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Abstract
GraphQL is an open-source data query and manipulation language
designed for web applications, offering a flexible alternative to
RESTful APIs. However, its dynamic execution model and lack
of built-in security mechanisms introduce significant vulnerabil-
ities, including unauthorized data access, denial-of-service (DoS)
attacks, and injection threats. Existing GraphQL testing frame-
works primarily focus on functional correctness, neglecting se-
curity risks arising from query interdependencies and execution
context, leading to inadequate vulnerability detection. This paper
introduces GraphQLer—the first context-aware security testing
framework for GraphQL APIs. GraphQLer analyzes intricate rela-
tionships among mutations, queries, and objects by constructing
a dependency graph, capturing critical security-relevant interde-
pendencies. It intelligently chains associated queries and muta-
tions to uncover authentication and authorization flaws, access
control bypasses, and resource misuse. Furthermore, GraphQLer
can track the use of internal resources in requests to detect data
leakage, privilege escalation, and replay attack vectors. We evaluate
GraphQLer’s effectiveness through various testing scenarios on
different GraphQL APIs. In terms of testing coverage, GraphQLer
achieves a significant improvement, with an average coverage in-
crease of 35%, and in some instances, a remarkable 84% boost com-
pared to the best-performing baseline method. This enhanced cov-
erage is achieved in less time than the baseline methods, making
GraphQLer particularly valuable for time-constrained use cases.
Additionally, GraphQLer demonstrates its capability in detect-
ing a previously reported CVE and potential vulnerabilities within
large-scale production APIs. These findings highlightGraphQLer’s
potential to proactively strengthen GraphQLAPI security, offering a
robust and automated approach to identifying security weaknesses.

1 Introduction
In recent years, there has been a noticeable increase in the use of
modular service-basedmethodologies in software development [24].
This paradigm shift has prompted many developers to rely on Ap-
plication Programming Interfaces (APIs) to facilitate data exchange
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between different architectural modules [45]. While established
API architectures like Representational State Transfer (REST) [29]
and Simple Object Access Protocol (SOAP) [23] are well-known,
the Graph Query Language (GraphQL), due to its relatively recent
emergence, remains one of the least explored alternatives despite
its usefulness and growing popularity [50].

GraphQL is an API specification that allows users to retrieve data
from multiple sources efficiently using a single query. As of 2024,
over 60% of developers are using GraphQL to expose APIs for their
applications and personal websites [7]. GraphQL’s core approach
centers around structuring data and requests in a graph, enabling de-
velopers to explicitly define dependencies and simplify the retrieval
of correlated data [26], [63]. Despite its advantages, GraphQL intro-
duces unique security challenges that are often overlooked. Unlike
traditional REST APIs, where endpoints and response structures
are predefined, GraphQL allows clients to dynamically construct
queries, increasing the risk of over-fetching, information disclosure,
and unauthorized access [40].

In our extensive domain analysis, we have identified a significant
gap in the availability of effective solutions for GraphQL security
testing. Many existing GraphQL frameworks test APIs by exhaus-
tively enumerating available methods, applying parameter fuzzing
techniques, and subsequently sending requests to detect errors in
the response. Current GraphQL testing tools, such as Zed Attack
Proxy (ZAP) [47] and BurpSuite [31], primarily focus on detecting
simple vulnerabilities like injection flaws or schema misconfigura-
tions. However, these tools fail to capture complex security risks
that arise from endpoint dependencies.

Other proposed methods utilize static analysis, ignoring the dy-
namic responses of the API [40], [22], [39], [61], [65], [66]. While
these techniques detect basic bugs, they overlook chained vulner-
abilities that arise from implicit dependencies between queries,
mutations, and objects. Some improvements have been made using
reinforcement learning to dynamically learn from the responses
of the API; none have yet looked at the dependent nature of the
endpoint dependencies [53]. Existing works focus on input varia-
tion but fail to model how query interactions can be exploited for
privilege escalation, authorization bypass, or data extraction. As a
result, GraphQL APIs remain vulnerable to sophisticated multi-step
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attacks that existing solutions cannot detect. In summary, both
established testing tools and academic studies predominantly focus
on input and output relationships in GraphQL, largely overlook-
ing the untapped potential of utilizing GraphQL dependencies to
sequence test cases.

To address these critical shortcomings, we introduceGraphQLer,
the first automated context–aware security testing solution for
GraphQLAPIs. The term “context–aware” emphasizesGraphQLer’s
unique ability to comprehend the complex relationships between
input and output within GraphQL, while the term “automated”
highlights its ability to generate and execute security-focused test
requests without manual intervention. Our approach includes the
following key components: 1) Dependency inference: We infer de-
pendencies among objects, queries, and mutations within GraphQL
to identify potential attack vectors, such as unauthorized access via
transitive relationships; 2) Search algorithms: We employ effective
search techniques to dynamically explore vulnerability chains that
existing testing approaches overlook; and 3) Resource reusability:
Our methodology allows for the dynamic reuse of re- sources gener-
ated during GraphQL API testing. Unlike existing GraphQL testing
frameworks that rely on arbitrary input modifications, GraphQLer
leverages real-time API interactions to construct attack scenarios
based on actual API behavior.

To evaluate the effectiveness of GraphQLer, we perform ex-
tensive testing on various GraphQL APIs, including public APIs
[64] and large-scale platform APIs. Our results demonstrate that
GraphQLer significantly improves test coverage, with an average
increase of 35% and, in some cases, a notable rise of 84% compared
to the most effective baseline method. Furthermore, GraphQLer
successfully identifies multiple security vulnerabilities, including a
previously reported CVE and several new potential exploits that
were undetected by existing tools. These findings highlight the
importance of incorporating context-aware dependency analysis
into GraphQL testing to effectively detect complex vulnerabilities.
In summary, we present the following key contributions.

⋄ We advance the state-of-the-art in GraphQL security testing by
introducing a novel context-aware approach that leverages query
and mutation dependencies to uncover security vulnerabilities.

⋄ We presentGraphQLer, a fully functional, open-source tool 1. As
an open-source project, GraphQLer enables community-driven
improvements, making it applicable across diverse GraphQL
implementations.

⋄ We perform extensive evaluation of GraphQLer on real-world
GraphQL APIs, demonstrating its superiority over baseline meth-
ods in terms of both test coverage and security vulnerability
detection. Notably, GraphQLer successfully identifies a docu-
mented CVE and several new security flaws, proving its effec-
tiveness in uncovering critical GraphQL security risks.

This paper is structured as follows: In Section 2, we cover key
concepts and related work. Section 3 outlines the proposed method,
and Section 4 describes its implementation. Section 5 presents ex-
perimental results. Section 6 discusses implications and future di-
rections. Finally, Section 7 concludes the paper.

1The source code for GraphQLer is hosted on Github at https://github.com/omar2535/
GraphQLer.

2 Background & Related Work
In this section, we provide background on GraphQL APIs, discuss
vulnerabilities inherent to them, and review prior work that ad-
dresses the problem we aim to solve.

2.1 GraphQL Fundamentals
GraphQL originated as an internal specification at Facebook in
2012 [6] and later transitioned into a public open-source project in
2015. Since then, it has been widely adopted by many well-known
applications, including Instagram, Twitter, and Shopify.

GraphQL has the following features [51], [35], [56]: 1) Data as a
graph: This enables all data to be fetched in a single request and
prevents the under-fetching problem; 2) Strongly typed: GraphQL’s
schema defines data types (objects) and the possible methods for
querying and mutating data over the API. This ensures predictable
results and simplifies error handling. Clients must explicitly specify
the fields of the data type they want in the output, minimizing
over-fetching; and 3) Single endpoint: All requests are processed
through a single, consistent endpoint (typically /graphql on the
API server). To understand our approach to testing GraphQLAPIs in
Section 3, it is important to first grasp a few fundamental concepts
of GraphQL, as discussed below.

