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1 Introduction

On June 2, 2024, Mexico held its federal elections. The majority of Mexican citizens voted in person
at the polls in this historic election. For the first time though, Mexican citizens living outside their
country were able to vote online via a web app, either on a personal device or using an electronic
voting kiosk at one of 23 embassies and consulates in the U.S., Canada, and Europe. In total,
144,734 people voted outside of Mexico: 122,496 on a personal device and 22,238 in-person at a
kiosk. Voting was open for remote voting from 8PM, May 18, 2024 to 6PM, June 2, 2024 and was
open for in-person voting from 8AM-6PM on June 2, 2024. The voting and administrative software
used for the expatriate component of the election was developed by the Boston-based software
company Voatz and was run on Amazon Web Services (AWS).

In this article, we will describe the technical and cryptographic tools applied to secure the ex-
patriate component of the election and to enable INE (Mexico’s National Electoral Institute) to
generate provable election results within minutes of the close of the election. The security of the
voting platform was tested by an independent, third party team of experts chosen by INE. This
team was given the source code of the voting app and documentation. Therefore, we designed the
architecture assuming that an attacker had access to the source code, the ability to manipulate
HTML and Javascript code in the browser on the frontend, and the ability to read and modify
transmmissions between the frontend and backend.

Ballots were encrypted on the frontend via the Paillier cryptosystem, a homomorphic encryption
scheme, therefore allowing votes to be tallied in real time while the ballots are encrypted, and
without decrypting the current tally. To prove that votes were not tampered with, and also to
maintain voter anonymity, the frontend generated a non-interactive zero-knowledge proof (ZKP) of
the vote and the backend also applied a blind signature to the ballot. The voter received a ballot
receipt code that could be used to verify the signature and the ZKP on the ballot after submission.
This ensured that every ballot was recorded as cast and cast as intended. Section 2 covers this
cryptographic background.

One of the challenges in implementing homomorphic encryption was encoding ballot choice
data to satisfy reporting requirements. Section 3 describes our ballot encoding method. Mexican
politics has a relatively complex coalition structure and the data needed to be encoded in order to
properly report coalition results. A critical factor in tallying homomorphically encrypted ballots
was to ensure that intermediate totals were not overwritten during periods of high volume voting.
To this end, we used a high-throughput queueing service to ensure that every recorded ballot was
tallied as recorded. This is described in Section 4. This section also describes measures to prevent
a voter from voting twice and a ballot from being submitted twice in a replay attack.
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Another challenge was the need to decrypt each of the 144,734 ballots, each of which contained
2-4 encrypted contests, at the close of the election; 428,049 contest selections in all. This was
necessary in order to verify the totals, process write-in candidates, and to generate reports for each
embassy and consulate. A parallel approach was used to decrypt these ballots within minutes. This
enabled relatively quick reporting of the results. Furthermore, independent observers, including
Voatz personnel, could audit the results and verify that results were reported as tallied, ensuring
the end-to-end integrity of the voting process. This administrative flow is described in Section 5.

During the election, the backend verified the digital signatures and ZKP before recording a
ballot. This was done in serial, leading to ballot submission times of 15-25 seconds, which was an
acceptable, but not an ideal, duration. Section 6 gives results on how parallelization using AWS
services improves ballot submission times.

While there were roughly 250,000 expatriate voters registered to vote remotely or at an in-
person location outside of Mexico, we loaded the voter registration records of roughly 100 million
voters (the entire eligible voting population of Mexico) onto our platform before the election. We
stress tested the platform by benchmarking and fine tuning the performance of each architectural
component to support such a volume. The success of this election demonstrates the feasibility of
our approach to secure internet voting at scale. Section 7 will also demonstrate how the solutions
we present scale to elections on a national level.

2 Background

In this section, we describe the mathematical and cryptographic tools used in the Mexican elections,
namely the Paillier cryptosystem, blind signatures, non-interactive zero-knowledge proofs, and
Shamir secret sharing. The last subsection gives a brief description of blockchains.

