
ar
X

iv
:2

50
4.

13
40

8v
1 

 [
cs

.C
R

] 
 1

8 
A

pr
 2

02
5

OpCode-Based Malware Classification Using Machine

Learning and Deep Learning Techniques

Varij Saini, Rudraksh Gupta, Neel Soni
Students, Cybersecurity and Threat Intelligence

University of Guelph

April 1, 2025

Executive Summary

This technical report presents a comprehensive analysis of malware classification using Op-
Code sequences. Two distinct approaches are evaluated: traditional machine learning using
n-gram analysis with Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and
Decision Tree classifiers; and a deep learning approach employing a Convolutional Neural
Network (CNN). The traditional machine learning approach establishes a baseline using
handcrafted 1-gram and 2-gram features from disassembled malware samples. The deep
learning methodology builds upon the work proposed in “Deep Android Malware Detection”
by McLaughlin et al. and evaluates the performance of a CNN model trained to automati-
cally extract features from raw OpCode data. Empirical results are compared using standard
performance metrics (accuracy, precision, recall, and F1-score). While the SVM classifier
outperforms other traditional techniques, the CNN model demonstrates competitive perfor-
mance with the added benefit of automated feature extraction.

1 Introduction

In an era of increasingly sophisticated cyberattacks, the detection and classification of mali-
cious software, or malware, remain central to safeguarding digital infrastructure. Among the
most formidable threats are Advanced Persistent Threats (APTs), which employ stealthy and
prolonged campaigns to exfiltrate sensitive data and compromise critical systems [1, 2]. Tra-
ditional signature-based antivirus mechanisms have shown declining efficacy against such ad-
vanced adversaries, as malware authors continually develop obfuscation techniques to evade
static and dynamic detection engines. In response, the cybersecurity research community
has increasingly turned to machine learning (ML) and deep learning (DL) techniques, aiming
to detect malware by uncovering subtle, intrinsic patterns within executable code [3, 4].

One promising line of inquiry involves the analysis of OpCode sequences—low-level machine
instructions executed by a CPU during program execution. OpCodes offer a more granular
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and robust representation of a program’s behavior than higher-level features, making them
less susceptible to evasion through superficial code manipulation. This project builds upon
this insight, proposing a comparative evaluation of traditional machine learning algorithms
and a deep learning-based model for malware classification based solely on OpCode sequences
extracted from disassembled malware binaries [5, 6].

The primary goal of this research is to assess the trade-offs between handcrafted n-gram
features and automated feature learning. The traditional approach employs Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), and Decision Tree classifiers using 1-gram
and 2-gram frequency distributions as input features. These models serve as a performance
benchmark for the proposed deep learning method, which utilizes a Convolutional Neural
Network (CNN) architecture to directly process raw OpCode sequences. By eliminating
manual feature engineering, the CNN approach aims to streamline the malware detection
pipeline while uncovering latent sequence patterns that may not be captured by fixed-length
n-grams [7, 8].

To ensure methodological rigor, the models are trained and evaluated using standard clas-
sification metrics—accuracy, precision, recall, and F1-score—on a labeled dataset of APT
malware families. Through this comparative study, we aim to provide empirical insights into
the effectiveness of OpCode-based features, the scalability of automated learning in mal-
ware classification, and the practical implications for developing real-world threat detection
systems. The research not only highlights the strengths and limitations of each approach
but also establishes a reproducible framework for future work in OpCode-based malware
analysis[9, 10].

1.1 Background and Motivation

Malware continues to pose a critical threat to organizations worldwide, with evasion tech-
niques rapidly evolving to bypass signature-based detection systems [11]. Static analysis
of executable code structures, particularly through OpCode sequences, has emerged as a
robust method for malware family identification. OpCodes, the machine-level instructions
executed by processors, provide distinctive patterns even in obfuscated malware samples.
The extraction and classification of these sequences form the foundation for effective threat
intelligence and risk assessment. This project is designed to document Advanced Persistent
Threat (APT) Tactics, Techniques, and Procedures (TTPs) and develop both traditional
machine learning and deep learning models for detecting malicious payloads used by APT
groups[12, 13].

1.2 Research Objectives

The study aims to:

• Evaluate the effectiveness of OpCode n-gram analysis for malware classification.

• Compare the performance of traditional machine learning algorithms (SVM, KNN,
Decision Tree) on 1-gram and 2-gram features.
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• Implement and evaluate a CNN-based model for OpCode-based malware classification.

• Compare the performance of the CNN model with traditional classifiers to assess the
trade-offs between manual feature engineering and automated deep learning feature
extraction.

• Develop a reproducible methodology for OpCode-based malware classification.

