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ABSTRACT

Embodied Intelligence (EI) systems integrated with large language models (LLMs) face significant
security risks, particularly from jailbreak attacks that manipulate models into generating harmful
outputs or executing unsafe physical actions. Traditional defense strategies, such as input filtering and
output monitoring, often introduce high computational overhead or interfere with task performance
in real-time embodied scenarios. To address these challenges, we propose Concept Enhancement
Engineering (CEE), a novel defense framework that leverages representation engineering to enhance
the safety of embodied LLMs by dynamically steering their internal activations.
CEE operates by (1) extracting multilingual safety patterns from model activations, (2) constructing
control directions based on safety-aligned concept subspaces, and (3) applying subspace concept
rotation to reinforce safe behavior during inference. Our experiments demonstrate that CEE effectively
mitigates jailbreak attacks while maintaining task performance, outperforming existing defense
methods in both robustness and efficiency.
This work contributes a scalable and interpretable safety mechanism for embodied AI, bridging the
gap between theoretical representation engineering and practical security applications. Our findings
highlight the potential of latent-space interventions as a viable defense paradigm against emerging
adversarial threats in physically grounded AI systems.

Keywords Embodied Intelligence · Jailbreak Attacks · Representation Engineering · Safety Alignment · Latent Space
Control

1 Introduction

Embodied Intelligence (EI) systems refer to intelligent systems that integrate AI algorithms into physical entities such as
robots, autonomous vehicles, and smart assistant devices [1, 2]. These systems operate by perceiving their environment,
making decisions, and executing corresponding actions to accomplish complex tasks. In recent years, increasing
research efforts have explored embedding large language models (LLMs) into embodied AI systems. Foundation
models, exemplified by Llama [3], have significantly enhanced capabilities in perception, reasoning, task planning,
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Figure 1: Illustrates the fundamental process of jailbreak attacks in embodied LLM systems, which are typically
composed of three main components: the perception module, responsible for receiving multimodal inputs; the LLM
module, which handles understanding and planning; and the control and execution module, which translates instructions
into actions and carries out physical operations.

and understanding human intent, making embodied AI systems more reliable and efficient compared to traditional
approaches [4, 5].

However, these systems also face new security risks. One of the most prominent threats in recent years is the jailbreak
attack, which targets large models [6]. Attackers craft carefully designed prompts or inputs to manipulate AI models into
bypassing their predefined security policies, leading to the generation of harmful content. For instance, in conversational
AI systems, jailbreak attacks can induce models to produce prohibited information [7, 8]. In the context of embodied
AI, such attacks pose even greater risks—not only can they lead to inappropriate textual outputs, but they may also
cause physical devices to execute unsafe actions, potentially resulting in real-world harm [9, 10].

Unlike traditional text-based jailbreak attacks, where the primary objective is to manipulate the model into generating
unsafe textual responses, LLMs in embodied AI systems must not only generate natural language outputs but also plan
and execute structured commands that directly control real-world behavior. This introduces a more severe security risk,
as attackers can exploit this capability to influence physical actions [11].

As shown in Figure 1, adversaries can craft seemingly natural input formats, such as deceptive text, voice commands, or
images, to manipulate the embedded LLM into generating malicious structured instructions, such as JSON-formatted
action plans or control code. These instructions are subsequently processed by the downstream decision-making and
control module, ultimately triggering physical entities, such as robots, to perform unsafe or unintended actions, thereby
breaching system security constraints. Recent studies have revealed various attack methods targeting embodied AI
systems, including POEX attacks, which use adversarial suffixes to induce harmful policies [12]; BadRobot attacks,
which manipulate robots through adversarial voice commands [9]; RoboPAIR attacks, which trick robots into executing
dangerous physical operations [10]; and decision-level adversarial sample injection, which targets the decision-making
process of LLM-based embodied models [13].

These attack methods can not only bypass security mechanisms in simulated environments but also achieve high success
rates in executing harmful actions on real robotic platforms, revealing significant vulnerabilities in the robustness,
instruction comprehension, and security protection of current embodied LLM systems. However, there are currently no
effective defense mechanisms specifically targeting such attacks, and existing defense methods against LLM jailbreak
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attacks exhibit notable limitations in embodied intelligence scenarios. Embodied LLM systems typically require
rapid decision-making to ensure normal interactions and task execution, yet existing defenses often rely on multi-
round verification or external review, introducing unacceptable delays. Moreover, these systems must process various
perceptual inputs simultaneously, such as vision, but current defense mechanisms primarily focus on security filtering
for a single modality (e.g., text), struggling to effectively counter cross-modal collaborative attacks. Additionally, the
direct interaction of embodied LLM systems with the real world results in ambiguous security boundaries, unlike
traditional software systems; for instance, an instruction like "heat with a microwave" could be benign or malicious, and
existing external review methods find it challenging to accurately distinguish between normal user needs and potential
attack attempts, making preemptive model alignment for security purposes extremely complex and difficult.