2.1 Paillier Cryptosystem

Let p and q be distinct primes and n = pq. Let λ = λ(n) = lcm(p − 1, q − 1) and g ∈R Z∗
n2

1 such
that n| ord(g). For any α, β ∈ Z∗

n, g = (αn+ 1)βn
(
mod n2

)
satisfies this criterion. In particular,

we can let g = n + 1. Next, let L : Z∗
n2 → Zn be given by L(u) = u−1

n , where u ≡ 1 (mod n),

and let µ =
(
L
(
gλ
(
mod n2

)))−1
(mod n). A user’s Paillier public key is the pair (n, g) and the

corresponding private key is the pair (λ, µ).
Encryption is a randomized function E : Zn → Z∗

n defined as follows. To encrypt m ∈ Zn,
randomly choose x ∈R Z∗

n
2, and compute

c = E(m) = gmxn
(
mod n2

)
.

Decryption, D : Z∗
n2 → Zn, is defined

m = D(c) = L
(
cλ
(
mod n2

))
µ (mod n) .

The Paillier cryptosystem relies on the presumed intractibility of the composite residuosity prob-
lem, i.e, the problem of computing nth roots modulo n2, and the decisional composite residuosity
problem, the problem of deducing whether or not an element z ∈ Z∗

n2 is an nth root residue, for its
security. In other words, given an element z ∈ Z∗

n2 , it is believed to be computationally difficult to

1Zm denotes the ring of integers modulo m and Z∗
m denotes the multiplicative group {a ∈ Zm| gcd(a,m) = 1}.

2Throughout this document, ∈R signifies that the element was chosen from the set at random, using a crypto-
graphically secure random number generator.
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determine x ∈ Z∗
n2 such that xn ≡ z

(
mod n2

)
[12]. The integer factorization problem reduces to

these two problems, so the security of n as used for an RSA modulus is a reasonable approximation
for the security of Paillier parameters made using the factors of n.

The Paillier cryptosystem is partially (additively) homomorphic. If m1,m2 ∈ Zn and x1, x2 ∈R

Z∗
n then:

E(m1) · E(m2) ≡ (gm1xn1 ) (g
m2xn2 ) ≡ gm1+m2(x1x2)

n ≡ E(m1 +m2)
(
mod n2

)
.

(In our case, a plaintext message was a vector that encoded a voter’s ballot choices. Details on this
encoding are in Section 3.) Therefore, if {m1, . . . ,mk} is a set of encoded ballots, then a running
tally of the ballots can remain encrypted by taking the modular product of the encrypted ballots:

k∏
i=1

E(mi)
(
mod n2

)
= E

(
k∑

i=1

mi

)
.

In our implementation, we utilized the package java.security to generate a pair of cryp-
tographically secure 1536-bit primes so that the modulus n was 3072 bits, equivalent to 128-bit
symmetric key security [10].

An attacker can alter an encrypted ballot, E(m), after submission by picking any k ∈ Z and
computing E(m)k

(
mod n2

)
= E(km). If k > 0, this action changes the ballot to cast k votes at

once. If k = 0, this erases the ballot. If k < 0, then this effectively deletes multiple ballots. We
can avoid this attack by computing a zero-knowledge proof of the ballot.

2.2 Zero-Knowledge Proofs

A zero-knowledge proof (ZKP) is a cryptographic protocol that gives a computationally verifiable
proof that someone (such as a voter) possesses knowledge of some information (such as his vote)
without revealing the information, whether in whole or in part. The first ZKPs were interactive,
requiring a series of challenges and responses between the prover (who possesses some information)
and the verifier (who does not have that information). However, such interaction risks compromising
the identity of the voter and is infeasible to perform after a ballot has been submitted and recorded.
Therefore, we utilized a non-interactive ZKP to enable ballot verification after submission and
recording.

