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Abstract. Foundation models have recently emerged as a new paradigm
in machine learning (ML). These models are pre-trained on large and di-
verse datasets and can subsequently be applied to various downstream
tasks with little or no retraining. This allows people without advanced
ML expertise to build ML applications, accelerating innovation across
many fields. However, the adoption of foundation models in cyberse-
curity is hindered by their inability to efficiently process data such as
network traffic captures or binary executables. The recent introduction
of graph foundation models (GFMs) could make a significant difference,
as graphs are well-suited to representing these types of data. We study
the usability of GFMs in cybersecurity through the lens of one specific
use case, namely lateral movement detection. Using a pre-trained GFM,
we build a detector that reaches state-of-the-art performance without
requiring any training on domain-specific data. This case study thus
provides compelling evidence of the potential of GFMs for cybersecurity.

Keywords: Intrusion detection · Anomaly detection · Graph neural net-
works.

1 Introduction

An immediate and lasting impact of large language models [9,42] (LLMs) and
their multimodal counterparts, such as vision-language models [29], has been the
democratization of machine learning (ML) application development. Consider for
instance natural language processing: whereas building a text classifier used to
require gathering high-quality labeled data, then designing and training a model,
it can now be achieved by simply sending the right prompt to a pre-existing LLM
and extracting information from its answer. By allowing domain experts without
advanced ML skills to build ML applications, this new paradigm accelerates the
adoption of ML in various domains.

More generally, this trend results from the emergence of foundation mod-
els—that is, models pre-trained on large and diverse datasets, that can be used
for various tasks with little or no retraining. Beyond LLMs, foundation mod-
els have been developed for tasks ranging from time series forecasting [2] to
image segmentation and classification [24,34]. However, their contribution to
cybersecurity-related applications has so far been limited because these applica-
tions often deal with peculiar data. Unlike textual documents, classifying binary
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executables or network traffic captures using LLMs is impractical as they differ
too much from typical LLM training data. On the other hand, graphs are well-
suited to representing such data, and graph neural networks (GNNs) are thus
often used in cybersecurity-related ML applications [4,5].

In the last few years, pre-trained GNNs specialized on various graph-related
tasks have started to emerge. These graph foundation models [31] (GFMs)
could make it significantly easier to build ML applications for many cybersecurity-
related use cases, in the same way that LLMs democratized natural language
processing. In previous work [25], we performed an initial evaluation of GFMs for
a specific cybersecurity problem, namely lateral movement detection. This task
is well-suited to graph-based approaches as it can be framed as detecting anoma-
lous edges in a graph [8,23]. Here, we extend this work into a detailed case study
on the following question: can we reach state-of-the-art performance in
lateral movement detection using a pre-trained GFM, only through
careful input graph construction and output post-processing? By im-
posing this constraint, we aim to assess the ability of cybersecurity practitioners
without ML expertise to build effective ML applications using GFMs. Through
experiments on two benchmark datasets, we show that a GFM-based detector
can indeed outperform the state-of-the-art GNN-based algorithm Argus [45].
This demonstrates the potential of GFMs in cybersecurity-related use cases,
opening the way for further research on other cybersecurity problems involving
graph-structured data.

In summary, we make the following contributions:

– We extend previous work on GFM-based lateral movement detection, im-
proving the design of the detector with an input graph construction mod-
ule that retrieves the most relevant contextual data and an output post-
processing module that leverages domain knowledge on lateral movement to
eliminate false positives.

– We thoroughly demonstrate the impact of these improvements on detection
performance through experiments on two benchmark datasets.

– Overall, we provide evidence that GFMs can already be used in valuable
cybersecurity-related applications, motivating further research on this topic.

The rest of this paper is structured as follows. We start with necessary back-
ground on lateral movement detection and graph foundation models in Section 2.
Then, we describe the design of our GFM-based detector in Section 3, and report
on our experiments in Section 4. Finally, we discuss the limitations and possible
extensions of our work in Section 5.

2 Background

We first provide some necessary background and definitions. Section 2.1 de-
fines lateral movement detection, then Section 2.2 reviews past research on this
problem. Finally, we provide an introduction to graph foundation models in
Section 2.3, focusing on Ultra [15], which is the model we use in this work.
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2.1 Problem Statement — Lateral Movement Detection

Lateral movement is a widespread offensive tactic that consists in propagat-
ing from one compromised host to another within the target network. It is a
critical phase of advanced, multi-step intrusions as it allows the attacker to ex-
plore the network and move closer to their end goal (e.g., stealing sensitive data
from a given server or deploying ransomware on all hosts). Many techniques
and procedures exist for lateral movement, often leveraging legitimate tools and
credentials [1]. This diversity makes detecting lateral movement challenging.

Internal network traffic and authentication logs are useful data sources in
the search for lateral movements1. Such data can be efficiently represented as a
graph whose nodes are the hosts of an enterprise network, with edges standing
for information flows between hosts. Additional nodes representing user accounts
can also be included in this graph when authentication logs are available. The
graph is typically directed, and it can also be made temporal (network flows and
authentication events are timestamped) and heterogeneous (there are several
edge types representing, for instance, network protocols or authentication pack-
ages). Lateral movement then results in unexpected edges in this graph. From a
mathematical perspective, lateral movement detection can thus be phrased as a
graph-based anomaly detection problem.

