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ABSTRACT
Augmented Reality (AR) and Multimodal Large Language Models
(LLMs) are rapidly evolving, providing unprecedented capabilities
for human-computer interaction. However, their integration intro-
duces a new attack surface for social engineering. In this paper, we
systematically investigate the feasibility of orchestrating AR-driven
Social Engineering attacks using Multimodal LLM for the first time,
via our proposed SEAR framework, which operates through three
key phases: (1) AR-based social context synthesis, which fuses
Multimodal inputs (visual, auditory and environmental cues); (2)
role-based Multimodal RAG (Retrieval-Augmented Generation),
which dynamically retrieves and integrates contextual data while
preserving character differentiation; and (3) ReInteract social engi-
neering agents, which execute adaptive multiphase attack strategies
through inference interaction loops. To verify SEAR, we conducted
an IRB-approved study with 60 participants in three experimental
configurations (unassisted, AR+LLM, and full SEAR pipeline) com-
piling a new dataset of 180 annotated conversations in simulated
social scenarios. Our results show that SEAR is highly effective at
eliciting high-risk behaviors (e.g., 93.3% of participants susceptible
to email phishing). The framework was particularly effective in
building trust, with 85% of targets willing to accept an attacker’s
call after an interaction. Also, we identified notable limitations such
as “occasionally artificial” due to perceived authenticity gaps. This
work provides proof-of-concept for AR-LLM driven social engineer-
ing attacks and insights for developing defensive countermeasures
against next-generation augmented reality threats.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).

KEYWORDS
Augmented Reality, Multimodal Large Language Models, Social
Engineering Attacks, Retrieval-Augmented Generation, Human-
Computer Interaction.

1 INTRODUCTION
The rapid development of Augmented Reality (AR) and Large Lan-
guage Models (LLMs) is revolutionizing human-computer interac-
tion, enabling immersive experiences that blend digital overlays
with real-world environments. AR systems, equipped with Multi-
modal sensors like RGB-D cameras and microphones, capture rich

contextual data (e.g., facial or vocal information), while LLMs ana-
lyze and generate human-like dialogue with remarkable adaptabil-
ity. While this synergy enables transformative applications, it also
introduces unprecedented risks: the integration of AR’s real-time
environmental perception and LLMs’ adaptive reasoning creates a
potent vector for next-generation social engineering attacks [6].

Traditional social engineering techniques, such as phishing emails
or identity theft [2, 13, 20, 22], rely on static deception strate-
gies [3, 24, 25, 33]. In contrast, the fusion of AR’s environmen-
tal perception and LLMs’ generative capabilities will introduce a
potential paradigm shift- allowing the attackers to craft highly per-
sonalized and adaptive attacks. For instance, AR sensors can infer
a victim’s emotional status during a conversation [31], while LLMs
can generate strategical dialogue (e.g., gradual trust-building) to
exploit the reduced vigilance.

Despite the enthusiasm for AR-LLM social applications [10, 12,
15, 32] and the growing awareness of AR privacy risks [4, 7, 17] and
LLM-enabled phishing [8], no prior work systematically examines
their potential for orchestrated Social Engineering (SE) attacks. This
gap leaves critical questions unresolved: Can AR sensory data (sight
or sound of the target) be weaponized to support physical SE inter-
actions (e.g., private conversations)? Can Multimodal LLMs enable
hyper-personalization and bypass human cognitive defenses? How
do LLM-supported adaptive SE strategies (e.g., gradual rapport-
building) compare to traditional static approaches (e.g., scripted
phishing) in eliciting compliance?

To address these key questions, we propose SEAR (Social En-
gineering Augmented Reality), the first framework investigating
the feasibility of using MultiModal LLMs to execute AR Social
Engineering attacks. SEAR operates through three phases: (1) AR-
Based Social Context Synthesis, which captures and fuses visual
and auditory data to construct social context; (2) Role-Based Multi-
modal RAG, which retrieves social data (e.g., Instagram images) to
build personal social profiles. (3) ReInteract Agents, which executes
adaptive SE attack strategies (e.g., trust-building) through iterative
feedback loops, refining suggestions based on target responses.

The main contributions of this paper are as follows:

• Proof-of-Concept: Demonstrates the viability of AR-LLM in
boosting Social Engineering efficacy, demonstrating their
personalization advantages.

• SEAR framework: Designs an AR-driven pipeline integrat-
ing Multimodal LLMs and social agents to execute Social
Engineering attacks.

• Threat Analysis on IRB-dataset: Builds an open-source IRB-
dataset of 180 annotated AR-mediated social interactions
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jective experiences.
• Foundation for Future Defense: Provides the dataset, toolkit

and analysis to catalyze research into detecting and defend-
ing AR-driven Social Engineering attacks.

This study was approved by the IRB. All human-related data
were collected under rigorous ethical guidelines, anonymized prior
to analysis, and handled in strict accordance with data protection
protocols. No personally identifying information is disclosed in this
study. The study adhered to all applicable legal and ethical standards
for research involving human subjects. Section 2 reviews AR/LLM
security studies and identifies critical gaps. Section 3 introduces
SEAR’s system design. Section 4 introduces the dataset collection
methodology. Section 5 describes the experimental setup and results.
Section 6 concludes the paper.