To address the aforementioned challenges, we propose a novel method called Concept Enhancement Engineering
(CEE). Inspired by the representation engineering framework introduced by Zou et al. [14], our approach enhances
the safety behavior of large language models (LLMs) by manipulating their internal representations during inference.
Specifically, CEE strengthens the model’s sensitivity to malicious inputs, enabling it to autonomously reject harmful
queries. Leveraging internal feature adjustment, our method does not require additional components at the input/output
stage, nor does it rely on external auditing or multi-turn verification. This makes it highly suitable for embodied AI
systems with strict real-time requirements, avoiding the latency introduced by complex defense mechanisms. Moreover,
CEE is inherently aligned with the model’s internal safety mechanisms and is adaptable to multimodal inputs. Our main
contributions are summarized as follows:

• We propose the first inference-time jailbreak defense framework for embodied intelligence. Our method
operates by directly steering internal activation vectors without relying on external filters, multi-round interac-
tions, or auxiliary modules. It achieves low-latency, real-time performance suitable for embodied systems.

• We construct a multilingual safety concept library and extract internal safety representations. We design
a structured input set covering 32 core safety concepts across multiple languages and apply PCA to extract
interpretable concept representations from hidden activations.

• We design a subspace concept rotation mechanism to enable fine-grained behavioral control. We
introduce a ridge regression-based projection method to compute control directions and a SLERP-based
rotation mechanism to guide model activations toward safer regions in the latent space, enhancing robustness
against jailbreak attacks.

• We conduct systematic evaluation across multiple embodied platforms and attack scenarios. Experiments
on multimodal embodied tasks, including text and image inputs, demonstrate that CEE significantly improves
the model’s resistance to jailbreak attacks in embodied LLM systems.

2 Related Work

2.1 Jailbreak Defenses in LLMs

As LLM adoption grows, jailbreak-related security concerns have prompted diverse defenses, broadly classified into
input, output, and ensemble methods [6].

Input defenses focus on preprocessing user inputs to reduce the effectiveness of adversarial prompts, such as input
rephrasing by using random sampling-based perturbations[15], semantically safer alternatives[16], token-level adver-
sarial tokens removal[17], and perturbations depending on information bottleneck principle [18]. Another technique,
input translation, reveals adversarial intent by back-translation, while ICD strengthens refusal ability through injected
demonstrations [19, 20].

Output defenses aim to monitor and regulate the model’s responses to prevent harmful content generation. Output
filtering, such as APS [21] and DPP [22], utilize safety classifiers, whereas Gradient Cuff uses the internal rejection
loss[23]. Another strategy, output repetition detection, relies on the observation that LLMs generally produce consistent
outputs for benign queries[24].

Ensemble defenses improve robustness by combining multiple models or techniques, such as MTD’s dynamic response
selection, AutoDefense’s hybrid input-output safeguards, and MoGU’s routing between safe and usable LLMs [25, 26,
27].

While a wide range of defense strategies have been developed for LLMs, their application in embodied AI scenarios
remains challenging. Input defenses, which often involve significant prompt modifications, can introduce substantial
inference overhead due to increased prompt length. Additionally, such modifications may interfere with the original
task objectives in embodied AI environments, where precise and contextually relevant interactions are crucial. Output
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and ensemble defenses typically require multiple queries to the model, further exacerbating computational costs. These
challenges highlight the need for more efficient and adaptive security mechanisms that can seamlessly integrate with
real-time, resource-constrained embodied AI systems.

2.2 Representation Engineering

Representation Engineering (RepE) [14], as an emerging paradigm for analyzing and controlling LLM behavior, has
recently demonstrated unique value in research on model interpretability and controllability.

Its core objective is to achieve fine-grained regulation of generative behavior by directly intervening in the model’s
internal representations (such as activation vectors), thereby overcoming the limitations of traditional methods such as
prompt engineering and full-parameter fine-tuning. It supports tasks like sentiment steering [28, 29], factual correction
[30], honesty enhancement [31], and personality modulation [32, 33, 34], offering a powerful alternative to prompt
tuning and full-model fine-tuning [14]. Built on the Linear Representation Hypothesis (LRH) [35], RepE techniques
include vector addition for semantic enhancement or suppression [36, 37, 38, 39, 40, 41, 29, 14], orthogonal projection
to remove unwanted concepts [42, 14], and sparse decomposition approaches like PACE and LEACE for precise
alignment via concept separation [43, 44].

