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Abstract—Item mining, a fundamental task for collecting
statistical data from users, has raised increasing privacy concerns.
To address these concerns, local differential privacy (LDP) was
proposed as a privacy-preserving technique. Existing LDP item
mining mechanisms primarily concentrate on global statistics, i.e.,
those from the entire dataset. Nevertheless, they fall short of user-
tailored tasks such as personalized recommendations, whereas
classwise statistics can improve task accuracy with fine-grained
information. Meanwhile, the introduction of class labels brings
new challenges. Label perturbation may result in invalid items for
aggregation. To this end, we propose frameworks for multi-class
item mining, along with two mechanisms: validity perturbation to
reduce the impact of invalid data, and correlated perturbation to
preserve the relationship between labels and items. We also apply
these optimized methods to two multi-class item mining queries:
frequency estimation and top-k item mining. Through theoretical
analysis and extensive experiments, we verify the effectiveness
and superiority of these methods.

Index Terms—Local differential privacy, Multi-class item min-
ing, Frequency estimation, Top-k item mining

I. INTRODUCTION

With the rise of big data analytics, item mining has become
essential for collecting valuable statistics to enhance model
performance [1]. During the data collection process, users’
private information may be at risk of exposure [2]. To ad-
dress this privacy concern, differential privacy [3] has been
widely employed to ensure rigorous privacy guarantees. Its
variant, namely local differential privacy (LDP), eliminates
the requirement of a trusted third party for distributed data
aggregation [4], [5], where local noise is added to users’
data before publication. The advent of LDP has enabled
rigorous privacy-preserving statistic estimation such as mean
and frequency [6]–[8], based on which item mining becomes
prevalent [9]–[12]. For instance, Google integrates RAPPOR
into Chrome browser to collect web data [6], and Apple
uses HCMS mechanism to gather emoji usage statistics from
keyboard inputs [7].

Existing item mining mechanisms under LDP primarily
focus on global statistics derived from the entire dataset. How-
ever, in many real-life applications in recommendation and
machine learning systems, statistics from specific “classes”
can provide fine-grained information and thus enhance task
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accuracy. The following two examples show the potential
applications of multi-class item mining.

• Shopping preference across user groups. Studies have
shown that personal attributes, such as gender and age,
reflect the shopping preference [13]–[16]. Consequently,
for recommendation systems, item statistics “grouped by”
these attributes are more precise than global statistics
derived from the entire dataset.

• Patients’ data for disease diagnosis. Machine learning
plays a critical role in early-stage disease diagnosis [17],
[18]. To identify disease symptoms, statistics from med-
ical test data need to be collected for model training.
Consequently, the collected data should be associated
with labels indicating whether the data belongs to a
healthy individual or a patient.

Therefore, accurately estimating the statistics of multi-class
items is crucial under LDP. In this paper, we formulate such a
problem, where each user holds a label-item pair that indicates
the item belongs to the class label. Our goal is to mine
classwise statistics from these label-item pairs under LDP. In
particular, we aim to gather the item statistics within each
class by aggregating label-item pairs from users using LDP
mechanisms.

An intuitive solution framework is to treat multi-class item
mining as a series of item mining tasks across different classes
by user partition [6], [11], [19]. Specifically, users are grouped
according to the number of classes, with each group mining
the items for a specific class. However, this framework has a
notable limitation: most users in each group may not possess
the target label, leading to a significant proportion of invalid
users.

In essence, the key challenge in multi-class item mining
lies in identifying the relationship between items and their
corresponding labels. To preserve such a relationship, we pro-
pose two new frameworks to perturb the label-item pairs. The
first framework perturbs the label-item pairs jointly through
expanding the perturbation domain to the Cartesian product
of the item and label domains. Then each label-item pair is
perturbed as a whole within this enlarged domain. In contrast,
the second framework perturbs labels and items separately.
However, using existing perturbation mechanisms on these
frameworks may still incur invalid data. For instance, the item
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becomes meaningless if the label is perturbed to other values.
To address this, we propose two perturbation mechanisms

to process invalid data and efficiently preserve the relationship
between items and labels. To mitigate the impact of invalid
data, we introduce validity perturbation mechanism, which
reduces the noise injected by invalid data. Based on this,
we propose correlated perturbation mechanism to effectively
preserve the relationship between labels and items by checking
the perturbed labels before item perturbation. We then apply
these optimized methods to multi-class item mining queries,
including frequency estimation and top-k item mining. Our
contributions are as follows:

• To the best of our knowledge, this is the first study
to address item mining in the multi-class context. To
preserve the relationship between labels and items, we
propose two foundational frameworks for aggregating
label-item statistics.

• To enhance the utility of the frameworks, we introduce
two optimized mechanisms as the perturbation module:
validity perturbation mechanism which reduces noise
injected from invalid data, and correlated perturbation
mechanism that maintains the label-item relationship dur-
ing perturbation.

• Leveraging on the proposed frameworks and mechanisms,
we explore two typical types of item mining queries.
We derive unbiased frequency estimations and propose
optimized methods specifically tailored for top-k item
mining. Theoretical analysis and extensive experiments
on both real-world and synthetic datasets show the effec-
tiveness of our approach.

The remainder of this paper is organized as follows. Sec-
tion II provides the preliminary on LDP and formulates the
problem. Section III presents two frameworks, followed by
the optimized mechanisms in Section IV. Section V provides
a theoretical comparison between our proposed mechanisms
and existing approaches. Section VI discusses two item mining
queries using the proposed methods. Section VII presents
the experimental results. Section VIII reviews the related
literature, and Section IX concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the fundamental concepts
of local differential privacy and the mechanisms used for
frequency estimation. Following this, we present a formal
problem definition.

A. Local Differential Privacy

Differential privacy (DP) was introduced as a privacy
measure technique with theoretical guarantee. The formal
definition is as follows.

Definition 1 (Differential Privacy [3]). Given any two neigh-
boring datasets D and D′ with one record difference, a
randomized mechanism A satisfies ϵ-differential privacy if
for all possible outputs S ⊆ Range(A), Pr[A(D) ∈ S] ≤
eϵ × Pr[A(D′) ∈ S], where ϵ is the privacy budget.

Differential privacy ensures that an adversary cannot distin-
guish between records from two neighboring datasets, effec-
tively concealing individual records within the overall dataset.
However, a trusted third party is required to aggregate user
data under DP, which may not be feasible in many real-world
scenarios. To this end, local differential privacy (LDP) [4], [5]
was introduced. In LDP, each user’s data is perturbed locally
before uploading to an untrusted third party, ensuring that
an adversary cannot distinguish between any two individual
reports. The formal definition of LDP is as follows:

Definition 2 (Local Differential Privacy [4], [5]). Given any
two inputs v and v′ from the domain, a randomized mechanism
A satisfies ϵ-local differential privacy if for all possible outputs
V ⊆ Range(A), Pr[A(v) ∈ V ] ≤ eϵ×Pr[A(v′) ∈ V ], where
ϵ is the privacy budget.

B. Statistical Estimations under Local Differential Privacy

Statistical estimations are fundamental tasks in the context
of LDP, including mean and frequency estimations [8], [9],
[12]. Specifically, the frequency of a value v in a given dataset
D is denoted as f(v) =

∑
vi∈D 1vi(v), where 1vi(v) is the

indicator function, which returns 1 if vi = v, and returns 0
otherwise.

