over polynomial

rings. A breakdown of key operations of the kyber and their

complexities is

• The key generation process involves first generate matrix

A ∈ Rk×k
q , where k is the security parameter, typically

2, 3, or 4. Then generate a secret key vector s ∈ Rk
q from

a centered binomial distribution η. And finally generate

public key t = A · s + e, where e ∈ Rk
1 is a small

error vector sampled from the same distribution η, which

is a discrete Gaussian-like distribution. This operation

has a complexity of O(k2 · n), where k is the module

rank, i.e. 2, 3, or 4, and n is the polynomial degree,

e.g. 256. Therefore the FLOPs for this matrix-vector

multiplication is 2k2n.

• The encryption process involves first generate random-

ness r ∈ Rk
q from the distribution η, then compute

ciphertext (u, v), as u = AT · r + e1, and v =
tT · r + e2 + encode(m), where e1 ∈ Rk

q and e2 ∈ Rq

are small error, and encode(m) is the encoded message

m.Each matrix-vector multiplication in encryption has

a complexity of O(k2 · n), which results in a total of

2k2n FLOPs.

• The decryption process involves first recovering the

message m by computing v − sT · u, which should

be close to encode(m) due to small errors. This is

Algorithm 1: Optimized Post-Quantum Cryptogra-

phy Implementation in Embedded Systems

Input: Security parameter k, Polynomial degree n,

PQC scheme (Kyber or McEliece)

Output: Optimized Key Generation, Encryption, and

Decryption

/* Step 1: Key Generation */

if Scheme == Kyber then

Generate random matrix A ∈ Rk×k
q ;

Sample secret key vector s ∈ Rk
q and error vector

e ∈ Rk
q ;

Compute public key: t = A · s+ e;

end

else if Scheme == McEliece then

Choose Goppa code parameters (n, k, t);

Generate scrambling matrix S ∈ F
k×k
2 and

permutation matrix P ∈ F
n×n
2 ;

Compute public key: G′ = S ·G · P ;

end

/* Step 2: Encryption */

if Scheme == Kyber then

Generate randomness r ∈ Rk
q and error terms

e1, e2;

Compute ciphertext: u = AT · r + e1,

v = tT · r + e2 + encode(m);
end

else if Scheme == McEliece then

Compute codeword: c = m ·G′;

Generate random error vector e ∈ F
n
2 with

Hamming weight ≤ t;
Compute ciphertext: y = c+ e;

end

/* Step 3: Decryption */

if Scheme == Kyber then

Recover message: m = decode(v − sT · u);
end

else if Scheme == McEliece then

Apply permutation: y′ = y · P−1;

Decode using Goppa decoding algorithm to

recover c′;
Recover message: m = c′ ·G−1 · S−1;

end

/* Optimization Strategies */

foreach Optimization technique in [Pipelining, HLS,

Modular Reduction, Memory Optimization] do

Apply technique to relevant PQC operation;

end

return Optimized Key Generation, Encryption, and

Decryption;

an operation of the inner product with a complexity of

O(k.n). This results in 2kn FLOPS.

Overall, Kyber is efficient in terms of key generation and

decryption, with smaller key sizes and lower computational

overhead, making it suitable for constrained environments.

B. McEliece

The McEliece cryptosystem is one of the earliest public-

key cryptosystems, proposed by Robert McEliece in 1978

[23]. It is based on error-correcting codes, specifically binary

Goppa codes, and is considered a strong candidate for post-

quantum cryptography because of its resistance to attacks by

quantum computers. It relies on the hardness of decoding

a random linear code, which is a well-known problem in

coding theory. The key components are: (1) linear codes

C of length n and dimension k over a finite field Fq are

a subspace k of dimensions of F
n
q . It can be represented

by a generator matrix G of size k × n. And (2) Goppa

codes, which is a specific class of linear codes with efficient

decoding algorithms. Goppa codes are used in McEliece

because they allow for efficient error correction. The security

of McEliece relies on the fact that decoding a random linear

code is a hard problem, even for quantum computers. To

analyze the complexity of McEliece operations, it involves

matrix multiplications, inversions, and error correction. A

breakdown of its key operations and their complexities is

provided below.

• The key generation process involves first choosing a

Goppa code C with parameters (n, k, t), which are the

length, dimension of the codes, and error correction

ability, respectively. Then generate a random scrambling

matrix S of k × k over F2, and generate a random

permutation matrix P of n × n. Finally, compute the

transformed generator matrix G′ = S·G·P , so the public

key is (G′, t), where t is the error correction capability.