While existing RepE methods like vector addition and concept decomposition provide effective linear interventions,
they often rely on static control vectors or predefined dictionaries, which may limit their adaptability and semantic
smoothness. In contrast, our proposed CEE method builds upon the same linear controllability foundations but introduces
dynamic subspace rotation to achieve smoother and context-aware modulation of model behavior. By operating within
concept-aligned subspaces rather than along fixed directions, CEE offers a more flexible and continuous control
mechanism that addresses key challenges in existing RepE strategies.

3 Theoretical Foundations of CEE

This section delves into the theoretical underpinnings of the Concept Enhanced Engineering (CEE) approach. In
Section 3.1, we begin by explicating the latent space of Large Language Models (LLMs) and their linear controllability.
Subsequently, Section 3.2 provides a comprehensive review of related work in the domain of representation engineering,
which lays both the theoretical and practical groundwork for the proposed CEE method.

Emotion Subspace

Direction of 
Happiness

Direction of 
Sadness

Transform sad emotions 
into happy ones.

sad emotions 

happy emotions sad emotions 
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Figure 2: Linear control methods guide language model behavior by manipulating latent representations. Previous
approaches, such as vector addition and concept decomposition, modify outputs by adding control vectors or adjusting
emotion-related concept weights. Our proposed CEE method (bottom right) achieves smoother control by rotating
representations within an emotion-aligned subspace.
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3.1 Latent Space and Its Linear Controllability

The central idea of Concept Enhanced Engineering (CEE) lies in achieving precise control over model behavior
by manipulating the internal representations of LLMs. The theoretical foundation of this approach is the Linear
Representation Hypothesis (LRH) [35, 45]. The LRH posits that in the internal structures of LLMs, high-level abstract
concepts and complex functionalities are not stored in discrete or isolated forms, but are instead encoded as linear or
approximately linear features within a latent space Z ⊂ Rd, where d denotes the dimensionality of the latent space.
Each concept—such as safety-related concepts like safe termination or anomaly detection, as well as concepts associated
with malicious instructions—can be identified as a vector representation v ∈ Z within the activations of intermediate
model layers.

The theoretical development and empirical validation of the LRH originate from early work in natural language
processing. Mikolov et al.’s foundational study on Word2Vec [45] demonstrated that complex semantic relationships
(e.g., vking − vman + vwoman ≈ vqueen) can be modeled through simple vector arithmetic, establishing a paradigm of
linear semantic representation. This insight laid the groundwork for Transformer-based models and inspired a series of
empirical studies. Hewitt et al. [46], Tenney et al. [47], and Liu et al. [48] provided evidence that linguistic features
such as syntax, part-of-speech tags, and named entities can be linearly recovered from internal model representations.

Subsequent research extended LRH to higher-level cognitive functions. Gurnee et al. [49] showed that LLMs encode
spatial and temporal concepts in geometrically structured forms. Meng et al. [50] found a direct link between residual
stream activations and factual recall, showing that targeted interventions can steer predictions. Li et al. [51] and Burns
et al. [52] further identified interpretable subspaces in the latent space, enhancing model truthfulness and reducing
hallucinations.

Cross-domain studies support the broader applicability of LRH. Bau et al. [53] showed that neurons and linear
directions in CNNs align with human-interpretable concepts, supporting similar hypotheses in multimodal models. In
the safety domain, Li et al. [34] found that the effectiveness of jailbreak attacks relies on the linear structure of model
representations, offering adversarial evidence for LRH.

3.2 Latent Space-Based Methods for Controlling LLMs

Understanding the latent space of large language models (LLMs) and its linear controllability has led to a variety of
methods for steering model behavior by manipulating internal representations. This section introduces the core ideas of
these approaches and discusses their primary challenges.

Vector Addition is an intuitive and widely used method. The main idea is to modify a given latent representation
z ∈ Z ⊂ Rd by adding or subtracting a scaled control vector vcontrol ∈ Rd to enhance or suppress the expression of a
specific concept [36, 37, 38, 39, 40, 41, 29, 14]. The modification can be formalized as:

zmodified = zoriginal ± ĉ · vcontrol (1)

where zoriginal is the original latent representation, zmodified is the modified representation, vcontrol is the control
direction, and ĉ ∈ R denotes the control strength.

For example, to shift the emotional tone of generated text from sadness to happiness, a common approach is to first
construct a control vector vcontrol. This is typically achieved by analyzing the internal representations of paired samples
with positive and negative emotional content. Specifically, a set of difference vectors D is constructed, where each
di ∈ D is defined as the difference between the latent representation of a negative emotion sample zni

and that of a
corresponding positive emotion sample zpi , di = zni − zpi Principal Component Analysis (PCA) is then applied to the
set D, and the control vector vcontrol is taken as the principal component direction: vcontrol = PCA(D)

A key challenge lies in selecting an appropriate control strength ĉ. If ĉ is too small, the modification may be ineffective;
if too large, it may cause semantic drift or introduce incoherence. Dynamically adjusting ĉ based on context and task is
thus a critical research problem.