One of the state-of-the-art mechanisms for frequency es-
timation under LDP, known as Optimal Unary Encoding
(OUE) [9], [20]–[22], consists of two steps, namely encoding
and perturbation.

• Encoding. Given an item v and the item domain
{1, 2, · · · , d} with size d, the item is encoded into a d-bit
vector B = [b1, b2, · · · , bd], where only bv = 1 and all
other bits are zero.

• Perturbation. Given a privacy budget ϵ, each bit B[i] at
position i will be perturbed to B′[i] as

Pr[B′[i] = 1] =

{
p = 1

2 if bi = 1

q = 1
eϵ+1 if bi = 0.

Another commonly used mechanism is Generalized Ran-
dom Response (GRR) [9]. Given an item v ∈ I with domain
size d and the privacy budget ϵ, v is perturbed to v′ as

Pr[GRR(v) = v′] =

{
p = eϵ

eϵ+d−1 v′ = v

q = 1
eϵ+d−1 v′ ∈ {I \ v}.

Wang et al. [9] proposed an adaptive mechanism that selects
either OUE or GRR based on item domain size d to minimize
variance: if d < 3eϵ + 2, GRR is chosen; otherwise, OUE is
chosen.

C. Problem Definition

Given a dataset D consisting of N users U =
{u1, u2, . . . , uN}, c classes C = {C1, C2, . . . , Cc}, and d
items I = {I1, I2, . . . , Id}, each user ui possesses a label-item
pair (C, I) where C ∈ C and I ∈ I. Note that the item domain
of each class is initially unknown. Given the dataset D, our
goal is to perform two specific item mining tasks in a multi-
class setting: frequency estimation and top-k item mining.



Definition 3 (Multi-class Frequency Estimation). Given a
dataset D composed of label-item pairs from N users, i.e.,
D = {(Cu1 , Iu1), (Cu2 , Iu2), · · · , (CuN

, IuN
)}, where each

user ui holds a label-item pair (Cui
, Iui

). The frequency
of an item I ∈ I within a class C ∈ C is denoted as
f(C, I) =

∑
ui∈U 1ui

(C, I), where 1ui
(C, I) is an indicator

function defined by

1ui
(C, I) =

{
1, if Cui

= C ∧ Iui
= I,

0, if Cui ̸= C ∨ Iui ̸= I.

The estimated frequency of a label-item pair (C, I) from a
mechanism A is said to be unbiased if E[A(C, I)] = f(C, I),
where E(·) denotes the expectation.

Definition 4 (Multi-class Top-k Item Mining). Given a
dataset D from N users holding label-item pairs, i.e., D =
{(Cu1

, Iu1
), (Cu2

, Iu2
), · · · , (CuN

, IuN
)}, an item I ∈ I is a

top-k item within a class C ∈ C if it is among the k most
frequent items within that class.

D. HEC: A Strawman Solution

In many item mining tasks, to avoid privacy budget alloca-
tion, user partition is commonly used, where users are divided
into groups, with each group focusing on mining a particular
item or set of items [6], [11], [19]. In our multi-class item
mining problem, a straightforward approach is to divide users
by class and aggregate item information within each class
independently.

Handling each class independently (HEC). The users are
divided into c groups corresponding to the number of classes.
Within each group, item statistics of the assigned class are
collected using an LDP mechanism with privacy budget ϵ. If
a user’s label does not match the assigned class, her item is
considered invalid for that class. To comply with the LDP
guarantee, she needs to randomly select an item from the item
domain to ensure deniability.

Although HEC enables multi-class item collection, its ef-
fectiveness is limited because only users with items in the
assigned class can contribute to item mining. This is especially
true when the domain size |I ′| = d is large, leading to a
substantial amount of invalid data.

III. FRAMEWORKS FOR MULTI-CLASS ITEM MINING

In multi-class item mining, it is crucial to consider class
information. With the introduction of class labels, it becomes
essential to maintain the relationship between a label and the
corresponding item in a label-item pair. In this section, we
present two frameworks specifically designed to preserve this
relationship.

A. Overview

We propose two foundational frameworks designed to main-
tain the intrinsic relationship between labels and items. The
first framework jointly perturbs the label and item (PTJ),
maintaining their inherent connection. The second framework
perturbs the label and item separately (PTS), followed by

consolidated aggregation. Fig. 1 illustrates both frameworks.
Initially, a label-item pair is fed into one of the frame-
works—either PTJ or PTS. Perturbation is then executed using
a mechanism including existing LDP mechanisms, validity
perturbation mechanism, and correlated perturbation mecha-
nism. After perturbation, the perturbed pair is transmitted to
the server for aggregation. Once all user data is aggregated,
the server compiles the classwise statistics.

…

Framework 1: PTJ

Framework 2: PTS

…
LDP 

Mechanism

LDP 
Mechanism

Classwise Statistics

Server
User

Fig. 1. The overview illustrates two frameworks for multi-class item mining.
The first framework, referred to as PTJ, treats a label-item pair as a whole
and perturbs it to another pair. The second framework, PTS, perturbs each
element separately.

B. Details of Frameworks

As previously discussed, the HEC framework neglects the
class information, leading to a significant amount of invalid
users due to mismatched labels. To this end, an alternative
approach treats the label-item pair as a cohesive unit, and then
jointly perturbs the entire pair.

Perturbing the pair jointly (PTJ). Given the label do-
main C = {C1, C2, . . . , Cc}, and the item domain I =
{I1, I2, . . . , Id}, the perturbation domain is defined as the
Cartesian product P = {(C1, I1), (C1, I2), · · · }, with size
|P| = c × d. Each user, holding a label-item pair, perturbs
her pair using an LDP mechanism with privacy budget ϵ over
the perturbation domain P . After aggregating all the perturbed
pairs, the item information within each class can be inferred.

When either the label domain or the item domain is large,
the size of the perturbation domain increases significantly,
leading to high communication or computation cost [9]. To
mitigate this, an alternative approach is to perturb the label
and item separately.

Perturbing the pair separately (PTS). For a user ui

holding a label-item tuple (C, I), the label is first perturbed
via an LDP mechanism with part of the privacy budget ϵ1.
Similarly, the item is perturbed using an LDP mechanism with
the remaining privacy budget ϵ2.

Within these frameworks, existing perturbation mechanisms
still suffer from invalid data in item mining tasks. For instance,
the class label may be perturbed to other classes, resulting in
an invalid item for that class. To enhance the utility of multi-
class item mining, it is imperative to optimize perturbation
mechanisms to process invalid information and account for the
label-item relationship throughout the perturbation process.

IV. OPTIMIZED PERTURBATIONS

In this section, we introduce the validity perturbation to
process data including invalid items. Building on the validity
perturbation, we propose the correlated perturbation to further
preserve the label-item relationship during the perturbation



process. In the interest of space, the proofs in this section
are included in our technical report [23].