Key definitions and notations. We consider a graph sequence
(
Gt

)
t≥0

, where
each graph Gt = (Vt, Et,Rt) represents events recorded in a time window t and is
defined by its node set Vt, edge set Et and relation (or edge type) set Rt. Edges,
defined by a source node u, an edge type r, and a destination node v, are denoted
(u, r, v) ∈ Vt×Rt×Vt. Note that such heterogeneous graphs are typically called
knowledge graphs in the literature. The goal of lateral movement detection is
to build an anomaly scoring function s such that s(u, r, v; t) is large if the
edge (u, r, v) is anomalous in the graph Gt. Finally, we define the union of two
graphs as the graph whose node, edge, and relation sets are the union of theirs.

2.2 Related Work — From Heuristics to Graph Neural Networks

We now review the main approaches to lateral movement detection in the litera-
ture, distinguishing three main categories: heuristics, linear and multilinear link
predictors, and graph neural networks.

Heuristics and pattern mining. Early work on lateral movement detection uses
rather simple models and heuristics. In particular, a straightforward way to
define anomalous edges in a temporal graph is to count the occurrences of each
edge over time. The edges that appear the least frequently are then deemed
anomalous. Additional edge features, such as edge type or timestamp, can also
be taken into account when looking for rare edges [7]. The main shortcoming of
this basic heuristic is its tendency to generate many false positives, as rare edges
1 Note that our threat model assumes the integrity of these data sources.
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are often observed due to benign errors or legitimate behaviors. A typical way to
mitigate this problem is to look for clusters of rare edges sharing a common
source node [32,33,43,7], since attackers often use one compromised host as a
stepping stone to explore the rest of the network. Rare connections between
hosts can also be correlated with other possible signs of lateral movement, such
as the creation of a new service on the target host [30]. Alternatively, simple
statistical models can be used to characterize normal rare edges, thus weeding
out false positives [18], or to detect anomalous paths in the host communication
graph [6]. Finally, a closely related approach consists in mining frequent patterns
among edges instead of frequent edges [39]. These patterns then also cover rarely
observed edges that share some distinctive traits with frequent edges, ensuring
that such rare but legitimate edges are not mistakenly flagged as malicious.

Linear and multilinear models. Detecting anomalous edges in a graph is in fact
complementary to the well-studied problem of link prediction, i.e., predicting
which new edges are the most likely to appear in a given graph. Since anoma-
lous edges are those least likely to appear, a good link predictor can also be
used as an anomaly detector. Several models that were initially designed for link
prediction, typically for recommender systems, were thus subsequently used for
lateral movement detection. These models include matrix factorization [37], ten-
sor factorization [12,13], factorization machines [41] and latent space models [26],
which are all multilinear models. More specifically, these models compute a la-
tent vector for each node during training, then define the probability of an edge
as a function of the dot product between its endpoints’ latent vectors. A closely
related approach relies on graph embedding algorithms such as node2vec [16],
which also compute a latent vector (also called embedding) for each node. Lin-
ear models can then take these vectors as input in order to predict normal edges
and/or detect anomalous ones [44,50,8,35].

Graph neural networks. Finally, more recent and sophisticated link prediction al-
gorithms go beyond linear models and use multilayer graph neural networks [10].
As a consequence, research on lateral movement detection has also adopted
GNNs. Early contributions treated internal network traffic or authentication
logs as a static graph, training standard GNNs on all past data to predict fu-
ture edges [28,40]. Subsequent work introduced a temporal perspective by
representing connections between internal hosts as a sequence of graphs. This
sequence can then be modeled by intertwining a GNN and a recurrent neural
network (RNN), giving the model the ability to detect temporal anomalies in
addition to structural ones [23,22,45]. The current state-of-the-art lateral move-
ment detection algorithm, Argus [45], relies on this RNN-GNN combination.

2.3 Graph Foundation Models for Link Prediction

Following the emergence of powerful foundation models for modalities such as
text and images, the graph machine learning community has started exploring
the possibility of building such foundation models for graph-related tasks. As a
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result, such models have been proposed for various tasks, including node clas-
sification [19,49], node anomaly detection [36], and link prediction [11,38]. In
particular, link prediction in knowledge graphs has been addressed by sev-
eral GFMs [15,46]. This is especially interesting for lateral movement detection,
which can be framed as detecting anomalous edges in a knowledge graph.