1.3 Scope and Limitations

The research focuses on the static analysis of OpCode sequences extracted from disassem-
bled malware samples. Dynamic analysis is beyond this study’s scope [14, 15]. While the
evaluation is limited to three traditional classifiers and a CNN, further advanced models may
yield improvements. The work provides empirical evidence and establishes a methodological
framework for future malware analysis[16, 17].

2 Methodology

This study employs both traditional machine learning and deep learning techniques to classify
malware based on OpCode sequences extracted from disassembled APT malware samples.
The dataset comprises files labeled by malware family, from which raw OpCodes are extracted
while discarding operands. For traditional models, 1-gram and 2-gram frequency features
are computed and transformed into normalized feature vectors. Class imbalance is addressed
using RandomOverSampler. Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Decision Tree classifiers are trained and evaluated using standard metrics[18, 19].

In parallel, a Convolutional Neural Network (CNN) is implemented to process raw Op-
Code sequences without manual feature engineering. The CNN architecture includes two 1D
convolutional layers, max pooling, ReLU activations, dropout regularization, and fully con-
nected layers for classification. The model is trained using PyTorch with Adam optimization
and learning rate scheduling. Performance of both approaches is evaluated using accuracy,
precision, recall, and F1-score to assess effectiveness and generalization.

2.1 Dataset Acquisition and Preprocessing

The dataset comprises disassembled OpCode files extracted from malware samples belong-
ing to various APT families. The files are organized by malware family using filenames
formatted as [malware family] [sample id].opcode, enabling automated labeling during
preprocessing.

Traditional Machine Learning Approach

• OpCode Extraction: Files are parsed to extract OpCode sequences, ignoring operands.

• N-gram Generation: Both 1-gram (individual OpCodes) and 2-gram (sequential
pairs) features are generated.
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• Feature Vector Creation: Frequency distributions of n-grams are used to create
feature vectors.

• Data Normalization and Class Imbalance Handling: StandardScaler is applied
to normalize features, and RandomOverSampler is used to balance class distributions.

Deep Learning Approach

• Preprocessed OpCode sequences are loaded from previously generated numpy arrays.

• Label encoding converts string labels to integers, and data is converted into PyTorch
tensors with DataLoader objects created for batch processing.

2.2 Feature Extraction and Representation

Feature extraction in this study is tailored to the nature of OpCode sequences derived from
disassembled malware binaries. For the traditional machine learning approach, features
are created by generating n-grams—specifically 1-grams (individual OpCodes) and 2-grams
(consecutive OpCode pairs). These n-grams are counted to form frequency distributions,
which are then transformed into numerical feature vectors representing each malware sample.
The resulting vectors are normalized using StandardScaler to ensure consistent scaling across
features [20, 21].

In contrast, the deep learning approach eliminates the need for manual feature engineering.
Raw OpCode sequences are preprocessed and converted into numerical arrays, which are then
encoded into integer labels and transformed into PyTorch tensors. The CNN model directly
processes these sequences, learning hierarchical features through convolutional layers. This
method captures complex spatial patterns within OpCode sequences, enabling automated
extraction of semantic features critical for malware classification. Both representations aim
to preserve structural characteristics essential for accurate detection.

Traditional Approach:

def generate_ngrams(opcodes, n):

return [" ".join(opcodes[i:i+n]) for i in range(len(opcodes) - n + 1)]

Both unigram and bigram frequency counts are computed and merged for feature represen-
tation.

Deep Learning Approach: Unlike the explicit n-gram generation used previously, the
CNN model processes raw OpCode sequence data directly, eliminating the need for manual
feature engineering.

2.3 Classification Models

This research explores two categories of classification models: traditional machine learning
algorithms and a deep learning-based Convolutional Neural Network (CNN). In the tradi-
tional pipeline, three classifiers are implemented: Support Vector Machine (SVM) with a
linear kernel and regularization parameter C=1, K-Nearest Neighbors (KNN) with k=3, and
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a Decision Tree limited to a maximum depth of 20. Additionally, a Voting Classifier ensemble
is evaluated to assess the benefit of model aggregation.

The deep learning model is a 1D CNN architecture inspired by prior work in Android malware
detection. It comprises two convolutional layers with kernel size 5, followed by max pooling,
ReLU activations, and a dropout layer with a rate of 0.3 to mitigate overfitting. These
layers feed into fully connected layers that output class probabilities. The CNN is trained
using PyTorch with the Adam optimizer and dynamic learning rate scheduling to refine
performance over multiple epochs. 2.3.1 Traditional Machine Learning Models
Three classifiers are implemented:

• SVM: Linear SVM with C = 1.

• KNN: Implemented with k = 3.

• Decision Tree: A Decision Tree with a maximum depth of 20.

Additionally, a hard Voting Classifier ensemble is evaluated.