Baudron et al. [3] adapted the (interactive) ZKP of Guillou and Quisquater [6] and Okamoto
[11] to the Paillier cryptosystem. In Step 3 below, we applied the trick of Fiat and Shamir [5] to
make the ZKP non-interactive. We also made a minor, but necessary, simplification, without which,
we would need the private Paillier key in order to create a valid proof. The following protocol is the
ZKP that the prover (which in our case is the voter, or, in practice, the web app frontend) knows
both the vote m and the randomizer x used to encrypt m. The final step shows how the verifier
(the backend or any election auditor) verifies the proof.

1. The voter votes m, and the frontend generates the randomizer x and computes c = E(m) =
gmxn

(
mod n2

)
.

2. The frontend first chooses r ∈R Zn and s ∈R Z∗
n, and computes the commitment u =

grsn
(
mod n2

)
.

3. The frontend computes the (non-interactive) challenge e = H(u)
(
mod 248

)
, where H con-

verts u to its base 64 string representation, computes the SHA-256 digest in base 64, then
converts that result to the corresponding integer.
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4. We require r > em, so we check that this inequality is satisfied.

5. The frontend computes v = r − em and w = sx−e (mod n).

6. The frontend sends the backend the encrypted ballot E(m) and the ZKP (u, e, v, w).

7. The backend checks if u = gvcewn
(
mod n2

)
to verify the ZKP.

The commitment u is a standard binding and hiding commitment scheme. The prover is bound to r
and s since gr and sn are each unique modulo n2, so it is computationally infeasible to find another
r0 ∈R Zn and s0 ∈R Z∗

n such that u ≡ gr0sn0
(
mod n2

)
. Further, an adversary cannot determine

any information about r and s from u, since they are chosen at random and u is computationally
indistinguishable from random elements of Z∗

n2 under the decisional composite residuosity assump-
tion; r and s are hidden. If the encrypted ballot, c = E(m), is modified to some value C in transit
or in storage, then the check in the last step will fail; the value of gvCewn

(
mod n2

)
will not equal

the commitment u. Moreover, it is computationally infeasible for an attacker to modify the ZKP
into a valid ZKP if the ballot is modified.

The requirement that r > em ensures that 0 < v < n, a condition necessary for the ZKP to be
valid. Notice that in the verification of the ZKP, the verifier computes gv

(
mod n2

)
, so in order

to remove this restriction, the prover would need to compute v = r − em
(
mod |Z∗

n2 |
)
.3 However,

|Z∗
n2 | = φ(n2) = n(p− 1)(q− 1), so the prover (i.e., frontend) would need to know the factorization

of n (or, equivalently, the Paillier private key) in order to compute v. Now the requirement that
r > em restricts the length of a message that we can encrypt in order to “make room for” the ZKP.
Since r ∈ Zn, r will be 3072 bits in general and e will be 48 bits. Therefore, in our application we
needed to restrict encoded ballots to less than 3024 bits in length. In fact, we restricted ballots to
3001 bits to make it very likely for r > em to always hold.

Before ballot submission, however, the frontend requested a blind signature on the ballot.

2.3 Blind Signatures

Blind signatures were introduced by Chaum in [4] for anonymous electronic cash transactions.
The same principles apply to electronic ballot submission to maintain voter anonymity for ballot
submission.

Let p, q be cryptographically secure primes and n = pq. Let e = 216+1 = 65537 be the election’s
(public) signature verification key4 and d = e−1 (mod φ(n)) be the corresponding (private) signing
key; φ(n) = (p − 1)(q − 1). For the frontend to obtain a blind signature on a ballot c = E(m),
the following procedure is followed. In this protocol, the function H is the same SHA-256 hash
function as used in the ZKP protocol.