This work focuses on Ultra [15], a GFM designed for link prediction in
knowledge graphs. Ultra builds upon the Neural Bellman-Ford Network [51]
(NBFNet) architecture to predict possible edges in any knowledge graph G =
(V, E ,R) through the following steps. First, reciprocal edges are added to the
graph G: for each relation r ∈ R, a reciprocal relation r−1 is defined and a new
edge (v, r−1, u) is created for each existing edge (u, r, v) ∈ E . Then, a graph of
relations GR = (R, ER,RR) is built. Its nodes are the relations of the original
knowledge graph G, and an edge from relation r to relation r′ indicates that there
exist two edges in G, with respective types r and r′, that have at least one node
in common. This common node can be either the source or destination of each of
the two edges, thus there are four possible types of interactions between relations
r and r′ (i.e., |RR| = 4). A first NBFNet is trained to compute embeddings of
the relations in R given the graph of relations GR. Then, given the original graph
G and these relation embeddings, a second NBFNet predicts the probability of
any edge (u, r, v) ∈ V ×R× V. The authors of Ultra pre-trained three such
models on a set of knowledge graphs representing knowledge bases from several
domains. They showed that these models achieved competitive link prediction
performance on knowledge graphs not included in their training set, which makes
them foundation models for link prediction in knowledge graphs.

From a high-level perspective, a pre-trained Ultra model is a function that
takes as input a knowledge graph G = (V, E ,R) (which we call the context
graph) and a triple (u, r, v) ∈ V ×R×V, and returns a score g(u, r, v;G) that is
large if the edge (u, r, v) is likely to appear in the graph G. In previous work [25],
we showed that the pre-trained models introduced in the Ultra paper [15] could
be used for lateral movement detection without retraining, achieving competitive
detection performance with respect to standard multilinear models. Here, we ex-
tend this work by designing a better detector using the Ultra50g model. This
GFM has 177K parameters and is openly available on GitHub2 and Hugging-
Face3. Our hypothesis is that significant performance gains can be unlocked using
the same pre-trained model, only through changes in context graph construction
and output post-processing—an approach inspired by LLM-based applications.

3 Design of Our Lateral Movement Detector

We improve upon our initial algorithm, UltraLMD [25], by drawing inspira-
tion from the state-of-the-art GNN-based detector Argus [45]. Through this
approach, we investigate the possibility of replicating the performance of a spe-
cially designed GNN by cleverly querying a pre-trained GFM. We provide an
2 https://github.com/DeepGraphLearning/ULTRA
3 https://huggingface.co/mgalkin/ultra_50g

https://github.com/DeepGraphLearning/ULTRA
https://huggingface.co/mgalkin/ultra_50g
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Fig. 1. High-level workflow of UltraLMD++.

overview of our new detector, called UltraLMD++, in Section 3.1, then describe
its main components in further detail: context graph construction (Section 3.2),
anomaly scoring (Section 3.3), and output post-processing (Section 3.4).

3.1 Overview

Given a sequence of authentication events and/or network flows, our lateral
movement detector applies the following steps, illustrated in Figure 1. First, the
events are split into fixed-length windows. Then, for each time window t, we
build a graph Gt representing the events within this window. In order to compute
anomaly scores for the edges in Gt, we first need to build a context graph Ht

using past events (Section 3.2). This context graph can then be passed as input
to the GFM, which predicts how likely the edges in Gt are given the context graph
Ht. Anomaly scores are derived from these predictions (Section 3.3). Finally,
these anomaly scores are refined by leveraging the structure of the graph
Gt, building upon the idea that lateral movement edges tend to be clustered into
connected regions of the network (Section 3.4).

3.2 Context Graph Construction

At each time step t, we observe a new graph Gt = (Vt, Et,Rt). Our goal is to
compute an anomaly score for each edge in Et by comparing the graph Gt with
past graphs {Gt′ ; t

′ < t}. Argus [45] adopts a temporal modeling approach to
incorporate the fact that a given edge might be normal at some time steps
and anomalous at others (consider for instance a remote authentication to a
server at 2p.m. on a Monday versus at 11p.m. on a Saturday). To that end, it
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uses a combined RNN-GNN model to encode the sequence of past graphs and
make time-dependent predictions for the probability of each edge in Et. Since
we use a GFM to score edges, we cannot modify its architecture to include an
RNN. We thus adopt a different approach, which focuses on the context graph
used by the GFM to predict new edges.

As explained in Section 2.3, we consider a GFM that takes as input a context
graph and a possible edge, and predicts the probability of that edge appearing in
the context graph. Time-dependent information can thus be passed to the
GFM through the construction of this context graph. Specifically, given
the current graph Gt and the sequence of past graphs {Gt′ ; t

′ < t}, we build
two context graphs HL

t and HS
t encoding long-term and short-term context,

respectively. The long-term context graph is simply the union of all past graphs,
HL

t =
⋃

t′<t Gt′ . As for the short-term context graph HS
t , we build it using

a method analogous to retrieval-augmented generation (RAG [27]) for LLMs.
Given a similarity function c that compares two graphs, we compute the
similarity between the current graph Gt and each past graph. Denoting C the set
of indices corresponding to the K past graphs most similar to Gt (for some fixed
integer K), the short-term context graph is then defined as HS

t =
⋃

t′∈C Gt′ .
The similarity function c we use in our experiments is simple and computa-

tionally inexpensive. It is defined as the sum of two components, c = cV + cE,
where cV is the Jaccard index of the respective node sets of the two graphs,

cV(Gt,Gt′) =
|Vt ∩ Vt′ |
|Vt ∪ Vt′ |

,

and cE measures the similarity of the two graphs in terms of edge types. Let
θr(Gt) = |{(u, r′, v) ∈ Et : r′ = r}| be the number of edges of type r in the graph
Gt. Then the relation similarity function cE is defined as

cE(Gt,Gt′) =
θ̃(Gt) · θ̃(Gt′)∥∥∥θ̃(Gt)

∥∥∥∥∥∥θ̃(Gt′)
∥∥∥ , θ̃(G) =

(
θr(G)− θ̄r

σr

)
r∈Rt∪Rt′

,

where θ̄r and σr denote the mean and standard deviation of θr over the set
of graphs {Gt′ ; t

′ ≤ t}, respectively. In other words, cE is the cosine similarity
between the standardized vectors of relation counts of the two graphs.