In a GraphQL schema, two primary types of data are defined:
scalars and objects. Scalars are primitive data types that represent a
single atomic value. Standard GraphQL scalar types include Int,
Float, String, Boolean and ID. Objects are user-defined entities
that represent the structural blueprint and relationships between
data. An object type encapsulates multiple fields, which can be
scalars, objects, or lists of any type. This composition forms an
interconnected structure between object types, creating the graph
inherent to the API’s purpose and enabling clients to traverse and
retrieve interconnected data seamlessly.

Within the primary data types of GraphQL, there is the concept
of nullability, which determines whether a field can contain a NULL
value. This is often indicated by a NON-NULL flag. When a type
is marked as NON-NULL, it means that the field in that type must
always have a value (for example, the name scalar in a User object).
To use scalars and objects, a user must interact with a GraphQL
API through queries and mutations:
⋄ Queries are operations that retrieve data from the server, similar

to the GET request in traditional REST APIs. A specialized form
of query, called introspection query, allows clients to retrieve
detailed information about the GraphQL schema directly from
the API.

⋄ Mutations are operations that modify server-side data, akin to
create, update or delete actions in a database.

Both queries and mutations enable clients to specify the fields of the
returned type, ensuring that users receive exactly what they need.
This minimizes the chances of over-fetching or under-fetching data,
optimizing the efficiency of data retrieval.

2.2 GraphQL Vulnerabilities
While GraphQL offers powerful query capabilities beyond those
of traditional REST APIs, it also introduces unique vulnerabilities
that can pose significant security risks if not properly managed.
These vulnerabilities, unique to GraphQL’s design and functionality,

https://github.com/omar2535/GraphQLer
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extend beyond typical web application issues—such as broken ac-
cess controls, injection flaws, and misconfigurations [48], [46]—and
create additional, GraphQL-specific attack surfaces. We categorize
these vulnerabilities into three main categories:
⋄ Query Abuse Vulnerabilities: GraphQL’s flexibility, while advan-

tageous, can be exploited to abuse query functionality, either
to overwhelm the server or gain unauthorized insights into the
schema. A notable example is the abuse of the GraphQL intro-
spection query, which provides a detailed schema map, revealing
all available types, fields and relationships. This schema expo-
sure enables attackers to construct more precise and potentially
harmful queries. GraphQL is also vulnerable to Denial of Service
(DoS) attacks through deeply nested or excessively repetitive
queries, which can exhaust server resources, leading to degraded
performance or downtime.

⋄ Injection Vulnerabilities: GraphQL applications are susceptible
to various injection threats, which are among the most critical
security risks. SQL Injection is a primary concern, where unsan-
itized inputs can be concatenated into SQL queries, allowing
unauthorized data access or manipulation. Additionally, Path In-
jection and Cross-Site Scripting (XSS) attacks can occur when user
inputs are improperly sanitized before being rendered on the
client side, potentially leading to data theft, session hijacking or
the distribution of malicious scripts. Poor handling of GraphQL
inputs thus becomes a vector for injection attacks, compromising
both the backend and end-users.

⋄ Access Control Vulnerabilities: These vulnerabilities arise when
GraphQL APIs fail to enforce adequate authorization policies,
allowing unauthorized data access. Issues include Insecure Di-
rect Object References (IDOR), where attackers manipulate object
identifiers to retrieve restricted data, and batched attacks, which
combine multiple operations into a single request to bypass indi-
vidual security checks. Addressing access control flaws is com-
plex, requiring an understanding of dependencies in the GraphQL
schema and the relationships among various fields, queries and
mutations. Testing for these issues necessitates a context-aware,
dependency-based testing approach that can accurately map
schema relationships to simulate realistic user scenarios and un-
cover access control flaws that traditional testing methods often
overlook.

2.3 Related works
The concept of dependency-aware testing is not new, as demon-
strated by the work of various frameworks and testers proposed in
the field of software validation [25], [52], [57], [43]. In the realm
of REST API testing, dependency-aware methods like Microsoft’s
RESTler [21], foREST [42] and RestTestGen [62] are capable of
comprehending the relationships between requests. However, de-
pendency based testing for GraphQL remains very limited. To our
knowledge, there is no existing literature on dependency-aware
testing for GraphQL. One semantically-aware method proposed by
Dodds et al. [36] addresses both REST and GraphQL APIs, yet its
dependency-aware feature is solely built for fuzzing REST APIs,
while the GraphQL fuzzer operates as a simple find-replace tester.

Since GraphQL functions as a specification layer over HTTP,
several commercially available tools, such as BurpSuite [31] and

- name: createCurrency
description: null
args:
- name: abbreviation
description: null
type:
kind: NON_NULL
name: null
ofType:
kind: SCALAR
name: String
ofType: null

defaultValue: null
- name: symbol
description: null
type:
kind: NON_NULL
name: null
ofType:
kind: SCALAR
name: String
ofType: null

defaultValue: null
- name: country
description: null
type:
kind: SCALAR
name: String
ofType: null

defaultValue: null
type:
kind: OBJECT
name: Currency
ofType: null

isDeprecated: false
deprecationReason: null

Figure 1: Sample specification of a GraphQL mutation.

ZAP [47], enable testing of a GraphQL server’s generic responses.
However, these tools lack the ability to comprehend the intrin-
sic dependencies within GraphQL. Instead, they focus on param-
eter variation and payload submission techniques [66] with the
primary objective of identifying response errors (non-HTTP 200
status codes). In contrast, specialized tools like GraphCrawler [54],
CrackQL [16] and GraphQL-Cop [28] aim primarily at testing indi-
vidual queries and mutations without exploring the dependencies
between them.

Putting dependency-aware testing aside, existing literature in-
cludes only a limited number of studies proposing methods to test
GraphQL APIs. In white-box testing—which involves access to the
API’s underlying source code [30]—Zetterlund et al. [65] explored
using production GraphQL queries to test the API. On the other
hand, black-box testing—where testers lack access to the underly-
ing source code [37]—has seen contributions by Vargas et al. [61]
and Karlsson et al. [39], who proposed methods for inspecting the
GraphQL schema and generating queries and mutations to test
the API. A notable exception is Belhadi et al. [19], who introduce
both black-box and white-box GraphQL fuzzers as plugins for the
EvoMaster tool [20]. Their black-box approach involves randomly
varying parameters of queries and mutations, while their white-box
approach leverages source code information to generate queries
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Figure 2: Workflow of GraphQLer: The attacker’s cycle repre-
sents the process of materializing a single node and sending
it to the API.

and mutations, aiming to produce a wide range of input scenar-
ios to achieve comprehensive test coverage. Upon reviewing all
existing literature on GraphQL testing, we found that EvoMas-
ter’s black-box testing is the only published tool that we could
utilize and test against. Given their promising results, we employ
it as one of the baseline methods for comparing the test coverage
of our dependency-based approach with their parameter-varying
methodology. It is essential to note that GraphQLer, as a black-box
approach, cannot be directly compared with white-box methods.

Throughout our exploration of related work, it is evident that no
tester in academic literature, open-source projects, or industry prac-
tices has leveraged dependency-based linking for testing GraphQL
APIs. Instead, existing approaches mainly focus on modifying in-
put parameters. Our proposed solution, GraphQLer, addresses
this gap and elevates dependency-based testing to the forefront of
automated GraphQL testing.

3 GraphQLer
This section introduces GraphQLer, our innovative approach to
testing GraphQL APIs. This testing method is founded on a funda-
mental principle: the inherent dependencies among objects, muta-
tions and queries in GraphQL. Instead of blindly sending requests
to APIs, as is typical in traditional testing, GraphQLer leverages
this dependency structure to intelligently chain queries and muta-
tions relative to one another. By using a dependency-based testing
approach, GraphQLer not only assesses response status codes (as
conventional methods do) but also scans and stores actual responses,
which then serve as inputs for subsequent requests.