1. The frontend generates a mask (also called a blinding factor) r ∈R Z∗
n.

2. The frontend computes b = H(E(m)∥E(w)) · re (mod n), where ∥ denotes concatenation and
w is a write-in candidate.

3. The frontend sends b over an authenticated connection to the backend.

4. The backend verifies that the voter has not voted and is a valid voter.

3The order of a group, G, is the number of elements in that group and is denoted |G|.
4Any e ∈ Z∗

n can be used for the public signing key, but the prime 65537 is typically used for efficient signature
verification.
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5. The backend returns B = bd (mod n), its signature on the blinded ballot, to the frontend.

6. Since B ≡ bd ≡ H(E(m)∥E(w))d · r (mod n), the frontend computes s = r−1B (mod n) ≡
H(E(m)∥E(w))d (mod n), which removes the blinding factor and results in the election’s
digital signature on the hashed ballot.

7. The frontend verifies the election’s signature by verifying that se ≡ H(E(m)∥E(w)) (mod n).

8. The frontend submits the ballot package (E(m), E(w), s) to the backend.

9. The backend verifies its signature by checking that se ≡ H(E(m)∥E(w)) (mod n).

In our implementation, we utilized java.security to generate another pair of cryptographically
secure 1536-bit primes, so that the 3072-bit modulus for the signing key would differ from the
Paillier modulus. The election encryption and signing keys were generated before the start of the
election in a key generating ceremony overseen by INE. While it was necessary to persist the private
signing key in a table in DynamoDB, a serverless NoSQL database service, in order to authorize
ballot submissions, the ballot decryption key had to be destroyed. This enabled voter anonymity
and prevented the release of intermediate ballot tallies before the end of the election. In order to
recover the key, we applied a threshold (secret sharing) scheme to split up the election decryption
key.

2.4 Shamir Secret Sharing

INE required the election decryption key to be split among five election officials in a way that any
three of them could reassemble the key. A different shard of this key was distributed to each official
on a thumb drive. Then the actual decryption key was destroyed. After the close of the election,
this key was reassembled and the election results were decrypted. We used Shamir’s threshold
scheme, which is based on the fact that there is a unique t− 1-degree polynomial passing through
t distinct points [13].

Shamir’s scheme works as follows. Suppose that there is an M -person committee such that
t ≤ M committee members are required in order to obtain the decryption key, λ. (So in our case,
M = 5 and t = 3.) Let r ∈ Z such that r > n and r is prime.5 For 2 ≤ i < t, generate ai ∈R Fr,
and let

f(x) = λ+ µx+

t−1∑
i=2

aix
i ∈ Fr[x] .6

For each committee member, choose distinct xi ∈R Fr and compute yi = f(xi) (mod r). Committee
member i receives the point (xi, yi). To reconstruct the key, we compute the (t−1)-degree Lagrange
interpolating polynomial, P (x), through any t points:

P (x) =

t−1∑
i=0

yi
∏

0≤j<t
j ̸=i

(x− xj)(xi − xj)
−1 (mod r) .

This is called an M -t Shamir threshold scheme.

5n is the Paillier modulus.
6Fr = {0, 1, . . . , r− 1} is the finite field of integers modulo r and Fr[x] is the ring of polynomials with coefficients

in Fr.
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2.5 Blockchains

Our architecture utilized a blockchain to record anonymous ballot IDs for audit purposes; details
will be described in Section 4. A blockchain is a linked list of blocks of data that is replicated on
multiple nodes. A cryptographically secure hash (e.g., SHA-256) of one block is contained in the
subsequent block to establish the link between the two blocks. The first block of a blockchain is
called its genesis block. A consensus mechanism describes the method in which the nodes agree on
whether or not a proposed block satisfies the conditions necessary to be added to the blockchain.

A blockchain has a natural application to elections. Data recorded on a blockchain is immutable
and time stamped, so election data can be preserved and audited by the public. Voatz uses a
blockchain, namely Hyperledger Fabric, as a key component of our platform for this very purpose.
In all other elections, we have stored anonymous ballot choices directly on a blockchain, but for
the Mexican election, we only stored anonymous ballot IDs on the blockchain. This established an
independent accounting for each ballot that was cast.