3.3 Anomaly Score Computation

Given the current graph Gt and the short and long-term context graphs HS
t and

HL
t , we can now use the GFM to compute anomaly scores for the edges of Gt. As

stated in Section 2.3, the GFM is a function that computes a score g(u, r, v;H)
given a context graph H = (VH, EH,RH) and an edge (u, r, v) ∈ VH×RH×VH,
with higher scores meaning more likely edges. We turn these scores into anomaly
scores as follows. First, we define the predicted probability of the destination
node v given the source u, the edge type r, and the context graph H as

p(v | u, r,H) =
exp (g(u, r, v;H))∑

v′∈VH
exp (g(u, r, v′;H))

.
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The probability of the source node u given the destination v, the edge type r,
and the context graph H can be defined in a similar way using the reciprocal
relation r−1, defined in Section 2.3. The anomaly score of the edge (u, r, v)
given the context graph H is then defined as

s(u, r, v;H) = − log
(
min

{
p(v | u, r,H), p(u | v, r−1,H)

})
.

Two specific cases are handled differently. First, if (u, r, v) ∈ EH, then we set
s(u, r, v;H) = 0. In other words, known edges are considered normal. Note
that while the long-term context graph contains all previously observed edges,
the short-term context graph only contains edges from the past graphs most
similar to the current graph. As a consequence, an edge that was previously
observed in a different context can still be declared anomalous in the present
context by our detector. The other specific case arises when scoring an edge
whose type does not exist in the context graph, that is, r /∈ RH. Since the
GFM is unable to compute scores for such unknown edge types, we then define
the anomaly score as the average over the set of known edge types RH. With
these definitions, the anomaly score for an edge (u, r, v) given the short and
long-term context graphs HS

t and HL
t is

s(u, r, v; t) =
1

2

(
s(u, r, v;HS

t ) + s(u, r, v;HL
t )
)
. (1)

3.4 Graph-Based Score Refinement

In addition to individually scoring each edge in the current graph, looking for
connected clusters of anomalous edges is a widespread approach in the
lateral movement detection literature [32,8,26,7]. The motivation for this strategy
is that attackers typically perform several lateral movements originating from
the same compromised host, whereas rare but legitimate activity is randomly
scattered across the internal network. Argus leverages this domain knowledge
through the design of its decoder (i.e., the last GNN layer that predicts likely
edges). Once again, since we build upon a pre-trained model, we cannot change
its architecture and must therefore look for a different method.

We draw inspiration from Bowman et al. [8], who proposed discarding all
anomalous edges that do not share a node with at least one other
anomalous edge. This idea can be translated into the following edge score
refinement method, formally described in Algorithm 1 of Appendix A. For each
edge e in the current graph Gt, we retrieve the anomaly scores (as defined in
Equation 1) of all edges in Gt that share at least one node with e. Then, there
are two possibilities: either there is at least one edge in this set with a higher
anomaly score than e, thus for any detection threshold low enough to declare e
anomalous, e will be adjacent to another anomalous edge; or e is the highest-
scored edge within its neighborhood. In that second case, we set the score of e to
the maximum of the scores of adjacent edges, so that e is only declared anomalous
when there is at least one other anomalous edge within its neighborhood. In
practice, this score refinement method can be implemented efficiently using a
message passing algorithm.



Designing a Reliable Lateral Movement Detector Using a GFM 9

4 Experiments

We now empirically study the behavior and performance of UltraLMD++,
specifically investigating the following questions. First, since our goal is to build
a lateral movement detector that is at least as reliable as the state-of-the-art
algorithm Argus [45], we compare their respective detection performance
on two public benchmark datasets. Secondly, since UltraLMD++ differs from
the original UltraLMD detector in two aspects (namely, context graph retrieval
and score refinement), we are interested in evaluating the exact contribution
of each of these two improvements. Third, an expected benefit of using a
GFM-based lateral movement detector is that it can handle concept drift without
retraining. Thus we investigate the temporal dynamics of the distribution of
anomaly scores to assess the robustness of UltraLMD++ to concept drift.
Finally, the computational cost of UltraLMD++ is an important aspect of
its real-world usability. We thus study the run time of each of its components
(i.e., context graph construction, score computation, and score refinement).

