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Abstract
Cache occupancy attacks exploit the shared nature of cache hierar-
chies to infer a victim’s activities by monitoring overall cache usage,
unlike access-driven cache attacks that focus on specific cache lines
or sets. There exists some prior work that target the last-level cache
(LLC) of Intel processors, which is inclusive of higher-level caches,
and L2 caches of ARM systems. In this paper, we target the System-
Level Cache (SLC) of Apple M-series SoCs, which is exclusive to
higher-level CPU caches. We address the challenges of the exclu-
siveness and propose a suite of SLC-cache occupancy attacks, the
first of its kind, where an adversary can monitor GPU and other
CPU cluster activities from their own CPU cluster. We first discover
the structure of SLC in Apple M1 SOC and various policies pertain-
ing to access and sharing through reverse engineering. We propose
two attacks against websites. One is a coarse-grained fingerprint-
ing attack, recognizing which website is accessed based on their
different GPU memory access patterns monitored through the SLC
occupancy channel. The other attack is a fine-grained pixel stealing
attack, which precisely monitors the GPU memory usage for ren-
dering different pixels, through the SLC occupancy channel. Third,
we introduce a novel screen capturing attack which works beyond
webpages, with the monitoring granularity of 57 rows of pixels
(there are 1600 rows for the screen). This significantly expands the
attack surface, allowing the adversary to retrieve any screen display,
posing a substantial new threat to system security. Our findings
reveal critical vulnerabilities in Apple’s M-series SoCs and empha-
size the urgent need for effective countermeasures against cache
occupancy attacks in heterogeneous computing environments.
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1 Introduction
Cache attacks [10, 14, 17, 26–28] exploit microarchitectural features
of modern processors, such as timing differences between cache
hits and misses, to leak sensitive information. Cache occupancy
attacks [6, 20, 21] are a nuanced variant that targets the overall
state of cache occupancy to infer sensitive information, breaching
privacy and confidentiality. The popular access-driven cache attacks
focus on specific cache sets or lines to infer memory address-related
secrete.

ARM’s big.LITTLE architecture exemplifies heterogeneous com-
puting systems by combining high-performance “big” cores with
energy-efficient “LITTLE” cores. ARM introduced the System Level
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Cache (SLC), an exclusive last-level cache situated between the
higher-level caches (L1 and L2) and main memory [2, 3]. Apple’s
M-series System-on-Chips (SoCs) build upon ARM’s heterogeneous
designs, featuring multiple CPU clusters with local caches, an inte-
grated GPU, and an SLC shared among clusters and the GPU. While
this architecture offers significant performance benefits, it also in-
troduces new security challenges due to the shared SLC between
clusters and GPU.

Previous studies have explored microarchitectural side-channels
in heterogeneous systems. Dutta et al.[7] and Almusaddar et al.[1]
demonstrated covert channels between CPUs and integrated GPUs
in Intel systems by exploiting shared caches. Kou et al.[12] revealed
side-channel attacks based on snoop filters in ARM processors.
Cronin et al.[6] discussed the potential of cache occupancy attacks
on ARM’s SLC but did not delve into its structure or the unique
challenges it presents.

In this paper, we present a novel suite of cache occupancy attacks
targeting the SLC of Apple M-series SoCs—the first to exploit an
exclusive last-level cache, where an adversary can monitor GPU and
other CPU cluster activities from their own CPU cluster. By reverse-
engineering the SLC’s sharing mechanism and structure in the
Apple M1, we obtain critical insights that enable these attacks. We
demonstrate the effectiveness of the SLC occupancy side-channel
through three attacks:

(1) Website Fingerprinting Attack: We perform a website fin-
gerprinting attack, showing that our method achieves high
precision across a wider range of scenarios, including cross-
browser setups, where previous cache occupancy channels
fail [21].

(2) Cross-Origin Pixel Stealing Attack: We conduct a finer-
grained cross-origin pixel stealing attack by exploiting the
SLC occupancy channel. We leverage the data-dependent
behavior of GPU rendering and compression, and accurately
retrieve the screen display pixel-by-pixel, violating confiden-
tiality and privacy. Unlike previous attacks that relied on
measuring the rendering time, our approach uses the SLC oc-
cupancy side-channel to extract pixel-level information. It is
effective even in the presence of constant rendering-time im-
plementations and Apple’s recent security fixes addressing
related vulnerabilities (CVE-2023-38599 [15]).

(3) Screen Display Snooping Attack: Notably, we introduce a
novel attack that does not rely on website-processing tools.
By monitoring the GPU’s rendering processes via the SLC oc-
cupancy channel, we can extract any information displayed
on the screen. This significantly expands the attack surface
beyond web pages, allowing the adversary to compromise
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any on-screen information, posing a substantial new threat
to system security.

2 Background
2.1 Cache and its inclusion policies
Caches are critical components in computer architecture for per-
formance. They are typically organized in hierarchical levels based
on their proximity to the CPU, size, and speed to balance between
access speed and capacity, with L1 being the smallest and fastest.
Lower-level caches can be categorized into inclusive, exclusive,
non-inclusive, and non-exclusive, each specifying how to store
data across adjacent levels. For inclusive caches, the data stored
in higher levels (e.g., L1) is also duplicated in lower levels (e.g.,
L2, L3), ensuring data evicted from one level remains accessible
at other levels, simplifying the cache coherency. Exclusive caches
prevent data duplication across levels, maximizing the cache space
utilization. Other two policies offer middle-grounds with flexibility
in cache management.

2.2 Cache side-channel attacks
Cache side-channel attacks exploit the sharing nature of cache re-
sources and the timing differences between cache hits and misses to
retrieve secret information, such as cryptographic keys and private
user information, without direct access to the victim’s memory
space, posing serious confidentiality threats in the user space.
Access-driven attacks: Traditional cache side-channel attacks,
such as Prime+Probe [14] and Flush+Reload [28], monitor the state
of specific cache sets/lines to determine whether the victim has
accessed them or not, to glean memory address information which
is secret-dependent. These attacks often rely on high-resolution
timers to measure minute differences in access times accurately.
Cache occupancy attack: Cache occupancy attack, originally pro-
posed by Oren et al. [21], differs significantly from access-driven
cache attacks. It focuses on monitoring the victim’s contentions
over the entire cache space, while prior access-driven attacks mon-
itor contentions on selected cache sets/lines. Specifically, the spy
allocates a buffer (equivalent to the size of the shared cache) and
measures the time to access the entire buffer after victim execution.
If the victim’s memory accesses cause some portion of the buffer
to be evicted from the shared cache, the spy will recognize it with
longer access time. The access time is roughly proportional to the
number of cache lines that the victim uses.

2.3 Apple M-series SoCs and Their Cache
Structures

ARM’s big.LITTLE technology represents a heterogeneous com-
puting architecture designed to create more efficient processors.
This architecture combines “big” core clusters and “LITTLE” core
clusters, dynamically adjusting the processing elements based on
computational demands to achieve both high performance and en-
ergy efficiency. The introduction of clusters in ARM’s architecture
has led to notable differences in cache structures from Intel. Specif-
ically, in ARM architectures, the L1 cache is core-specific, the L2
cache is shared between cores of a cluster and is inclusive of the L1
cache, and a System Level Cache (SLC) is shared across clusters.

Figure 1: Cache structure of Apple M1

The Apple M-series SoCs, based on ARM’s big.LITTLE architec-
ture, herald a significant shift towards efficiency and performance in
Mac computers. Figure 1 shows the cache structure of the Apple M1.
The M1 has four high-performance “Firestorm” cores (p-cores) and
four energy-efficient “Icestorm” cores (e-cores), forming two CPU
clusters. The SLC is shared across the clusters and GPU, and the
SOC also includes a Unified Memory Architecture (UMA), stream-
lining access to a shared memory pool for both the CPU and GPU.

Although Apple has not publicly disclosed the inclusive policy
of the SLC, since in most M-series SoCs the size of the SLC is
smaller than that of the CPU’s L2 cache, it is unlikely that the SLC
is inclusive of the CPU caches. This creates significant differences
from Intel’s LLC, which is inclusive [4]. Additionally, while we
know that the SLC is shared between the CPU and GPU, its sharing
mechanism has not been disclosed.

3 SLC Occupancy Side-Channel on Apple
Silicon

3.1 Overview and challenges of the SLC
occupancy channel

Current cache occupancy attacks [21] are implemented by accessing
a memory buffer and measuring the total data access time, where
the buffer is set at the size of a shared cache. For a cache hierarchy
where all the lower levels are inclusive, the common assumption is
that the whole LLC can be filled by the buffer data and therefore the
spy is able to measure the cache occupancy (evictions) by the victim.
However, this assumption does not hold for the SLC on Apple
Silicon, as it is not inclusive to CPU’s local caches. The SLC cannot
be directly filled by loading the buffer data. When accessing a buffer
element, the data, which is newer and warmer, is always loaded
to the CPU’s local caches (L1 and L2), not necessarily to the SLC.
Details on Apple M1 SLC’s inclusive policy, sharing mechanism,
and other sharing related policies are not publicly disclosed. This
lack of information presents significant challenges in designing
effective cache occupancy attacks targeting the SLC.