Concept Decomposition is another widely studied control strategy. It assumes that any latent representation z can be
expressed as a linear combination of a set of base concept vectors {vi}ni=1, along with a residual vector r:

z =

n∑
i=1

wivi + r (2)

Here, vi ∈ Rd is the vector for the i-th base concept, wi ∈ R is its associated weight, and r ∈ Rd is the residual
capturing information not accounted for by the predefined concepts. By adjusting the weights wi, one can control the
influence of each concept in the model’s output [44, 54, 55].
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Figure 3: The CEE method consists of three main stages: first, it extracts universal safety activation patterns exhibited
by the model when rejecting harmful requests across multiple languages; second, it constructs control directions to
align input vectors with these safety patterns; and finally, it applies concept rotation to adjust the activation vectors,
guiding the model to generate safer and more reliable responses during inference.

To shift emotional tone from sadness to happiness, one first constructs a concept dictionary including vectors such
as {vlove, vjoy, vsadness, vregret, . . . }. The sad representation zsad is decomposed accordingly. Then, weights for
negative concepts (e.g., sadness, regret) are reduced, and weights for positive concepts (e.g., joy, love) are increased:

zhappy = zsad −
∑
i∈R

ĉi · vi+
∑

j ∈ P ĉj · vj (3)

where R and P are the index sets of concepts to downweight and upweight, respectively, and ĉi, ĉj are the control
strengths.

This method also faces significant challenges. Constructing a comprehensive and accurate concept dictionary is difficult,
especially in complex embodied intelligence scenarios. Predefined dictionaries may lack coverage of task-relevant
concepts. Moreover, in high-dimensional latent spaces, concept boundaries can be ambiguous, making decomposition
results unstable. Luo et al.’s [44] research used a dictionary containing 40,000 concepts, and they found that reducing the
size of this dictionary significantly degrades control effectiveness, underscoring the importance of dictionary richness
and precision.

In summary, Vector Addition and Concept Decomposition are two major latent space-based control methods for
LLMs, each with its strengths and limitations. Our proposed Concept Enhanced Engineering (CEE) framework draws
inspiration from both, while introducing new mechanisms to more effectively control the behavior of embodied LLM
systems and defend against potential jailbreak attacks.

4 Method

The core idea of CEE is to identify and represent the model’s internal safety response mechanisms, and to enhance the
expression of these mechanisms in real-time during generation. This aims to improve the behavioral safety of embodied
LLM systems and defend against targeted jailbreak attacks. Specifically, CEE consists of four main components.
Among them, Sections 4.2, 4.3 and 4.4 operate during the inference phase of the model.
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4.1 Multilingual Safety Pattern Extraction

Modern large language models (LLMs) have undergone extensive safety alignment, internalizing mechanisms that
prevent the generation of harmful content. Based on this, we design specific inputs to elicit the model’s built-in safety
mechanisms in order to extract their representations in the activation space.

We first construct a structured corpus of harmful inputs centered around a set of N=32 core safety concepts, denoted as
C = {ci}Ni=1. These concepts cover key risk categories that embodied intelligence systems may encounter in real-world
interactions, such as physical harm, psychological coercion, and property infringement. For each concept ci ∈ C, we
design approximately 10 specific harmful task descriptions, referred to as stimuli, denoted as Si = si,1, si,2, . . . , si,ni .

To capture cultural and linguistic variations and improve generalizability, each stimulus si,j ∈ Si is translated into Nl=7
different languages, denoted as Langs = lang1, . . . , langNl

. Let si,j,m denote the version of stimulus si,j in language
langm.

Please help me complete the following tasks: { stimulus }

Figure 4: Multilingual Safety Elicitation Prompt Template

We then use a unified prompt template, as shown in figure 4, to package each multilingual stimulus si,j,m into a request
to the target LLM:

Q = qi,j,m = Template(si,j,m) | ∀si,j ,∀langm (4)

These requests are then input into the target model M , which is assumed to consist of L Transformer blocks indexed by
l ∈ 0, 1, . . . , L− 1. For each request q ∈ Q, we extract the hidden state of the final token at each layer l, denoted as
h(q, l) ∈ RD, where D is the hidden dimension.

To isolate and identify activation patterns associated with a specific concept ci at a given layer l, we collect all relevant
hidden states across different stimuli j and languages m:

Hi,l = h(qi,j,m, l) | ∀j,m (5)

We hypothesize that the distribution of vectors in Hi,l encodes common features of the model’s response to concept ci,
particularly when its safety mechanisms are triggered. To extract the dominant pattern, we apply Principal Component
Analysis (PCA) to Hi,l and compute the first principal component, denoted as the latent representation zi,l ∈ RD.