We implemented UltraLMD++ in Python and make the code openly avail-
able4. As for Argus, we used the implementation provided by the authors5.
We run our experiments on a 2.2GHz, 40-core CPU with 384GB of RAM, and
an Nvidia GeForce RTX 2080 Ti GPU with 11GB of memory. The datasets and
evaluation metrics used in our experiments are described in Section 4.1. We then
present our results on the two datasets in Sections 4.2 and 4.3, respectively.

4.1 Datasets and Metrics

We compare UltraLMD++ and Argus on two benchmark datasets: the "Oper-
ationally Transparent Cyber" (OpTC) dataset released by DARPA in 2020, and
the "Comprehensive, Multi-Source Cyber-Security Events" (LANL) dataset re-
leased in 2015 by the Los Alamos National Laboratory [21,20]. OpTC consists
of host and network logs generated over nine days in a simulated enterprise net-
work. Three distinct attacks were carried out by pentesters against this simulated
network, two of which comprise a lateral movement phase. The first six days are
used for training Argus, and both Argus and UltraLMD++ are evaluated
on the last three days, during which the attacks take place. As for the LANL
dataset, it contains anonymized host logs and network flows collected over 58
days within LANL’s enterprise network. A red team exercise took place during
this time frame, and lateral movement events are labeled. Since the first of these
events occurs during the 42nd hour, we use the first 41 hours for training Argus
and the remaining data for evaluation. Note that while the authors of Argus
used the same datasets in their experiments, we perform different preprocessing
steps here, which leads to discrepancies with respect to the results reported in
the Argus paper [45]. See Appendix B for more details.

4 https://github.com/cl-anssi/UltraLMD
5 https://github.com/C0ldstudy/Argus

https://github.com/cl-anssi/UltraLMD
https://github.com/C0ldstudy/Argus
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Table 1. Datasets used in our experiments. LM stands for lateral movement edges;
Min./Med./Max. is the minimum/median/maximum number of edges per time step.

Dataset Hosts Users Time Edges
steps Min. Med. Max. Types LM

OpTC 898 1,505 2,113 0 5,795 17,782 39 626
LANL 16,377 25,701 1,392 72,717 151,343.5 286,350 106 500

LANLOpTC

Host HostHost Host

User UserUser User

Domain DomainDomain Domain

auth_{AP}_{LT}

auth_{AP}_{LT}

auth_from_{AP}_{LT} auth_to_{AP}_{LT}

has_domain has_domainhas_domain has_domain

auth_{TYPE}
has_{PRIVILEGE}

flow_{PROTO}_{PORT}

auth_{TYPE}
has_{PRIVILEGE}

auth_{TYPE}

flow_{PROTO}_{PORT}

Fig. 2. Knowledge graph representation of the two datasets for UltraLMD++. AP
and LT stand for authentication package and logon type, respectively. Nodes and edges
representing node types are not displayed for the sake of readability.

Graph construction. Both Argus and UltraLMD++ require representing the
datasets as sequences of graphs. First of all, we chunk both datasets into fixed-
length time windows. We use the same window lengths as the Argus paper,
namely one hour for the LANL dataset and six minutes for the OpTC dataset.
For Argus, we then use the same graph construction method as the original
paper. As for UltraLMD++, the graphs are built as follows. For each remote
authentication event, we create an edge from the source host to the destination
host. The type of the edge is the pair (authentication package, logon type).
We also create host-host edges for network flow events, whose type is the pair
(transport protocol, destination port). To limit the number of edge types, only
the 20 flow types most frequently seen during the training period are kept, and
all other types are replaced with a single "Other" type. We add user-host edges
for each authentication event, which indicate that the user has logged on from or
to the host. Finally, we define five node types: user account, computer account,
built-in account (e.g., SYSTEM or LOCAL SERVICE), computer, and domain.
These types are represented as nodes and linked to other nodes with edges of
a special type. See Figure 2 for a summary of these graph representations, and
Table 1 for a summary of the datasets. Note that for consistency with Argus,
only host-host edges representing network flows in the OpTC dataset and remote
authentications in the LANL dataset are given anomaly scores.

Evaluation metrics. We compare the detection performance of Argus and Ul-
traLMD++ using the following metrics. First, the area under the ROC curve
(AUC) is a standard metric for binary classification, which captures the trade-
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Table 2. Results of our experiments on OpTC.

Algorithm AUC AP Rec@3 Rec@5 Rec@10

Argus [45] .9300 .0240 .0064 .0113 .0273

UltraLMD [25] .9826 .1003 .0208 .0319 .0559
UltraLMD + retrieval .9909 .1506 .0256 .0367 .0607
UltraLMD + refinement .9826 .1003 .0192 .0319 .0559

UltraLMD++ .9909 .1510 .0256 .0383 .0623

off between the true positive rate (TPR, also called recall) and the false positive
rate (FPR) at various detection thresholds. Since the AUC tends to be overly
optimistic in highly imbalanced settings (base rate fallacy [3]), we also compute
the average precision (AP), which evaluates the ratio between the number of
true and false positives at different true positive rates. This metric puts more
emphasis on low-FPR settings, which corresponds to the operational constraints
of intrusion detection. Finally, to get a more realistic picture of each detector’s
reliability in a real-world deployment, we compute the recall for various detec-
tion budgets B (Rec@B). In other words, Rec@B is the proportion of lateral
movement edges that are detected when the top B most anomalous edges in
each time window are investigated.