As shown in Figure 2, GraphQLer begins by executing an in-
trospection query to extract the schema of the target API. If the
introspection query is unavailable, the schema is generated through
brute-force using a word list [55]. This two-step process enables
GraphQLer to operate as a black-box solution, allowing testing
to proceed even without access to the introspection query. Once
GraphQLer has the schema, the workflow unfolds in two distinct

phases. In the first phase, known as the compilation phase, the API
schema is analyzed, and a dependency graph is constructed. The
second phase, known as the testing phase, traverses this dependency
graph using Depth-First Search (DFS) [58], materializes the pay-
load, and sends requests to the server. During this phase, all created
resources are tracked for later use in subsequent payloads.

3.1 Compilation Phase
The compilation phase is responsible for creating the dependency
graph. The word “compilation” is used because it involves condens-
ing the schema into meaningful sections. Given the extensive data
provided by the schema, the focus of this phase is on extracting
only the information essential for generating the dependency graph.
The compilation phase involves three main steps:
Annotating Mutations with Actions. During the compilation
phase, the schema is initially parsed to annotate all possible muta-
tions with their corresponding actions. Unlike REST APIs, which
use explicit HTTP methods (e.g., POST for creation, PUT for up-
dating, DELETE for deletion), GraphQL lacks a built-in mechanism
to indicate the intent of a mutation operation. Annotating muta-
tions helps identify whether a mutation is intended for creating,
updating, or deleting a resource. This identification is crucial for
understanding the purpose of each mutation.

To identify each mutation, we examine both the method name
and its documented description to identify action verbs for creation,
updating, or deletion (e.g., createUser() would be annotated as a
CREATE action, while destroyShip() with the description “deletes
a ship” would be annotated as DELETE). If the action of a mutation
cannot be determined, it is labeled as UNKNOWN.
Inferring Dependencies. In this step, we infer the relationships
between different GraphQL types. While GraphQL explicitly de-
fines dependencies between objects, it does not provide complete
information about dependencies between objects and queries, or
between objects and mutations. This complexity arises because
both queries and mutations involve inputs and outputs, requiring
dependencies to be considered on both ends.

The missing dependency to infer is the input to queries and
mutations to the corresponding objects. To address this crucial link,
we rely on GraphQL object IDs to link query and mutation inputs
to their associated objects. This approach leverages the fact that
GraphQL objects typically include a unique ID field. By examin-
ing the names and types of input fields, we can identify potential
relationships to objects and document these dependencies.

It is essential to consider nullable types within GraphQL. When
generating dependencies, if a type is marked as NON-NULL, we
categorize it as a hard dependency, labeled as hardDependsOn; other-
wise, it is a soft dependency, labeled as softDependsOn. This classifi-
cation indicates the criticality of the dependency. Figure 3 provides a
detailed illustration of the dependency resolution for each scenario,
which we further explain below.

⋄ Object-Object Dependency. For dependencies between objects, the
resolution is straightforward, involving only a direct reference
to the original schema. The blue line between User and Wallet
in Figure 3 represents this type of dependency, showing that
it is already defined in the schema and requires no additional
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User<object>

id: ID
name: String
wallets: List<Wallet>
friends: List<User>

Wallet<object>

id: ID
currency: Currency
amount: Integer

createWallet()<mutation>

Arguments
- name: String
- currencyID: ID
- userID: ID

Return

- Wallet

getWallet()<query>

Arguments

- walletId: ID

Return

- Wallet

deleteWallet()<mutation>

Arguments

- walletId: ID

Return

- boolean

Currency<object>

id: ID
name: String

Figure 3: Example of the types of dependencies in GraphQL.

inference. Another form of object-object dependency occurs with
self-references, depicted by the orange line. While this type also
requires no additional inference, it does require special handling
during dependency traversal.

⋄ Object-Mutation Dependency. This dependency is divided into two
categories: output dependencies and input dependencies. Output
dependencies are established based on schema information. For
input dependencies, we link the mutation to an object using
either the mutation name or input fields such as ID. This is
illustrated by the red arrows in Figure 3. In the same figure, the
output dependency between the createWallet function and the
Wallet object is marked in green. If no such link can be identified
(e.g., when an ID field is absent), we classify it as an UNKNOWN
dependency and make no connections.

⋄ Object-Query Dependency. In this dependency type, both input
and output dependencies are considered. The resolution process
for these dependencies is similar to that used for object-mutation
dependencies. This is shown in Figure 3 between the getWallet
query and the Wallet object. Notably, this scenario forms a
cyclical dependency, as the query only retrieves information
about the object.

This structured approach ensures that the GraphQL compila-
tion process thoroughly identifies and resolves dependencies. For a
visual representation of annotating dependencies, refer to Figure
4, which illustrates a mutation’s transition from a sample schema
version to a version with resolved dependencies. In this exam-
ple, NON_NULL marks the hard-dependency requirement. Two of
the three fields are IDs, and they correlate to the Currency and
User objects. Note that while the mutation has a hard dependency
on the Currency object, the dependency on the User object is
a soft dependency, as a Wallet can technically exist without an
owner. The action associated with this mutation is determined to
be CREATE, based on the mutation name, and the output is a Wallet
object. After the annotations, we expect the dependency graph to
have two directed edges linking the User and Currency objects

name: "createWallet"

description: "Creates a new wallet."

args: 

- name: "name"

  description: "The name of the wallet."

  type: 

    kind: "NON_NULL"

    name: 

    ofType: 

      kind: "SCALAR"

      name: "String"

- name: "currencyID"

  description: "The ID of the currency for the wallet."

  type: 

    kind: "NON_NULL"

    name: 

    ofType: 

      kind: "SCALAR"

      name: "ID"

- name: "userID"

  description: "The ID of the user who owns the wallet."

  type: 

    kind: "SCALAR"

    name: "ID"

type: 

  kind: "OBJECT"

  name: "Wallet"

  ofType: null

createWallet:

  name: createWallet

  description: Creates a new wallet.

  hardDependsOn:

    currencyID: Currency

  softDependsOn:

    userID: User

  inputs:

    ...

  mutationType: CREATE

  output:

    kind: OBJECT

    name: Wallet

    type: Wallet

Input
dependencies

Output
dependency

Mutation
action

Figure 4: Compilation of a sample createWalletmutation.

to createWallet, and one edge from createWallet to the output
object Wallet.
Dependency Graph Creation. Once dependencies are annotated
on every query and mutation, we can begin constructing the de-
pendency graph. This starts by generating a node for each query,
mutation, and object. Each node has twomain properties: the node’s
name (which corresponds to the name of the object/query/muta-
tion) and the type (either object, query or mutation). For mutations,
there is a third property, mutation_type, which denotes the action
of the mutation as annotated in the previous steps.

With the nodes established, we create directed edges between
them based on the compiled dependencies, where a parent node
points to its dependent nodes. Note that, in this graph, connections
between objects do not exist. This is because one must use a query
or mutation to traverse the graph from one object node to the next.
For example, to go from a User object to the Wallet object, one
would need to use a new query called getWallet(), which accepts
a userID as input and returns the wallet object as output. Note that
an interesting case arises when objects are related to each other in
the GraphQL schema. GraphQLer utilizes this fact during object
storage and retrieval and uses objects to infer other objects.
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Materializer

Inputs

In Bucket?

Outputs

List fields

Has nested
objects?

Endpoint
(query/mutation)

Is hard
dependency?

False

True

True
Output
fields

False

Input
fields

Bucket

Random

False

<Endpoint> (<Input fields>) {
  <Output fields>
}

True

Failed

Figure 5: The flow diagramdepicting decision-making during
the materialization step.