In the next section, we show how we encoded the ballot in order to enable tallying and reporting.

3 Ballot Encoding

In this section, we describe the ballot encoding method used and the challenges that the coalition
structure posed.

For the Mexican elections, each contest on a ballot was encrypted separately. Each ballot had
contests for President and Senate and some states had contests for Governor and/or another local
office. So each state had between two and four contests. Reports needed to be run for each state
and modality, so there were 150 separate contest totals, 75 each for in-person voting and remote
voting, with 32 President totals, 32 Senate totals, and 11 state-specific contest totals.

The choices in each contest were encoded as components of a vector. A final component encoded
the number “1” so that when the ballots were tallied, the last component encoded the ballot total
as a check. The vector was initially encoded as a binary string, read right to left, for a natural
conversion into an integer for encryption. There were 234,117 people registered to vote remotely
or in person, so choice totals and ballot totals would be well under 220 for each contest. Therefore,
20 bits was allocated to each vector component – enough space to fit tallies up to 220 − 1.

By way of example, suppose a contest had four candidates and there were less than 32 voters,
then we could encode each choice using log2(32) = 5 bits. In this case, a vote for Candidate #2
would be encoded:

⟨1, 0, 0, 1, 0⟩ → ⟨1, 00000, 00000, 00001, 00000⟩ → 1000000000000001000002 = 220 + 25 = 1048608 .

As noted earlier, we restricted ballots to 3001 bits; this enabled the encoding of up to 150
choices, with an extra bit for the total number of encoded ballots, i.e., “1.”

Mexican politics is structured by coalitions; for many offices, a voter votes for a particular
candidate by way of voting for a party or parties that endorse that candidate. In the race for
President, for example, there were three candidates on the ballot, with options to write in a
candidate or to select “No Vote.” (In the web app, at least one option had to be selected.) See
Figure 1 for a test ballot for President with three test (placeholder) candidates and seven parties.
Here, “Candidatura A” was endorsed by a coalition of three different political parties (PAN, PRI,
and PRD), “Candidatura B” was endorsed by a second coalition of three other parties (Verde, PT,
and Morena), and a third candidate was endorsed by a seventh party (MC). In this format, a voter
could choose to select any number of parties in that contest, provided that all parties selected were
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Figure 1: Test Presidential Ballot with Coalition Structure

in the same coalition. So, for example, a voter could select the two parties PAN and PRI because
both backed “Candidatura A,” but could not select the two parties PAN and Morena because those
two parties are in different coalitions.

In the case that a voter selected a write-in, the name of the write-in candidate was Paillier
encrypted and stored in a DynamoDB table with the rest of the encrypted ballot package. The
contest tally therefore only recorded the total number of ballots that had a write-in for that contest.
Individual ballots had to be decrypted in order to report on the actual names of the candidates
that had been written in.

Reports needed tallies of each possible combination of selections for each contest. So in the
example of the race for President, we encoded 23 − 1 = 7 choices for each 3-party coalition and
one each for the seventh party, write-in, and no vote, a total of 17 choices. In general, a k-party
coalition needed 2k−1 choices in the contest vector to represent each possible valid selection within
that coalition. To determine which component of the contest vector represented a particular subset
of parties in a coalition, we used a binary scheme. All single-party selections were encoded in the
first components of the contest vector, followed by coalition selections. Parties were ordered in a
coalition based on their prescribed order on the ballot and numbered 0 to k − 1. If a coalition
consisted of the parties C = {p0, ..., pk−1} and a voter selected a subset S ⊆ C of these parties, then

the coalition choice is numbered
(∑

pi∈S 2i
)
−2. Since we did not encode single-party choices here,

the smallest coalition choice number corresponds to the subset S = {p0, p1}, yielding the coalition
choice number 20+21−2 = 1. So in the case of the contest for President, we encoded the first nine
vector components for single-party selections, write-ins, and no-votes. The next five were reserved
for the first coalition, and the last five for the second coalition; 19 vector components in total.