4.2 Results on OpTC

We run both Argus and UltraLMD++ on the OpTC dataset, using the same
hyperparameters as the authors for Argus and setting the number K of past
graphs to include in the short-term context of UltraLMD++ to 100. The results
of these experiments are shown in Table 2. We now discuss them in further detail.

First of all, UltraLMD++ consistently outperforms Argus across
all metrics, highlighting the ability of GFM-based lateral movement detectors
to compete with GNNs that are specifically trained for this task. We empha-
size that Ultra50g, which underpins UltraLMD++, was not trained on any
cybersecurity-related data, whereas Argus was trained on the first 6 days of the
OpTC dataset. This makes the performance of UltraLMD++ especially com-
pelling. Note that the recall at reasonable detection budgets remains rather low
for both detectors. However, real-world intrusions often comprise several lateral
movements, and detecting some of them can suffice to catch the whole attack.
This principle stands for the OpTC dataset, where even detecting 5% of the
hundreds of lateral movement edges is enough to make a detector useful.

As for the ablation study, while UltraLMD++ clearly outperforms Ultra-
LMD, most of the improvement comes from the retrieval component.
Only adding score refinement leads to almost identical, and in fact slightly worse
performance. This limited impact of score refinement might result from the short
length of the time window used for the OpTC dataset: with each graph represent-
ing a six-minute window, lateral movement edges are more likely to be scattered
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Fig. 3. Evolution of the 90th, 99th, and 99.9th percentiles of the distribution of anomaly
scores over time on OpTC, for Argus and UltraLMD++.

across several graphs. As a consequence, graph-based score refinement can ac-
tually reduce their anomaly scores as much as those of benign edges. While
this does not refute the general usefulness of score refinement, it does point to
unfavorable settings that can make it less effective. Still, the performance gain
brought by context graph retrieval sustains our main hypothesis: careful input
design can yield superior detection performance out of the same GFM.

0 1 2 3 4 5
Time (s)

Retrieval
Scoring

Refinement

Fig. 4. Run time per window
(mean and standard deviation)
of UltraLMD++ on OpTC.

Regarding score dynamics, Figure 3 shows the
evolution of the distribution of anomaly scores
(90th, 99th, and 99.9th percentiles) over time,
as well as the scores of lateral movement edges,
for Argus and UltraLMD++. Due to the lim-
ited duration (three days) of the OpTC test set,
no conclusion can be drawn regarding each de-
tector’s propensity to concept drift from this
dataset. However, we observe that Argus per-
forms better on the first attack (around window
130) than on the second (windows 350-400), while
UltraLMD++ predicts relatively high anomaly
scores for lateral movement edges in both attacks. This further demonstrates the
superior reliability of UltraLMD++ on the OpTC dataset.

Finally, Figure 4 shows the average run time of UltraLMD++ for a single
time window on OpTC. With only a few seconds of computation for a six-minute
window, UltraLMD++ is efficient enough to run in real time. Note that
the anomaly scoring step makes up for most of the computational cost, which
could thus be significantly reduced with more powerful GPUs.
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Table 3. Results of our experiments on LANL, with and without duplicate lateral
movement edges.

Duplicates Algorithm AUC AP Rec@3 Rec@5 Rec@10

yes

Argus [45] .9749 .0065 .0100 .0260 .0900
UltraLMD [25] .7645 .0020 .0260 .0400 .0720
UltraLMD + retrieval .8969 .0040 .0300 .0480 .0860
UltraLMD + refinement .7606 .0026 .0360 .0460 .0820
UltraLMD++ .8938 .0056 .0340 .0560 .1040

no

Argus [45] .9821 .0056 .0166 .0364 .1126
UltraLMD [25] .9394 .0034 .0430 .0662 .1192
UltraLMD + retrieval .9920 .0063 .0497 .0795 .1424
UltraLMD + refinement .9328 .0042 .0596 .0762 .1358
UltraLMD++ .9868 .0088 .0629 .0927 .1788

4.3 Results on LANL

Similarly to our experiments on OpTC, we also run Argus with the same hyper-
parameters as the authors on the LANL dataset. As for UltraLMD++, we set
the number K of past graphs to include in the short-term context to 10. Note that
many lateral movement edges are repeated several times in the LANL dataset
(i.e., the red team repeated the same lateral movement at different timestamps).
Since detecting a single occurrence of each lateral movement edge can be consid-
ered sufficient, we also compute the performance metrics after removing dupli-
cates. Specifically, for each evaluated detector, we only keep the highest-scoring
instance of each unique lateral movement edge. The results of our experiments
with and without this deduplication step are shown in Table 3.