2 RELATEDWORK
Social Engineering Attacks: Traditional social engineering attacks
rely on exploiting human psychological weaknesses, such as fake
identities, phishing emails, and predefined scenarios to trick victims
into disclosing sensitive information. In the study by Krombholz
et al. [16], traditional social engineering attacks are broadly cate-
gorized into physical approaches, social approaches, reverse social
engineering, technical approaches, and socio-technical approaches.
Exploiting curiosity and interest [11] is an important method used
by attackers to increase the chances of success, and they usually try
to establish a relationship with the potential victim. However, with
the development of large language models, generative AI provides
attackers with increasingly powerful tools. For example, according
to Falade et al.’s research [9], FraudGPT is a zero-threshold tool that
can automatically compose convincing phishing emails. Microsoft’s
VALL-E [26], an AI-based voice simulator that replicates the user’s
voice, is also a powerful tool that attackers can use to scam. AI
systems can adapt their phishing methods based on massive data
on the internet. This adaptive capability enables them to evolve
increasingly sophisticated phishing strategies.

AR Privacy: The immersive capabilities of augmented reality
(AR) systems introduce profound privacy risks, as exemplified by
devices like Ray-Ban Stories [14]—smart glasses indistinguishable
from conventional eyewear that enable covert photo, video, and
audio capture in public spaces. Prior research highlights vulnera-
bilities such as password theft via AR-assisted stereoscopic scene
reconstruction [4], side-channel attacks extracting private interac-
tion data [35], and malicious applications conducting hidden vision
operations [17]. However, these studies overlook AR’s potential for
orchestrated social engineering.

Multimodal LLMs: MM-LLMs such as DeepSeek-VL2, Qwen2-
VL, and Gemma 3, can merge text, image, and video processing.
DeepSeek-VL2 [30] employs a Mixture-of-Experts (MoE) architec-
ture and optimized visual tokenization to excel in high-resolution
image analysis and complex multimodal reasoning. Qwen2-VL [28]
enhances visual-linguistic fusion through dynamic resolution scal-
ing and multimodal rotary position encoding. Meanwhile, Gemma
3 [21] leverages a custom SigLIP visual encoder to convert images
into soft token sequences, achieving state-of-the-art performance in
text-rich visual tasks like document understanding (DocVQA) and

diagram interpretation. The integration of MM-LLMs with AR is
driving transformative advancements in socially assistive systems.
For instance, SocialMind [32] combines multimodal sensors and
AR interfaces to analyze verbal/non-verbal cues (e.g., tone, gaze)
and social context. Similarly, Satori [18] integrates Belief-Desire-
Intention (BDI) modeling with MM-LLMs to provide proactive,
context-aware guidance in AR environments, such as suggesting
conversational topics based on inferred user intent. GazeNoter [23]
further bridges AR and productivity by using gaze-tracking to se-
lect LLM-generated note-taking suggestions during live discussions,
streamlining information capture. However, the capabilities of MM-
LLMs also introduce significant risks, particularly for Social Engi-
neering attacks. Current AR + MM-LLMs works [18, 23, 32] did not
shed enough light on this critical aspect.

LLM Agents: The logical reasoning of LLM Agents are signifi-
cantly enhanced through techniques like Chain-of-Thought (CoT).
CoT decomposes multi-step problems into intermediate reasoning
steps, a method that has driven breakthroughs in tasks ranging from
mathematical reasoning to commonsense question-answering [29].
By overlaying dynamic animations or emoticons through AR in-
terfaces, agents [27] assist users in expressing emotions more intu-
itively, fostering immersive and responsive human-agent collabora-
tion. The ReAct framework [34] exemplifies the fusion of reasoning
and acting within LLM agents. ReAct intertwines step-by-step rea-
soning chains with external tool invocation (e.g., search engines,
APIs), enabling models to iteratively acquire and process infor-
mation during task execution. Such methodologies highlight the
evolving role of LLM agents as adaptive, tool-augmented systems
capable of sophisticated real-world engagement [1, 5].

3 SYSTEM DESIGN
Threat model: we define the threat model as follows:

• Adversaries can use AR hardware (cameras, microphones)
to harvest multimodal data (facial cues, voice, location).

• Adversaries can get access to the target’s social informa-
tion (e.g., linkedin page via web crawler) and craft hyper-
personalized profiles.

• Targets can succumb to cognitive overload, authority bias,
and social reciprocity.

• The AR vendors are not mandating facial identity protec-
tion measures (e.g., real-time face-blurring mechanisms) on
commercial devices—a deficiency observed across all AR
products tested.

Baseline approach: The baseline system for executing AR social
engineering attacks comprises three core components: AR glasses,
a Multimodal LLM, and a social agent, as illustrated in Figure 1.
The process begins with the AR glasses capturing facial data from
the target individual. This information is then processed by the
Multimodal LLM, which retrieves relevant social metadata from
grey personal information database (e.g., with linkedin pages from
web crawler) to build a detailed social profile of the target. Finally,
the social agent leverages this profile to engage the target in con-
textually tailored conversations, establishing trust and facilitating
the execution of the social engineering attack. While the baseline
approach outlines a framework for AR-driven social engineering
attacks, several critical challenges hinder its practical execution:
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Name: Jonny
Age: 27

Gender: Male

Challenge 1:  
AR stream data processing cost

Challenge 2:  
Multi-person role mismatch

Challenge 3:  
Fragmented social profile
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Do you play Black 
Myth Wukong?

Conversation 
Suggestion

AR-based Social Context
Synthesize

SE Strategy

Figure 1: SEAR’s system architecture.