One particular challenge was the case of the race for Governor in the state of Chiapas. In
this contest, there were 13 political parties on the ballot, with options for write-ins and no-votes.
There were two coalitions, one with 9 parties, and another with 3. Therefore, there were a total
of 29 − 1 + 23 − 1 + 3 = 511 possible ballot selections for that contest, far more than the space
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allowed by the Paillier modulus and ZKP. For that contest, we divided the choice vector into four
separate vectors and encrypted each, computing a separate ZKP for each of the four sub-vectors.
The digital signature was applied to the entire contest, however. The encrypted contest, encrypted
total, and ZKPs were stored as virtual arrays. This approach is effective for any contest in which
the number of options (or candidates) in an election exceeds the capacity of a single choice vector.

This section and the previous section described the encoding and cryptographic tools that
we used. In the next two sections, we will zoom out to describe the overall voting flow and
administrative flow, with more details on the AWS platform services that we used.

4 Voting Flow and Ballot Queueing

In this section, we describe the overall flow of the voting process. Of particular note is the use of
AWS SQS (Simple Queue Service) to ensure that the ballot tallies were accurate. We also describe
measures to prevent a ballot from being submitted twice and also to maintain voter anonymity.

FromMay 4-15, 2024, voters were invited to onboard into the voting app and get acquainted with
the interface before the election opened for remote voters on May 18th. During this orientation
period, those voting remotely could verify their identity, create a password, and set up 2-factor
authentication for subsequent log in. After the close of the orientation period, voters were able to
onboard during the live voting period.

The diagram in Figure 2 illustrates the flow of the voting app. Each stage indicates actions by
the voter or frontend (g), the backend (), a database (), and the blockchain (®), along with
communication between these components ( and  ).

When a voter visited the voting website, the backend and frontend engaged in an ECDH (Elliptic
Curve Diffie-Hellman Key Exchange) handshake using NIST Curve P-256 to establish an ephemeral
shared secret state, which was used to create a shared 256-bit AES key to encrypt all payload data.
(This is an application layer encryption over and above TLS.) This shared state, and hence the
secret key, was changed deterministically after each transmission between the frontend and backend.
So if any transmission between the frontend and backend were intercepted, it could not be resent;
decryption would fail. In particular, this is one layer of defense preventing a ballot from being
submitted twice.

Upon log in during the live voting period, the backend sent the voter the ballot and the election’s
public encryption and signing keys. For each contest, the frontend encrypted the contest selections
and generated a ZKP of the vote. Upon ballot submission, the frontend obtained a blind signature
on the ballot, verified the signature, removed the blinding factor, and submitted the ballot package
consisting of the encrypted contests, the ZKPs, and the digital signatures. The backend checked the
voter’s voting status, verified the signature and the ZKPs, and checked that the correct ballot was
submitted. If all checks passed the backend hashed the encrypted ballot to generate an anonymous
ballot confirmation ID, called the “AnonID.” (We stress that there was no computational link
between the AnonID and the voter’s identity and that the voter’s identity was never persisted with
either his ballot or the AnonID.) Each encrypted contest was persisted in a DynamoDB table,
keyed by the AnonID. The AnonID was also recorded on the election’s blockchain to provide an
independent and immutable accounting for that ballot. Finally, the backend sent each encrypted
contest to AWS SQS for tallying and returned the AnonID to the frontend. (The voter portal
dashboard contained a link allowing voters to verify the ZKP and blind signature on any AnonID,
thus checking their ballot for tampering.) Meanwhile (i.e., concurrently with the storage and
tallying of the encrypted ballot), the backend sent a request to a MySQL database to mark that
voter as having voted. We note that this EC2 instance was physically and logically distinct from
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Figure 2: Voting app flow.

the NoSQL (DynamoDB) tables that stored the encrypted ballots to ensure that voters could not
be paired with their ballots. So ballot submission was processed in the same way as the “double
envelope” system used to preserve voter privacy and anonymity with physical mail-in ballots.