2.3.2 Convolutional Neural Network (CNN) Model
The CNN architecture follows the methodology of McLaughlin et al.:

• Convolutional Layers: Two 1D convolutional layers with kernel size 5, capturing
local patterns.

• Max Pooling: Reduces dimensionality and allows representation of variable-length
OpCode sequences.

• Activation and Dropout: ReLU activations and a dropout rate of 0.3 to mitigate
overfitting.

• Fully Connected Layers: Transition from convolutional features to classification
outputs matching the number of malware families.

CNN Model Architecture (Excerpt):

class MalwareCNN(nn.Module):

def __init__(self, input_dim, num_classes):

super(MalwareCNN, self).__init__()

self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=5, stride=1,

self.conv2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1,

self.maxpool = nn.MaxPool1d(kernel_size=2, stride=2)

self.relu = nn.ReLU()

self.dropout = nn.Dropout(0.3)

with torch.no_grad():

sample_input = torch.randn(1, 1, input_dim)

sample_output = self._forward_features(sample_input)

self.fc1_input_dim = sample_output.shape[1]

self.fc1 = nn.Linear(self.fc1_input_dim, 128)

self.fc2 = nn.Linear(128, num_classes)

def _forward_features(self, x):
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x = self.relu(self.conv1(x))

x = self.maxpool(x)

x = self.relu(self.conv2(x))

x = self.maxpool(x)

x = torch.flatten(x, start_dim=1)

return x

def forward(self, x):

x = x.unsqueeze(1)

x = self._forward_features(x)

x = self.relu(self.fc1(x))

x = self.dropout(x)

x = self.fc2(x)

return x

2.4 Training and Evaluation

Traditional Approach:
Models are trained on 80% of resampled and scaled feature data using stratified sampling.
Evaluation is conducted using accuracy, precision, recall, F1-score, and confusion matrices.
Results Summary

• SVM: Accuracy 66.37%, F1-score 64.04%

• KNN: Accuracy 63.65%, F1-score 61.02%

• Decision Tree: Accuracy 62.14%, F1-score 60.06%

• Voting Classifier: Accuracy 68.61% (but did not outperform SVM).

Deep Learning Approach:
The CNN is trained using PyTorch for 10 epochs with the Adam optimizer (lr=0.001) and
a ReduceLROnPlateau scheduler. Evaluation metrics for the CNN are:

• Accuracy: 62.14%

• Precision: 64.49%

• Recall: 62.14%

• F1-score: 60.44%

Comparative analysis indicates that while the CNN reduces the need for manual feature
engineering, SVM remains the top-performing model on this dataset.
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3 Results and Analysis

3.1 Traditional Machine Learning Results

Performance metrics are tabulated for SVM, KNN, Decision Tree, and the Voting Classifier.
Confusion matrix analysis reveals that SVM has the most balanced performance across
malware families.

3.2 CNN Performance

The CNN model shows rapid initial convergence with diminishing improvements after the
fifth epoch. Final performance registers an accuracy of 62.14%, with precision, recall, and
F1-scores closely matching the Decision Tree classifier.

4 Discussion

4.1 Comparative Analysis

• Traditional vs. CNN: SVM outperforms other traditional models and remains supe-
rior in overall classification performance. The CNN model offers benefits in automated
feature learning but is limited on smaller datasets.

• Feature Engineering Trade-Offs: Manual n-gram generation captures detailed se-
quence relationships, while CNN eliminates this need but may require larger datasets
and further architectural refinement.

4.2 Practical Implications

• Threat Intelligence Applications: The ability to classify malware into distinct
APT families aids in precise attribution and response.

• Operational Integration: Both approaches offer insights into building robust, au-
tomated detection systems, with SVM serving as a strong baseline and deep learning
offering potential for future scaling.

5 Future Road Map

Building on the foundational work of OpCode-based malware classification, this project lays
the groundwork for several promising research and development directions aimed at enhanc-
ing threat detection capabilities. As cyber threats continue to evolve, particularly from so-
phisticated Advanced Persistent Threat (APT) groups, it is imperative to develop adaptive,
scalable, and intelligent systems that can offer real-time analysis and high-fidelity classifica-
tion. The following roadmap outlines future milestones and key enhancements envisioned to
improve the current methodology and expand its practical applicability [20].
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1. Integration of Dynamic and Hybrid Analysis: While this project focused solely on static
OpCode sequences, incorporating dynamic features—such as system call traces, network be-
havior, and runtime memory usage—can provide richer context and improve classification
accuracy. A hybrid model that fuses static OpCode features with dynamic behavioral indi-
cators could enable more robust malware detection, particularly for evasive or polymorphic
threats.