The prior work [6, 20] are the only two cache occupancy attacks
on ARM processors. Shusterman et al.[20] targets L2 cache of an
Apple M1, the highest inclusive cache level, by setting the buffer at
the size of L2 cache. This limits the spy to be on the same CPU clus-
ter as the victim. Although Cronin et al.[6] discussed the potential
role of the ARM SLC in cache occupancy attacks, their attack design
did not consider SLC’s structure characteristics and its inclusive
policy, and they did not specify whether they are measuring the
cache occupancy of the SLC or L2. Both the prior two attacks do
not apply to inter-cluster and CPU-GPU scenarios.
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In this section, we first quantify the access (hit) time for the Apple
M1 SLC, allowing us to precisely differentiate SLC access frommain
memory access. We then revisit previous cache occupancy attacks
and show that these attacks cannot monitor the contention state of
the Apple M1 SLC, because their buffer access patterns do not cater
to the SLC’s inclusive policy. To address this issue, we propose
a different access pattern. Next, we reverse engineer the SLC’s
inclusive policy, set indexing and replacement policy. Through our
analysis, we discover that the SLC operates as exclusive with respect
to the CPU caches but inclusive with respect to the GPU cache.
Building upon these insights, we propose a novel SLC occupancy
side-channel that efficiently monitors the contention state of the
SLC. We compare the performance of our approach with previous
cache occupancy channels, demonstrating its superiority in inter-
cluster and cross CPU-GPU scenarios.

3.2 Quantifying SLC Hit Latency

Figure 2: Hit time of different cache
levels

To establish a reli-
able SLC occupancy
side-channel, we first
need to recognize
whether a piece of
data is present in
the SLC (i.e., an
SLC cache hit) by
measuring data ac-
cess latencies. Prior
works [8, 18] have
quantified L1 hit, L2
hit, and L2 miss
times for the Apple
M1. However, they
have not differenti-
ated between SLC hits and SLC misses, both of which are catego-
rized as L2 misses.

Based on ARM’s documentation [2, 3], we speculate that the SLC
acts as a backward storage for the CPU’s L2 cache; that is, when a
cache line is evicted from the CPU’s L2 caches, it is spilled over to
the SLC. To test this hypothesis, we design an experiment using an
L2 eviction set [24]. All experiments in this section are conducted
on a MacBook Air equipped with an Apple M1 chip, running the
macOS operating system. We employ a user-level counting-thread
timer based on prior work [8, 18], which achieves a resolution of
3 GHz.

In our experiment, we first access a piece of data to ensure it is
loaded into the cache hierarchy. We then employ an L2 eviction
set to evict that data from the L2 cache. Immediately after it, we
access the same data again and measure the access time. We observe
that the access time of the data just evicted from the L2 cache is
significantly shorter than that of data not recently loaded into the
cache hierarchy (by using a sufficiently large eviction buffer to
ensure this). Specifically, the access time for the newly evicted data
is approximately 220 ticks, whereas the access time for much older
data is around 430 ticks, as shown in Figure 2. We infer that the 220
ticks correspond to an SLC hit time. Figure 2 also presents the L1
cache hit time and L2 cache hit time. Correspondingly, we set two

thresholds, 160 ticks and 300 ticks, to differentiate between local
cache hits (L1 or L2), SLC hits, and SLC misses.

Additionally, we find that when data is first accessed by the GPU
and then accessed by the CPU, the CPU’s access time also aligns
with the SLC hit time. This suggests that the SLC is shared between
the CPU and GPU.

3.3 Previous cache occupancy attacks
We next review the cache occupancy channels in prior work [6,
20, 21]. We analyze how the access patterns allocate data from the
buffer to different levels of caches on Apple M1. Our findings reveal
that the previous access patterns fail to consistently fill the SLC and
cannot accurately measure the contention state within the SLC. To
address this issue, we propose a simple yet effective improvement
to the access pattern.
Access pattern of previous cache occupancy channels: In pre-
vious ARM L2 cache occupancy attacks, the data structure of the
buffer consists of a range of contiguous virtual addresses, with the
number of data entries equal to the number of cache lines in the L2
cache, where the size of data entry is the cache line size (128 bytes).
The access pattern, which determines the order in which these data
entries are accessed, have been intricately designed to circumvent
the effects of hardware prefetchers, which can otherwise mask true
cache behavior by pre-loading anticipated data. However, these
approaches did not take into consideration of the L2 cache set in-
dexing. Prior work [29] shows that the L2 cache set indexing of
Apple M1 is tailored for optimal performance, where 11 bits of the
cache set index are mapped directly from the large-page memory
address offset and two upper bits are the XOR-ed result of the page
number. Consequently, the previous cache occupancy attacks could
not evenly fill all the L2 cache sets with their chosen buffer size
and access pattern. This uneven distribution often results in some
cache sets becoming overflown—exceeding their capacity of 12
ways—while others remaining underutilized.
Problems in profiling phase: For cache occupancy attacks, the ad-
versary keeps accessing the buffer with a certain access pattern and
measuring the total access time, where we define each run a “profil-
ing” process, and both the traditional cache “priming” and “probing”
functions are embodied in profiling. The purpose of priming is to
precisely fill the L2 cache with the buffer data, evenly populating
each set. However, due to the aforementioned uneven distribution,
approximately half of the L2 cache sets remain unfilled while the
other half are overflown. For an unfilled L2 set, the victim’s memory
access will only cause contentions on the spy’s cache occupancy
when the victim data exceeds the remaining capacity of the set, i.e.,
resulting in undercount of the victim data access. For an overflown
set, the problem is more severe with a phenomenon we define as
self-eviction. During the previous profiling, the buffer data that fills
an overflown L2 set is the last (newest) to be accessed, while the
data accessed first has been evicted to the SLC. Since each profiling
follows the same access order, the early data access results in a SLC
hit with the data being copied to the L2 cache, which will evict
some L2 cache lines, resulting in L2 misses for subsequent accesses.
Consequently, regardless of whether the victim has memory access
or not, the spy data self-evictions result in L2 cache misses, i.e.,
overcounting if attributing L2 cache misses to victim data accesses.
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(a) Sequential-order (b) Alternated-order

Figure 3: L2 & SLC hits under different access patterns

If we increase the buffer size, approaching the SLC size and mea-
sure the SLC hit times, the self-eviction may also cause problems
for sequential order. At the end of a profiling phase, some old data is
in SLC and new data is in the L2 cache. For the next profiling phase,
as the access order is the same, the early accessed data is brought
to L2 cache and evict some data to SLC, which when accessed will
be counted as SLC hits, even though they are not really in the SLC
before this profiling phase. This will cause overcounting of SLC
hits.

Figure 3a illustrates the relationship between the measured num-
ber of L2 cache hits and SLC cache hits and the buffer size under
this sequential access pattern. When the buffer is small, all data fits
within the L2 cache without overflowing any cache set, resulting
in a linear relationship between the buffer size and the number of
L2 cache hits. However, as the buffer size approaches half of the
L2 cache capacity, some cache sets begin to overflow, leading to a
sharp decline in the number of L2 hits and an increase in SLC hits.
Due to self-eviction, we can observe that as the buffer size contin-
ues to grow, L2 hits gradually decrease to nearly zero, indicating
a significant undercount. On the other hand, SLC hits increase to
a value far exceeding the SLC’s capacity, suggesting a substantial
overcount. These miss-counting issues persist at any buffer size,
making it challenging to accurately assess the contention status of
L2 or SLC based on their hit counts.
Alternated-order access pattern: To address these issues, we
propose a simple adjustment in the access pattern: the access order
alternates between sequential and reverse between two consecutive
profiling phases. This ensures that for an overflown cache set, the
data that was last inserted during the previous profiling cycle is
accessed first in the current cycle. According to the LRU policy, this
previously last-entered data remains in the local cache and access-
ing it results in cache hits. Therefore, the attacker can accurately
detect and monitor the state of the L2 cache.

Figure 3b illustrates the relationship between the number of L2
and SLC hits and the buffer size under the alternated-order access
pattern. As the buffer size increases, the number of L2 hits and
SLC hits gradually approach their respective cache capacities. This
behavior indicates that both the L2 cache and SLC can effectively
reflect their respective contention statuses under this access pattern.