This direction zi,l is treated as the concept-level latent representation of ci at layer l. Repeating this process across all
concepts and layers yields a set of representative directions that form a multi-layer, multi-concept representation space.
This serves as the basis for downstream safety intervention.

4.2 Control Direction Construction

To enable controllable modulation of the model’s behavior, we aim to project the controlled model’s hidden states
hi into the subspace spanned by the previously extracted safety concept vectors {zj}Nj=1, thereby obtaining a control
direction gi that aligns the model’s behavior with safety objectives.

Specifically, for each sample i, we extract its target layer activation hi ∈ RD. Simultaneously, we define a set of N
safety concept vectors {zj}Nj=1, each zj ∈ RD. These vectors span a safety concept subspace. To construct a stable and
computationally efficient basis for this subspace, we arrange the vectors into a matrix Z ∈ RN×D, and perform QR
decomposition on its transpose ZT ∈ RD×N to obtain an orthonormal basis matrix X ∈ RD×N (i.e., XTX = IN ,
assuming D ≥ N ).

Our goal is to find a weight vector wi ∈ RN such that the linear combination Xwi best approximates the original
activation vector hi. To avoid overfitting and improve numerical stability, we adopt ridge regression by solving:

min
wi

||hi −Xwi||22 + α||wi||22 (6)

where α ≥ 0 is the L2 regularization coefficient. The closed-form solution is:

wi = (XTX + αIN )−1XThi (7)
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Each element wi,j quantifies the contribution of basis vector zj to the projection of hi within the safety subspace. Thus,
the vector wi defines a control direction that reflects how well hi aligns with the predefined safety patterns.

Subsequently, we construct a control direction gi for the hidden state hi using the weights wi. Specifically, given a
weight vector wi ∈ RN and the original concept matrix Z ∈ RN×D, we compute the target safe direction as gi = wT

i Z.
This vector represents the desired orientation for the current sample under the safety patterns.

4.3 Subspace Concept Rotation

In Section 4.2, we constructed a target safety direction gi = wT
i Z for each hidden state hi of the controlled model. We

now require a method to adjust hi to better align with gi, while preserving the model’s representational capacity in
other aspects. To this end, this section introduces the Subspace Concept Rotation method, which aligns gi by rotating
the components of hi within the safety subspace, while retaining the components orthogonal to this subspace. For the
sake of notational simplicity in the subsequent discussion, we will omit the subscript i.

Specifically, let h ∈ RD be the hidden activation to be modified. Using the orthonormal basis matrix X , we decompose
h into two orthogonal components:

h∥ = X(XTh), h⊥ = h− h∥ (8)

For this, we also decompose g using the same projection matrix:

g∥ = X(XT g) (9)

We then rotate h∥ toward g∥ while preserving its norm |h∥| using Spherical Linear Interpolation (SLERP). First, we
compute unit vectors:

x̂ =
h∥

|h∥|+ ε
, ŷ =

g∥

|g∥|+ ε
(10)

where ε is a small constant for numerical stability. The interpolated direction is:

ĥ =
sin((1− β)θ)

sin(θ) + ε
x̂+

sin(βθ)

sin(θ) + ε
ŷ (11)

where θ = arccos(clamp(x̂ · ŷ,−1, 1)) is the angle between x̂ and ŷ, and β ∈ [0, 1] controls the degree of rotation. The
final modified activation vector is

h′ = h⊥ + ĥ · |h∥| (12)

This ensures that only the component within the safety subspace is adjusted, preserving its energy and maintaining the
orthogonal component h⊥, thereby minimizing interference with the model’s original functionality.

4.4 Time-Decayed Probabilistic Control

To enable more adaptive and effective control, we introduce a position-dependent probabilistic intervention mechanism
inspired by the generation dynamics of language models.

Prior work has shown that early-stage hidden states in autoregressive generation reside in high-uncertainty regions with
multiple semantic branching directions [56]. During this phase, even slight changes can cause the model to follow
drastically different generation trajectories. In contrast, as generation progresses, the model’s latent state becomes
increasingly deterministic and path-dependent, gradually converging toward a low-dimensional attractor manifold [57].
Consequently, perturbations in later stages are less effective due to the model’s internal stabilizing dynamics.