This matrix-matrix multiplication has a complexity of

O(n3), where n is the length of the code. Thus, the

number of FLOPs is 2n3.

• The encryption process involves encrypting a message

m ∈ F
k
2 by computing the codeword c = m · G′ and

generating a random error vector e ∈ F
n
2 with Hamming

weight wt(e) ≤ t, and finally the ciphertext is calculated

y = c + e. This matrix vector multiplication has a

complexity of O(n2), therefore the number of FLOPs

is 2n2.

• The decryption process starts with decoding the cipher-

text y applying the permutation y′ = y ·P−1, and using

the efficient decoding algorithm for the Goppa code to

correct errors in y′ and recovering the codeword c′ by

computing m′ = c′ · G−1, where G−1 is the inverse

of the generator matrix G. Then apply the inverse of

the scrambling matrix m = m′ · S−1, where m is the

decrypted message. This also has a complexity of O(n2)
for efficient decrypting algorithms.

C. Comparison of Complexities

CRYSTALS-Kyber and McEliece differ significantly in

their mathematical foundations and computational complex-

ities. Kyber, based on lattice problems, is more efficient

in terms of key generation and decryption, with smaller

key sizes and lower computational overhead. This makes

it particularly suitable for constrained environments and

applications where key size and computational efficiency are

critical. On the other hand, McEliece, based on coding theory,

is efficient for encryption but suffers from large key sizes

and higher key generation complexity. Based on Table II,

McEliece has a higher complexity compared to Kyber by

key generation. This is because McEliece involves matrix-

matrix multiplications, which are more expensive than the

matrix-vector operations in Kyber. In the encryption process,

McEliece is slightly more efficient compared to Kyber, as

it only requires matrix-vector multiplication. Kyber is more

efficient than McEliece for decryption, as it requires only

inner product operations. In terms of parameter sizes, Kyber

typically uses smaller parameters, like n = 256, k = 2, 3, 4,

while McEliece uses larger parameters, such as n = 1024.

This makes Kyber more efficient in practice for key sizes and

computational overhead.

TABLE II: Complexity Comparison Between CRYSTALS-

Kyber and McEliece

Operation CRYSTALS-Kyber McEliece

Key Generation O(k2n) O(n3)
Encryption O(k2n) O(n2)
Decryption O(kn) O(n2)

IV. NUMERICAL ANALYSIS COMPARISON

The numerical analysis is conducted employing the pa-

rameters specified in Table III and Table IV. Kyber is

characterized by three distinct security levels, each associated

with a specific set of parameters. Similarly, McEliece is char-

acterized by a variety of parameter sets that are determined

based on the code length and the error-correcting capability.

TABLE III: Kyber Security Levels and Parameters

Security Module Polynomial Key Size Ciphertext

Level Rank (k) Degree (n) (Bytes) Size (Bytes)

Kyber512 2 256 800 768

Kyber768 3 256 1184 1088

Kyber1024 4 256 1568 1568

TABLE IV: McEliece Security Levels and Parameters

Security Code Error-Correcting Key Size Ciphertext

Level Length (n) Capability (t) (Bytes) Size (Bytes)

348864 3488 64 261,120 128

460896 4608 96 524,160 188

6688128 6688 128 1,044,480 240

Fig. 2 compares the key sizes of CRYSTALS-Kyber and

McEliece across different security levels (128-bit, 192-bit,

256-bit). The key size is a critical metric as it influences

both the storage requirements and transmission overhead

within cryptographic systems. CRYSTALS-Kyber has signifi-

cantly smaller key sizes compared to McEliece. For example,

Kyber512 (128-bit security) has a key size of 800 bytes,

while McEliece-348864 (128-bit security) has a key size

of 261,120 bytes. As the security level increases, the key

sizes for both grow. However, the key sizes of McEliece

continue to be several orders of magnitude greater than those

of Kyber. Therefore, Kyber is more suitable for applications

with limited storage or bandwidth, such as IoT devices or

mobile communication.