The alternated-order access pattern proves crucial for our subse-
quent analyses and attacks. By mitigating self-eviction effects and
providing more accurate measurements of cache occupancy, this
approach enables us to precisely quantify the total capacity and
contention within the SLC.

3.4 Understanding the structure and policies of
M1 SLC

Given the limited public information about the SLC on Apple’s
M-series SoCs, we reverse-engineered its underlying structure and
policies. Due to page limitations, this section focuses on presenting
the conclusions, while the detailed experimental process is provided
in Appendix A.
Cache line size: Our first observation is that system-level cache
line size is 128 bytes, the same as L2 caches.
Inclusiveness Policy: Our experiments reveal that the SLC in Ap-
pleM1 employs a hybrid inclusiveness policy: inclusive with respect
to the GPU cache but exclusive with respect to the CPU cache. This
unique configuration optimizes performance while maintaining
coherence across the heterogeneous system. We derived this con-
clusion from carefully designed experiments, detailed in Appendix
A.1.
SLC set index mapping: We discover a distinctive SLC set in-
dex mapping mechanism. Unlike typical cache configurations that
utilize lower bits of the memory address for cache indexing, M1’s
SLC excludes the lowest 13 bits of the physical address for index-
ing and uses bits from the 14th position and above. The detailed
experiments and results are shown in Appendix A.2.
Replacement policy: Our observation suggests that the SLC’s
replacement policy is independent of access order, indicating a
pseudo-random policy. The detailed experiments and results are
shown in Appendix A.3.

3.5 Occupancy side-channels on Apple M1
Building on our reverse engineering insights into the SLC’s struc-
ture and behavior, we now propose a novel SLC occupancy channel.
This channel is specifically designed to exploit the unique charac-
teristics of the M1 SLC uncovered, particularly its exclusive nature
with respect to CPU caches. Our key contribution is the develop-
ment of an SLC occupancy side-channel that strategically bypasses
the L2 cache, directly targeting the SLC and addressing the chal-
lenges posed by its architecture.

To comprehensively evaluate the effectiveness of our new SLC
occupancy channel, we compare its performance against two more
conventional occupancy channels: the L2 occupancy channel and
the total occupancy channel. Our comparison spans various scenar-
ios, including intra-cluster, inter-cluster, and CPU-GPU interactions,
providing a thorough assessment of each channel’s capabilities and
limitations, with a particular focus on demonstrating the advan-
tages of our SLC-specific one.

In this section, we present and analyze three distinct occupancy
channel implementations:
L2CacheOccupancy: In this side-channel, the spy fills the entire p-
cores’ L2 cache with its buffer andmeasures the L2 cache occupancy.
We use the same data structure as the prior work [21] and employ
an alternated-order access pattern.The results of Figure 3b show
that the L2 cache size is 120,000 cache lines. This side-channel
can only monitor the contention state of the L2 cache, and cannot
monitor the SLC status.
Total Occupancy: This side-channel aims to completely fill both
the L2 cache (p-cores) and the SLC, to the greatest extent possible.
We still use the same data structure and access pattern as in the L2
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(a) stride=128 (b) stride=8192

Figure 4: Cache filling with different data structure

cache occupancy channel, and set the buffer size at 300,000 cache
lines, which is the point where the SLC reaches its utilization limit,
as shown in Figure 3b. Theoretically, this-side channel should be
able to monitor the contention status of both the L2 cache and SLC.
However, due to the large buffer size, the time for one profiling in
this channel is very long, resulting in a very limited sample rate
and large noise.
SLC Occupancy: This side-channel aims to fill only the SLC with
a buffer. We propose a new data structure that strategically circum-
vents the L2 cache to directly fill the SLC. This approach leverages
the difference in set-indexing between the L2 cache and the SLC:
while the L2 cache uses the lowest 13 address bits for indexing,
the SLC does not, allowing us to manipulate the address stride to
effectively restrict accesses on the L2 cache to certain sets. The new
data structure employs an a range of contiguous virtual addresses
with a stride of 8192, which make their lowest 13 address bits fixed,
enabling us to fill the SLC using only a small portion of the L2 cache,
i.e., more efficient profiling. Figure 4 shows the cache utilization
patterns of both traditional (stride=128) and our new data structure
(stride=8192) approaches. With traditional data structure, data fills
L2 evenly, making it difficult to isolate SLC behavior. In contrast,
our new approach restricts the L2 cache usage to just 1/64 of its
capacity, approximately 192 KB, while still engaging majority of
SLC cache lines. We set the buffer size to 80,000 cache lines, which is
the threshold value just before the number of L2 cache hits reaches
their peak, as shown in Figure 3b.

The contention status of the L2 cache is affected by victim pro-
cesses located on the same cluster (p-cores) as the spy: any victim
memory accesses will evict some of the spy’s data out of the L2
cache. The contention status of the SLC is not as intuitive because
of its exclusiveness as explained before. Theoretically, the L2 cache
occupancy channel only works for intra-cluster scenarios, while the
other two channels can monitor inter-cluster or CPU-GPU scenar-
ios. In our experimental setup, we let the attacker do the profiling
every 50 milliseconds, and introduce victim activities that involve
loading a victim buffer in the interval between two profiling phases.
The size of the victim buffer is varied systematically across different
trials to examine how these variations influence the attacker’s pro-
filing times. Each configuration for the victim buffer size is tested
100 times to gather a robust dataset, from which we calculate the
variance and average values of the profiling times. We pin the spy
and victim processes specifically to different cores to create the
following three conditions:
Intra-cluster: Both the victim and attacker processes are run on
the high-performance “Firestorm” cores.

Inter-cluster: The victim and attacker operate on different CPU
clusters, with the victim on the energy-efficient “Icestorm” cores
and the attacker on the “Firestorm” cores.
CPU-GPU: The attacker runs on a CPU core ("Firestorm"), while
the victim process is exclusively a GPU process.

(a) L2 Occupancy (b) Total Occupancy (c) SLC Occupancy

Figure 5: Spy access time vs. victim activities
Figure 5 presents our experimental results across different scenar-

ios, comparing the three occupancy channels. The x-axis represents
the victim’s buffer size, while the y-axis shows the spy’s profiling
time. An effective channel should exhibit a linear relationship be-
tween these variables, with the slope indicating the side-channel
signal strength. Our results demonstrate that the SLC occupancy
channel outperforms both the L2 and Total occupancy channels,
providing reliable and efficient monitoring across all tested con-
figurations, including inter-cluster and CPU-GPU scenarios where
the L2 channel fails.

Our eviction set implementation is designed to address two criti-
cal challenges specific to SLC occupancy attacks: efficiently filling
the SLC and bypassing the L2 cache. This approach optimizes for
overall cache usage monitoring, which is the primary focus of
occupancy attacks, rather than extracting fine-grained spatial in-
formation. This design choice is particularly advantageous for the
threat models explored in subsequent chapters, where attackers
may have limited capabilities to construct precise eviction sets. In
the following sections, we showcase the power and versatility of
our SLC occupancy channel through three distinct attacks span-
ning website fingerprinting, cross-origin website pixel stealing, and
screen capturing. These practical demonstrations not only validate
our approach but also highlight the broad applicability of this at-
tack vector, emphasizing the urgent need for security measures in
modern heterogeneous computing environments.

4 Website fingerprint attack
Our SLC occupancy side-channel shows effectiveness in various
scenarios, particularly for inter-cluster and cross CPU-GPU situa-
tions, opening up more attack surfaces. We apply such SLC cache
occupancy side-channels against real applications, and build a new
website fingerprinting attack.
Threat model: Following prior work [6, 16, 20, 22], this attack
employs malicious JavaScript – delivered via ads or websites – run-
ning unobtrusively in the background to monitor a victim user’s
web browsing activity. Constrained by standard JavaScript APIs
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and low-resolution timers, the attacker operates without exploiting
browser vulnerabilities. Assuming browsing traces under identical
conditions (browser and device) are collected before-hand, the at-
tacker profiles them, then monitors the victim’s real-time behavior,
and correlate the target website’s trace with the profiling traces.
Furthermore, we extend the prior attack framework to encompass
cross-browser scenarios, where the attacker’s code executes in one
browser and the victim uses a different browser.

4.1 Experimental Setup
Website fingerprinting attack aims to covertly track a user’s website
browsing history to facilitate malicious activities such as targeted
advertising or blackmailing. We build website fingerprinting at-
tacks on MacOS systems across three popular browsers: Chrome,
Safari, and Firefox. We evaluate both cross-tab (same browser) and
cross-browse scenarios, where the spy (tab or browser) runs in the
background and the victim browses in the foreground. To evaluate
the generalizability of our findings, we test three different Apple de-
vices, with M1, M1 Pro, and M3 Pro SoCs, respectively, which differ
in the core, cluster, and SLC configurations. Across all experimental
configurations, we evaluate the performance of two side-channel
approaches: the previous L2 cache occupancy channel [20] and our
SLC occupancy channel.