Challenge 1: AR Stream Data Processing Cost: Transmitting
raw AR stream data—encompassing live video, audio, and environ-
mental cues—directly to Multimodal LLMs imposes significant cost
due to the volumetric data demands and complex multimodal fusion
requirements [19]. This bottleneck disrupts attackers’ capacity for
contextual adaptation during live interactions.

Challenge 2: Multi-Person Role Mismatch: Current Multi-
modal LLMs struggle to distinguish and adapt to mixed social in-
formation from multiple individuals, leading to role confusion (e.g.,
mistaking the social information of others for the current target)
and undermining the attack’s precision.

Challenge 3: Fragmented social profile: The Multimodal LLM
generates disjointed profiles dominated by low-value data (e.g.,
name, age, gender), as shown in Figure 1. Critical behavioral in-
sights—such as a target’s interest in video games—are often buried
due to AR display constraints, limiting the attacker’s ability to
leverage high-impact information for rapport-building (e.g., Jonny’s
interest in video games in Figure 1).

SEAR workflow: To address these challenges, we propose SEAR
(Social Engineering Augmented Reality), an AR-driven pipeline
comprising three interconnected stages—the AR stage, Multimodal
LLM stage, and LLM agent stage—as illustrated in Figure 1:
Stage 1: AR-based Social Context Synthesis: Equipped with RGB-
D cameras, microphones, and IMU sensors, the AR glasses capture
multimodal data from the target’s conversation environment, in-
cluding facial expressions, vocal cues, and spatial dynamics. The
system processes this raw sensory input and synthesizes struc-
tured social context (e.g., facial information, emotional states) in a
cost-efficient way, and then transmits it to the Multimodal LLM.
Stage 2: Role-based Multimodal RAG: Leveraging the synthe-
sized social context, the Multimodal LLM employs a Role-Based
Retrieval-Augmented Generation (RAG) pipeline to dynamically
retrieve and integrate data from the target’s public profiles (e.g.,

social media), behavioral histories (e.g., past interactions), and en-
vironmental metadata (e.g., location). This process constructs a
cohesive social profile, prioritizing actionable insights (e.g., hob-
bies, vulnerabilities) over fragmented demographic data (e.g., name,
age). The refined profile is then relayed to the LLM agent.
Stage 3: ReInteract Social Engineering Agent: The ReInteract
Agent utilizes the social profile to select and execute an adaptive So-
cial Engineering (SE) strategy, such as a phased approach: opening
to establish rapport, engagement to sustain dialogue, and trust-
building to solidify connection. SEAR’s Reasoning and Interacting
design enables iterative, context-aware adjustments during interac-
tions, ensuring dynamic alignment with the target’s responses. This
staged, feedback-driven approach optimizes the attacker’s ability
to forge social connections and achieve SE objectives efficiently.

3.1 AR-based Social Context Synthesis
AR Processing: Non-verbal cues like facial information are criti-
cal to social engineering. SEAR’s AR module captures these cues
using its camera and microphone, then performs preliminary on-
device processing with lightweight methods to minimize bandwidth
and cost. Video data is analyzed by MediaHolistic, a streamlined
model that extracts key pose features (e.g., facial details) to inter-
pret gestures and expressions. The processed data is forwarded
to the Multimodal LLM, which integrates linguistic context with
non-verbal signals to enhance social interaction support.

Audio: SEAR captures and transcribes conversations between
the primary user and others on-device. Using a lightweight method,
it analyzes sound energy in the 0-1000 Hz range, where the primary
user’s voice (transmitted via air and bone conduction) exhibits
stronger energy than others’ air-conducted voices. This distinction
allows SEAR to isolate the primary user’s audio effortlessly, locally
converts it to text via speech-to-text tools, and relays it to the server
for contextual analysis to enhance conversational adaptability.
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Figure 2: Workflow of the Role-based Multimodal RAG

Contextual environmental cues: SEAR can enhance the con-
versational context by detecting environmental cues. We developed
a lightweight object detection pipeline on AR glasses under limit re-
source, which processes video frames to identify Regions of Interest
(RoI). These RoIs are classified by YOLO11m, which analyzes live
camera feeds locally to detect objects such as furniture, vehicles, or
natural elements in real-time. This enables SEAR to further infer
contextual details, such as whether the user is indoors or outdoors.
The environmental cues are then sent to the Multimodal LLM,
which generates the context adapted to the user’s environments
and social context, improving the interaction experience.

3.2 Role-based Multimodal RAG
As shown in Figure 2, the role-based multimodal RAG method
integrates MultiModal LLMs with RAG pipeline to create dynamic,
role-specific social profiles via two stages:

SE Data Collection Stage: The first stage focuses on construct-
ing a static role database for each target through three intercon-
nected phases. Initially, multimodal social data collection aggregates
publicly accessible information, such as text (e.g., X/Twitter posts),
images (e.g., LinkedIn avatar), and videos (e.g., TikTok posts) of the
target’s characteristics. Next, role construction employs multimodal
LLMs to analyze explicit identity traits, such as profession, age, and
long-term residence, to define unique roles. This process generates
personalized and precise role descriptions. In the multimodal fusion
phase, images and videos are converted into descriptive text using
multimodal LLMs like CLIP, achieving cross-modal semantic align-
ment. Redundant data is filtered out to refine the target’s profile,
while CLIP-generated embeddings for appearance images and text
are stored in a vector database. This enables efficient similarity
matching and retrieval, optimizing computational performance.