3.2 Testing Phase
The algorithm used by GraphQLer during the testing phase is
detailed in Algorithm 1 of Appendix A. It begins by traversing the
dependency graph and materializing the endpoint. This is then
followed by sending payloads to the server and finally storing
the returned resources for later use. Moreover, during this phase,
GraphQLer tracks successful requests and responses—including
any errors. If we consider the compilation phase as the “static”
component, where each run produces the same output, then this
phase represents the “dynamic” aspect of GraphQLer, where it
actively interacts with the GraphQL API’s responses, adapting its
payload to accommodate the dynamic nature of the API’s behavior.
The testing phase is carried out in four main steps as follows:
Initialization and Starting Points. As the starting point of the
testing phase, GraphQLer collects a list of independent nodes
within the dependency graph, maximizing the number of entry
points into the graph. This approach enhances the efficiency of
resource reuse from the API and expands coverage. Notably, if no
independent nodes are initially found—typically in fully cyclical
graphs—GraphQLer seeks nodes with the fewest dependencies,
starting from 1 (where 0 represents independent nodes). This itera-
tive process continues until at least one starting node is identified,
ensuring a well-rounded approach.
Multi-Source Depth-First Search for Graph Traversal. To nav-
igate the dependency graph, GraphQLer uses a multi-source DFS
algorithm (similar to the multi-source BFS [60])—starting with the
multiple identified starting nodes. Our traversal algorithm considers
the following aspects: 1) Cycle Avoidance: During traversal, we log
visited nodes to avoid cycles and ensure efficient exploration of the
graph; 2) Traversal Monitoring:We employ a stack to systematically
track nodes during exploration, ensuring an organized approach to

Fuzzed PayloadsValid Payloads

 

  getWallet(walletID: "b25") {

    id

    name

    balance

  }

 

  getWallet(walletID: "b25") {

    id

    wallets {

      transactions {

        payer {

          id

          wallets {

            transactions {

               ...

            }

          }

        }

      }

    }

  }

 

  getWallet(walletID:"'OR 1=1--"){

    id

    name

    balance

  }

getWallet

 

  s: getWallet(walletID: "a10") {

    id

    name

    balance

  }

 

  getWallet(walletID: "b25") {

    id

    name

    currency {

      id

      abbreviation

      symbol

      rate

      country

    }

  }

Node

Minimally
valid

Maximally
valid

DOS
payload

Injection
payload

Denylist-
bypass
payload

Figure 6: Payload generation for positive andnegative testing.

graph traversal; and 3) Object Bucket Cache: Concurrently, we main-
tain an object bucket cache to store any objects encountered during
testing. This cache plays a pivotal role in preserving object refer-
ences, ensuring a cohesive testing experience. The combination of
these techniques streamlines the testing process, maintains order
in graph traversal, and safeguards against cyclical dependencies.
Materializing Requests.When GraphQLer encounters a query
or mutation node during traversal, it generates two types of pay-
loads: valid and fuzzed. Each payload, as shown in Figure 6, is
either a GraphQL query or mutation. The valid payloads include
two variants: a minimally valid payload, containing the fewest
output selectors to avoid overwhelming the API, and a maximally
valid payload, which includes all selectors permitted by the end-
point. For fuzzed payloads, we explore several methods to test
GraphQL endpoints for vulnerabilities. Figure 6 highlights three
specific fuzzed payload examples—denial-of-service, SQL injection,
and alias-based fuzzing—each carrying significant risks if a vul-
nerability is found. By systematically applying this A/B testing
methodology, GraphQLer can compare standard API responses
with those generated under adverse conditions, facilitating the iden-
tification of endpoint-specific vulnerabilities and deviations from
expected behavior.

In the process of generating each payload, careful attention is
paid to formatting both the input and output fields of the request.
Within the input fields, two substitution scenarios are encountered.
For scalar fields, GraphQLer performs a lookup in the bucket
cache. If the specific scalar and its name have been previously
recorded, GraphQLer replaces the scalar with a value that has
been seen before. Conversely, if a lookup fails to yield a result,
the field is filled with random data. For ID fields, object IDs are
retrieved from the bucket cache; if an object’s ID cannot be located,
thematerialization process fails, requiring the request to be deferred
for later processing. It is also important to note that the nature of
the random data generated for scalars depends on the data type
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Figure 7: Visualization of how the stack changes during tra-
versal of the GraphQL endpoint.

specified for the node. For instance, when the type is a string,
a random string of arbitrary maximum length is produced; for
booleans, randomized true or false values are generated, and this
same logic applies to integers and floats.

Special consideration must be given to IDs to determine whether
they represent a hard dependency. Materialization fails if an ID
field is classified as a hard dependency and the corresponding ID is
absent from the bucket. However, if the ID is not classified as a hard
dependency, two possibilities arise: if the ID field is present in the
bucket, it is substituted with the information stored therein; if not,
the field is skipped, recognizing it as a non-critical dependency.

In output fields, one of GraphQL’s beneficial characteristics is
its ability to specify associated object details within the requested
output. For instance, if we have a query named getUser() that
returns a User object, and the User object has a dependent object
called Role, we can specify both the attributes of the User and the
Role in the output. GraphQLer uses this capability to recursively
query for dependent objects of the query or mutation’s output.
This strategy allows us to retrieve as much information as possible,
maximizing the coverage of the GraphQL API. Once the request is
fully constructed, it is promptly dispatched to the GraphQL API for
execution. Figure 5 provides a visual representation of both input
and output materialization steps. Note that payload generation for
both valid and fuzzed payloads follows a similar process. The key
difference is that fuzzed payloads include malformed or malicious
inputs based on specific attack types during their generation.
Handling Server Responses. When processing successful server
responses, GraphQLer extracts and retains every unique object
and scalar encountered and subsequently stores them in the object
bucket cache. This process ensures the integrity of object references
throughout the testing phase. When processing failed responses
from the server, GraphQLer employs a dual approach. First, it at-
tempts to address all failures returned, such as NON-NULL require-
ments on a payload’s output field. This adaptive strategy aims to
enhance the reliability and resilience of our testing process. Second,
in cases where a response indicates an actual failure that cannot
be immediately rectified, GraphQLer adopts a strategic approach:
instead of prioritizing failed nodes at the top of the stack, it defers
them to the bottom. This approach allows GraphQLer to focus on
other nodes, preventing the testing process from becoming stuck
due to recurring issues.

However, it is important to note that a reasonable limit on the
number of retries is in place. Once this predefined threshold is

reached, the unsuccessful node is removed from further considera-
tion and marked as failed. This controlled approach ensures that
the testing process remains effective and efficient. Figure 7 provides
a visual representation of how the stack is managed during DFS
traversal. In the evaluation process of Mutation C, if the request is
successful, the neighboring nodes of Object C will be added to the
top of the stack. If the request fails, the original node, Mutation C,
will be added to the bottom of the stack. The example highlights
GraphQLer’s ability to handle successes and failures. In practice,
the traversal of the dependency graph is carried out in three distinct
phases, each serving a specific purpose:

⋄ First Traversal. During the initial phase, traversal focuses exclu-
sively on CREATE mutations and regular queries. This selective
approach helps maintain consistency within the objects bucket,
ensuring that it is initialized in a controlled manner.

⋄ Second Traversal. The second phase extends the scope of testing
by introducing UPDATE mutations in addition to CREATE muta-
tions and regular queries. This broadens the coverage of our
testing and allows us to assess the behavior of more complex
interactions.

⋄ Third Traversal. In the final phase, all types of mutations and
queries are encompassed, providing a comprehensive evaluation
of the GraphQL API’s capabilities and resilience.

As an integral part of the testing phase, GraphQLer systemati-
cally records and collects valuable data. This includes maintaining
a list of queries and mutations that have been successfully executed,
as well as capturing the responses. Additionally, GraphQLer main-
tains comprehensive logs of all queries and mutations sent to the
server, ensuring a thorough record of the testing process.

4 Implementation
We have implemented GraphQLer in modularized Python, follow-
ing best practices in software development. The compilation and
testing phases are developed within the “compiler” and “fuzzer”
modules, respectively. The critical link between these two modules
is the dependency graph, which is generated at the conclusion of
the compiler module and then loaded into memory at the start of
the fuzzing module. Throughout the fuzzing phase, all inputs and
outputs of the GraphQL API are logged for subsequent inspection.
Additionally, the program provides real-time feedback by printing
test results, which include the count of requests made, the number
of successes, the number of failures, and any potential vulnerabili-
ties found. For fine-grained control of how GraphQLer reacts to
responses and for general settings, a settings file is provided in
the repository, allowing users to fine-tune the tool to their liking.
For visualization, GraphQLer generates a dependency graph to
inspect API-identified dependencies, as shown in Figure 10 in the
Appendix.