4.2 SLC occupancy attack validation
We first explore the capabilities of the SLC side-channel in monitor-
ing website activities compared to the previous cache occupancy
attacks. We design a benchmark with typical, but controllable, web-
site behaviors, which allows us to systematically analyze the side-
channel’s sensitivity and accuracy.
Rendering benchmark: We design the benchmark to simulate
the visual rendering activities of a website, which include loading
and updating of text, images, and the overall layout. We employ
image loading as the primary task that involves dynamically fetch-
ing and displaying images. In this benchmark, we make random
decisions at fixed intervals to determine whether to perform the
image loading operation. We record such decisions as binary values,
with 1 indicating loading image and 0 meaning no-loading. These
intervals are synchronized with the spy’s sampling rate. Specifi-
cally, we run a profiling phase for every 50ms for a total duration of
20 seconds,resulting in a side-channel trace of 400 measurements.
By calculating the correlation between the side-channel trace and
the benchmark behavior trace, we can assess the strength of the
side-channel.

We employ the T-test to evaluate the correlation [5, 11]. T-test is a
statistical method used to compare the means of two sets of data and
determine if there is a significant difference between them. In our
experiment, we divide all the data points in the side-channel trace
into two groups based on the corresponding values (0 or 1) in the
benchmark behavior trace. A higher T-test score indicates a greater
difference between the two groups, implying a stronger correlation
between the side-channel trace and the victim activity. Typically,
a T-test score above 4.5 is considered statistically significant and
used as the threshold.The experimental results are shown in Table 1. Overall, the SLC
occupancy channel demonstrates correlations with benchmark ac-
tivities (T-values above 4.5 in all scenarios), while the previous L2

Browsers M1 M1 Pro M3 Pro
Spy-Victim SLC L2 [20] SLC L2 SLC L2
Cross-tab Chrome 26.1 27.2 23.2 22.1 24.2 5.2
Cross-tab Safari 11.6 7.3 11.2 6.6 12.5 2.4
Cross-tab FireFox 13.8 15.7 14.7 6.8 14.5 6.7
Chrome-Safari 14.3 11.6 12.3 2.8 14.2 5.8
Chrome-FireFox 15.2 13.5 14.8 4.4 14.8 4.8
Safari-Chrome 14.6 2.8 15.9 2.2 15.2 2.8
Safari-FireFox 9.3 3.1 7.5 3.6 9.4 3.1
FireFox-Chrome 8.4 16.2 7.3 4.8 9.8 4.4
FireFox-Safari 10.4 12.3 12.1 3.7 10.1 2.4

Table 1: Benchmark results/T-test score

cache occupancy channel, although exhibiting similar correlations
in some cases, proves to be uncorrelated with benchmark activities
in others. We highlight those cases in red. As MacOS does not allow
users to assign browser or tab processes to a specific core or cluster,
we can only infer the allocation of background and foreground web-
pages to the processing clusters based on the experimental results.
On an Apple M1, the prior L2 side-channel [20] becomes ineffective
when the attacker operates from Safari in the background while the
victim uses other browsers in the foreground. As Safari is Apple’s
own browser, it may be uniquely optimized for Apple’s M1 hetero-
geneous core architecture and is relegated to an energy-efficient
core when it runs in the background. Other browsers persist in
high-performance cores even when they are in the background.
This finding aligns with the conclusions drawn by Cronin et al.[6].
Only in this situation the attacker and the victim are placed on
different clusters, forming an inter-cluster scenario. On an M1 Pro,
the prior L2 side-channel does not work in all cross-browser sce-
narios. We speculate that it is due to M1 Pro having two clusters
composed of performance cores, causing any two simultaneously
running browsers to be placed on different clusters. On an M3 Pro,
the prior L2 side-channel is even ineffective for cross-tab on Sa-
fari, and cross-browser when the spy is Firefox. We hypothesize
that this may be the result of M3 Pro employing a more advanced
process-core allocation strategy, leading to the attacker and victim
being assigned to different clusters in these specific scenarios.

4.3 Website fingerprinting attack
We next evaluate website fingerprinting attacks on a collection of
realistic websites, based on the two cache occupancy side-channels.
We select Chrome-Chrome and Safari-Chrome as representatives
of intra-cluster and inter-cluster scenarios, respectively, based on
the similar results observed across the three devices in Section 4.2.
Data Sets: For our experiments, we utilize a closed-world dataset.
We collect a dataset of 10,000 traces from the Alexa Top 100 websites
for each combination of device and scenario, with 100 traces per
website and each trace lasting 8 seconds. All the data is collected in a
clean environment where no applications other than the attacker’s
and victim’s browsers are running, and no other browser tabs are
open in the background. For our SLC occupancy channel, we set
the sampling rate to 10ms, while for the previous L2 side-channel,
we adopt the same 2ms sampling rate [20]. The longer sampling
rate for the SLC side-channel is due to its longer profiling time
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compared to the previous L2 channel, as shown in Figure 5. The
complete list of websites is given in Appendix B.
Machine Learning Approaches: We employ Support Vector Ma-
chines (SVM) with a linear kernel as the classifier on the collected
side-channel traces. For feature extraction, we use the raw time-
series from each trace - 800 sampling points for the SLC occupancy
channel and 4000 points for the L2 occupancy channel. Despite
the SLC occupancy channel having fewer sampling points, our ex-
periments demonstrate that this does not affect the classification
accuracy much. The datasets are normalized using Min-Max scaling
to ensure consistent feature ranges. The classifiers are trained and
tested using a 90-10 cross-validation strategy. We report the Top-1
accuracy as the performance metric.

Table 2: Website fingerprinting accuracies of different side-
channels on various SoCs under different scenarios

SoC Scenario Side-channel Accuracy

Apple M1
Chrome-Chrome SLC 90.5%

L2 [20] 91.2%

Safari-Chrome SLC 87.4%
L2 33.4%

Apple M1 Pro
Chrome-Chrome SLC 92.3%

L2 91.7%

Safari-Chrome SLC 88.6%
L2 35.3%

Apple M3 Pro
Chrome-Chrome SLC 92.4%

L2 76.3%

Safari-Chrome SLC 90.4%
L2 37.9%

Table 2 presents the experimental results, which align with our
expectations. In the Chrome-Chrome scenario (cross-tab) on the
same cluster, the SLC occupancy channel yields high accuracies of
over 90%, which are similar to the previous L2 side-channel [20]
on Apple M1 and Apple M1 Pro devices but the L2 side-channel
accuracy is lower at 76% on Apple M3 Pro. Furthermore, in the
Safari-Chrome scenario, which represents a cross-cluster setting,
the SLC occupancy channel maintains high accuracies of close to
90%while the accuracy of the previous L2 side-channel significantly
decreases. These findings demonstrate the effectiveness of the SLC
occupancy channel in a wider range of application scenarios, high-
lighting its ability to capture the contention state of the shared
SLC, regardless of the specific cluster allocation of the attacker and
victim processes.

We further evaluate our attack in real-world scenarios beyond
the clean environment. We observe that most background applica-
tions (e.g., Preview, VS Code) and browser tabs displaying static
content (e.g., Wikipedia pages) have negligible impact on the side-
channel trace collection. The models trained in clean environments
maintain similar accuracy when deployed in these scenarios. How-
ever, memory-intensive background applications and webpages,
such as video conferencing tools (e.g., Zoom, Teams) and video
playback applications, saturate the profiling phase timing to its
maximum value, making collection of meaningful side-channel
traces hard.

5 Cross-Origin Pixel Stealing Attack via SLC
Occupancy Side-Channel

In this section, we demonstrate a novel cross-origin pixel stealing
attack that leverages the SLC occupancy side-channel on Apple M-
series SoCs. Our attack exploits the data-dependent nature of GPU
compression [25], allowing us to infer individual pixel values from a
cross-origin iframe, even in the presence of constant-time SVG filter
implementations and recent security mitigations (CVE-2023-38599)
[15].

5.1 Attack Overview
Pixel stealing attacks exploit side-channels in web browsers to infer
the values of individual pixels from cross-origin content, bypass-
ing the same-origin policy. These attacks target SVG filters—the
graphical operations applied to web graph content—to monitor
and analyze iframe rendering times through the SLC occupancy
channel, distinguishing between black and white pixels.

Previous approaches relied on measuring the SVG filter render-
ing times to differentiate between black and white pixels. GPU-
zip[25] introduced a technique using the LLC walk time on Intel
systems to distinguish pixel colors, in addition to the traditional
rendering time measuring method. However, this approach cannot
apply to Apple M1 systems due to differences between ARM’s SLC
and Intel’s LLC Cache (LLC), as discussed in Section 3.1. For Apple
M1 systems, GPU-zip can only rely on the SVG filter rendering
time.