A. Validity Perturbation Mechanism

In this subsection, we propose the validity perturbation
mechanism based on the Unary Encoding (UE) [9] mechanism.
To process invalid items, an intuitive approach is to randomly
select a valid item to replace the invalid one for perturbation
and aggregation [24], [25]. However, such random noise
can distort the aggregated statistics of valid items, resulting
in utility degradation. To address this, we should exclude
those invalid items in the aggregation process. Specifically,
we first privately publicize item validity, and then omit the
invalid items. To avoid consuming an extra privacy budget
for item validity, we integrate a validity flag into the UE
mechanism to process invalid items. Both the validity flag and
items are perturbed simultaneously. The validity perturbation
mechanism consists of encoding and perturbation.

Encoding. As shown in Fig. 2, given an item v with domain
size d, if the item is valid, Encode(v) = [0, · · · , 0, 1, 0, · · · , 0]
is a (d + 1)-length binary vector with the v-th position set
to “1”. Conversely, if the item is invalid, Encode(v) =
[0, · · · , 0, 0, 0, · · · , 1] is a (d + 1)-length binary vector with
the last position set to “1”.

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

Validity Flag

Valid Item

Invalid Item

Encoded Bits

Fig. 2. An illustration for encoding scheme. For a valid item, the encoded
bits from UE are padded with a validity flag “0”. Conversely, for an invalid
item, all encoded bits are set to “0”, and the validity flag is set to “1”.

Perturbing. Given the encoded binary vector B =
Encode(v), the output B′ from the perturbation Perturb(B)
follows the same process as the UE mechanism [9]. For any
position i in B,

Pr[B′[i] = 1] =

{
p, if B[i] = 1

q, if B[i] = 0.
(1)

Theorem 1. (Privacy of Validity Perturbation Mechanism)
The validity perturbation mechanism satisfies ϵ-LDP for ϵ =
ln p(1−q)

(1−p)q [9].

In this paper, the perturbation probabilities in Eq. (1) are set
the same as the Optimized Unary Encoding (OUE) mechanism
for a convenient comparison with other LDP mechanisms, i.e.,
p = 1

2 , q = 1
eϵ+1 , where ϵ represents the privacy budget [9]. A

utility analysis of the validity perturbation mechanism is pre-
sented in Section V. We use the noise injected by invalid users
as the utility metric [26]. The theoretical results demonstrate
the superiority of the validity perturbation mechanism.

With validity perturbation, we can effectively manage in-
valid data and reduce its impact. Based on this, we introduce
the correlated perturbation, which preserves the relationship
between labels and items during the perturbation process.

B. Correlated Perturbation Mechanism

In this subsection, we present the correlated perturbation
mechanism. In multi-class item mining, the label and item are
paired, exhibiting their inherent correlation. When the label is
perturbed, the item should be changed accordingly, or labeled
as noise to avoid unexpected influence. Therefore, the labels
and the items should be perturbed in a correlated manner.
Specifically, we can perturb the label first, and then perturb the
item according to the label’s perturbation result. If the label
differs from its original value, the item becomes invalid and
must be excluded from the aggregation result. For the purpose
of LDP guarantee, an extra privacy budget is required to learn
the condition of the perturbed label — whether the perturbed
label matches its original value. To save privacy budget, we
adopt the validity perturbation mechanism, using the label
condition as the validity flag. Based on this, we propose the
correlated perturbation mechanism as follows.

Given a label-item pair from a user with the class label
C ∈ C (C = {C1, C2, · · · , Cc}) and the item I ∈ I
(I = {I1, I2, · · · , Id}), the perturbation process consists of
label perturbation and item perturbation phases, where the total
privacy budget ϵ is divided into ϵ1 for label perturbation and
ϵ2 for item perturbation, such that ϵ = ϵ1 + ϵ2. In this paper,
we set ϵ1 = ϵ2 = ϵ

2 .
Label Perturbation. For a given class label C and privacy

budget ϵ1, the label is perturbed by Φ with privacy budget ϵ1
such that

Pr[Φ(C) = C ′] =

{
p1 if C ′ = C

q1 if C ′ ∈ C\{C},
(2)

where Φ is an LDP mechanism, such as the Generalized Ran-
dom Response (GRR) mechanism, and the ratio is p1/q1 ≤ ϵ1
for LDP guarantee.

Item Perturbation. If the perturbed label differs from
its original value, the item is marked as invalid; otherwise,
the item is valid and the validity perturbation mechanism is
applied to perturb the item with the privacy budget ϵ2. For a
given item I from the item domain I with size d, and privacy
budget ϵ2, the item will be first encoded to a bit vector B with
length d + 1 according to the validity. Any position j of B
after encoding is denoted as

B[j] =

{
1 if (j = I ∧ C ′ = C) ∨ (j = d+ 1 ∧ C ′ ̸= C)

0 Otherwise.

Given the encoded bit vector B, any bit B[j] ∈ B will be
flipped via the OUE perturbation mechanism Ψ with privacy
budget ϵ2 [9],

Pr[Ψ(B[j]) = 1] =

{
p2 if B[j] = 1

q2 if B[j] = 0,
(3)

where p2 = 1
2 and q2 = 1

eϵ2+1 .

Theorem 2. (Privacy of Correlated Perturbation Mechanism)
The correlated perturbation mechanism satisfies ϵ-LDP.

In certain item mining tasks, an unbiased frequency estima-
tion is required [9]. In the following, we present the calibration



on correlated perturbation mechanism to obtain the unbiased
result. Given the collected count f̃(C, I) of a label-item pair
(C, I) aggregated from N users, the calibrated result is

f̂(C, I) =
f̃(C, I)−Nq1q2(1− p2)

p1(1− q2)(p2 − q2)

− n̂q2[p1(1− q2)− q1(1− p2)]

p1(1− q2)(p2 − q2)
,

(4)

where p1, q1, p2, and q2 are the perturbation probabilities in
Eqs. (2) and (3). Additionally, n̂, representing the unbiased
frequency estimation of users with label C, is derived by n̂ =
ñ−Nq1
p1−q1

, where ñ is the collected count of users with label C.

Theorem 3. The calibrated frequency f̂(C, I) is unbiased.

V. UTILITY ANALYSIS

In this section, we theoretically analyze the utility of the
proposed mechanisms, validity perturbation and correlated
perturbation, to demonstrate their superiority. In the interest of
space, the proofs in this section are included in our technical
report [23].

A. Utility Analysis for Validity Perturbation Mechanism

As aforementioned, the validity perturbation mechanism is
to mitigate the impact of invalid data. We use the noise injected
by invalid data as the utility metric [26]. The uploaded item
from an invalid user can be regarded as a random injection. For
instance, the item domain is narrowed down during the mining
process, and infrequent items may be pruned. An invalid user
is the one who possesses an infrequent item that has been
pruned. To comply with LDP, the invalid user randomly selects
a valid candidate for deniability [24], [25]. The injected noise
can be derived as follows.

Theorem 4. Given the valid item domain size d and the
number of invalid users m, the noise injected into a valid
item from an LDP mechanism is Enoise = mq + 1

dm(p− q),
and the variance of the injected noise is Varnoise = mq(1 −
q)+ m

d (p− q)(1− p− q), where p and q are the perturbation
probabilities set by an LDP mechanism.

Similarly, the injected noise of the validity perturbation can
be expressed as follows.