Starting with the results without deduplication, UltraLMD++ per-
forms best in terms of recall at fixed detection budgets, while Argus
performs best in terms of AUC and AP. In contrast, UltraLMD++ out-
performs Argus across all metrics when removing duplicate lateral
movement edges. The reason for this discrepancy is that we designed our de-
tector to treat edges that appear in both the short and long-term context graphs
as normal. As a consequence, even though lateral movement edges generally get
a high anomaly score on their first occurrence, they are then included in the
context graphs when they reoccur. However, since detecting a lateral movement
edge on its first occurrence is arguably good enough, this is not a major flaw.
Besides, even without deduplication, UltraLMD++ outperforms Argus with
respect to the recall at fixed detection budgets, which more closely mirrors the
constraints of real-world deployments. UltraLMD++ can thus be considered
more effective than Argus. Again, we emphasize that this level of performance
is reached using a GFM that was not trained for lateral movement detection.

The respective contributions of context graph retrieval and anomaly score
refinement to detection performance are more evenly distributed than in the
OpTC experiment. Adding either one of these components increases almost all
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Fig. 5. Evolution of the 90th, 99th, and 99.9th percentiles of the distribution of anomaly
scores over time on LANL, for Argus and UltraLMD++.

metrics, and adding both is even better, allowing UltraLMD++ to consistently
outperform Argus (whereas UltraLMD does worse than Argus by several
metrics). Overall, this demonstrates the usefulness of the two improvements we
bring to the original UltraLMD detector, further confirming that adequately
querying a pre-trained GFM has a significantly positive impact.
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Fig. 6. Run time per window
(mean and standard deviation)
of UltraLMD++ on LANL.

The evolution of the distribution of anomaly
scores over time and the scores of lateral move-
ment edges for Argus and UltraLMD++ are
displayed in Figure 5. The distribution re-
mains rather stable for UltraLMD++, ex-
cept for a downward trend in the first 400 win-
dows. This trend is expected: as more and more
past graphs become available, the context graphs
used for anomaly scoring become denser and
more similar to the current graph, thus the new
edges appear less and less anomalous. In contrast,
evidence of drift can be observed for Ar-
gus. In particular, the 99th and 99.9th percentiles of the distribution exhibit
a slight upward trend, suggesting that the model becomes less and less well-
adjusted to the data distribution as the new graphs start becoming less similar
to those in the training set. While this problem could typically be addressed by
retraining the model on more recent data, the need for frequent retraining is
impractical in real-world settings and can hinder the deployment of ML-based
detectors. The ability of UltraLMD++ to straightforwardly adapt to distribu-
tion shifts is therefore a significant upside.

Finally, Figure 6 shows the average run time of UltraLMD++ for a single
time window on LANL. Similarly to OpTC, the run time is low enough
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for UltraLMD++ to be run in real time (less than two minutes per one-
hour window). This time is also mostly spent on anomaly scoring. Overall, the
ability of UltraLMD++ to run in real time on a 16K-host enterprise network
using rather affordable hardware demonstrates the efficiency of GFMs, which are
typically orders of magnitude smaller than LLMs in terms of parameter count.
This efficiency is another upside of GFMs for cybersecurity-related applications,
which often deal with sensitive data and must therefore be run on premise.

5 Discussion

We now discuss the limitations of our work as well as its possible extensions and
implications for future research.

Future work on GFM-based lateral movement detection. First of all, Ultra-
LMD++ could still be improved in several directions. In particular, whether
fine-tuning a pre-trained GFM could improve detection performance re-
mains an open question. In that regard, a noteworthy aspect of Argus is that
it was trained with a specific loss function, which was shown to yield better
results [45]. Fine-tuning GFMs with carefully designed loss functions might thus
be a lead worth investigating. Future work could also focus on the retrieval
component of our detector: first, the similarity function could be improved so
that more relevant context graphs are retrieved. Secondly, a current limitation
of UltraLMD++ is that it needs to observe an entire graph in order to compute
its similarity to past graphs and score its edges. Malicious edges can thus only be
detected once the time window they fall into is over, which can be problematic in
time-critical situations. A possible solution could be to train a model to predict
which graphs are the most relevant at a given time, so that these graphs can
be retrieved in advance. This approach is similar to the one used by Gutflaish
et al. [17] to dynamically rescale anomaly scores in the context of user behav-
ior analysis. Finally, experimenting with other GFMs, such as the more
recently introduced TRIX [46], could also increase detection performance.

Further use of GFMs in cybersecurity. Beyond lateral movement detection, there
is significant potential for useful cybersecurity-related applications of GFMs. A
straightforward way to identify such applications is to consider past research on
using GNNs in this field. This includes host and network intrusion detection [4],
malware detection [5], and report analysis for cyber threat intelligence [14]. The
benefits brought by GFMs in such cases could be the following. First, by making
it possible to develop new applications without training any model, they could
accelerate innovation. In particular, lowering the required ML expertise would
allow more domain experts to build graph ML-based applications tailored to
their own needs. Secondly, in the specific case of intrusion detection, GNN-based
methods typically require training one model for each monitored network. This
model must also be regularly retrained to avoid concept drift. In contrast, our
experiments show that a single GFM can deliver high detection performance in
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several different enterprise networks without any retraining. GFMs could thus
make GNN-based intrusion detection more practical in real-world settings.
Finally, applications built upon GFMs would also directly benefit from future
research on these models: since no retraining is needed, substituting a new GFM
into an existing application to study its performance is straightforward.