Due to the data-dependent nature of GPU compression, the SVG
filter processes white and black iframes differently. Specifically,
when handling a white iframe, the GPU memory usage is higher
than when processing a black iframe. By monitoring the GPU mem-
ory usage through the SLC occupancy side-channel introduced in
Section 3.5, we can infer whether the target pixel is black or white
based on the observed memory usage.
Threat model: We assume a controlled environment in which
an attacker-controlled webpage embeds a victim webpage as a
cross-origin iframe. The attacker aims to extract sensitive visual
information from the victim page displayed within the iframe, by
inferring individual pixel values. This attack scenario requires the
victim to visit the attacker’s malicious webpage while she is au-
thenticated to access sensitive target websites, with content such
as usernames and profile pictures accessible via cookies or session
data. The attack relies on the victim’s browser supporting SVG
filters and allowing cross-origin iframes.
Attack Setup: Similar to previous works [23, 25], our pixel-stealing
attack employs carefully designed SVG filters to process individual
pixels from a cross-origin iframe. The attack works by embedding
the target cross-origin webpage within an iframe on the attacker’s
page and magnifying a specific target pixel to occupy a significant
portion of the webpage. We apply SVG filters crafted to create
pattern-dependent workloads that respond differently to black and
white pixels. By observing side-channel effects through the SLC
occupancy channel, we can infer the color of the original pixel.
Similar to Section 4.3, all experiments in this sectionwere conducted
in a clean environment, with no other applications running in the
background, to ensure precise measurements.
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5.2 Validating SLC Occupancy Channel for
Pixel Color Discrimination

To demonstrate the efficacy of the SLC occupancy channel in dis-
tinguishing black and white pixels, we conducted a series of exper-
iments and compare this channel against the L2 cache occupancy
channel. The experimental setups are same as Section 3.5 and Sec-
tion 4.

Figure 6 captures the distinct behavior of the SLC occupancy
channel when processing black versus white pixels on Apple M1
chrome browser. By choosing an appropriate threshold between
these two distributions, we achieved a pixel recognition accuracy
of 92%. In contrast, Figure 7 presents the corresponding data for the
L2 cache-channel. It does not demonstrate significant differences
between the two pixel colors, which underscores the limitations
of the L2 cache occupancy channel for this type of pixel-stealing
attack.

Figure 6: SLC access time for
pixels

Figure 7: L2 access time for
pixels

We further extended our experiments to an Apple M3-Pro SoC,
which achieves similar accuracy. We also experimented with differ-
ent browsers. Due to Safari’s lower timer precision (with a gran-
ularity of only 1 millisecond), we implemented a sweep-counting
technique instead of directly measuring SLC access times. This tech-
nique counts how many times the buffer can be traversed within a
fixed time window of 10 seconds. As demonstrated in Table 3, this
alternative timing measurement method proves effective, though
with a slightly lower accuracy compared to the direct SLC access
time measurements for Chrome.

Table 3: Pixel recognition accuracy in different settings

SoC Browser Attack Technique Accuracy
M1 Chrome SLC access time 92%
M1 Safari Sweep-counting 84%
M3 Pro Chrome SLC access time 94%
M3 Pro Safari Sweep-counting 85%

These results show that the SLC occupancy channel is uniquely
effective in the pixel stealing attack, which is due to the SVG filter
operations being GPU-bound and only affecting the SLC that is
shared between CPU and GPU. Our approach achieves a pixel
reading speed of 2 seconds per pixel in Chrome, making it 2.5 times
faster than GPU-ZIP[25], the only prior pixel-stealing attack that
remains unmitigated on Apple M1 devices. In contrast, the reading

speed in Safari is slower, at 10 seconds per pixel. These findings
are consistent with the conclusions drawn in Sections 3 and 4,
where we demonstrated that the SLC occupancy channel excels in
a wide range of application scenarios, particularly those involving
GPU-centric processes.

5.3 Attack Cases
To demonstrate the effectiveness and potential threats of our attack
in practical scenarios, we simulated two attack cases - stealing text
and image content from web pages. These attacks mirror common
situations on many real websites, where usernames and profile
pictures are typically displayed in a corner of the page. Figure 8
illustrates the original images and the reconstructed results from a
Chrome browser running on an Apple M1 chip. The results clearly
demonstrate that our attack successfully reconstructed both the
text and image content. This outcome indicates that our attack
method remains effective in stealing sensitive visual information,
even on modern hardware and browsers.

(a) Original
text

(b) Retrieved
text

(c) Original
image

(d) Retrieved
image

Figure 8: Pixel stealing attack

The security implications of such attacks are significant. Many
popular websites are allowed to be embedded via iframes on a third-
party website while displaying user identity information some-
where on the page, for example, Wikipedia and LinkedIn. Attackers
could exploit these opportunities with some malicious attack code
embedded in their webpage and access the target webpages with
iframes. Similar to the findings in Section 4.3, in real-world scenar-
ios beyond the clean environment, most background applications
and static browser tabs have negligible impact on the attack’s ef-
fectiveness. However, other memory-intensive applications and
webpages can prevent the attack by saturating the timing, thereby
rendering the side-channel data noninformative.

6 Screen-capturing Attack
Building upon our foundational SLC occupancy channel and the
pixel stealing attack demonstrated in Chapter 5, we next introduce a
novel and more versatile attack that significantly expands the scope
of potential threats. While the previous attack leveraged website
iframes to magnify individual pixels to full-screen and monitor
SVG filtering via the SLC occupancy channel to differentiate black
and white pixels, our new screen-capturing attack transcends these
limitations, presenting a more general and pervasive threat.

Our innovative approach begins with the key observation that
even without SVG filters, significant differences in GPU memory
usage exist when displaying large areas of black versus white on
the screen, which can be detected by our SLC occupancy channel.
Building on this insight, we developed a sophisticated algorithm
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capable of monitoring memory consumption during the render-
ing of each frame, capturing the dynamics of a frame’s lifecycle.
This advancement allows us to extract fine-grained information
from specific screen regions without the need to artificially expand
website iframes to full-screen size.

This screen-capturing attack specifically targets the rendering
process on Apple M1 SoCs, leveraging the GPU’s involvement
in display operations. It can potentially extract information from
any content rendered on the screen, including native applications,
system UI elements, and full-screen applications, with an adequate
monitoring granularity of 57 rows of pixels out of the screen’s 1600
rows.

In the following sections, we first examine the sensitivity of the
SLC occupancy channel to GPU activities during normal image
rendering, then describe our approach to monitor individual frames
with high precision. Finally, we demonstrate the effectiveness and
broad applicability of this attack through two real-world scenarios:
barcode retrieval and printed digit recovery, showcasing its poten-
tial to compromise sensitive information across various use cases
beyond web-based contexts.

6.1 Sensitivity of the SLC occupancy channel to
GPU activities

In this section, we provide evidence supporting the relationship
between SLC usage and the content displayed on the screen during
normal image rendering, without relying on web-based techniques
used in Chapter 5. We conduct experiments by displaying vari-
ous images directly on the screen and monitoring the SLC usage
through our SLC occupancy channel. This approach demonstrates
that changes in displayed content significantly influence the SLC be-
havior. Our findings reveal that the GPU’s memory usage patterns
can be detected through the SLC for any on-screen content, provid-
ing a foundation for our subsequent screen-capturing attack that
goes beyond web-based scenarios and expands the attack surface
to all displayed information.

Experimental Setup: The experimental setup utilizes a Mac-
Book Air with M1 SOC. We repeatedly profile using alternated
order access pattern, counting SLC hits and calculating evicted
cache lines, which serve as a proxy for GPU memory usage. Same
as prior two attacks, all experiments in this section were conducted
in a clean environment with no other applications running in the
background.

We first show a sequence of slides alternating between complete
darkness (all pixels black) and pure whiteness on the screen and
use our SLC occupancy channel to measure the memory usage. We
observe that the GPU’s memory usage is significantly lower for
displaying black pixels than white pixels, shown in Figure 9a.

Next, we display a sequences of slides with decreasing portion
of white pixels, with the results show in Figure 9b. We observe a
positive correlation between the memory usage and the percentage
of white pixels. We then change the slides to be grayscale, and the
results are shown in Figure 9c. Interestingly there is no correlation
between the memory usage and the grayscale level of the screen.

We further analyze other colors, and discover that the GPU’s
memory usage is decreased proportionally as the number of RGB
color pixel values being zero increases, as shown in Figure 9d, where

(a) (b) (c) (d)

Figure 9: Evicted cache lines for different slides

black is (0,0,0), pink is (0,255,255), blue is (0,0,255), and white is (255,
255, 255) in RGB format.