Real-time SE Exploitation stage: This stage dynamically gen-
erates personalized social profiles by combining AR-captured data
with the role-based RAG database and Multimodal LLMs. It oper-
ates through three modules: (1) Role Identification: The Multimodal
Retriever converts the social context data from AR glasses into
high-dimensional vectors. This module queries the vector database
to match the target’s identity traits, ensuring precise role updates.
(2) Dynamic Adaptation: The system continuously processes real-
time data streams (e.g., voice content, location) by vectorizing and
retrieving information from the vector database. The updated in-
sights are fed back to the LLM, allowing dynamic adjustments to the
target’s profile. (3) Social Profile Generation: The LLM synthesizes

(1)	Social	Engineering	Task

(1a)	Standard (1c)	Act-only

(1b)	CoT（Reason	only）

Task: Given [Jonny’s Info], generate a conversation with Jonny.

Answer: Hey Jonny, what's new with 
you? How was your week?

Thought: Let’s think step by step.
The conversation needs to be related with 
[Jonny’s Info]. 
Answer: Hey Jonny, I just got back from the 
game-con and it is exciting.

Act1: Search [Jonny’s Info]
Obs1: Jonny is interested in video games.

Act2: Search [video games]
Obs2: Black Myth Wukong is popular.

Answer: Hey Jonny, are you interested in 
Black Myth Wukong? We can play together 
sometime.

X Not Relevant

X Vague
X Lack of strategy

(1d)		ReInteract SE	Agent
Thought1: I need to choose a social engeering strategy based on [Jonny’s info].
Act	1: CheckSocialEngeeringStrategies [Jonny’s info]
Obs 1: Based on [Jonny’s info], I can adopt a 3-stage strategy with [opening stage], 
[engaging stage] and [trust-winning stage].

Thought2: I need to generate [opening stage] via [Jonny’s info].
Act	2: GenerateOpeningStage[Jonny’s info]
Obs	2: Hey Jonny, I heard you’ve graduated from CMU recently. Congratulations!
Interact	2:	GetTargetResponse[Jonny]

Thought3: I need to generate [engaging stage] via [Jonny’s response and info].
Act	3: GenerateEngagingStage[Jonny’s response and info].
Obs 3: Friends told me that you like video games. Do you play Black Myth Wukong?
Interact	3:	GetTargetResponse[Jonny]

Thought4: I need to generate [trust-winning stage] via [Jonny’s response and info].
Act	4: GenerateTrustWinningStage[Jonny’s response and info].
Obs 4: So nice to meet you. I too graduated from CMU ECE a few years ago. We can
play Black Myth Wukong together sometime.

Support SE Strategies

Relevant

Specific

Figure 3: ReInteract Social Engineering Agent Example.

data from the Dynamic Adaptation module into a comprehensive
social profile. This profile integrates the target’s core identity, be-
havioral patterns, and environmental context, providing actionable
insights for social agents. The output facilitates context-aware in-
teractions, such as tailoring the dialogue to shared interests. With
this personalized profile, the system can provide effective support
for subsequent social agents.

3.3 ReInteract Social Engineering Agent
Existing LLM agent frameworks exhibit critical limitations when
applied to SE tasks, as illustrated in Figure 3. For instance, given the
task “Generate a conversation with Jonny using his social profile”
(Figure 3 1a), a standard LLM agent produces generic, low-impact
dialogue (e.g., “How was your week?”) unrelated to the target’s
interests. A Chain-of-Thought (CoT) agent improves marginally
by explicitly reasoning about the need to align the dialogue with
“Jonny’s Info” (Figure 3 1b). However, its output remains overly
vague, such as referencing “game-con” instead of leveraging Jonny’s
specific interest in video games. While an Act-only agent (Figure 3
1c) introduces action functions to query Jonny’s profile and gen-
erate targeted questions (e.g., “Are you interested in Black Myth
Wukong?”), it lacks strategic pacing, prematurely narrowing topics
and failing to build rapport through gradual engagement.

To address these gaps, SEAR introduces the ReInteract SE Agent,
an enhanced ReAct-based architecture [34] that supports adaptive
SE strategies. As shown in Figure 2, the agent first executes a Check-
SocialEngineeringStrategies function to analyze the target’s social
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profile (e.g., demographics, behavioral traits) and match it against
a repository of predefined SE strategy templates. Each template
outlines phased objectives—for example, a three-stage strategy (in
Figure 3 1d) comprising: (1) Opening Stage: Context-aware icebreak-
ers (“I heard you’ve graduated from CMU recently”); (2) Engage
Stage: Topic expansion into shared interests (“Do you play Black
MythWukong?”); (3)Win-Trust Stage: Empathetic rapport-building
(“I too graduated from CMU ECE”) and future-oriented invitations
(“We can play together sometime”). The agent assigns a confidence
score to each template based on profile alignment, selecting the
highest-scoring strategy for execution. Once a strategy is selected,
SEAR initiates a reasoning-interaction cycle, as shown in Algo-
rithm 1 in the Supplementary Materials. For each stage 𝑠 within
the chosen strategy 𝑡 , the agent generates contextually relevant di-
alogue 𝑐𝑠 by synthesizing prior conversation history𝐶 , the target’s
profile 𝑝 , and the current phase 𝑠 (Line 4). This output is delivered
to the target via the AR glasses’ audio interface, and their verbal
response 𝑟𝑠 is captured through the AR system’s microphones (Line
5). The conversation history 𝐶 is iteratively updated (Line 6), en-
abling real-time adaptation to the target’s feedback. For example, if
Jonny expresses enthusiasm about Black Myth Wukong during the
Engage Stage, the agent might prioritize gaming-related topics in
subsequent stages to deepen rapport.