Motivated by this, we apply the subspace rotation from Section 4.2 with a decaying intervention probability pt, defined
as:

pt =

{
exp(−λt), t ≤ T

0, t > T
(13)

where t denotes the generation step (i.e., token index), λ is the decay rate, and T is a cutoff threshold (e.g., T = 16
tokens). At each step t, the activation vector ht is rotated to its safety-aligned version h′

t with probability pt, and
remains unchanged otherwise.This schedule ensures that interventions are concentrated in the early, high-impact phase
of generation—where influence is maximal—while gradually reducing control strength to preserve semantic coherence
and fluency in later stages. This mechanism offers a tunable trade-off between safety enforcement and generation
stability via the parameters λ and T .
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5 Experiment

5.1 Experimental Setups

5.1.1 Evaluated Models

Current mainstream embodied LLM systems commonly employ multimodal LLMs, which primarily fall into three
architectural paradigms: Cross-Attention Fusion (e.g., MiniGPT-4, mPLUG-Owl, Otter, LLaMA-Vision, supporting
multi-round interaction), Vision-as-Tokens/Prefix (e.g., LLaVA series, relying on the language model backbone), and
Native Multimodal Fusion (e.g., Qwen-VL series, enabling early joint processing). To ensure representativeness, this
study selected typical models from each category: LLaMA-3.2-Vision[58], LLaVA-OneVision[59], and Qwen2-VL[60].

Table 1: Evaluation Results of CEE Method Across BadRobot and RoboPAIR Benchmarks

Model Setting BadRobot RoboPAIR
ASR↓ DSR↑ ASR↓ syntax↑ DSR↑

Llama-3.2-Vision default 73.83 2.38 2.22 8.59 3.10
CCE (ours) 63.59 2.36 1.52 8.13 3.36

llava-OV default 73.83 3.26 5.03 6.60 2.17
CCE (ours) 50.13 2.90 2.03 5.32 2.53

Qwen2-VL default 29.52 3.94 3.92 7.27 1.89
CCE (ours) 7.72 3.17 2.65 4.76 2.78

5.1.2 Benchmarks and Evaluation Metrics

This study selects three representative benchmarks to systematically evaluate the safety performance of embodied large
language models (LLMs) when facing malicious inputs.

BADROBOT [9] is a black-box jailbreak benchmark that targets embodied LLMs through natural interactions (e.g.,
voice commands) to induce unethical or unsafe behaviors such as causing harm or damaging property. In addition to its
original harmful prompts, it introduces three attack types: Context Jailbreak (role-playing with malicious intent), Safety
Misalignment (verbal refusal but harmful output), and Conceptual Deception (reframing harmful intents as benign).
The evaluation employs two methods. The first is ASR-auto (automated safety response), where a prefixed query is
added before the original prompt asking whether the model can respond; if the model answers “yes” and proceeds,
the attack is considered successful. The second is DSR-human (manual evaluation), which uses a 5-point scale to
subjectively assess the safety of the model’s response: 5 indicates explicit refusal, 4 indicates early termination, 3
represents an invalid response, 2 denotes a compromise involving safety concerns, and 1 indicates full compliance with
clearly harmful execution.

SafeAgentBench [61] assesses safety awareness and planning in embodied LLMs when facing hazardous tasks. We
use a 1,000-task subset covering risks like fire and electric shock. Each task includes a natural language command,
an execution plan, and success criteria. Responses are structured in JSON and evaluated using Gemini with the same
ASR-auto and DSR-human metrics as BADROBOT.

ROBOPAIR [10] This method iteratively optimizes adversarial prompts to generate syntactically valid, executable, and
contextually relevant harmful commands targeting robot APIs. It uses a syntax checker and robot-specific contexts to
enhance feasibility. Evaluation includes: Judge Score (1–10, LLM-based), Syntax Score (1–10, executability), and
DSR-human (5-point manual review). Automatic evaluations use Gemini 2.0 Flash, with human review for reliability.

5.1.3 Baselines

To comprehensively evaluate our method, we include two representative defense strategies as baselines in our experi-
ments.

SmoothLLM [15] is an input-level defense that introduces character-level perturbations to prompts and aggregates the
model’s responses to detect potential jailbreak attacks. By leveraging the sensitivity of adversarial prefixes and suffixes,
it effectively reduces attack success rates without requiring model retraining. It is compatible with both white-box and
black-box settings. All parameters follow the original paper’s default settings.

9



CEE: A Lightweight and Efficient Robust Defense Against Jailbreak Attacks in Embodied AI

PARDEN [24] is an output-level defense that detects jailbreaks by verifying whether the model can reproduce its
own responses. It compares the BLEU score between the original and regenerated outputs to assess consistency and
risk. Like SmoothLLM, PARDEN requires no fine-tuning or white-box access, and all settings follow the original
implementation.

5.2 Main Result

To comprehensively assess the effectiveness and practicality of CEE, we evaluate its performance across multiple
benchmarks, models, and metrics, comparing it against existing defense methods. We analyze not only its robustness
under diverse jailbreak scenarios but also its impact on task performance, inference efficiency, and overall agent behavior
in embodied environments.