Based on these results, we hypothesize that an increase in the
number of zeros across screen pixels correlates with reduced GPU
memory usage. This could be also due to the GPU’s compression
mechanism, which results in less memory usage and data transfer
with more zero values. Due to the lack of publicly available docu-
mentation, it is challenging to pinpoint the exact reason for this
phenomenon. Nonetheless, understanding this correlation between
zero pixel values and GPU memory usage is sufficient for us to
develop a privacy-concerning screen display snooping attack.

6.2 Monitoring one frame
To precisely measure GPU memory usage corresponding to screen
displays, we monitor memory consumption during the rendering
of one frame, aiming to capture dynamics during a frame’s life-
cycle. MacOS’s Vsync synchronizes the screen refresh rate with
graphical output at 60 FPS, with 16.7ms between Vsync signals.
We utilize CVDisplayLink to capture Vsync signals and align the
measurements.

Our monitoring framework, depicted in Figure 10, uses a Prime
& Reload technique to capture the GPU’s memory usage over very
short time intervals. The Prime and Reload are both profiling phases
described in Section 3.5, without or with measuring SLC hits. How-
ever, due to the inherent time consumption of the prime and reload
processes themselves, the precision of measurements is compro-
mised when these phases are closely spaced. To address this chal-
lenge, we implement a strategy of dual-set of prime and reload,
with deliberately controlled timing for each process, so that one
single frame of screen rendering can be monitored in detail. In
this setup, both reloads start simultaneously, while the primes are
initiated at different moments. By calculating the differential of the
evicted cache lines measurements from these two prime and reload
cycles, we can infer the memory usage within the time interval
between the two primes. This short interval, which we define as an
’observation window,’ allows us to analyze GPUmemory usage over
extremely brief periods, enhancing the granularity and accuracy of
our measurements.

Figure 11 shows a trace for one frame, with a 0.4ms observation
window (about 1

40 frame) sliding with an increment of 0.04ms ( 1
400

frame). This trace, with 400 measurement points, shows that there
are 28 short epochs during the frame rendering process, where the
GPU memory usage is significantly active at the peak (we define
as the flash point). The first epoch demonstrates a higher GPU
memory usage compared to the subsequent epochs.

Our experiments revealed that these epochs correspond to 28
evenly divided regions of the screen, vertically from top to bottom.
As the screen is 2560*1600 pixels, each flash point can be mapped to
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Figure 10: Precisely monitoring frame activities

Figure 11: Trace of a full frame

Figure 12: Correlation between a trace of flash points and
the screen bars (with varying zero pixel values)

a 2560*57 pixels region. We observe a high correlation between the
memory usage at each flash point and the portion of pixel values
at zero in its corresponding screen region (1/28 bar of the screen).
Figure 12 shows several instances demonstrating this relationship.
Note we excluded the first epoch for its peculiarity. The strong
correlation observed suggests that this SLC occupancy channel can
be exploited to extract more patterns from the screen.

However, detecting the screen content through flash point pat-
terns has several limitations. First, the technique only works when
the screen predominantly displays large blocks of solid colors (>90%
of screen area, with each block exceeding 256×256 pixels). The pat-
tern detection becomes difficult when more than 10% of the screen
contains complex images with pixel-level variations. Moreover, the
measurement process itself takes approximately 5 minutes and re-
quires completely still screen - even mouse movements can disrupt
the readings. Despite these limitations in capturing fine-grained
screen details, we demonstrate in Section 6.3 that this side-channel
remains effective for specific screen-capturing attack scenarios.

Figure 13: Screen display snooping attack method

(a) Characters (b) Flash epoch segments

Figure 14: ITF barcode

6.3 Attack with pattern recognition
Building upon these insights, we propose a screen display snooping
attack to recognize static images using pattern recognition. Assum-
ing the adversary knows all potential images, they build a library
of memory usage patterns by dividing each image into 28 bars and
guessing flash point values based on white pixel proportions (Fig-
ure 13). The attacker then obtains actual flash point values during
screen rendering and compares themwith the library to identify the
best match. We apply this attack to barcode retrieval and printed
digit recognition to demonstrate its practicality and effectiveness.

6.3.1 Barcode retrieving. Our first application of the screen
display snooping attack targets identifying barcodes shown. We
choose a classic barcode format, Interleaved 2 of 5 (ITF). This format
is known for its efficiency in encoding numeric data, widely used
in warehouse inventory, supply chain distribution, and various
industrial applications. In ITF, each character is represented by a set
of five bars, two of which are wide and three are narrow. A unique
aspect of ITF is that two digits are encoded in each character, making
it a compact and dense representation. The barcode begins and ends
with specific start and stop patterns, ensuring correct orientation
and readability. According to the standard ITF barcoding, the width
of the wide bars is three times that of the narrow bars.

An example of an ITF barcode with a narrow bar height of 30
pixels is shown in Figure 14a. This barcode contains two characters,
each encoding two digits. For the first character, its area on the
screen corresponds to nine flash epochs, as depicted in Figure 14b.
During our pattern generation phase, we calculate the expected
memory usage for these nine flash points for all possible two-digit
values that the character can represent, ranging from 00 to 99.
To determine the actual value of the character, we collect a trace
of flash points from the screen rendering and compare it against
the pre-computed patterns. The pattern that yields the smallest
distance, measured by Mean Squared Error (MSE), is identified as
the correct value for the character. In the example shown, the first
character is correctly recognized as “34.”

To evaluate the effectiveness of our attack on ITF barcodes, we
tested the recognition accuracy for different narrow bar heights.
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Figure 15: Attack accuracy vs. the narrower bar width

The results are presented in Figure 15, which demonstrates that our
attack achieves a 90% accuracy rate when the narrow bar height is
greater than or equal to 20 pixels. Considering the height limitation
of the screen, this implies that our attack can handle ITF barcodes
containing up to 8 digits (i.e., 4 characters) in a full-screen setting.

Table 4: Confusion matrix
for single-digit recognition

0 1 2 3 4 5 6 7 8 9
0 89 0 0 0 0 0 3 0 5 3
1 0 100 0 0 0 0 0 0 0 0
2 0 0 96 3 0 0 0 0 1 0
3 0 0 1 98 0 1 0 0 0 0
4 0 0 0 0 100 0 0 0 0 0
5 0 0 0 2 0 97 1 0 0 0
6 3 0 0 0 0 0 89 0 5 3
7 0 0 0 0 0 0 0 100 0 0
8 10 0 0 0 0 0 5 0 74 11
9 3 0 0 0 0 0 2 0 7 88

6.3.2 Print digits recovery.
The second application of our
screen display snooping attack
is print digits displayed. The vic-
tim displays a series of Arabic nu-
merals in white on a black back-
ground full-screen, as shown in
Figure 13. Such digits may con-
tain sensitive information, such as
verification codes and passwords,
that the attacker aims to steal. Ini-
tially focusing on a single digit,
the results of this attack are presented in a confusion matrix, reveal-
ing an accuracy rate of 91%. Most digits exhibit high recognition
accuracy, indicating the effectiveness of the screen display snooping
attack in identifying individual numerals. However, it is observed
that certain pairs of visually similar digits, such as 0 and 8, have
a higher probability of being misclassified as each other. This can
be attributed to their resemblance in shape and the shared visual
features that may lead to similar SLC usage patterns.

We further investigate scenarios where two and three digits are
displayed simultaneously on the screen. In these cases, our attack
is unable to distinguish the order of the digits. For example, the
digit pairs 81 and 18, or the digit triads 119 and 911, would have
the same guessed flash points. When calculating the accuracy, we
consider different orderings of the same digits as a single label. This
means that when the attacker succeeds, they can only determine
the count of each digit present, but not their order. The accuracies
for these cases are detailed in Table 5.

Table 5: Recognition accu-
racy for multiple digits

Digit Count Top-1 Top-5 Top-10
Single-digit 91.2% 100% 100%
Two-digit 52.9% 63.0% 63.9%
Three-digit 21.4% 27.2% 28.2%

The accuracy decreases signif-
icantly as the number of digits in-
creases. This can be attributed to
the increased precision required
to differentiate between the pos-
sible combinations of digits. With
each additional digit, the number of possible combinations grows
by a factor of 10, while the noise level remains constant. However,
the attack still poses a threat by narrowing down possible values, as
sensitive information like verification codes or PINs often consists
of a limited number of digits.

7 Countermeasure against Cache Occupancy
Attacks

In this section, we propose a novel countermeasure against SLC
cache occupancy attacks, building upon and significantly enhancing
the cache masking technique introduced by Oren et al. [21]. While
their approach showed only moderate effectiveness, reducing attack
accuracy by a mere 6%, our method addresses the fundamental
limitations that hindered its performance.