512 768 1024

0

500

1,000

1,500

2,000

800

1,184

1,568

K
ey

S
iz

e
(B

y
te

s)

CRYSTALS-Kyber

(a) Kyber

348864 460896 6688128

0

0.5

1

·106

2.61 · 105

5.24 · 105

1.04 · 106

K
ey

S
iz

e
(B

y
te

s)

McEliece

(b) McEliece

Fig. 2: Key Size

Fig. 3 compares the computational complexity of

CRYSTALS-Kyber and McEliece in terms of FLOP counts

for key generation, encryption, and decryption. FLOP counts

provide a measure of the computational effort required for

each operation. CRYSTALS-Kyber has much lower FLOP

counts for all operations compared to McEliece. For ex-

ample, Kyber-512 requires 2048 FLOPs for key generation,

while McEliece-348864 requires 8.51010 FLOPs. Encryption

and decryption in Kyber are also significantly faster, with

FLOP counts in the thousands, compared to FLOP counts

of McEliece in the millions or billions. Kyber is more

efficient in terms of computational resources, making it better

suited for resource-constrained environments or real-time

applications.

Key Generation Encryption Decryption

102

104

106

108

1010

7.62
8.32

6.93

25.17

16.99 16.99

F
L

O
P

C
o

u
n

t

CRYSTALS-Kyber (Kyber-512)

McEliece (McEliece-348864)

Fig. 3: FLOP Count

Fig. 4 compares the ciphertext sizes of CRYSTALS-Kyber

and McEliece at different security levels. The size of the

cryptotext is important because it affects the amount of data

that must be transmitted during encryption. CRYSTALS-

Kyber has larger ciphertext sizes compared to McEliece.

For example, Kyber512 has a ciphertext size of 768 bytes,

while McEliece-348864 has a ciphertext size of 128 bytes.

However, the difference in ciphertext sizes is much smaller

than the difference in key sizes. Although McEliece has

smaller ciphertexts, its large key sizes and high computational

complexity make it less practical for many applications. The

marginally larger ciphertexts of Kyber are counterbalanced by

its reduced key sizes and diminished computational overhead.

512 768 1024

0

500

1,000

1,500

2,000

768

1,088

1,568

C
ip

h
er

te
x

t
S

iz
e

(B
y

te
s)

CRYSTALS-Kyber

(a) Kyber

348864 460896 6688128

0

100

200

300

128

188

240

C
ip

h
er

te
x

t
S

iz
e

(B
y

te
s)

McEliece

(b) McEliece

Fig. 4: Ciphertext Size

V. CONCLUSION

The paper examines the implementation of post-quantum

cryptography (PQC) in embedded systems constrained by

computational power, memory, and energy. It catego-

rizes PQC algorithms into families: lattice-based, code-

based, hash-based, and multivariate/isogeny-based schemes,

each with unique challenges. Lattice-based schemes like

CRYSTALS-Kyber require moderate memory and significant

hardware for polynomial arithmetic. Code-based schemes

like McEliece have large key sizes. Hash-based schemes such

as SPHINCS+ have simple computation but large signatures,

while multivariate/isogeny-based schemes demand too many

resources. Optimization through pipelining, parallelization,

and high-level synthesis can improve performance and energy

efficiency while balancing security. CRYSTALS-Kyber suits

constrained environments for key generation and decryp-

tion, unlike McEliece. Future research should explore new

techniques and memory improvements to reduce hardware

complexity, as quantum computing develops.

REFERENCES

[1] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium algorithm specifications and sup-
porting documentation,” 2017.

[2] M. J. Kannwischer, M. Krausz, R. Petri, and S.-Y. Yang, “pqm4:
Benchmarking nist additional post-quantum signature schemes on
microcontrollers,” Cryptology ePrint Archive, 2024.

[3] M.-S. Chen and T. Chou, “Classic mceliece on the arm cortex-
m4,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 125–148, 2021.

[4] J. A. Buchmann, E. Dahmen, and A. Hülsing, “Xmss - a practical for-
ward secure signature scheme based on minimal security assumptions,”
IACR Cryptol. ePrint Arch., vol. 2011, p. 484, 2011.

[5] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The sphincs+ signature framework,” in Proceedings of

the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2129–2146.

[6] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel,
K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo et al.,
“Gimli: a cross-platform permutation,” in Cryptographic Hardware
and Embedded Systems–CHES 2017: 19th International Conference,

Taipei, Taiwan, September 25-28, 2017, Proceedings. Springer, 2017,
pp. 299–320.

[7] R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa et al., “Su-
persingular isogeny key encapsulation,” Submission to the NIST Post-

Quantum Standardization project, vol. 152, pp. 154–155, 2017.