Theorem 5. Given the valid item domain size d and m invalid
users, the noise injected on a valid item via the validity pertur-
bation mechanism is Enoise = mq(1−p), and the variance of
the injected noise is Varnoise = mq(1−q)−mpq(1+pq−2q),
where q is the probability in Eq. (1).

Clearly, the validity perturbation mechanism reduces the
injected noise on valid items from invalid users. The utility
of the validity perturbation mechanism is superior to that of
the OUE mechanism as a comparison [9], and by extension, it
outperforms the other LDP mechanisms in processing invalid
data.

B. Effectiveness of Validity Perturbation

Since the validity perturbation mechanism affects the pertur-
bation results on both valid and invalid users, its effectiveness
still needs to be evaluated. We first derive the expectation
and variance of the collected counts using LDP mechanisms,
and then compare these with the corresponding values derived
from the validity perturbation mechanism.

Theorem 6. Given that N1 users hold the target item, N2

users hold the other items in the valid item domain with size
d, and m users hold the invalid items. For an LDP mechanism,
the count expectation of the target item is

E(count) = N1p+N2q +
m

d
p+m(1− 1

d
)q

= N1p+N2q +mq +
m

d
(p− q).

Correspondingly, the variance is

Var(count) = N1(p− p2) +N2(q − q2) +m(q − q2)

+
m

d
(p− q)(1− p− q).

Similarly, the expectation and the variance of the validity
perturbation mechanism can be derived as follows.

Theorem 7. Suppose N1 users hold the target item, N2

users hold the other items in the valid item domain with the
size d, and m users hold the invalid items. For the validity
perturbation mechanism, the count expectation of the target
item is
E(count) = N1p · (1− q) +N2q · (1− q) +mq · (1− p)

= (1− q)(N1p+N2q +mq −mq
p− q

1− q
).

And the variance is
Var(count) = N1(p− p2 + 2p2q − pq − p2q2)

+N2(q − 2q2 + 2q3 − q4)

+m(q − q2 + 2pq2 − pq − p2q2).

To compare the validity perturbation mechanism with LDP
mechanisms with invalid data, we use the Optimized Unary
Encoding (OUE) mechanism as a comparison [9]. In terms of
expectations, the validity perturbation mechanism is preferable
because it introduces less noise. Although the expectation
is scaled, the counts of all items are scaled consistently,
preserving the rank orders. Regarding variance, the difference
between the validity perturbation mechanism and the OUE
mechanism can be expressed as follows:

N1(2p
2q − pq − p2q2) +N2(2q

3 − q2 − q4)

+m(2pq2 − pq − p2q2)− m

d
(p− q)(1− p− q)

=N1pq(2p− 1− pq) +N2q
2(2q − 1− q2)

+mpq(2q − 1− pq)− m

d
(p− q)(1− p− q),

which is always smaller than 0. Namely, the validity perturba-
tion mechanism is better than the OUE mechanism to process
data with invalid ones, thereby it is also better than the other
LDP mechanisms.



C. Utility Analysis for Correlated Perturbation

In this section, we analyze the utility of the correlated per-
turbation mechanism with unbiased calibration for frequency
estimation. To demonstrate the superiority of the correlated
perturbation mechanism, we compare its variance with other
LDP mechanisms to perturb the label-item pair. We first
derive the variance of the correlated perturbation mechanism
as follows.

Theorem 8. The variance of the estimated frequency f̂(C, I)
in Eq. (4) is

V ar[f̂(C, I)] =
f(C, I)p1(1− q2)p2 [1− p1(1− q2)p2]

[p1(1− q2)(p2 − q2)]
2

+
(n− f(C, I))p1(1− q2)q2 [1− p1(1− q2)q2]

[p1(1− q2)(p2 − q2)]
2

+
(N − n)q1(1− p2)q2 [1− q1(1− p2)q2]

[p1(1− q2)(p2 − q2)]
2

+

[
q2 [p1(1− q2)− q1(1− p2)]

p1(1− q2)(p2 − q2)

]2
× n [p1(1− p1)− q1(1− q1)] +Nq1(1− q1)

(p1 − q1)2
,

(5)
where p1, q1, p2 and q2 denote the perturbation probabilities
in Eqs. (2) and (3). Additionally, n represents the true number
of users with label C, and N refers to the total number of
users.

Variance analysis. Our investigation focuses on two critical
aspects: the correlation strengths between labels and items,
and the class distribution. To quantify label-item correlations,
we employ pointwise mutual information (PMI) [28], defined
as PMI(C; I) = log2

p(C,I)
p(C)p(I) , where p(C, I) denotes the

joint probability of the label-item pair (C, I), while p(C)
and p(I) represent marginal probabilities of labels and items,
respectively. A larger PMI indicates a stronger correlation
between the label and the item. When p(C) and p(I) are fixed,
we have PMI(C; I) ∝ f(C, I). Since the variance in Eq. (5)
is proportional to f(C, I), it follows that V ar[f̂(C, I)] ∝
PMI(C; I). Note that the variance equation exhibits complex
structure. We numerically estimate the variable coefficients,
which depend on the dataset, under varying epsilon values to
analyze variance dynamics. The coefficients are in Table I.
Crucially, f(C, I) is always much smaller than class amount
n and data amount N , so that the coefficients of f(C, I) in
Table I cannot offset orders of magnitude differences. This
magnitude disparity explains why correlation variations are
concealed in variance analysis. The impact of class amount
n on variance can be analyzed in a similar manner. With
fixed label-item pair frequency f(C, I) and data amount N ,
we establish V ar[f̂(C, I)] ∝ n, revealing that class diversity
expansion directly amplifies variance. These theoretical pre-
dictions are empirically validated in Section VII.

Similarly, the unbiased frequency estimation of a label-item
pair and its corresponding variance under LDP mechanisms
can be derived as follows.

TABLE I
COEFFICIENTS OF VARIABLES IN V ar[f̂(C, I)]

ϵ 0.5 1 1.5 2 2.5 3 3.5 4
f(C, I) 87.4 32.9 17.1 10.3 6.8 4.9 3.7 2.9

n 213.8 58.9 22.8 10.5 5.4 3.0 1.8 1.1
N 441.8 53.3 12.0 3.6 1.3 0.5 0.2 0.1

Theorem 9. Given a dataset D consisting of N users holding
label-item pairs, using an LDP mechanism for label perturba-
tion with probabilities p1 and q1, and an LDP mechanism for
item perturbation with probabilities p2 and q2, the estimated
frequency f̂(C, I) of an item I within a class C is given by:

f̂(C, I) =
f̃(C, I)− n̂q2(p1 − q1)

(p1 − q1)(p2 − q2)

−
∑

Ci∈C f̂(Ci, I)q1(p2 − q2) +Nq1q2

(p1 − q1)(p2 − q2)
,

(6)

where f̃(C, I) represents the collected count of the target
label-item pair (C, I), and∑

Ci∈C
f̂(Ci, I) =

∑
Ci∈C f̃(Ci, I)−Nq2

p2 − q2

is the unbiased frequency estimation of the item I , where∑
Ci∈C f̃(Ci, I) is the collected count of the item I . Addi-

tionally, n̂, the unbiased frequency estimation of users with
label C, is given by: n̂ = ñ−Nq1

p1−q1
, where ñ is the collected

count the label C.