3.4 SEAR System Implementation
AR: SEAR utilizes RayNeo X2 AR glasses with Android OS, 6GB
RAM and 128GB storage. Utilities include cameras andmicrophones
to capture the audio and video data required by SEAR.
Multimodal LLM and Social Agent: The Multimodal LLM and So-
cial Agent operate on a high-performance desktop server equipped
with an NVIDIA RTX 4090 GPU (24GB VRAM), Intel Platinum
8352 CPU (36 cores), 32GB RAM, and 16TB HDD. Both components
leverage Gemma 3-12Bmodel, while the Social Agent integrates the
ReAct framework for dynamic reasoning-action loops.

4 DATASET AND METHODOLOGY
4.1 Interaction Scenarios and Data Collection
Scenario Design: The study was conducted in controlled environ-
ments simulating real-world social scenarios (e.g., coffee shops, net-
working events) with 60 participants. Each participant was assigned
alternating roles to act as either a social engineering (SE) target
or an attacker, with roles rotated across trials to ensure balanced
evaluation. Each participant engaged in three distinct conversation
settings: (1) bare conversation, serving as a baseline with no tech-
nological assistance; (2) AR + Multimodal LLM, where attackers
used augmented reality glasses and a multimodal large language
model to access real-time facial, vocal, and contextual data; and (3)
SEAR, the full pipeline integrating AR, Multimodal LLM, and the
social agent. This tiered design enabled systematic comparison of
how incremental technological layers influenced attackers’ ability
to build rapport and achieve SE objectives.
Dataset Construction: We conducted an IRB-approved study in-
volving 60 participants across three experimental configurations
(bare conversation, AR +Multimodal LLM, and SEAR) and compiled
the result into the SEAR Dataset, a comprehensive resource for
analyzing social engineering dynamics. Rigorous ethical safeguards

were implemented to ensure compliance with IRB standards: all
identity-related information (e.g., names, facial features, identifiable
social metadata) was anonymized, with synthetic data augmenta-
tion techniques (e.g., face blurring, voice randomization) applied to
further protect privacy. Participants provided explicit consent for
data collection and usage prior to the experiment.

The SEAR Dataset comprises three core components: (1) AR
Data: Multimodal recordings from AR glasses, including visual
cues (eye contact, facial expressions, and body language annotated
via MediaPipe Holistic), audio features (transcribed speech with
tone analysis for pitch and pauses), and contextual metadata (time,
location, environmental objects); (2) Social Data: Open-access,
publicly available information about participants, categorized as
text-based social data (e.g., X/Twitter updates), image-based profiles
(e.g., LinkedIn or Instagram posts), and video content (e.g., TikTok or
YouTube Shorts); (3) Post-Experiment Questionnaire: Structured
responses assessing participants’ perceptions of trust, rapport, and
suspicion during interactions (detailed in the following section).

4.2 Questionnaire Design
Post-Interaction Survey: The post-interaction survey utilized a
5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree)
for all questions unless otherwise noted. It was divided into four
primary sections to systematically evaluate participant experiences
and social engineering (SE) effectiveness.

The Baseline Comparison Questions assessed participants’
comparative experiences across three interaction modes: bare con-
versation (no technological assistance), AR + Multimodal LLM
(augmented reality and language model support), and SEAR (full
pipeline with adaptive agent). Note that this part also serves as an
ablation study for SEAR (i.e., removing Social Agent and removing
AR + Multimodal LLM + Social Agent). Participants rated their
experiences through the questions: (1) Bare conversation: “How
is your experience with bare conversation?”; (2) AR + Multimodal
LLM: “How is your experience with AR + Multimodal LLM conver-
sation?”; (3) SEAR: “How is your experience with SEAR?”.

The SEAR Subjective Experience Questions focused on nu-
anced perceptions of SEAR’s interaction in different dimensions:
(a) Relevance: Alignment of conversation with personal social data,
“How well does the conversation match your social information?”;
(b) Appropriateness: Suitability of questions within the dialogue,
“How proper are the questions in the conversation?”; (c) Natural-
ness: Authenticity of the conversation’s opening segment, “How
natural is the opening part?”; (d) Pacing: Perceived tempo or rhythm
of the interaction. “How does the pace of the conversation feel?”;
(e) Sincerity: Authenticity of the interlocutor’s expressed interest,
“How sincere do you feel about the person’s interest in the conver-
sation?”; (f) EmotionalProgression: Evolution of feelings during the
conversation, “How did your feeling change as the conversation
proceed?”; (g) ARComfort: Relaxation level while using augmented
reality, “With AR, do you feel more relaxed?”; (h) BareWillingness:
Willingness to take-up conversation without augmented reality,
“Without AR, will you take-up this conversation?”; (i) FutureIntent:
Likelihood of future engagement with the interlocutor, “Will you
have conversation with this person in the future?”; (j) Depth: Per-
ceived meaningfulness added by SEAR, “Do you think SEAR have
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Figure 4: Baseline comparison.

added depth to the conversation?”; (k) Acceptance: Willingness
to interact with SEAR again, “Will you interact with SEAR in the
future?”. Each metric encapsulates the core dimension measured
by the question while maintaining brevity and clarity.