It is worth noting that in our implementation, we chose not to se-
rialize GraphQL types into predefined Python types. This decision
stems from the fact that the schema is already provided in dictionary
form, and serialization would require subsequent deserialization
during the materialization step of the testing phase—adding unnec-
essary complexity. Therefore, we opted to keep all data structures
as Python dictionaries throughout the process.
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Table 1: Public GraphQL APIs used in baseline testing.

API #Queries #Mutations #Objects

User Wallet [27] 11 15 5
Food Delivery [41] 5 5 6
Countries [11] 6 0 5
React-Finland [13] 13 0 18
Rick&Morty [14] 9 0 7
JSON-GraphQL [44] 9 12 4
GraphQLZero [17] 13 19 18
Anilist [18] 27 29 122
EHRI [38] 19 0 46
Universe [15] 35 69 166
PokeAPI [49] 450 0 1952
TCGDex [59] 6 0 12

The implemented version of GraphQLer is a command-line tool
that enables users to execute the compilation and testing phases
either independently or sequentially through command-line flags.
Running these phases separately provides a visualization of the
dependency graph and allows for the manual annotation of unre-
solved dependencies.

5 Evaluation
In this section, we discuss the experimental setup and evaluation of
GraphQLer. Specifically, we aim to address the following research
questions:
⋄ RQ1: Does GraphQLer efficiently cover possible GraphQL op-

erations compared to baseline methods?
⋄ RQ2: Can GraphQLer discover previously unknown GraphQL

vulnerabilities in both open-source and commercial applications?
⋄ RQ3: Does GraphQLer effectively explore the test space of a

GraphQL operation in comparison to baseline methods, particu-
larly in terms of execution time?

5.1 Experimental Design
5.1.1 Evaluated Applications. To conduct a comprehensive exper-
imental evaluation, we test GraphQLer alongside the baseline
methods using a diverse set of open-source and closed-source APIs,
an intentionally vulnerable software and a commercial enterprise-
level solution as outlined below.
⋄ Public APIs. We utilize 12 public APIs across three categories:

open-source, custom-built, and openly-hosted APIs [27, 34, 41].
For open-source APIs, we download the back-end code, set up
a self-hosted GraphQL server and run tests. For custom-built
APIs, we develop GraphQL APIs that mirror the structure of
publicly accessible server-built APIs. For openly-hosted APIs, we
reference free-to-use online APIs on GitHub and conduct direct
testing.

⋄ Platform APIs. This study evaluates five widely recognized pro-
prietary GraphQL APIs: Yelp [10], GitLab [5], Swop [9], and
Blue Apron [1].
We also conduct tests on a GraphQL API from a major finan-
cial institution, anonymized as FinServ under a non-disclosure
agreement. This API supports millions of customers daily, pro-
viding real-time access to account information and transaction
histories with minimal latency.

⋄ Vulnerable Software.To assessGraphQLer’s effectiveness, we use
two applications with known GraphQL-related vulnerabilities to
determine if GraphQLer successfully identifies these issues:
⊲ DVGA. Damn Vulnerable GraphQL Application (DVGA) [4] is a
deliberately insecure GraphQL API that provides a controlled
environment for developers and security professionals to test
and exploit vulnerabilities in GraphQL applications safely.

⊲ Saleor. Saleor is an open-source, self-hosted platform that
also offers a commercial version [8]. The Saleor API was
found to be vulnerable to CVE-2022-39275 [3], which exposes
broken access control through several GraphQL mutations. In
testing the Saleor API, we aim to use previously reported
CVEs associated with GraphQL APIs, focusing specifically on
finding a reproducible CVE.

The diversity of our chosen systems under test allows us to
validate GraphQLer’s performance confidently.

5.1.2 Baselines. We compare our solution against the following
baselines:
⋄ GenericTester: This is a variation of GraphQLer in which no

features are used—neither the dependency graph nor an object
cache. In other words, theGenericTester just blindly tests queries
and mutations, functioning like a generic API tester that uses
random data to generate syntactically valid payloads.

⋄ Evomaster: This method is the only published GraphQL test-
ing approach for our comparative evaluation. It offers two ap-
proaches for assessing GraphQL APIs, with the relevant one
being “black-box testing”. Similar to GenericTester, EvoMaster
[22] sends GraphQL mutation and query requests; however, it
stands out by dynamically varying its payloads to explore a
broader range of responses.

⋄ ZAP: As a renowned open-source black-box scanner developed
by OWASP, ZAP [47] serves as a robust tool for evaluating web
vulnerability assessment and penetration testing. Although pri-
marily for web applications, it also includes features for testing
GraphQL APIs.

⋄ BurpSuite: BurpSuite is a popular vulnerability scanner by PortSwig-
ger [2]. To conduct GraphQL tests, we use the Auto GQL Scanner
[31] extension as this is the only GraphQL extension that will
automatically run payloads on GraphQL APIs.

5.1.3 Evaluation Measures. To address RQ1, we define a coverage
metric for black-box testing that includes both positive and negative
testing scenarios, as follows:

PositiveCoverage =
#NoErrors
#Endpoints

NegativeCoverage =
#Errors

#Endpoints
where PositiveCoverage represents the proportion of error-free end-
points that return data (beyond simply an HTTP 200 status), while
NegativeCoverage indicates the proportion of endpoints that pro-
duce errors despite receiving valid inputs. These metrics address the
success and failure conditions in black-box testing, where source
code is inaccessible, making line coverage irrelevant. Additionally,
we assess the diversity of response codes and returned objects in
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Table 2: Comparison of GraphQLer and baseline methods in coverage performance: The "+" and "-" signs indicate positive and
negative coverage, respectively. A failure to execute the specific test is marked as FAILED.

API GenericTester ZAP BurpSuite EvoMaster GraphQLer

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-)

User Wallet 38.46% 50.00% 50.00% 50.00% 7.69% 38.46% 61.54% 26.92% 92.31% 100%

Food delivery 50.00% 50.00% 50.00% 20.00% 20.00% 90.00% 70.00% 40.00% 70.00% 100%

Countries 50.00% 50.00% 33.33% 16.67% 50.00% 100% 50.00% 50.00% 50.00% 100%

React-Finland 53.84% 46.15% 16.67% 23.08% 0.00% 100% 38.46% 61.54% 53.85% 100%

Rick&Morty 66.67% 100% 33.33% 100% 0.00% 100% 66.67% 33.33% 66.67% 100%

JSON-Graphql 57.14% 28.57% 28.57% 11.90% 19.05% 33.33% 57.14% 45.24% 100% 85.71%

GraphQL Zero 87.50% 21.88% 93.75% 6.25% 93.75% 62.50% 71.88% 56.25% 93.75% 93.75%

Anilist 8.92% 92.86% FAILED FAILED FAILED FAILED FAILED FAILED 8.92% 94.64%

EHRI 42.10% 84.21% 10.53% 36.84% 0.00% 31.58% 84.21% 57.89% 94.74% 89.47%

Universe 19.23% 91.30% FAILED FAILED 0.00% 12.32% 14.01% 88.46% 82.24% 94.20%

PokeAPI 33.33% 85.84% FAILED FAILED FAILED FAILED FAILED FAILED 33.33% 92.81%

TCGDex 100% 66.67% 66.67% 33.33% 33.33% 100% 100% 100% 100% 100%

the GraphQL API, which can enhance coverage and improve the
likelihood of detecting bugs or vulnerabilities.

All tests are conducted on a server equipped with 16 CPU cores,
64 GB of RAM, and the Ubuntu 22.04 operating system, ensuring
sufficient resources for consistent experimentation.