Another safeguard to prevent a single voter from voting multiple times were aggressive measures,
such as TTL (time to live) based in-memory caching, to prevent any user from having multiple
open simultaneous sessions. This prevented voters from submitting a second ballot while the first
was in process.

Now each of the submitted ballots entered an SQS queue for a specific contest in a specific
state or district, for the given voting modality (remote or in-person). The queues operated on a
first-in-first-out (FIFO) basis, with deduplication checks to ensure that each ballot is tallied exactly
once. To enter a queue, a contest selection had to pass a deduplication check: the concatenation of
the ballot’s AnonID and contest ID had to be unique. This is another layer of defense preventing
a ballot from being submitted twice. The following then took place when an encrypted contest
reached the front of the queue. First, the digital signature was checked, preventing tampering of
the totals via insertion attacks. Then, the current encrypted total for that contest, state, and
modality was retrieved from the totals table. The new encrypted total was computed and updated,
with the ballot count getting incremented. In the event that a certain ballot was the first ballot
for that contest, state, and modality, then that encrypted contest was stored directly in the totals
table and the ballot total was set to 1.)
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A service that processes ballots in a queue, like SQS, was necessary in order to prevent ballots
from getting overwritten in the totals. Other possible solutions are discussed below. Each API call
from the frontend to the backend is processed by an AWS Lambda function, a serverless computing
service. Lambda functions scale automatically, so that multiple invocations of a single Lambda
function can run concurrently if so triggered by a large volume of incoming traffic. Without SQS,
the following race condition would be possible during periods of high voting volume. Suppose that
two voters, Voters A and B, registered in the same state, cast their ballots via the same modality at
about the same time. The ballot submission Lambda function is triggered by the API call for the
ballot from Voter A. This Lambda invocation reads the totals DynamoDB table for each contest
in Voter A’s ballot. While the Lambda function is computing the (homomorphic) product of the
current totals and the Voter A’s contests, Voter B’s ballot arrives in the backend, invoking a second
instance of the ballot submission Lambda function. This invocation reads the totals DynamoDB
table for each contest in Voter B’s ballot – data that is precisely the same as what was read by
Voter A’s Lambda invocation. While this invocation is computing the new total for each contest in
Voter B’s ballot, Voter A’s invocation updates the DynamoDB table with the new total that tallies
Voter A’s ballot. Shortly thereafter, Voter B’s Lambda invocation updates the DynamoDB table
with the new total that tallies Voter B’s ballot, overwriting the update made by Voter A’s Lambda
invocation. Voter A’s ballot, while still stored in a separate ballot table and marked as submitted,
is effectively erased from the totals.

Making a separate Lambda function that solely performs updates of Paillier-encrypted totals
is not sufficient. From the 144,734 ballot submissions, there were 428,040 individual encrypted
contests, each of which invoked the totals update Lambda function, with an average duration of
174ms. The SQS service routed ballot choices into one of 150 different queues, one for each separate
tally. During the live election, there were up to 10 concurrent invocations of the Lambda function
that updated homomorphic totals. Other than seven spikes in which queued ballots waited between
10 and 54 seconds to be processed, ballots did not have to wait more than 1 second in a queue.
The maximum length of any one queue was 3 ballots, with 9 separate instances in which ballots
had to wait in a queue to be processed.