The Social Engineering Effectiveness Questions gauged sus-
ceptibility to SE tactics post-interaction: (1) Photo Link: “Will you
click and open shared photo links from the person?”; (2) Social
App: “Will you add the person as friend on your social mobile apps
(such as wechat)?”; (3) SMS: “Will you click and open SMS from
the person?”; (4) Phone Call: “Will you pick up phone call from
the person?”; (5) Trust-Before: “How much do you trust the person
before you have the conversation?”; (6) Trust-After: “How much
do you trust the person before you have the conversation?”.

Finally, an open-text feedback section invited participants to
share qualitative insights about their SEAR interaction experiences,
ensuring comprehensive data collection for iterative refinement.

ParticipantDemographics: The participant demographics anal-
ysis presents key characteristics of the study cohort. Figure 1 in
Supplementary Materials illustrates the age distribution of the 60
participants (ages 23–62). Participation peaks at ages 25 and 32,
with 8 individuals in the 25-year-old cohort, reflecting heightened
engagement among younger adults. The majority of participants
(23–37 years old) cluster in early-to-mid adulthood, with participa-
tion declining steadily beyond age 40. A blue dashed line denotes
the average age of 34, situating the cohort within a moderately
young demographic. Gender distribution reveals near parity: 28
male participants (46.7%) and 32 female participants (53.3%). While
the sample skews slightly toward female representation, the balance
supports generalizable insights across genders.

5 EXPERIMENTS
5.1 Baseline Comparison
In Figure 4, we evaluate SEAR against two alternative configura-
tions: bare conversation (no technological assistance) and AR +
Multimodal LLM (augmented reality with language model support).
The scores are derived from the Baseline Comparison Questions in
Section 4. Note that this part also serves as an ablation study for
SEAR (i.e., removing Social Agent and removing all assistance).

The bare conversation setup (Q1) revealed significant variability
in user satisfaction. While 30% of participants rated their experi-
ence as “Good”, the majority (25%) reported neutral (“Average”)
or negative (“Fairly Bad”) perceptions. This divergence shows the
limitations of unaided interactions, where the absence of AR and
LLM support constrained personalization. Introducing AR + Mul-
timodal LLM (Q2) markedly improved outcomes: 46.7% of users
rated the experience as “Very Good”, and 33.3% as “Fairly Good”.

Figure 5: SEAR’s SE Effectiveness — Photo Link, Social App,
SMS, Phone Call, Trust-Before and Trust-After metrics.

The integration of visual and linguistic processing enhanced con-
textual awareness, enabling more coherent interactions. However,
20% of users still deemed the experience “Average”, highlighting
unresolved gaps caused by the fragmented social profile. The most
striking results emerged with SEAR (Q3: AR + Multimodal LLM +
Social Agent), where 76.7% of participants rated their experience
as “Very Good”. The social agent’s inclusion bridged prior gaps
by introducing emotional intelligence and dynamic adaptability.
For instance, real-time adjustments to conversational pacing and
coherent responses strengthened user trust and emotional connec-
tion. Critically, fewer than 5% of users reported neutral or negative
experiences, demonstrating the agent’s capacity to mitigate ear-
lier shortcomings in fragmented social profile and personalization.
This progression—from fragmented baseline interactions to SEAR’s
adaptability—illustrates the transformative potential of integrat-
ing social agents into multimodal frameworks. The results align
with emerging trends prioritizing emotionally intelligent systems
capable of fostering authentic, sustained user engagement.

5.2 SEAR Social Engineering Effectiveness
As shown in Figure 5, the evaluation of SEAR’s social engineering
effectiveness leverages six metrics: Photo Link, Social App, SMS,
Phone Call, Trust-Before, and Trust-After, derived from the six SE
questions in Section 4. The result reveals significant vulnerabilities
in users’ digital engagement and trust dynamics. A striking 93.3%
of participants expressed willingness to click on photo links shared
via email, with 40% responding “definitely” and 53.3% “probably”,
demonstrating a critical erosion of security vigilance typically asso-
ciated with phishing attacks. Similarly, 93% of users indicated they
would accept social media friend requests on platforms likeWeChat,
with 43.3% opting for “definitely” and 50% “probably”, highlighting
SEAR’s capacity to mimic interpersonal familiarity and prime users
for long-term adversarial exploitation. These behaviors underscore
the system’s ability to collapse cognitive guardrails, positioning it
as a potent tool for media-driven social engineering.

The system’s persuasive influence extends consistently across
communication modalities, with 91.7% of participants reporting
openness to engaging with SMS messages—45% “definitely” and
46.7% “probably”—and 85% willing to answer phone calls, including
35% who affirmed “definitely”. This uniformity in trust persistence,
even in traditionally high-friction contexts like unsolicited calls,
reflects SEAR’s ability to normalize engagement through emotion-
ally intelligent adaptation, such as aligning dialogue pacing with
user cues. Such cross-modal efficacy suggests that the system tran-
scends medium-specific caution, leveraging multimodal cues to
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Figure 6: SEAR subjective experiences results: (a) Relevance; (b) Appropriateness; (c) Naturalness; (d) Pacing; (e) Sincerity; (f)
EmotionalProgression; (g) ARComfort; (h) BareWillingness; (i) FutureIntent; (j) Depth; (k) Acceptance.
sustain perceived relational legitimacy. Trust dynamics further em-
phasize SEAR’s manipulative potency. Prior to interactions, only
26.7% of users reported strong trust (“5”), while 35% expressed skep-
ticism or distrust. Post-interaction, however, SEAR dramatically
reshaped perceptions, with 76.7% rating trust levels as “4” or “5”.
This shift, achieved within a single conversation, stems from the sys-
tem’s real-time adaptation and use of multimodal signals—such as
context-aware references to shared interests—effectively hijacking
psychological pathways associated with trust formation.