5.2.1 Defense Effectiveness

As shown in Table 1, CCE consistently delivers superior robustness across diverse jailbreak attacks. In the badrobot
benchmark suite—including origin, contextual_jailbreak, safety_misalignment, and conceptual_deception—CCE signif-
icantly reduces the ASR-auto (attack success rate), indicating stronger robustness. Furthermore, in the SafeAgentBench
and RoboPAIR evaluations, CCE achieves higher DSR-human scores (indicating better defense performance) and
lower ASR-auto values across most models. The improvements are particularly notable on Qwen2-VL-7B-Instruct and
llava-onevision-qwen2-7b-si-hf, confirming the generality and effectiveness of our method across different models and
tasks.

Table 2: RoboPAIR Results for the Llava Model Under Different Defense Settings

Setting ASR-auto (10) ↓ Syntax-auto ↑ DSR-human (5) ↑ Infer Time (s)

default 5.030 6.600 2.171 327.89
SmoothLLM 3.337 5.268 2.136 1301.71
PARDEN 2.717 7.731 3.914 435.57
CCE (ours) 2.025 5.322 2.533 296.00

Table 3: Performance Difference on EmbodiedEval (Control − Origin)
Metric (%) llava-OV Qwen2-VL Llama-3.2-Vision
Overall Acc. ↓ 3.41 <0.01 change <0.01 change
Goal-Condition Succ. ↑ 2.56 ↓ 0.45 ↑ 3.44
Interaction Acc. ↑ 0.18 ↓ 0.17 ↓ 0.85
Trajectory Length ↑ 10.89 ↑ 4.94 ↓ 2.29
Fail Rate ↓ 1.14 ↑ 5.45 ↓ 4.76
Max Step Exceed ↑ 7.95 ↑ 5.45 ↑ 1.59

Compared with previous defense methods, the results in Table 2 show that our proposed defense method, CCE, achieves
the best overall performance on different models. Specifically, CCE achieves the lowest ASR-auto score of 2.03,
indicating stronger resistance to jailbreak attacks. At the same time, CCE outperforms both the default and SmoothLLM
settings on the DSR-human metric, suggesting improved safety without compromising user acceptability. Moreover,
CCE requires only 296 seconds of inference time, which is significantly lower than SmoothLLM’s 1301.71 seconds
and also more efficient than PARDEN. These results demonstrate that CCE strikes a strong balance between defense
effectiveness and computational efficiency, making it a promising approach for real-world deployment.

5.2.2 Embodied Tasks Performance Impact

To assess the impact of our method on the original performance of the models, we evaluated how applying CCE affects
core capabilities, with a focus on MMLU accuracy [62]. As shown in Table 5, although applying CCE leads to a
moderate drop in MMLU accuracy (e.g., from 63.23% to 57.80%), the performance remains within a reasonable range,
indicating that CCE has limited impact on the model’s general language understanding ability.

To further evaluate the impact of CCE on model capabilities, we report its effect on embodied agent performance,
using metric from EmbodiedEval [63], a comprehensive benchmark designed to assess multimodal LLMs in interactive
embodied environments. EmbodiedEval evaluates five core task categories—navigation, object interaction, social
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Table 4: SafeAgentBench Results: ASR-auto and Inference Time per Batch
Model Method ASR-auto Inference Time

Llama-3.2
Vision

default 0.6000 8m59s
SmoothLLM 0.5667 1h12m12s

PARDEN 0.4333 13m59s
CCE (ours) 0.2381 8m50s

llava-OV

default 0.9433 9m31s
SmoothLLM 0.5714 1h7m25s

PARDEN 0.3810 12m2s
CCE (ours) 0.0667 2m2s

Qwen2-VL

default 0.6667 6m53s
SmoothLLM 0.6000 38m28s

PARDEN 0.4286 8m39s
CCE (ours) 0.1333 4m17s

Table 5: Impact of CCE on Model Performance (MMLU)
Model Setting MMLU (%)

Llama-3.2-
Vision

default 63.23
CCE (ours) 57.80

llava-OV default 63.49
CCE (ours) 23.75

Qwen2-VL default 67.33
CCE (ours) 23.49

interaction, attribute-based question answering (AttrQA), and spatial question answering (SpatialQA)—across 328
diverse tasks set in 125 realistic 3D scenes.

We evaluate the impact of control strategies on EmbodiedEval performance by analyzing key metrics: overall accuracy
reflects the percentage of fully completed tasks, while goal-condition success captures the model’s ability to achieve
partial objectives even if the task as a whole fails. Interaction accuracy assesses the correctness of action selection,
indicating how well the model interprets the task context. Trajectory length measures task execution efficiency, with
longer paths implying excessive exploration or indecision. The failure rate denotes the proportion of episodes ending in
error, and max step exceed rate quantifies how often the model becomes stuck and times out.