To compare the variance between the correlated perturbation
and state-of-the-art LDP mechanisms, we use the OUE mecha-
nism as a representative LDP mechanism for item perturbation
and GRR for label perturbation [9].

Theorem 10. Given the dataset D with data amount N , item
domain I and class domain C, the label-item pair frequency
f(C, I), the class amount n, the difference of the variances
of the estimated frequency f̂(C, I) in Eq. (6) and Eq. (4) can
be derived as

V ar[f̂(C, I)]GRR+OUE − V ar[f̂(C, I)]CP >

(n− f(C, I))p21q
2
2(1− q2)

2 + (N − n)q1q2p2(1− q1q2)
2

[p1(1− q2)(p2 − q2)]2

+ [
q1q2(1− p2)

p1(1− q2)(p2 − q2)
]2
np1(1− p1) + (N − n)q1(1− q1)

(p1 − q1)2

+ [
q1

(p1 − q1)(p2 − q2)
]2[

∑
Ci∈C

f(Ci, I)p2(1− p2)

+ (N −
∑
Ci∈C

f(Ci, I))q2(1− q2)].

Finally, we discuss the utility of the PTS framework with the
correlated perturbation and the PTJ framework with an LDP
mechanism. Since the PTJ framework consumes the whole
privacy budget, integrating OUE into the PTJ framework im-
proves the utility compared with the PTS framework with the
correlated perturbation. However, the communication cost in
the PTJ framework increases significantly due to the enlarged



perturbation domain, which combines all labels and items.
Consequently, the PTJ framework is not suitable for scenarios
with a large label domain or item domain due to its high
communication cost [9].

VI. QUERIES FOR MULTI-CLASS ITEM MINING

To demonstrate the usability of our framework for multi-
class item mining, we implement it for multi-class frequency
estimation in Section VI-A and multi-class top-k item mining
in Section VI-B, respectively.

A. Multi-class Frequency Estimation

Many machine learning models, such as the decision tree,
rely on frequency information to build models [29], [30]. To
protect users’ private information when building the model, a
privacy-preserving approach for multi-class frequency estima-
tion is essential. Building upon the foundational frameworks
— HEC, PTJ, and PTS, we derive the corresponding unbiased
frequency estimations within the multi-class context under
LDP.

• Frequency estimation under HEC. Given a dataset
D consisting of N users, with c classes C =
{C1, C2, · · · , Cc} and d items I = {I1, I2, · · · , Id}. The
users are divided into c groups, each group is responsible
for aggregating one class. For each user holding a label-
item pair, an LDP mechanism is employed to perturb the
item with a privacy budget ϵ. If a user’s label does not
match the assigned class, she randomly selects an item
from the item domain for perturbation to ensure denia-
bility. The unbiased frequency of a label-item pair (C, I)
is then derived as follows: f̂(C, I) = cf̃(C,I)−Nq

p−q , where
p and q are the corresponding perturbation probabilities
of the LDP mechanism.

• Frequency estimation under PTJ. Given the same
dataset illustrated above. Each user perturbs her label-
item pair using an LDP mechanism with privacy budget
ϵ over the perturbation domain P = {(C, I) | C ∈
C, I ∈ I}. After aggregating all the perturbed pairs, the
unbiased frequency for a pair (C, I) can be inferred as:
f̂(C, I) = f̃(C,I)−Nq

p−q , where p and q are the correspond-
ing perturbation probabilities of the LDP mechanism.

• Frequency estimation under PTS. For a label-item pair
(C, I) from a user, the label is first perturbed via an
LDP mechanism with the privacy budget ϵ1, and the item
is perturbed with the remaining privacy budget ϵ2. The
unbiased estimated frequency is derived in Eq. (6).

• Frequency estimation under PTS with the correlated
perturbation. For a user with a label-item pair (C, I),
the pair is perturbed via the correlated perturbation with
the privacy budget ϵ, which perturbs the item based on
the perturbed label. The unbiased frequency is derived in
Eq. (4).

Complexity analysis. Given the class domain size c, item
domain size d, and data amount N , we consider the OUE as
the LDP mechanism [9]. The communication cost for each

user of HEC, PTS, and PTS-CP is O(d); while for PTJ,
it is O(cd) with an enlarged perturbation domain including
combinations of both items and labels. The time complexities
of the HEC, PTS, and PTS-CP mechanisms are O(d) on the
user side, and O(Nd) on the server side. While the time
complexity of PTJ is O(cd) on the user side and O(Ncd)
on the server side. As for the space complexity, the HEC,
PTS, and PTS-CP require O(d) space on the user side, while
the server side requires O(cd) space. On the other hand, the
PTJ requires O(cd) space on both the user and server sides.

B. Multi-class Top-k Item Mining

In this subsection, we first elaborate on two issues in
the existing top-k item mining schemes and then propose
corresponding solutions. Finally, we present our scheme for
multi-class top-k item mining.

Existing issues and our solutions. The top-k item mining
is an essential task to identify top frequent items with a large
item domain. Many top-k item mining schemes under LDP use
a prefix trie to collect item frequencies [24], [25], [31]. We
take the state-of-the-art method, PEM [24], as an example to
demonstrate the prefix trie-based schemes under LDP. Under
PEM, items are encoded into bits, converting the top-k item
mining problem into a frequent sequence mining task. The
trie progressively expands from shallow to deeper levels, as
the server collects prefix frequencies and prunes infrequent
ones to identify longer frequent prefixes. However, this mining
scheme can produce false positive prefixes, and also introduce
invalid data during pruning.

• False positive prefixes. While prefix expansion is based
on plausible insights, it is not always reliable, as fre-
quent prefixes do not necessarily correspond to frequent
sequences [32]. The prefix trie may yield false positives,
identifying prefixes that appear frequent but are not
truly among the top sequences, which potentially causes
genuine top items to be overlooked. An example without
LDP noise is illustrated in Fig. 3, where the most frequent
item ‘000’ is eventually missed as its prefix ‘0’ is less
frequent than ‘1’ in the upper layer. To mitigate the
generation of such false prefixes, a viable approach is to
decouple prefix groups to reduce specific combinations,
for which shuffling is particularly effective. To reduce
the communication cost, only the random seeds and the
bucket states for pruning are sent to users rather than the
entire set of the shuffled candidates. The shuffling process
is illustrated in Fig. 4.

• Invalid data during pruning. Besides introducing false
positive prefixes, existing schemes also neglect the impact
of invalid data. As the pruning process progresses, more
and more items are excluded from the candidate set,
resulting in invalid data. When encountering invalid data,
PEM substitutes it with a randomly selected item [24].
To reduce the impact of invalid data, we apply validity
perturbation.

Multi-class top-k item mining scheme. For multi-class
context, in addition to the shuffling method and validity per-
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Algorithm 1 Candidate generation.