GFMs and adversarial machine learning. Besides the aforementioned opportuni-
ties, the adoption of GFMs in cybersecurity would also come with potential risks.
Specifically, threats related to adversarial machine learning can be exacerbated
in foundation models. For instance, creating adversarial examples [52] against
an openly accessible GFM is easier than against a private, specifically tailored
GNN. Note, however, that crafting an adversarial example against GFM-based
detectors such as UltraLMD++ would require additional knowledge besides the
model itself—namely, since the anomaly scores depend on the context graph, the
adversary would also need access to the data used to build this context graph.
Risks related to adversarial examples thus depend on the application. Data poi-
soning [47] is another potential threat that becomes more serious when relying
on pre-trained models: ensuring that GFMs used in cybersecurity-related appli-
cations are trustworthy and were not trained on poisoned data would be critical.
Finally, if a GFM was trained specifically for cybersecurity applications and
made openly accessible, the confidentiality of its training data against model
inversion attacks [48] would be a legitimate concern. While none of these po-
tential threats definitely precludes the use of GFMs in the cybersecurity domain,
studying them remains instrumental to the adoption of GFM-based applications.

6 Conclusion

The emergence of graph foundation models could be a remarkable opportunity
for researchers and practitioners in cybersecurity. By removing the need to train
task-specific models, GFMs shift the focus onto other aspects of ML application
development, such as input construction and output post-processing. This focus
shift could both make it easier for domain experts to build applications relying
on graph machine learning, and make these applications more practical in real-
world settings. Through a detailed case study centered around lateral movement
detection, we provide evidence of this potential by demonstrating that a GFM-
based detector can outperform a more traditional approach that requires training
a GNN from scratch. These initial results call for further research on the use of
GFMs for cybersecurity. In particular, the numerous applications of GNNs in this
domain are straightforward starting points for follow-up research. Investigating
the effectiveness of GFM-based systems for these various use cases will in turn
enable a more thorough assessment of the impact of GFMs on the field at large.
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A Graph-Based Score Refinement Algorithm

The anomaly score refinement algorithm introduced in Section 3.4 is more for-
mally described below (Algorithm 1).

Algorithm 1: Graph-based anomaly score refinement.
Data: Graph G = (V, E ,R), score map s : E → R.
Result: Refined score map s.
foreach (u, r, v) ∈ E do

smax = max {s[(u′, r′, v′)]; (u′, r′, v′) ∈ E \ {(u, r, v)}, {u, v} ∩ {u′, v′} ̸= ∅};
if s[(u, r, v)] > smax then

s[(u, r, v)] = smax;
end

end
return s

B Additional Details on Dataset Preprocessing

As mentioned in Section 4.1, we make different preprocessing choices than the
authors of Argus [45]. We present and justify these choices for the OpTC and
LANL datasets in Sections B.1 and B.2, respectively.
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B.1 OpTC Dataset

We use the flow start events in the host logs to reconstruct internal network flows.
Only flows between internal hosts are included. This yields flows between IP
addresses, and we replace these IP addresses with hostnames whenever possible.
Specifically, when a flow start event on a host corresponds to a flow initiated
from this host, we can associate the source IP of the flow to the name of the host
which logged the event. However, since the host logs of only half of the hosts are
present in the OpTC dataset, we cannot resolve all IP addresses. We thus leave
the unresolved IP addresses as is. Regarding authentication events, we collect all
authentication-related events from all available hosts. These include both local
and remote log-ins, as well as privileges being granted to new sessions. Accounts
related to Desktop Window Manager and User Mode Driver Framework system
services (named DWM-* and UMFD-*, respectively) are excluded as they are
generated on the fly. The main difference between our preprocessing and that
of the Argus paper [45] lies in the labeling of lateral movement edges. Xu et
al. [45] use the same labeling strategy as Paudel and Huang [35], who label
all flows generated by compromised hosts after any red team event as lateral
movements. This excessively wide definition generates 21,731 lateral movement
edges. To make the evaluation more realistic, we manually labeled flow start
events that could be traced back to actual lateral movements documented in
the ground truth description of red team activity. With this approach, only 626
edges are labeled as lateral movements.

B.2 LANL Dataset

We use the auth.txt and flows.txt files of the LANL dataset as sources for
authentication events and internal network flows, respectively. The redteam.txt
file provides precise labels for lateral movement edges. Our preprocessing differs
from that of Xu et al. [45] in two key aspects. First, Xu et al. only consider log-ons
using the NTLM authentication package, arguing that other events are unrelated
to user authentication. This is factually incorrect, as many authentications are
performed using other authentication packages (such as Kerberos). In addition,
lateral movements in the LANL dataset happen to coincide with NTLM authen-
tication events. Excluding all other authentication packages thus makes lateral
movement detection easier, leading to overestimated detection performance. We
correct this mistake by including all log-on events into the dataset. The second
difference is the temporal scope of the evaluation: while Xu et al. only consider
the first 14 days, we include all 58 days. Since all red team events are located in
the first 30 days, restraining the scope to the first 14 days mechanically reduces
the proportion of benign edges in the dataset. Our preprocessing thus leads to
a harder, more realistic evaluation.
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