5.2 Test Coverage
The evaluated methods are tested on public APIs with varying
queries, mutations and objects, as shown in Table 1. The results in
Table 2 show that GraphQLer performs as well as or better than
the baselines in both positive and negative coverage.

In terms of PositiveCoverage, GraphQLer outperforms EvoMas-
ter in seven APIs and matches its performance in four. Compared to
ZAP, GraphQLer exceeds its performance in all but two APIs. Sim-
ilarly, GraphQLer consistently outperforms BurpSuite in terms of
positive coverage, achieving better results across all evaluated APIs.
Coverage was identical between GraphQLer and GenericTester
for 6 APIs.

The performance gap between GraphQLer and all baselines, in-
cludingZAP, EvoMaster and,BurpSuite, becomesmore pronounced
with APIs featuring a greater number of mutations. This is because a
higher number of mutations allows GraphQLer to track a broader
range of resources, which can then be leveraged in subsequent
server requests to generate more valid queries, thereby enhancing
positive test coverage.

On average, GraphQLer achieves a 35% increase in Positive-
Coverage over EvoMaster, with a maximum increase of over 60%.
Compared to ZAP, GraphQLer shows a 38% average increase, with
a maximum improvement of over 84%. Compared to BurpSuite,
GraphQLer achieves an even higher average increase of 42%, with
a maximum improvement exceeding 88%.

For the APIs that GraphQLer performed equally well with, such
as the Countries API, Rick&Morty API, and the TCGDex API, the
root cause is clear: These APIs contain a high number of queries that
are unrelated to each other. Furthermore, they have highly specific
input requirements that cannot be found from another query or
mutation, necessitating users with additional knowledge to input
the correct fields. A similar issue applies to the worst-performing
API, Anilist, where search terms have to conform to specific show
names, or else the API returns an HTTP 404 error.

To further emphasize the effectiveness of a dependency-based
approach, the positive coverage increase from GraphQLer over
GenericTester is 13.64%. Coverage increases were again the most
significant for APIs with a larger number of mutations. This trend
follows similar conclusions in the comparison with EvoMaster,
ZAP, and BurpSuite.

For NegativeCoverage, GraphQLer consistently outperforms
all baselines, as it is designed to generate both fuzzed and valid
queries targeting GraphQL-specific vulnerabilities. We also ob-
serve that ZAP, EvoMaster, and BurpSuite achieve no coverage
or fail on large APIs such as Anilist and PokeAPI, underscoring
GraphQLer’s strength in handling large schemas. The only in-
stance where GraphQLermatches the negative coverage of ZAP is
with the Rick & Morty API, which rejects any complex payloads,
resulting in error responses. In conclusion, these results affirm
that GraphQLer effectively explores the GraphQL API state space,
addressing RQ1.

5.2.1 Ablation study. To validate that our solution—combining a
dependency graph with an objects bucket—effectively improves
testing coverage, we conducted an ablation study analyzing the
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Table 3: Potential vulnerabilities detected by GraphQLer and
baseline methods in Public and Platform APIs (Q: Query, M:
Mutation).
!: Detected;%: Not detected.

API Method ZAP BurpSuite Evomaster GraphQLer

React-Finland Q: Conference ! % ! !

Q: Contact % % ! !

Q: Interval % % ! !

Q: Schedule % % ! !

Q: Series ! % ! !

Q: Theme % % ! !

Anilist Q: Thread % % % !

Gitlab Q: runnerSetup % ! % !

Q: ciCatalogResources ! % % !

M: jiraImportStart % % % !

Yelp Q: search % % ! !

Q: event_search % % % !

Blue Apron Q: menu % % % !

Q: subPauseDetails % % % !

individual contributions of each component. Results from this anal-
ysis (see Table 5 in Appendix A) show that using both components
together increases positive coverage by 27% over using only a de-
pendency graph, and by 22% over using only the objects bucket.
Negative coverage also increases by 30% and 19%, respectively, re-
flecting a more exhaustive exploration of the API. When the objects
bucket is used without the dependency graph, improvements in
coverage are essentially random: objects stored from previous re-
sponses are reused only by chance due to the lack of guided request
sequencing. Conversely, without the objects bucket, the depen-
dency graph alone is insufficient, resulting in behavior no better
than sending isolated requests to each endpoint. By isolating each
component of GraphQLer, we demonstrate that a dependency-
based approach requires both state tracking and effective request
ordering to comprehensively test GraphQL APIs.

5.3 Vulnerability Detection
Expanding API test coverage, particularly for complex interfaces
like GraphQL, increases the likelihood of discovering vulnerabili-
ties by testing a wider range of inputs, operations, and edge cases.
Broader coverage helps reveal issues such as unhandled inputs,
error-handling flaws, authorization gaps, and resource manage-
ment weaknesses. This section presents GraphQLer’s vulnerabil-
ity detection results across various test scenarios, comparing its
performance to baseline methods.
Public & Platform APIs. The detection of vulnerabilities in Public
& Platform APIs is carried out through a detailed analysis of error
responses during testing. Internal errors, particularly those man-
ifesting as HTTP 500 responses, often point to underlying issues
ranging from unhandled exceptions to severe security vulnerabil-
ities, such as remote code execution. These error responses are
critical indicators of flaws in the API’s internal processing logic or
infrastructure. Given the potential severity of these vulnerabilities,

Table 4: Comparison of GraphQLer and baseline methods
for detecting vulnerabilities in DVGA.!: Detected;%: Not
detected.

Vulnerability Category ZAP BurpSuite Evomaster GraphQLer

Denial of Service

Batch Query Attack % % % !

Deep Recursion Query Attack % % % !

Resource Intensive Query Attack % % % !

Field Duplication Attack % % % !

Aliases Based Attack % % % !

Circular Fragment % % % !

Injection & Server-Side Vulnerabilities

OS Command Injection % ! % !

Server Side Request Forgery % ! % !

SQL Injection % ! % !

Path Traversal % ! % !

Client-Side & Other Vulnerabilities

Information Disclosure ! ! ! !

Stored XSS % ! % !

HTML Injection % ! % !

Query Deny List Bypass % % % !

such errors require immediate escalation and resolution by the
development team.

In addition to HTTP 500 errors, it is also essential to investigate
scenarios where the API returns HTTP 200 responses, but with
embedded error messages or unexpected behavior. While these
responses do not indicate a direct failure, they may still expose sen-
sitive information or unintended behavior that could be exploited
by an attacker. Consequently, such responses warrant a thorough
review to identify security weaknesses, misconfiguration, or other
risks that could compromise the API’s integrity. This method of
analyzing error responses offers a proactive approach to identify-
ing vulnerabilities early in the development lifecycle, ensuring that
potential security gaps are addressed promptly before they can be
exploited.

Table 3 summarizes the potential vulnerabilities discovered by
GraphQLer and other evaluated methods for public and platform
APIs. In comparison with baseline methods, GraphQLer was able
to identify errors that neither ZAP, EvoMaster, nor BurpSuite could
find. Out of the 16 tested public and platform APIs, GraphQLer
detects potential vulnerabilities in four of them, while ZAP and
EvoMaster missed some. In total, GraphQLer detects 11 potential
vulnerabilities, whereas ZAP and EvoMaster identify only three
and seven vulnerabilities, respectively. Notably, BurpSuite was the
worst of all, finding only a single error across the five APIs.