Input: Dataset D, ϵ, k, item domain size d, class number |C|, a
constant a

1: Obtain the iteration number IT = log2
d
4k

+ 1
2: # Use a · |D| data to conduct the first ITf iterations
3: for Iteration it ≤ ITf do
4: Shuffling and split the item candidates into 4 · k · |C| buckets

using the given random seeds and bucket states
5: Process each user’s item: it is valid if the item is in the pruned

candidate set; otherwise, it is invalid.
6: Perturb the item with ϵ2 via the validity perturbation and

perturb the label via an LDP mechanism using ϵ1
7: Remain top 2 · k · |C| buckets as candidates for next iteration
8: # Assess the injected noise for each class
9: Estimate user amount |D′

C | for each class from perturbed labels
to indicate injected noise levels

10: Return the candidates and noise level for each class

turbation, we leverage globally frequent items across classes
to enhance utility. We present the details of the PTS-based
scheme below with an illustration in Fig. 4. Note that the PTJ-
based scheme can be implemented in a similar way, using the
shuffling method and validity perturbation mechanism.

• Step 1: Candidate generation. In general, classwise
top-k items are also frequent items among the entire
dataset. That is because those top frequent items within a
class are typically shared among different classes, such as
popular goods common to all age groups. Consequently,
we can use items from a small group of users sampled
from the entire dataset (with parameter a in Algorithm 1
Line 2 controlling the sample proportion) to mine item
candidates including these globally frequent items during
the initial iterations. Meanwhile, the perturbed labels can
be used to assess the noise level in each class. If the
injected noise is too large — specifically, if it exceeds
b times the estimated class size (Algorithm 2 Line 8)
— the amount of valid data may be insufficient for
accurate estimation, rendering the correlated perturbation
mechanism infeasible. In such a class, only the validity
perturbation mechanism is applied. Note that only the
PTS framework can benefit from the globally frequent
items. Details are in Algorithm 1.

• Step 2: Top-k item mining within each class. After ob-
taining the candidates and noise level, the remaining users
are assigned to each class for classwise top-k item mining
based on their perturbed labels. As iterations progress,
the proportion of valid data decreases. In the later stages,

Algorithm 2 Top-k item mining within each class.

Input: Dataset DC , ϵ2, k, the estimated user amount |D′
C |, the

remaining iteration number ITr , a constant b, the candidates
from Algorithm 1

1: # Process the first ITr − 1 iterations
2: for Iteration it ≤ ITr − 1 do
3: Shuffling and split the item candidates into 4 · k buckets with

a given random seed
4: The same steps as Algorithm 1 Line 5
5: Perturb item with ϵ2 via the validity perturbation mechanism

6: Remain top 2 · k· buckets as pruned items for next iteration
7: # Process the last iteration
8: If the collected user amount |DC | > b·|D′

C |, only apply validity
perturbation mechanism in the last iteration

9: Choose the mechanism from the validity perturbation mechanism
and correlated perturbation mechanism according to the noise
level

10: Return the top-k items according to the aggregation

most of the data becomes invalid due to candidate pruning
and label perturbation. To accommodate the decrease of
valid data, correlated perturbation is applied only in the
final iteration to identify classwise top frequent items,
while the validity perturbation mechanism is adopted in
other iterations. The details of this step can be found in
Algorithm 2.

Complexity analysis. Given the class domain size c, item
domain size d, and data amount N , we use the GRR mecha-
nism for label perturbation and the OUE mechanism for item
perturbation [9], the communication cost is measured for each
user. The mining scheme for the fundamental frameworks is
PEM, and the extending length in each iteration is m [9]. The
costs are summarized in Table II.

TABLE II
COMPLEXITY ANALYSIS

Communication Time Space
HEC
PTS

O(2mk log d)
O(2mk) O(2mk log d)

O(2mk[c(m + log k) log d
m + N ]) O(2mck log d)

PTJ O(2mck log cd)
O(2mck) O(2mck log cd)

O(2mck[(m+log ck) log cd
m +N ]) O(2mck log cd)

PTJ† O(ck)
O(ck) O(cd)
O(ck(log ck log d

k + N)) O(cd)

PTS† O(ck)
O(ck) O(d)
O(ck(log ck log d

k + N)) O(cd)
† represent the optimized methods, with the first line of each row showing the

user-side results and the second line showing the server-side results.

VII. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance of
the three frameworks, HEC, PTJ, and PTS, and the optimized
methods for item mining tasks. All methods are implemented
in Python 3, and each experiment is averaged from 20 trials‡.

A. Datasets

We conduct the experiments over six datasets including both
real-world datasets and synthetic datasets.

‡ Our code is at github.com/Abigail-MAO/Multi-class-Item-Mining
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Fig. 4. Each user receives random seeds and bucket states to generate a current shuffled result before perturbing her label-item pair. The choice of perturbation
mechanism depends on the aggregation goal described in Algorithms 1 and 2.

• Comprehensive Diabetes Clinical Dataset.
1

It is col-
lected from 100,000 individuals for diabetes research, in-
cluding eight features. And continuous values are rounded
to one decimal place, with the largest feature domain
containing about 600 items.

• Heart Disease Health Indicator Dataset.
2

This dataset
includes 253,680 cleaned survey responses from BRFSS
2015, primarily for binary heart disease classification. It
contains 21 categorical features, with the largest item
domain being 84.

• MyAnimeList Dataset.
3

This dataset contains informa-
tion on anime viewing habits, comprising around 116,000
users, 14,000 anime titles, and 35 million records. We
treat gender and watched anime as label-item pairs,
mining the top anime titles across different gender groups.
We sample 20% data for experiments.

• JD Contest Dataset.
4

This dataset from JD.COM con-
tains sale records about 28,000 items. We utilize the five
age groups (below 25, 26-35, 36-45, 46-55, and above
56) and treat the age group as the label, resulting in 45
million valid item-label pairs. A 20% sample is used for
experiments.

• Synthetic Datasets. We generate four datasets: SYN1
and SYN2 are used for variance analysis, while SYN3
and SYN4 are employed to study the effect of varying
class numbers, ranging from 10 to 50. To control f(C, I),
n, and N , SYN1 and SYN2 are generated with four
classes, four items, and label-item pair amounts of 1,000,
10,000, 100,000, and 1,000,000. SYN1 fixes the class
amount n to investigate correlation strength varying,
while SYN2 fixes one label-item pair frequency f(C, I)
across the classes to examine the impact of the class
distribution. SYN3 and SYN4 contain 20,000 items and
five million instances, the data size of each class satisfies
the normal distribution. Within each class, the items are
drawn from the exponential distribution with the scale
from 0.01 to 0.1. SYN3 is simulated based on real-world
datasets and includes globally frequent items, with an
average of eight overlapping items among the top 20
items between any two classes. In contrast, SYN4 is

1kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
2kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset
3kaggle.com/datasets/azathoth42/myanimelist
4kaggle.com/datasets/pwang001/jjingdong-contest-dataset

generated using the same method but excludes globally
frequent items.

We use the Diabetes and Heart Disease datasets for the
frequency estimation task. To align with our problem setting
where each user holds a label-item pair, we calculate label-
item frequency within each feature by dividing users into
groups, with each group focusing on a single feature to
mine corresponding label-item pairs. Moreover, we assess the
performance of top-k item mining using the Anime and JD
datasets, while the two synthetic datasets are used to analyze
the impact of varying class numbers.