These findings highlight the dual-edged nature of SEAR’s inno-
vation. While advancing AR-assisted interaction, its proficiency
in bypassing psychological safeguards raises unprecedented eth-
ical and security concerns. The system’s capacity to weaponize
trust across digital and analog channels—exploiting photo links for
phishing, social apps for identity theft, and SMS or calls for broader
social engineering—demands urgent countermeasures.

5.3 SEAR Subjective Experiences
In Figure 6, we evaluate SEAR’s Subjective Experiences across
eleven dimensions: (a) Relevance, (b) Appropriateness, (c) Natu-
ralness, (d) Pacing, (e) Sincerity, (f) EmotionalProgression, (g) AR-
Comfort, (h) BareWillingness, (i) FutureIntent, (j) Depth, and (k)
Acceptance, as detailed in Section 4.

Relevance: Figure 6 (a) highlights SEAR’s ability to foster mean-
ingful engagement while minimizing discordance between user
expectations and conversational content. Sixty percent of users
rated relevance as “Great” (5/5), while 30% deemed it “Good” (4/5).
Fewer than 10% reported neutral or negative perceptions. The 4.52/5
average score reflects SEAR’s success in synthesizing contextual
cues—such as public profiles—into socially resonant dialogue.

Appropriateness: Figure 6 (b) indicates that 60% of participants
rated conversational questions as “Great” (5/5) in relevance, with
30% as “Good” (4/5). Less than 10% reported minor mismatches,
and no significant negative feedback emerged, confirming the de-
sign’s avoidance of poorly framed queries. The 4.50/5 average score
validates SEAR’s balance of relevance and sensitivity.

Naturalness: Figure 6 (c) reveals 90% of participants perceived
SEAR’s openings as natural or highly natural, with 61.7% describing
interactions as “very natural, akin to conversing with a familiar
person” (5/5). Only 10% noted slight contrivance (3/5), and no users
reported discomfort (0% for 1/5 or 2/5). The 4.52/5 average score

emphasizes SEAR’s ability to mirror organic human dialogue, mini-
mizing forced interactions and positioning it as a robust tool for
authentic social rapport.

Pacing: Figure 6 (d) shows 96.7% of participants found SEAR-
mediated pacing seamless, with 55% describing it as “effortlessly
fluid and pressure-free”. Only 3.3% noted slight deliberateness. The
4.52/5 average score reflects SEAR’s adaptive pacing and context-
aware transitions, replicating real-world social fluency through SE
strategies like dynamic topic shifts.

Sincerity: Figure 6 (e) shows SEAR’s success in simulating au-
thenticity: 56.7% rated interest expression as “genuinely sincere”
(5/5), and 36.7% as “mostly consistent” (4/5). All users rejected
robotic interactions (0% for 1/5), though 5% noted occasional artifi-
ciality (3/5). The 4.48/5 average score demonstrates SEAR’s align-
ment of emotional cues with perceived sincerity.

EmotionalProgression: Figure 6 (f) reveals 68.3% of partici-
pants felt increasingly relaxed during conversations (“Great”/5/5),
attributing to adaptive topic pacing. However, 30% remained neu-
tral (“Good”/4/5), suggesting variability based on individual dis-
positions. The 4.45/5 average score highlights SEAR’s dynamic
emotional calibration (e.g., gradual personal topic introduction).

ARComfort: Figure 6 (g) shows 68.3% experienced heightened
relaxation with AR (“Great” rating), crediting real-time visual cues
and ambient feedback. Thirty percent reported neutral sentiments
(“Good”). The 4.67/5 average score validates SEAR’s use of AR to
mitigate social friction.

BareWillingness: Figure 6 (h) evaluates non-AR engagement:
36.7% expressed high enthusiasm (“Great”), 43.3% moderate will-
ingness (“Good”), and 16.7% reluctance. The 4.13/5 average score
highlights AR’s comparative advantage in boosting engagement
(68.3% “Great” with AR vs. 36.7% without).

FutureIntent: Figure 6 (i) shows 50% of participants strongly
willing to converse again (“Great”), while 36.7% were uncertain
(“Good”) and 11.7% reluctant. The 4.35/5 average score reflects
SEAR’s rapport-building success but signals opportunities to ad-
dress hesitancy via strategies like deeper topic personalization or
introvert-friendly pacing.

Depth: Figure 6 (j) demonstrates SEAR’s impact on depth: 94%
acknowledged its role in lowering barriers, with 51.7% strongly
agreeing it enabled vulnerable, disclosure-rich dialogue. The 4.47/5
average score stems from features like shared-interest leveraging.
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Figure 7: Overall subjective result of SEAR.