Our analysis in Section 3 revealed that the ineffectiveness of
prior techniques stemmed from the uneven distribution of the mask
buffer across L2 cache sets. This allowed attackers to exploit over-
looked cache sets, maintaining the viability of their side-channels.
Our enhanced approach ensures a more comprehensive coverage
of cache sets, effectively disrupting the entire cache occupancy
channel.

Unlike subsequent works [13, 19] that primarily focused on
adding noise to the cache occupancy channel, our countermea-
sure fundamentally alters the relationship between victim activities
and observable cache states. By leveraging our deep understanding
of the SLC’s structure and behavior, we’ve developed a method
that targets the SLC occupancy channel itself, rather than specific
attacks or applications. This ensures no discernible impact of victim
activity is visible to potential attackers.

In the following subsection, we detail our proposed countermea-
sure, its implementation, and demonstrate its effectiveness against
various attack scenarios, including high-resolution attacks.

7.1 Proposed countermeasure
We propose two enhancements to the cache masking process to
address the issue identified. First, we allocate a new buffer for each
iteration of the loop for cache masking and release the buffer at
the end. This approach ensures that the evicted cache lines may
vary in each iteration. It becomes more challenging to consistently
miss a particular cache set throughout the entire loop. Second, we
increase the buffer size used for mitigation to exceed the L2 cache
size. By doing so, each cache set has a higher probability of being
completely evicted.

We employ the benchmark introduced in Section 4.2 to evaluate
the impact of the mitigation on the previous L2 cache occupancy
channel. We test with the spy and victim both operating in Chrome
(cross-tab scenario). Figure 16a shows the effectiveness of our coun-
termeasure under different buffer sizes. We evaluate two cases:
using a single buffer (without the first enhancement) and continu-
ously allocating and releasing a new buffer in each iteration (with
the first enhancement). The results show for the single-buffer case,
when the buffer size is larger than 32 MB (almost three times the
L2 cache size), the cache occupancy side-channel is ineffective.
However, for the new-buffer case, the buffer size threshold is 22MB.

However, when applying this countermeasure to our SLC occu-
pancy side-channel, it fails to effectively mitigate the SLC channel.
We hypothesize that although this method can fill the SLC by evict-
ing L2, the filling rate is not sufficiently fast. To address this issue,
we propose a specific SLC masking scheme. The main change is
setting the stride of accessing the buffer to be 8 KB, which is sig-
nificantly larger than the previous stride of 128 bytes used in the
previous masking approach. This large stride allows the masking
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(a) Against L2 occupancy channel (b) Against SLC occupancy channel

Figure 16: Effectiveness of the proposed countermeasures

buffer to bypass the L2 cache and directly fill the SLC, making it
effective against SLC occupancy channels. However, this design
choice means that our SLC masking scheme has minimal impact on
L2 cache occupancy - since the masking buffer largely bypasses L2,
it cannot effectively mitigate L2-based occupancy channels. Fig-
ure 16b present the effectiveness of the new SLC masking scheme.
The results demonstrate that when the buffer size is greater than
or equal to 12MB, the SLC masking scheme counteract against the
SLC occupancy side-channel effectively.

7.2 Performance evaluation
To evaluate the impact of cache masking techniques on the sys-
tem performance, we employ Geekbench[9] to measure the influ-
ence of two L2 cache masking implementations (L2 masking 1:
new-buffer at size 24MB; L2 masking 2: single-buffer with a buffer
size=32MB) and the SLC masking implementation (stride=8KB and
buffer size=12MB) on the performance of single-core and multi-
core tasks. Figure 17 presents the evaluation results. Overall, the
performance degradation caused by the three mitigation methods is
relatively small, with single-core performance degradation by less
than 5% and multi-core degradation by less than 10%. We observe
that the new-buffer implementation (L2 masking 1) has a more
significant impact on the system performance, which suggests that
the benefits of enhancement 1 are not sufficient to compensate for
the overhead it introduces. The SLC masking implementation has
a minor impact on single-core tasks but a more substantial effect
on multi-core performance, which aligns with the role of the SLC
in the system.

Figure 17: Performance impact of mitigations

8 Conclusion
In this paper, we presented a comprehensive study of cache occu-
pancy attacks targeting the System-Level Cache (SLC) in Apple

M-series SoCs, revealing critical vulnerabilities in these modern het-
erogeneous computing systems. Our workmakes several significant
contributions to the field of hardware security:

(1) Novel SLC Occupancy Channel:We developed the first
cache occupancy attack that effectively exploits the exclu-
sive nature of the SLC, a feature previously unexplored in
such attacks. By reverse-engineering the SLC’s structure
and sharing mechanisms, we uncovered its unique proper-
ties and devised a method to directly monitor its occupancy,
bypassing lower-level caches.

(2) Enhanced Attack Scenarios:We demonstrated the supe-
riority of our SLC occupancy channel over previous cache
occupancy attacks, particularly in inter-cluster and CPU-
GPU scenarios. This advancement significantly expands the
attack surface in heterogeneous computing environments.

(3) Versatile Attack Applications:We showcased the effec-
tiveness of our approach through three distinct attacks:
• A website fingerprinting attack that achieves high accu-
racy across various scenarios, including cross-browser
setups.
• A cross-origin pixel stealing attack that exploits GPU com-
pression characteristics to infer pixel values, overcoming
existing security measures.
• A novel screen-capturing attack that can extract informa-
tion from any on-screen content, representing a substan-
tial escalation in potential privacy violations.

(4) Countermeasures:We proposed and evaluated enhanced
cache masking techniques to mitigate these attacks, address-
ing the shortcomings of previous countermeasures.

Our findings highlight the urgent need for a reevaluation of secu-
rity measures in modern SoC designs, particularly those employing
heterogeneous architectures. The ability to exploit the SLC for
cross-component attacks poses a significant threat to system-wide
security and privacy.

This research demonstrates that as computing systems continue
to evolve towards more complex and integrated architectures, un-
derstanding and mitigating these subtle yet powerful side-channel
vulnerabilities becomes increasingly crucial. Our work serves as a
foundation for securing heterogeneous computing environments
against sophisticated microarchitectural attacks.
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Appendix
A SLC reverse engineering
A.1 Reverse engineering Inclusiveness Policy
Our experiments reveal that the SLC in Apple M1 employs a hybrid
inclusiveness policy: inclusive with respect to the GPU cache but
exclusive with respect to the CPU cache. To reach this conclusion,
we conducted separate experiments to explore the relationship
between the GPU cache and the SLC, as well as between the CPU
cache and the SLC.
GPU Cache and SLC Relationship: We first explored the rela-
tionship between the GPU cache and the SLC. We performed an
experiment similar to that shown in Figure 3b, but from the GPU
side and measure the number of SLC hits. The results, shown in
Figure 18, demonstrate a striking difference from CPU access pat-
terns. When the GPU accesses the buffer, the number of SLC hits
increases linearly with the buffer size until the buffer size reaches
the SLC size. This behavior strongly suggests that the GPU cache
is inclusive with respect to the SLC, meaning that data loaded into
the GPU cache is also present in the SLC.
CPU Cache and SLC Relationship: On the CPU side, in Apple
M1, as the SLC (8 MB) is smaller than the L2 cache of the perfor-
mance cores (12 MB), an inclusive policy between them is not likely.
However, whether the SLC is non-inclusive or exclusive with respect
to the CPU caches remains unclear. The key difference between
non-inclusive and exclusive caches lies in what happens to the data
in the SLC when it is accessed by the CPU. In an exclusive cache,
when data is loaded from the SLC into the CPU’s cache hierarchy,
the corresponding data in the SLC is immediately invalidated. In
contrast, a non-inclusive SLC keeps a backup copy of the data in it
until it is evicted later by other activities.

To infer the inclusiveness policy between the SLC and the CPU
cache, we designed an experiment outlined in Algorithm 1. The
algorithm systematically varies the buffer1 size and measures SLC
hit counts to determine the cache behavior.