B. Metrics

For frequency estimation, we apply root mean square error
(RMSE) to measure the difference between the estimated
frequency f̂(C, I) of label-item pairs and the ground truth
f(C, I),

RMSE =

√
1

|C| · |I|
∑
C∈C

∑
I∈I

(f̂(C, I)− f(C, I))2,

where C is the class domain, I is the item domain, and |·|
denotes the set size.

To compare the mined top-k items Im with the ground
truth Ig = {Ig1 , I

g
2 , · · · , I

g
k} within each class, we use the

same metrics as in PEM [24]: F1 Score [33] and Normalized
Cumulative Rank (NCR) [34]. Notably, since precision equals
recall in this context, the F1 Score evaluates the ratio of mined
true positive items. The NCR measures the quality of the
mined items and is defined as NCR =

2
∑

Ii∈Im q(Ii)

k(k+1) , where
q(Ig1 ) = k, q(Ig2 ) = k−1, · · · , q(Igk ) = 1. To obtain an overall
assessment, we average the F1 Score and NCR across the
classes.

C. Variance Analysis

To investigate the impact of label-item correlations on
variance, we conduct experiments on the SYN1 dataset. We fix
item amount and class amount (f(I) = n = 1.111×106), and
vary label-item frequencies (f(C, I) ∈ {103, 104, 105, 106})
in each class. The variance is computed as V ar[f̂(C, I)] =
1
t [f̂(C, I)−f(C, I)]2 [9] with ϵ = 1 and experimental time t =
1000. And correlation strength measure PMI [28] is calculated
according to f(C, I) within one class. PTS refers to the frame-
work PTS with GRR and OUE, while PTS-CP denotes the



PTS framework with our improved mechanism, the correlated
perturbation (CP). As shown in Fig. 5(a), despite the increase
in PMI, the observed variance exhibits negligible variation,
empirically confirming that changes in correlation strength are
concealed in variance due to the dominance of class amount
n and data amount N . To examine class distribution effects,
we utilize the SYN2 dataset with fixed label-item frequency
f(C, I) = 104 for an item across the classes, and varying class
amount n ∈ {1.3×104, 2.11×105, 1.21×106, 3.01×106}. As
shown in Fig. 5(b), the results demonstrate a strong positive
correlation between class amount n and variance magnitude.
These quantitative relationships directly validate the theoretical
analysis derived in Section V-C.
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Fig. 5. Empirical variance analysis.

D. Results of Frequency Estimation
For frequency estimation, the multi-class item mining

frameworks incorporate the state-of-the-art mechanism, the
adaptive mechanism, which adaptively runs OUE and GRR
according to the item domain size d [9]. Specifically, if
d > 3eϵ + 2, OUE is employed to decrease the variance. The
HEC and PTJ frameworks use the adaptive mechanism. In the
PTS framework, where the label domain is small and the item
domain is large, GRR is applied for label perturbation, while
OUE is used for item perturbation. Since PTJ does not produce
any invalid data in this task, the correlated perturbation can
only be integrated with the PTS framework (designated as
PTS-CP), where the privacy budgets are set as ϵ1 = ϵ2 = ϵ/2.
The details have been derived in Section VI-A. Comparative
results are presented in Fig. 6.
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Fig. 6. RMSE from two real-world datasets with varying privacy budget ϵ.

As shown in Fig. 6, PTJ and PTS significantly outperform
HEC. Correlated perturbation (PTS-CP) notably enhances util-
ity compared with the PTS framework, particularly when the
privacy budget ϵ is small. As the privacy budget increases,
label perturbation results in fewer instances of invalid data,
further improving the utility of PTS. PTJ, in particular, per-
forms the best on the Diabetes dataset, benefiting from the
utilization of the whole privacy budget and the OUE mech-
anism [9]. However, despite this advantage, PTJ incurs the
highest communication load due to its expanded perturbation
domain that combines both label and item domains.

E. Results of Top-k Item Mining

In this section, we present the results of top-k item min-
ing. For comparison, we employ the state-of-the-art top-k
item mining scheme, PEM [24], on multi-class item mining
frameworks, compared with our optimized methods, including
validity perturbation (VP), correlated perturbation with the
globally frequent items (CP), and the shuffling method tailored
for top-k mining scheme (Shuffling). As for the parameters,
we empirically set ϵ1 = ϵ2 = ϵ/2, and ITf = int(IT/2) in
Algorithms 1 and 2. We choose a = 0.2, meaning that one-
fifth of the data will be used for generating global candidates,
while the remaining data is used for top-k item mining. The
parameter b is set to 2, meaning that correlated perturbation is
only applied when the collected class amount is less than twice
the estimated class amount. We examine the impact of varying
the privacy budgets, k values, and class numbers, along with
an ablation study of the optimized methods.

The results of epsilon varying are shown in Fig. 7, with
k fixed as 20. All methods improve as the privacy budget
increases, with PTS-based methods demonstrating a more
significant enhancement. Moreover, the optimized methods
consistently outperform the initial frameworks. For the Anime
dataset, the optimized methods on the PTS framework achieve
average improvements of 116.6% in F1 Score and 134.3% in
NCR, while the optimized methods on the PTJ framework
yield average improvements of 25.6% in F1 Score and 25.0%
in NCR Score. In the JD dataset, the optimized methods on
the PTS framework achieve average improvements of 55.6%
in F1 Score and 40.8% in NCR Score, whereas the optimized
methods on the PTJ framework enhance the F1 Score by
13.6% and the NCR by 6.9% on average.
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Fig. 7. Results from real-world datasets with k = 20 and varying ϵ.

We also investigate the performance of each class. For the
sake of brevity, we only present the F1 Score on the JD
dataset with ϵ = 8 and k = 20 in Fig. 8, as the NCR Score
follows a similar trend. The results match the data size in
each class, with instance counts of 850k, 4m, 3m, 314k, and
170k, respectively. Classes 2 and 3 contain significantly more
data than the others, and the data volumes in classes 4 and 5
are insufficient to yield reliable results. The PTS framework
can benefit from the globally frequent items, even those items
with falsely perturbed labels from other classes. Conversely,



PTJ can not utilize the global information, and thus fails to
produce results in classes 4 and 5.
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Fig. 8. Results of each class on JD dataset with ϵ = 8 and k = 20.

In addition to examining the impact of varying privacy
budgets, we also explore the influence of the top-k setting,
with k ranging from 10 to 50, and the privacy budget is set
as ϵ = 4. For brevity, we present the results of the JD dataset
in Fig. 9. As k increases, the utility of PTS decreases, as less
frequent items become harder to detect. In contrast, the utility
of PTJ improves since a larger k results in a much larger
candidate set, allowing more candidate label-item pairs to be
investigated.
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Fig. 9. F1 Score and NCR on JD dataset with ϵ = 4 and varying k.

Furthermore, we examine the impact of varying class num-
bers using two synthetic datasets, SYN3 and SYN4. SYN3
contains globally frequent items, whereas SYN4 is generated
using the same method but excludes these items. The task is to
identify the top 20 items with a privacy budget of ϵ = 4. The
results are shown in Fig. 10. Notably, the utility of all methods
declines as the class number increases, and all optimized
methods perform better than the original frameworks. Without
access to globally frequent items, the utility of PTS degrades
significantly in SYN4. In contrast, the results of PTJ on
both synthetic datasets are similar, indicating that the PTJ
framework does not benefit from the inclusion of globally
frequent items. Moreover, the PTJ framework suffers from
higher communication costs due to the expanded domain size.
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Fig. 10. Synthetic datasets with ϵ = 4, k = 20, and varying class numbers.