The effectiveness of GraphQLer in discovering potential vul-
nerabilities, compared to baseline methods, can be attributed to its
unique approach of reusing information from returned responses.
By leveraging this capability, GraphQLer generates more targeted
payloads for fuzzing, resulting in greater overall coverage and an
increased likelihood of vulnerability discovery. For example, in the
case of the mutation error detected in GitLab, neither ZAP nor
EvoMaster were able to identify it, while GraphQLer succeeded.
This highlights GraphQLer’s capability, particularly in APIs with
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Figure 8: Positive coverage performance vs. time for GraphQLer and baseline methods.

mutations, where the sequence of mutations can be further refined
based on their actions.
DVGA. As previously discussed, DVGA is an intentionally vulnera-
ble application designed to include various classes of vulnerabilities.
In our evaluation, we group these vulnerabilities into three main
categories: Denial of Service, Injection and Server-Side Vulnerabili-
ties, and Client-Side and Other Vulnerabilities (refer to Section 2).
Table 4 summarizes the results of vulnerability detection across
tools based on these categories. During testing, GraphQLer suc-
cessfully identified all vulnerabilities present in DVGA. In contrast,
both EvoMaster and ZAP were limited to detecting only the initial
open introspection query vulnerability and failed to identify the
rest. BurpSuite performed significantly better, uncovering nearly all
common API vulnerabilities using its active scanner suite; however,
it still missed several GraphQL-specific vulnerabilities. Note that,
unlike EvoMaster, ZAP and BurpSuite—which depend on introspec-
tion query being enabled—GraphQLer operates independently of
this limitation.
FinServ. For the FinServ API, we identified eight potential vul-
nerabilities, at least two of which were attacks leading to a denial
of service. Each of these vulnerabilities exposed implementation
details and sensitive information about the underlying API, either
through stack traces or error codes. Moreover, GraphQLer’s abil-
ity to run on the FinServ API without additional documentation
demonstrates its capability to perform effective black-box fuzzing
on large APIs.
Saleor. We self-host the Saleor API, re-deploying the commit
hash that has the CVE along with all the necessary dependencies.
GraphQLer quickly identified the CVE – a broken access control
vulnerability. This includes all four vulnerable mutations along
with the associated CVEs, generating the same error codes outlined
in the advisory.

Based on these experiments, we conclude that GraphQLer out-
performs other tools in identifying critical errors in the tested APIs,
raising security concerns as these vulnerabilities could be exploited
for various attacks. During testing, we encountered multiple in-
stances where alternative tools crashed or terminated prematurely,

undermining reliability. For example, ZAP crashed while testing
Yelp, and EvoMaster encountered a Java heap error with GitLab’s
API. In contrast, GraphQLer proved to be resilient, handling vari-
ous GraphQL APIs, including both open-source and large-scale real-
world applications. This confirms that GraphQLer can uncover
previously unidentified vulnerabilities across diverse applications
more effectively than the baselines, addressing RQ2.

5.4 Time Efficient Testing
Testing GraphQL APIs can be highly time-consuming due to their
inherent size and complexity. A key factor in the effectiveness of a
GraphQL API testing tool is its ability to efficiently cover a wide
range of queries and mutations, which directly impacts the speed,
scalability, and overall quality of the software development lifecy-
cle. This is particularly important in CI/CD pipelines, where rapid
feedback on code changes is critical to maintaining development
velocity. Additionally, in security red-team engagements, where
testing time is often limited, achieving broad test coverage within
a constrained timeframe becomes essential. In such cases, optimiz-
ing for time-efficient testing enables comprehensive vulnerability
detection and quality assurance without sacrificing coverage.

GraphQLer demonstrates exceptional time efficiency, consis-
tently achieving higher coverage in much shorter durations—across
time limits of 5 seconds to 1 minute—compared to baseline methods,
as shown in Figure 8. One interesting observation is that Gener-
icTester quickly converges to a fixed coverage percentage but does
not progress beyond that point. This limitation is easily understood:
as a generic tester aims to reach as many endpoints as possible
without a strategic approach, it is primarily limited by network la-
tency and I/O. Consequently, while GenericTester quickly achieves
convergence, it ultimately gains a lower coverage score than other
testers.

Across all tested APIs, we find that GraphQLer achieves higher
coverage faster compared to ZAP, EvoMaster, and BurpSuite and
higher eventual coverage compared to GenericTester. A key feature
of GraphQLer is its use of the dependency graph to sequence tests,
ensuring thorough coverage of queries and mutations while avoid-
ing repetition, thus speeding up testing. In contrast, EvoMaster
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and ZAP focus on generating diverse payloads without prioritizing
their order. These findings highlight the effectiveness of our path
traversal methodology, which accelerates testing and improves re-
quest quality. In conclusion, these results provide strong evidence
for the effectiveness of our approach, fully addressing RQ3.

5.5 Diversity of Responses
An important measure of a GraphQL tester’s performance is the
diversity of objects it can retrieve. The more unique objects re-
trieved, the better, as this indicates that the tester is not substituting
parameters based on pre-existing knowledge but is dynamically
understanding the API and intelligently generating payloads. To
assess the effectiveness of GraphQLer’s context-aware fuzzing
components, we compare the diversity of queried objects between
GraphQLer and the baselines, which lack these advanced features.
Across 12 public APIs tested, GraphQLer either retrieved the same
or a greater number of unique objects than all testers, as shown in
Figure 9. In four cases, none of the testers retrieved objects from the
API, despite receiving HTTP 200 responses—likely due to the high
level of domain knowledge required to craft effective payloads for
these APIs. This result highlights the importance of the contextu-
ally aware testing approach implemented in GraphQLer enabling
it to generate more diverse responses.

With context-aware fuzzing, research can be applied to diverse
test cases, enabling analysis of how one request’s outcome affects
another. This helps uncover order-dependent failures like IDOR,
a serious issue linked to broken access control. GraphQLer de-
tects IDOR in GraphQL APIs by tracking cases where one user
creates a private object that another can access. Its success in de-
tecting CVE-2022-39275 and potential to identify authentication
flaws demonstrates its effectiveness. Adding session management
to GraphQLer enables effective testing for resource leaks, using
techniques similar to REST API fuzzing [33].

Developing an efficient GraphQL tester requires addressing a
key challenge: dependency chaining. This process inherently in-
volves tracking resources across requests. GraphQL’s complex-
ity and interrelated components provide rich opportunities for
deeper testing—yet, remarkably, no tools currently assess GraphQL
APIs with this level of contextual awareness. To our knowledge,
GraphQLer is the first tool to address this need for a context-aware
approach, uniquely positioning itself to evaluate GraphQL APIs
by mapping dependencies and caching objects effectively. As we
observed, enabling a dependency-aware method allows for not
only time-efficient testing strategies but also improvements in both
errors discovered and the diversity of responses received. This en-
ables GraphQLer to significantly enhance API test coverage and
lay the groundwork for more comprehensive testing approaches in
the future, as discussed below.

6 Discussion
Internal Server Errors. Internal server errors typically occur
under specific conditions or actions. Some APIs respond with stan-
dard HTTP 200 statuses, as GraphQL allows an error section in the
response body. An effective extension for investigating these inter-
nal server errors could involve integrating the source code with
GraphQLer in a white-box approach to identify the root causes of

User
 W

alle
t

Foo
d D

eliv
ery

Cou
ntr

ies

Re
act

-Fin
lan

d

Rick
 & Mort

y

JSO
N-Grap

hQ
L-s

erv
er

Grap
hQ

LZ
ero

Anili
st

EH
RI

Univ
ers

e

Pok
eA

PI

TC
GDex

API

10 1

100

101

102

N
um

be
r 

of
 U

ni
qu

e 
O

bj
ec

ts
 F

ou
nd

 (
Lo

g 
Sc

al
e)

5

2

0 0 0

10 12

4
3

1

41

0

4
6

0 0 0

6 5

0

5

1

0 0

4

2

0 0 0

20

5

0 0 0 0 0

30

15

0 0 0

54 54

4

9

3

266

00 0 0 0 0

2

12

0 0 0 0 0

GenericTester
EvoMaster

ZAP
GraphQLer

BurpSuite

Figure 9: Number of unique objects discovered by different
testing tools.