There are four steps as shown in Algorithm 1: CPU loads buffer1;
GPU loads buffer2: CPU loads buffer1; CPU loads buffer2 and mea-
sure the SLC hit counts. For the second load of buffer1, we employ
the sequential-order and alternated-order access patterns described
earlier, respectively, and see if there are differences in the SLC hit
counts. When the size of buffer1 exceeds the capacity of the L2
cache, step 1○ results in some earlier buffer1 data occupying the
SLC (denoted as 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝑆𝐿𝐶 and later buffer1 data stays in L2 (de-
noted as 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝐿2) due to cache capacity conflict. Step 2○ evicts
𝑏𝑢𝑓 𝑓 𝑒𝑟1𝑆𝐿𝐶 from SLC. For the alternate-order access pattern, for
step 3○, the later buffer1 data is accessed first with L2 cache hit,
and when earlier data is accessed, they have to be loaded from
the memory to L2 cache which evicts some 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝐿2 to SLC, at

https://www.arm.com/corelink-ci700-manual
https://www.geekbench.com/
https://nvd.nist.gov/vuln/detail/CVE-2023-38599
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Algorithm 1 SLC Inclusiveness Policy Test
1: 𝐵𝑢𝑓 𝑓 𝑒𝑟2_𝑠𝑖𝑧𝑒 ← 𝑆𝐿𝐶_𝑠𝑖𝑧𝑒
2: for 𝐵𝑢𝑓 𝑓 𝑒𝑟1_𝑠𝑖𝑧𝑒 ← 1 to 1.6 × 105 do
3: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0

1○
4: for 𝑖 ← 1 to 𝐵𝑢𝑓 𝑓 𝑒𝑟1_𝑠𝑖𝑧𝑒 do
5: CPU accesses 𝐵𝑢𝑓 𝑓 𝑒𝑟1 [𝑖]
6: end for

2○7: GPU accesses 𝐵𝑢𝑓 𝑓 𝑒𝑟2

3○

8: if Sequential-order then
9: for 𝑖 ← 1 to 𝐵𝑢𝑓 𝑓 𝑒𝑟1_𝑠𝑖𝑧𝑒 do
10: CPU accesses 𝐵𝑢𝑓 𝑓 𝑒𝑟1 [𝑖]
11: end for
12: end if
13: if Alternated-order then
14: for 𝑖 ← 𝐵𝑢𝑓 𝑓 𝑒𝑟1_𝑠𝑖𝑧𝑒 to 1 do
15: CPU accesses 𝐵𝑢𝑓 𝑓 𝑒𝑟1 [𝑖]
16: end for
17: end if

4○

18: for 𝑖 ← 1 to 𝐵𝑢𝑓 𝑓 𝑒𝑟2_𝑠𝑖𝑧𝑒 do
19: 𝑡 ← measure_time(CPU access 𝐵𝑢𝑓 𝑓 𝑒𝑟2 [𝑖])
20: if is_SLC_hit(𝑡 ) then
21: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
22: end if
23: end for
24: store_result(𝐵𝑢𝑓 𝑓 𝑒𝑟1_𝑠𝑖𝑧𝑒 , 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 )
25: end for

Figure 18: SLC capacities Figure 19: SLC eviction pat-
terns

the same amount as 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝑆𝐿𝐶 . For the sequential-order access
pattern, for step 3○, the self-eviction effect, as previously described
in Section 3.3, will take place and some 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝐿2 content will be
evicting from L2 to SLC first and later loaded to L2 again, at the
same amount as 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝑆𝐿𝐶 .

Theoretically, if the SLC were non-inclusive with respect to
the CPU cache, we would expect a significant difference in the
number of SLC lines occupied by buffer1 data between the two
access patterns, similar to the difference in SLC hits observed in
Figure 3. However, our experimental results, shown in Figure 19,
indicate that the difference between the two access patterns is
minimal. This observation aligns with the behavior of an exclusive
cache. Under an exclusive policy, when some 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝐿2 is reloaded
into the L2 cache during step 3○, the corresponding data in the SLC
is immediately invalidated to receive later evicted data from the
L2 cache, resulting in total amount of 𝑏𝑢𝑓 𝑓 𝑒𝑟1𝑆𝐿𝐶 . This process
does not displace other SLC lines, explaining the minimal difference
observed between the two access patterns.

(a) L2 utilization (b) SLC utilization

Figure 20: Cache utilization with different strides

A.2 Reverse engineering Set Index Mapping
Our analysis reveals that the M1’s SLC excludes the lowest 13 bits
of the physical address for indexing, instead utilizing bits starting
from the 14th position and above. To verify this, we conducted
experiments by fixing specific bits in the address and measuring the
resulting SLC utilization. Figure 20 demonstrates how the utiliza-
tion rates of the L2 and SLC caches change under different access
patterns.

In this experiment, we sequentially load a buffer with addresses
using a defined stride, and measure the number of cache hits as
the buffer size varies. For each buffer configuration, we record the
number of cache hits on both the L2 and SLC caches, respectively,
as depicted on the Y-axis. The experiment was conducted using an
alternated-order access sequence with the chosen address stride.
Similar to Figure 3b, as the buffer size increases, the cache hits
for both L2 and SLC approach an upper limit, indicating cache
utilization. For the L2 cache, the utilization is inversely proportional
to the stride size due to the fixed stride causing some of the lowest
bits in the address to remain constant. For example, a stride of
512 results in the lowest 9 bits being identical, while a stride of
1024 leads to the lowest 10 bits remaining the same. Since the L2
cache uses these fixed lowest bits to index sets, this pattern restricts
the L2 cache sets that are utilized. In contrast, the upper bound of
SLC’s cache hits remains close to about 90% of the SLC’s capacity,
indicating that its utilization is not affected by the stride size when
it’s less than or equal to 8192 bytes. This finding suggests that
the SLC does not utilize the lowest 13 bits for indexing cache sets.
The bound of SLC’s cache hits only begins to halve and becomes
inversely proportional to the stride size when the stride is greater
than or equal to 16384. This observation indicates that the SLC only
employs the 14th bit and above for set indexing.

A.3 Reverse engineering Replacement Policy
To provide further insight into the replacement policy of the SLC,
we conducted an experiment with two buffers of equal size, accessed
sequentially. We used a coarse-grained load+probe process. In the
load phase, buffer 1 is accessed first, followed by buffer 2. In the
probe phase, buffer 2 is accessed first, followed by buffer 1, and
the loading times of both buffers are measured. We also varied the
buffer sizes for this experiment.

Figure 21 illustrates the number of L2 and SLC cache hits for
buffer 1 and buffer 2. For the L2 cache, which follows an LRU (Least
Recently Used) replacement policy under single-core conditions, we
observe that when the combined size of the two buffers approaches
the L2 capacity, the cache hits for buffer 1 decrease significantly,
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while the hits for buffer 2 continue to increase. This confirms the
expected LRU behavior, where the earlier accessed buffer is evicted
first.

In contrast, the SLC cache hits for both buffers remain nearly
identical across all buffer sizes, suggesting that the SLC replace-
ment policy is independent of the access order, indicating a pseudo-
random replacement policy. This makes it difficult for a single buffer
to completely occupy the SLC, as the cache line replacement is not
purely based on access recency but likely involves a form of ran-
domization or pseudo-random selection. This is why, as shown in
Figure 21b, the SLC utilization only reaches about 90%.

(a) L2 hits (b) SLC hits

Figure 21: Cache hits when accessing two buffers

B Websites Included in Datasets
www.google.com www.youtube.com
www.reddit.com www.facebook.com
www.amazon.com www.pornhub.com
www.wikipedia.org www.yahoo.com
www.duckduckgo.com www.twitter.com
www.weather.com www.xvideos.com
www.instagram.com www.fandom.com
www.bing.com www.cnn.com
www.tiktok.com www.espn.com
www.nytimes.com www.xnxx.com
www.9gag.com www.foxnews.com
www.quora.com www.ebay.com
www.linkedin.com www.imdb.com
www.office.com www.twitch.tv
www.xhamster.com www.openai.com
www.live.com www.microsoft.com
www.walmart.com www.accuweather.com
www.onlyfans.com www.usps.com
www.netflix.com www.msn.com
www.dailymail.co.uk www.pinterest.com
www.indeed.com www.etsy.com
www.zillow.com www.nypost.com
www.instructure.com www.apple.com
www.discord.com www.chaturbate.com
www.zoom.us www.eporner.com
www.paypal.com www.imgur.com
www.sharepoint.com www.homedepot.com
www.bbc.com www.ign.com
www.ups.com www.craigslist.org
www.spotify.com www.breitbart.com
www.fedex.com www.roblox.com
www.theguardian.com www.gamespot.com
www.weather.gov www.chase.com
www.nextdoor.com www.steamcommunity.com

www.usatoday.com www.github.com
www.aliexpress.com www.washingtonpost.com
www.temu.com www.capitalone.com
www.samsung.com www.bestbuy.com
www.patreon.com www.wunderground.com
www.hulu.com www.target.com
www.nih.gov www.apnews.com
www.intuit.com www.xfinity.com
www.canva.com www.yelp.com
www.okta.com www.healthline.com
www.adobe.com www.lowes.com
www.character.ai www.nbcnews.com
www.nfl.com www.whatsapp.com
www.allrecipes.com www.duosecurity.com
www.steampowered.comwww.slickdeals.net
www.realtor.com www.costco.com
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