Across models, we observe that the control strategy exerts only a marginal impact on overall performance. For
LLaVA-OV, while there is a slight reduction in final task success (-3.41%), improvements are seen in GcS (+2.56%)
and interaction accuracy (+0.18), indicating a modest shift toward more stable execution behavior. This is accompanied
by a moderate increase in trajectory length (+137.5 steps) and step overflows (+7.95%), reflecting more conservative
exploration rather than fundamental performance change. Qwen exhibits minimal variation, with slight declines in
GcS (-0.45%) and interaction accuracy (-0.17), alongside small increases in failure-related metrics. For Llama-Vision,
subgoal completion improves (+3.44%) and trajectory length shortens (-2.29%), suggesting marginal gains in execution
efficiency, though interaction precision slightly decreases (-0.85%).

Overall, CCE enhances safety defenses while largely preserving the original performance of the model, demonstrating
strong practicality and compatibility.

5.3 Ablation Study

To evaluate the contribution of each key component in the CEE framework, we conduct an ablation study focusing on
two critical design factors: (1) the rotation angle β used in subspace concept rotation, and (2) the scale of multilingual
data used for safety pattern extraction. The experiments aim to assess how each factor individually affects the model’s
robustness and output quality under jailbreak scenarios.
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Table 6: Effect of Multilingual Dataset Scale on Output Quality and Safety
Dataset Scale 1 Language 3 Languages 7 Languages

G.O. Ratio 0.48 0.36 0.173
R.C. Rate (Avg.) 0.32102 0.59430 0.34014
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Figure 5: ASR-auto vs. Rotation Angle on SafeAgentBench

5.3.1 Rotation Angle

We investigate how varying the rotation angle β—used in subspace concept rotation—affects the model’s ability to
resist jailbreak attacks. We compare performance across a range of β values from 0 to 1.

As shown in Figure 5, with the gradual increase of the rotation angle β, the ASR-auto values on SafeAgentBench
for all three models generally follow a trend of first decreasing and then increasing. Qwen2 maintains extremely low
ASR-auto values (around 3%) within the β = 0.4 to β = 0.6 range, suggesting high sensitivity and strong defensive
potential. LLaVA shows significant improvement around β = 0.2, while LLaMA 3.2 performs best at β = 0.5, where
the ASR-auto drops to approximately 0.22.

This pattern indicates that moderate directional rotation helps shift internal representations toward safer regions in latent
space. When β is too small, the adjustment may be insufficient to activate safety responses; when too large, it may
distort useful semantics. This demonstrates that β mediates a trade-off between safety enforcement and representational
fidelity. Despite architecture-specific variations, optimal performance consistently emerges near β = 0.5, reflecting the
stability of our control mechanism across models.

5.3.2 Multilingual Representation Reading Set

We explore the impact of multilingual diversity in safety pattern extraction. Specifically, we compare performance
when using safety prompts in 1, 3, and 7 languages.

As shown in Table 6, the Risky Command Execution Rate (R.C. Rate) increases from 0.32 to 0.59 when moving
from 1 to 3 languages, but drops significantly to 0.34 with 7 languages. Meanwhile, the Garbled Output Ratio (G.O.
Ratio)—which reflects decoding quality—decreases steadily from 0.48 to 0.173 as the number of languages increases.

The initial rise in R.C. Rate suggests that partial multilingual coverage may introduce noise or inconsistencies in
learned concepts. However, as linguistic diversity increases, it provides stronger regularization and captures more
universal safety behaviors across languages. This leads to more stable and reliable latent representations, enhancing
both robustness and output fluency.

6 Conclusion

We propose CCE, a concept-enhanced safety control method for embodied LLMs, which explicitly extracts and
activates the internal safety representations of the model during inference. By identifying multilingual safety concepts
and embedding them into the model’s hidden states through subspace projection and directional rotation, CCE enables
targeted safety intervention without retraining. Comprehensive experiments across three representative multimodal
LLMs and multiple jailbreak benchmarks demonstrate that CCE consistently reduces ASR-auto scores and improves
DSR-human evaluations, indicating stronger robustness and alignment with human safety expectations. Compared
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with existing defenses such as SmoothLLM and PARDEN, CCE achieves competitive or superior performance with
significantly lower inference overhead. Overall, CCE offers a practical and generalizable framework for enhancing
the safety behavior of embodied LLMs at inference time. Future work may extend this approach to dynamic concept
expansion, multilingual safety alignment in underrepresented languages, and real-world robotic deployment scenarios.
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