issues. Given that GraphQLer is a context-aware tester, leverag-
ing the schema defined in back-end documentation would likely
enhance the discovery of vulnerabilities.
LLM-Driven Fuzzing. Achieving a robust semantic understanding
of complex domain-specific APIs remains a significant challenge.
For example, APIs like Anilist require deep domain knowledge,
where both GraphQLer and other tools show minimal coverage
due to the uniqueness of each endpoint, making it hard to gener-
ate meaningful payloads. To address this, future work will explore
leveraging large language models (LLMs) trained on diverse API
patterns to improve GraphQLer’s ability to generate semantically-
aware queries. The ability of large language models to generate
contextually valid payloads that can serve as an initial set of pay-
loads can be used in conjunction with GraphQLer to create even
more targeted attacks. The flexibility of GraphQL further compli-
cates semantic fuzzing, but LLM-assisted techniques [32] provide a
strong foundation. Key architectural components, such as inferring
Object-Mutation and Object-Query dependencies, could be further
refined through a deeper semantic understanding of the API using
large language models. Additionally, advanced strategies like smart
fuzzing, which use the object cache as context for a large language
model, offer promising opportunities to uncover even more hidden
vulnerabilities.
End-to-end CI Solution. GraphQLer can be easily integrated
into any GraphQL-based continuous integration (CI) pipeline, re-
quiring only the API endpoint to function. Since GraphQL allows
flexibility between schema definitions and actual implementation,
discrepancies between the schema and returned responses are not
uncommon. GraphQLer is highly effective at detecting these in-
consistencies, as well as identifying potential vulnerabilities that
may arise from recent changes in the codebase.
Ethical Considerations. In our research, we prioritized ethical
practices by ensuring that all identified vulnerabilities and potential
bugs in the APIs were promptly and privately disclosed to the re-
spective vendors. This approach aligns with responsible disclosure
practices, providing vendors adequate time to address the issues
and enhance the security of their APIs before any public dissemi-
nation of our findings. Our goal is to contribute positively to the
cybersecurity community while minimizing potential risks to end
users.
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7 Conclusion
GraphQL testing is pivotal for ensuring the reliability, security, and
performance of GraphQL APIs. Despite its critical significance,
there is a significant gap in the availability of efficient testing
tools in this domain. This paper addresses this gap by introducing
GraphQLer, the first context-aware testing method for GraphQL
APIs. By resolving dependencies and performing object caching,
GraphQLer chains GraphQL payloads, ensuring that queries and
mutations are executed with the expected inputs as originally in-
tended. Our extensive experimental evaluation demonstrates the
remarkable effectiveness of GraphQLer, surpassing the coverage
performance of the best-performing baseline method by an aver-
age of 35%. Additionally, GraphQLer effectively identifies known
CVEs and uncovers potential vulnerabilities in large-scale produc-
tion APIs. Ultimately, the development of GraphQLer not only
enhances the security posture of GraphQL APIs through robust
automated testing but also lays the foundation for future advance-
ments in GraphQL security tools for both scholars and practitioners.
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A Appendix
A.1 GraphQLer algorithm
A.2 GraphQLer Coverage Ablation study

Table 5: Coverage comparison across three GraphQLer vari-
ants. ODG stands for only dependency graph, whereas OOB
stands for only objects bucket. The “+” and “–” indicate posi-
tive and negative coverage, respectively.

API GraphQLer-ODG GraphQLer-OOB GraphQLer
(+) (-) (+) (-) (+) (-)

User Wallet 30.76% 69.24% 50.00% 50.00% 92.31% 7.69%
Food delivery 30.00% 70.00% 50.00% 50.00% 70.00% 30.00%

Countries 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
React-Finland 53.84% 46.16% 53.84% 46.16% 53.85% 46.15%

Rick&Morty 66.67% 66.67% 66.67% 66.67% 66.67% 100%
JSON-Graphql 57.14% 28.57% 61.90% 28.57% 100.00% 85.71%
GraphQL Zero 75.00% 25.00% 87.50% 25.00% 93.75% 93.75%

Anilist 8.92% 94.64% 8.92% 94.64% 8.92% 94.64%
EHRI 42.10% 10.52% 42.10% 57.90% 94.74% 89.47%

Universe 19.23% 24.41% 19.23% 81.39% 82.24% 94.20%
PokeAPI 33.33% 3.70% 33.33% 66.67% 33.33% 92.81%
TCGDex 50.00% 33.33% 50.00% 66.66% 100.00% 100%

A.3 GraphQLer Artifacts
In the implementation of GraphQLer, one notable artifact gener-
ated is a graph that represents the dependencies among objects,
mutations, and queries. Similar to [12], GraphQLer can visualize
dependency graphs; however, it offers the added advantage of vi-
sualizing not only object dependencies but also the dependencies
associated with mutations and queries.

Algorithm 1 Main algorithm used in the testing phase of GraphQLer

Require: Starting nodes 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠

Ensure: All reachable nodes are evaluated
1: Initialize𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅
2: Initialize𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐵𝑢𝑐𝑘𝑒𝑡 ← empty mapping
3: Initialize 𝑆𝑡𝑎𝑐𝑘 ← 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠

4: while 𝑆𝑡𝑎𝑐𝑘 ≠ ∅ do
5: 𝑛𝑜𝑑𝑒 ← 𝑆𝑡𝑎𝑐𝑘.pop( )
6: if 𝑛𝑜𝑑𝑒 ∈ 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 then
7: continue
8: end if
9: (𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ) ← Evaluate(𝑛𝑜𝑑𝑒 )
10: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
11: 𝑆𝑡𝑎𝑐𝑘 ← 𝑆𝑡𝑎𝑐𝑘 + 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠

12: 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑛𝑜𝑑𝑒 }
13: else
14: 𝑆𝑡𝑎𝑐𝑘 ← 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠 + 𝑆𝑡𝑎𝑐𝑘
15: LogError(𝑛𝑜𝑑𝑒 )
16: end if
17: end while
18: function Evaluate(𝑛𝑜𝑑𝑒)
19: if not dependenciesMet(𝑛𝑜𝑑𝑒 ) then
20: return ({𝑛𝑜𝑑𝑒 }, False)
21: end if
22: 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ← Materialize(𝑛𝑜𝑑𝑒 )
23: (𝑠𝑢𝑐𝑐𝑒𝑠𝑠,𝑑𝑎𝑡𝑎) ← SendRequest(𝑝𝑎𝑦𝑙𝑜𝑎𝑑 )
24: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
25: PutObjectsInBucket(𝑑𝑎𝑡𝑎.objects)
26: return (𝑛𝑜𝑑𝑒.children,True)
27: else
28: return ({𝑛𝑜𝑑𝑒 }, False)
29: end if
30: end function
31: function Materialize(𝑛𝑜𝑑𝑒)
32: 𝑖𝑛𝑝𝑢𝑡𝑠 ← MaterializeInputs(𝑛𝑜𝑑𝑒,𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐵𝑢𝑐𝑘𝑒𝑡 )
33: 𝑜𝑢𝑡𝑝𝑢𝑡 ← MaterializeOutput(𝑛𝑜𝑑𝑒,𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐵𝑢𝑐𝑘𝑒𝑡 )
34: 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ← 𝑖𝑛𝑝𝑢𝑡𝑠 + 𝑜𝑢𝑡𝑝𝑢𝑡
35: return 𝑝𝑎𝑦𝑙𝑜𝑎𝑑

36: end function
37: function DependenciesMet(𝑛𝑜𝑑𝑒)
38: for all 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 ∈ 𝑛𝑜𝑑𝑒.dependsOn do
39: if 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 ∉ 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐵𝑢𝑐𝑘𝑒𝑡 then
40: return False
41: end if
42: end for
43: return True
44: end function
45: function PutObjectsInBucket(𝑜𝑏 𝑗𝑒𝑐𝑡𝑠)
46: for all 𝑜𝑏 𝑗𝑒𝑐𝑡 ∈ 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 do
47: 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐵𝑢𝑐𝑘𝑒𝑡 [𝑜𝑏 𝑗𝑒𝑐𝑡 .name] ← 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐵𝑢𝑐𝑘𝑒𝑡 [𝑜𝑏 𝑗𝑒𝑐𝑡 .name] ∪
{𝑜𝑏 𝑗𝑒𝑐𝑡 .id}

48: end for
49: end function
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Figure 10: Dependency graph generated by GraphQLer for
the User Wallet API.
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