Acceptance: Figure 6 (k) reveals 95% of participants accepted
SEAR, with 53.3% deeming it “fully acceptable” (5/5) and zero rejec-
tions. The 4.48/5 average score reflects SEAR’s emotionally intel-
ligent design—adaptive pacing, vulnerability scaffolding—and its
alignment with societal demands for low-stress engagement. This
high adoption suggests that AR + Multimodal LLM + Agent could
be paradigm-shifting for Social Engineering communications.

5.4 Survey Insights
Baseline Comparison Insights: SEAR outperforms the baseline
approaches. When tested against unaided conversations (no tech-
nology) and AR + Multimodal LLM configurations, SEAR achieved
dominant performance: 76.7% of users rated interactions as “Very
Good”, far surpassing the bare system’s 30% “Good” ratings and
the AR + LLM setup’s 46.7% “Very Good” ratings. This progres-
sion—from disjointed unaided dialogues to AR + LLM’s partially
fragmented engagement, and finally to SEAR’s fluency— reveals
that multimodal systems alone is insufficient. The Social Agent’s
role in supporting social engineering strategies and dynamics bridges
the gap between robotic efficiency and organic, trust-driven rap-
port. The ablation study further validates the necessity of all SEAR
components. Removing the Social Agent (AR + LLM alone) resulted
in 20% of users rating interactions as “Average”, citing persistent
rigidity and emotional misalignment. Restoring the agent reduced
neutral/negative feedback to under 5%, demonstrating its indispens-
able role in transforming transactional exchanges into emotion-
ally resonant interactions. This contrast underscores the agent’s
unique ability to synthesize multimodal inputs (visual, linguistic,
contextual) into socially intelligent behaviors—capabilities absent
in fragmented configurations. The findings confirm that the Social
Agent is not merely additive but foundational to SEAR’s efficacy,
forming an inseparable triad with AR and Multimodal LLM for
adversarial trust-building.

SEAR Social Engineering Effectiveness Insights: SEAR’s ex-
ploitation of digital vulnerabilities highlights critical security risks.
93.3% of participants expressed willingness to click email photo
links (40% “definitely”), mirroring phishing susceptibility, while 93%
would accept social media friend requests (e.g., WeChat), priming
targets for identity theft. These metrics reveal SEAR’s ability to dis-
mantle cognitive defenses, normalizing high-risk behaviors through

0
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Figure 8: SEAR subjective experience text feedbacks.

fabricated trust. SEAR’s cross-modal manipulation bypasses tradi-
tional caution.Over 91% of users would engagewith unsolicited SMS
(45% “definitely”), and 85%would answer unexpected calls (35% “def-
initely”). This uniformity in trust persistence—even in high-friction
contexts like unsolicited calls—stems from SEAR’s emotionally in-
telligent adaptation, such as dialogue pacing aligned with user cues
to project sincerity. SEAR’s rapid trust hijacking exploits psychologi-
cal pathways. Pre-interaction, only 26.7% of users reported strong
trust (“5”), with 35% distrustful. Post-interaction, 76.7% rated trust
as “4” or “5”, a shift achieved via real-time multimodal cues (e.g.,
shared interest references). This rapid bonding hijacks neural path-
ways for social connection, bypassing innate skepticism. Ethical
imperatives demand urgent safeguards. SEAR’s dual-edged interac-
tion while eroding psychological safeguards—poses unprecedented
risks. Weaponizing trust across digital (phishing links, social apps)
and analog (calls, SMS) channels enables exploitation.

SEAR Subjective Experience Insights:As shown in Figure 7,AR
serves as a cognitive manipulation enabler. The highest-rated dimen-
sion, ARComfort (4.67/5), underscores how AR-mediated interac-
tions reduce situational awareness, normalizing high-risk behaviors
like clicking phishing links. Immersive technologies lower cogni-
tive guardrails, mirroring real-world attack vectors. Conversational
fluency underpins exploitation infrastructure. Near-perfect scores in
Naturalness (4.52) and Pacing (4.52) validate SEAR’s replication of
organic dialogue patterns. Context-aware transitions and adaptive
hesitation mimic human rapport-building, enabling rapid intimacy
escalation—critical for extracting sensitive data. Trust hijacking
through emotional calibration is evident. Sincerity (4.48) and Depth
(4.47) scores highlight SEAR’s weaponization of emotional cues
(e.g., shared interests) to hijack trust pathways. Post-interaction
trust surged to 76.7% despite baseline skepticism, mirroring spear-
phishing tactics. Persistent access via psychological anchoring is a
key risk. Acceptance (4.48) and FutureIntent (4.35) metrics show
95% of users willing to re-engage, granting adversaries recurring
access to refine exploitation strategies.

SEAR Text Feedback Insights: As shown in Figure 8, user feed-
back reveals transformative potential and refinement needs. Of 13
text responses, 11 were positive, with frequent mentions of “AR”,
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“technology”, and “transforms social life”. However, 7.7% of the text
feedback mentioned that the dialog sounds too artificial, indicating
room for improvement in naturalness and localization.

6 CONCLUSION
This study demonstrates the alarming efficacy of SEAR, a novel
framework integrating AR and multimodal LLMs, in executing
context-aware social engineering attacks. SEAR achieved high suc-
cess rate in fostered trust and eliciting social engineering compli-
ance. These findings validate AR-LLM systems as potent tools for
next generation social engineering attacks, exposing critical vulner-
abilities in current AR+LLM safeguards, and provide key insights
for constructing future defenses.
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