To further analyze the impact of the optimized methods,
we conduct an ablation study, fixing k = 20 and ϵ = 5. For
brevity, we present only the results from the Anime dataset.
As shown in Table III, all optimized methods demonstrate ef-
fectiveness, with improvements being particularly pronounced
in the PTS framework. This enhancement in PTS stems from
its ability to leverage global information across classes with
correlated perturbation. Although HEC can also utilize global
information, it lacks the ability to differentiate class-specific
details at the final stage. We also observe that the shuffling
method and validity perturbation enhance both the PTS and
PTJ frameworks effectively.

TABLE III
ABLATION STUDY ON PTJ AND PTS

PTJ+ (Baseline) VP Shuffling All optimizations

F1 0.261 0.280 0.316 0.340

NCR 0.303 0.326 0.360 0.387

PTS+ (Baseline) Global VP Shuffling All optimizations

F1 0.159 0.165 0.214 0.241 0.358

NCR 0.163 0.180 0.229 0.270 0.385

F. Impacts of Parameters

In this section, we investigate the impact of parameters,
including the settings of privacy budget allocation, and the
parameters a and b in Algorithms 1 and 2. In the interest of
space, we only present the results of the F1 score, as the NCR
follows a similar trend. As aforementioned, the privacy budget
is divided into two parts: ϵ1 for label perturbation and ϵ2 for
item perturbation. As both item and label perturbation affect
the aggregation of class-specific items, the perturbations for
both are crucial. To investigate the impact of privacy budget
allocation, we conduct experiments on the synthetic dataset
SNY4 with 5, 10, and 20 classes, respectively. The proportion
of ϵ1, denoted by p, varies from 0.1 to 0.9. The results are
shown in Fig. 11. We observe that the F1 Score increases and
then decreases with p, which is consistent with our analysis
as above. The best p lies between 0.4 and 0.6, and does not
influence the results significantly. Therefore, we empirically
set the proportion to 0.5 in our paper, i.e., ϵ1 = ϵ2 = ϵ/2.
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Fig. 11. Varying the proportion of privacy budget allocation.

Parameter a (Algorithm 1 Line 2) controls the sampled
group size used to identify item candidates, including the
globally frequent items during the initial iterations. Given a
large value of a, there may be insufficient data for top-k item
mining, while for a small value of a, it may fail to generate
reasonable candidates. To figure out the impact of parameter a,
we conduct experiments using varying values of a on the real-
world datasets JD and Anime. The results are shown in Figs.



12(a) and 12(b). Clearly, the impact of parameter a depends
on the distribution of the dataset. For simplicity, we choose
a = 0.2 in our experiments, meaning that one-fifth of the
data is sampled to generate the global candidates, while the
remaining data is used for top-k item mining. We investigate
the parameter b (Algorithm 2 Line 8) in a similar manner.
The data amount within different classes varies a lot. After
applying DP perturbations, classes with less data are injected
with a significant amount of noise (i.e., items) from other
classes. To estimate the noise level for each class, we use
the labels perturbed during the global candidates aggregation.
If the injected noise is too large (or specifically, the collected
data amount exceeds b times the estimated class data amount),
the noise level becomes excessive. In this case, the amount
of valid data may be insufficient for accurate estimation,
rendering the correlated perturbation mechanism infeasible. To
study the impact of parameter b, we conduct experiments with
varying b on the real-world datasets JD and Anime. The results
are shown in Figs.12(c) and 12(d). Although the results are
dependent on the dataset, they do not fluctuate significantly.
In our experiments, we choose b = 2 as the default value.
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Fig. 12. Varying the parameters a and b.

VIII. RELATED WORKS

In this section, we review existing works on local differen-
tial privacy, with a focus on frequency estimation and top-k
item mining.

Local differential privacy and its applications. Differen-
tial privacy was introduced as a privacy-preserving technique
with a theoretical guarantee for data collection [3]. However,
differential privacy requires a trusted third party to aggregate
data from users which is not feasible in many real-world
scenarios. To this end, local differential privacy (LDP) is
proposed [4], [5]. In the context of LDP, users will perturb
their data locally before uploading it to the untrusted server.
Since the advent of LDP, it has been widely applied to vari-
ous statistical collection tasks, including mean and frequency
estimations [6], [8], [9], [12].

Local differential privacy item mining. To meet the
growing demand for item mining, researchers have proposed
various mechanisms for frequency estimation and top-k item
mining. RAPPOR was developed to aggregate frequencies
of categorical input items [6]. Subsequently, Optimal Unary
Encoding (OUE) and Optimal Local Hashing (OLH) were

introduced to achieve unbiased frequency estimation with op-
timal variance [9]. These two mechanisms remain state-of-the-
art for frequency estimation, with OUE being more commonly
adopted due to its ease of implementation, finding application
in various downstream tasks [20]–[22]. In terms of top-k
item mining, tree-based data structures are often preferred
due to their efficiency in performing multi-iteration pruning
and estimation [24], [25], [31]. The PEM algorithm [24],
recognized as a state-of-the-art method, is designed to mine
top-k items from large categorical datasets. Building on PEM,
Zhu et al. [35] proposed additional mechanisms to enhance
top-k mining in set-valued datasets. Recent advancements
include Du et al.’s [36] adaptive sampling technique for set-
valued data to enhance utility, and Li et al.’s [37] application
of the HeavyGuardian data structure for mining top-k items
in bounded-memory data streams.

The aforementioned item mining mechanisms rely exclu-
sively on global statistics from the entire dataset, without
incorporating class information. While integrating class infor-
mation can benefit real-world applications such as recommen-
dation systems, it requires a higher privacy budget to ensure
privacy guarantees. To date, only label differential privacy
(label-DP) has been proposed to protect labels [38], but it does
not extend protection to other sensitive information. Label-
DP assumes that feature information is non-sensitive, focusing
solely on label protection — an assumption that limits its
applicability to specific scenarios [39]. In multi-class item
mining settings, where both items and labels are sensitive,
label-DP fails to meet the necessary privacy requirements.

To the best of our knowledge, we are the first to investigate
multi-class item mining under LDP, proposing foundational
frameworks and corresponding optimized mechanisms to en-
hance utility.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose two frameworks, PTJ and PTS,
for multi-class item mining, accompanied by two optimized
mechanisms as the perturbation module: validity perturbation
mechanism and correlated perturbation mechanism. These
optimized methods are applied to two types of item mining
tasks: frequency estimation and top-k item mining in the
multi-class setting. Our core idea is to handle invalid data
while preserving the relationship between labels and items.
Additionally, we derive unbiased frequency estimation and op-
timize the top-k item mining scheme. Theoretical analysis and
experimental results validate the effectiveness and superiority
of the proposed mechanisms.

As for future work, we aim to study multi-class item mining
on more data types, such as numerical items. Additionally, we
plan to extend this study to real-world mining applications, in-
cluding gradient descent optimization and k-means clustering.
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