2. Expansion of Dataset and Malware Families: The effectiveness of machine learning models
is often tied to the diversity and size of the training dataset. In future iterations, the dataset
will be expanded to include a broader range of malware samples from public repositories (e.g.,
VirusShare, VirusTotal) and threat intelligence platforms. Incorporating additional malware
families, especially those from emerging APT groups, will improve the generalizability of the
models and allow for real-world validation.

3. Advanced Deep Learning Architectures: To enhance classification accuracy, future work
will explore more sophisticated deep learning architectures such as Recurrent Neural Net-
works (RNNs), Bidirectional LSTMs, and Transformer-based models that are better suited
for capturing long-range dependencies in sequential data. Moreover, exploring lightweight ar-
chitectures like MobileNet or quantized CNNs can facilitate deployment in resource-constrained
environments such as edge devices and embedded security appliances.

4. Explainability and Model Interpretability: As AI models are increasingly integrated
into security operations, explainability becomes essential. Future work will involve the use
of explainable AI techniques—such as SHAP (SHapley Additive exPlanations) and LIME
(Local Interpretable Model-agnostic Explanations)—to provide insight into the decision-
making process of both traditional and deep learning models. This will help cybersecurity
analysts trust and validate the classification outputs, and possibly identify new malicious
OpCode patterns.

5. Transfer Learning and Pretrained Embeddings: Another strategic direction is the applica-
tion of transfer learning, where models pre-trained on large corpora of assembly or OpCode
sequences can be fine-tuned on smaller, task-specific malware datasets. This approach may
significantly improve performance in low-data scenarios and accelerate training.

6. Real-Time Detection and Deployment: The long-term goal is to integrate the developed
models into a real-time malware detection pipeline. This would involve optimizing inference
time, reducing false positives, and ensuring compatibility with endpoint security solutions.
Additionally, deploying the model within a cloud-native or containerized framework would
enable scalable and distributed analysis of incoming files in enterprise environments.

In summary, the future roadmap aims to advance this research from a controlled experimen-
tal setting toward a practical, enterprise-ready malware detection solution. By leveraging
advanced ML/DL models, dynamic threat signals, and explainable AI, this research will
contribute to the development of next-generation cybersecurity defenses tailored for APT
detection and beyond.
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6 Conclusion and Future Work

This research presents a comparative study of OpCode-based malware classification using
both traditional machine learning algorithms and a deep learning-based CNN. By leveraging
static analysis techniques, specifically focusing on OpCode sequences extracted from disas-
sembled malware samples, we investigated the effectiveness of both manually engineered fea-
tures (n-grams) and automated feature learning. Among the traditional classifiers, the SVM
demonstrated the highest accuracy and overall performance, with an F1-score of 64.04%,
outperforming K-Nearest Neighbors and Decision Tree classifiers. The SVM model’s robust-
ness can be attributed to its ability to find optimal hyperplanes in high-dimensional feature
spaces, making it particularly suitable for n-gram frequency data. The Voting Classifier en-
semble offered modest performance gains but did not surpass SVM alone. The CNN model,
while slightly underperforming compared to the SVM in terms of accuracy (62.14%), offers
significant advantages in terms of automation and scalability. By eliminating the need for
manual feature engineering, the CNN streamlines the malware classification pipeline and
has the potential to uncover deeper, hierarchical patterns in OpCode sequences. However,
its performance was likely constrained by dataset size and model capacity, suggesting that
deeper architectures or larger training datasets may improve results. This study establishes
that OpCode-based static analysis remains a viable approach for malware detection and
classification, especially when paired with efficient feature engineering or deep learning ar-
chitectures. Both traditional and deep learning methods have demonstrated their utility in
classifying malware families associated with Advanced Persistent Threats (APTs), offering
practical insights for security analysts and automated defense systems. For future work,
several avenues can be pursued. First, the exploration of more advanced deep learning archi-
tectures, such as Transformers or hybrid CNN-LSTM models, could improve classification
performance and better capture long-range dependencies in OpCode sequences. Second, in-
tegrating dynamic analysis features (e.g., API calls, system behavior traces) could enhance
detection accuracy by combining both static and behavioral perspectives. Third, leveraging
transfer learning or pre-trained embeddings for OpCodes may offer improvements in gener-
alization, especially across diverse malware families. Moreover, incorporating explainable AI
(XAI) techniques—such as SHAP or LIME—could improve transparency in decision-making,
aiding analysts in understanding which features or OpCode patterns are most influential in
classification. Expanding the dataset and including real-world samples from emerging threats
would further validate the robustness of the proposed models.

Additional Information

• Implementation Details: Full code implementations are available in the accompa-
nying files for both traditional machine learning pipelines and the CNN model training
process.

• References: Key literature including McLaughlin et al. (2017), Bilar (2007), among
others, supports the methodologies used.
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