[8] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-
quantum cryptography on fpga based on isogenies on elliptic curves,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64,
no. 1, pp. 86–99, 2016.

[9] M. Bandaru, S. E. Mathe, and C. Wattanapanich, “Evaluation of
hardware and software implementations for nist finalist and fourth-
round post-quantum cryptography kems,” Computers and Electrical

Engineering, vol. 120, p. 109826, 2024.

[10] C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu,
S. Yin, S. Wei, and L. Liu, “A compact and high-performance hardware
architecture for crystals-dilithium,” IACR Trans. Cryptogr. Hardw.

Embed. Syst., vol. 2022, pp. 270–295, 2021.

[11] G. Liu, K. Jia, P. Wei, and L. Ju, “High-performance hardware
implementation of mpcith and picnic3,” IACR Trans. Cryptogr. Hardw.

Embed. Syst., vol. 2024, pp. 190–214, 2024.

[12] T. Fritzmann, G. Sigl, and M. J. Sepúlveda, “Risq-v: Tightly coupled
risc-v accelerators for post-quantum cryptography,” IACR Cryptol.

ePrint Arch., vol. 2020, p. 446, 2020.

[13] J. Woo, V. A. Vasudevan, B. Z. Kim, A. Cohen, R. G. L. D’Oliveira,
T. Stahlbuhk, and M. M’edard, “Cermet: Coding for energy reduction
with multiple encryption techniques - it’s easy being green,” ArXiv,
vol. abs/2308.05063, 2023.

[14] J. M. Martyn, Z. M. Rossi, K. Z. Cheng, Y. Liu, and I. Chuang,
“Parallel quantum signal processing via polynomial factorization,”
2024.

[15] Y. Liao, T. Adegbija, and R. L. Lysecky, “A high-level synthesis
approach for precisely-timed, energy-efficient embedded systems,”
ArXiv, vol. abs/2404.14769, 2022.

[16] M. Gao, J. Zhao, Z. Lin, and M. Guo, “Hierarchical source-to-post-
route qor prediction in high-level synthesis with gnns,” 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.
1–6, 2024.

[17] A.-A. Koufopoulou, K. Xevgeni, A. Papadimitriou, M. Psarakis, and
D. Hély, “Security and reliability evaluation of countermeasures im-
plemented using high-level synthesis,” 2022 IEEE 28th International

Symposium on On-Line Testing and Robust System Design (IOLTS),
pp. 1–8, 2022.

[18] S. E. Yunakovsky, M. Kot, N. O. Pozhar, D. Nabokov, M. A. Kudinov,
A. Guglya, E. O. Kiktenko, E. Kolycheva, A. Borisov, and A. K.
Fedorov, “Towards security recommendations for public-key infras-
tructures for production environments in the post-quantum era,” EPJ
Quantum Technology, vol. 8, 2021.

[19] O. Sattath and S. Wyborski, “Protecting quantum procrastinators
with signature lifting: A case study in cryptocurrencies,” ArXiv, vol.
abs/2303.06754, 2023.

[20] D. Joseph, A. J. Martinez, C. Ling, and F. Mintert, “Quantum mean-
value approximator for hard integer-value problems,” Physical Review

A, 2021.

[21] K. B. Jang, W. Kim, S. Lim, Y. L. Kang, Y. Yang, and H. Seo,
“Quantum binary field multiplication with optimized toffoli depth and

extension to quantum inversion,” Sensors (Basel, Switzerland), vol. 23,
2023.

[22] F. R. Ghashghaei, Y. Ahmed, N. Elmrabit, and M. Yousefi, “En-
hancing the security of classical communication with post-quantum
authenticated-encryption schemes for the quantum key distribution,”
Comput., vol. 13, p. 163, 2024.

[23] R. J. McEliece, “A public-key cryptosystem based on algebraic,”
Coding Thv, vol. 4244, pp. 114–116, 1978.

	Introduction
	Optimization Strategies
	Pipelining and Parallelization
	High-Level Synthesis (HLS)
	Algorithmic Optimizations
	Hybrid approach
	Signature lifting
	Quantum approximations
	Quantum binary field multiplication

	Complexity Analysis
	CRYSTALS-Kyber
	McEliece
	Comparison of Complexities

	Numerical Analysis Comparison
	Conclusion
	References