Therefore, when using a homomorphic tally of ballots, it is crucial to process ballots in a
FIFO manner in order to eliminate any possibility of a “read-read-update-update” race condition
that would overwrite the current running tally. There are some approaches other than SQS for
homomorphic tallying that are worth noting. First, a blockchain provides an effective decentralized
approach, given its properties described in Section 2.5. In this scenario, the genesis block would
contain a list of all contests in the election, assigning the multiplicative identity “1” as the initial
(homomorphic) total for each contest. Each block would contain homomorphic tallies of the ballots.
During the election window, nodes processing the blockchain would compute sub-tallies of contests
from each ballot pending inclusion in the current total, and update tallies accordingly for each new
block, with consensus from all other nodes in the network that validate each proposed update to
the blockchain. This is a highly resilient and secure solution since multiple copies of the results
would be distributed geographically. A second alternate approach would store totals in a relational
database, since relational databases lock records during table updates. One performance downside
is that relational databases can be comparatively slower than non-relational databases. A third
option was considered that used DynamoDB with a technique called optimistic locking, which
prevents updates from getting overwritten. With this approach, however, an error is thrown if an
update is attempted while another update is in progress. This approach was not pursued because
this scenario was expected during periods of high voting volume and theoretically, a ballot would
continue to be rejected for an indeterminate length of time. The behavior of the application would
have been much less predictable with this kind of architecture. Also, in a philosophical sense, such
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an update should not be an error, but a situation in which the ballot should simply wait in line
until it’s that ballot’s turn to be counted.

Since the total number of ballots cast for each contest, state, and modality were encrypted with
the total, as well as persisted in the clear in the DynamoDB totals table, these figures could be
compared with each other upon decryption and checked in real time against the total number of
voters who have voted, as displayed in the administration portal, and against the total number
of AnonIDs recorded in the blockchain. These totals were all equal, proving that the chosen
architectural components ensured correctness of the application.

5 Administrative Flow

In this section, we describe the administrative flow and tasks as they relate to the cryptographic
protocols needed for voting and reporting. A key component of this process is the parallelization
of individual ballot decryption to enable complete results to be generated and verified efficiently.

Before the live election, INE held two week-long end-to-end simulations to test every aspect of
the administrative and voting process. Both simulations and the live elections followed the following
administrative procedure. The Paillier and digital signature keys were generated in a key generation
ceremony on an air gapped system with no network connectivity. The private Paillier decryption
key was split into 5 shards via a 5-3 Shamir threshold scheme, with each of five committee members
receiving a thumb drive and a back-up drive with a shard. This private key was then destroyed
and the public encryption and digital signature keys were uploaded to a DynamoDB table.

After the election closed, the Paillier decryption key was reassembled, the remote and in-person
ballots and totals were downloaded from their respective DynamoDB tables. Totals were decrypted
immediately, with reports run on overall totals. Complete reports with all write-ins, as well as
reports specific to each in-person voting location, required officials to decrypt the individual ballots.
With 428,040 individual contests to decrypt (364,904 remote and 63,136 in-person contest choices),
this would be a time-consuming endeavor, so we parallelized ballot decryption, dividing the in-
person contests into 4 separate files and the remote contests into 32 separate files. After decryption,
the decrypted ballots were combined into a single file and final reports were generated. Decryption
of the in-person contests took about 3.2 minutes and the decryption of the remote contests took
about 4.6 minutes of clock time.

6 Parallelizing Ballot Submission

In this section, we give results from fully parallelizing the ballot submission process. In the Mexican
election, we parallelized the computations to update the ballot totals via SQS. Here, we used AWS
Step Functions to parallelize the process of obtaining and verifying digital signatures and verifying
ZKPs.

There are two separate Lambda functions that are invoked in the ballot submission process.
The first obtains a blind digital signature on a ballot. The second verifies the digital signature, the
ZKP, and processes the ballot. In the Mexican election, blind signatures were made in serial, and
the blind signatures and ZKPs were both verified in serial before the ballot was processed. These
two Lambda functions ran for an average of 0.905 seconds and 10.974 seconds, respectively, for a
total of 11.879 seconds of backend processing time. Note that this does not include latency time of
the two API calls nor the time for the frontend to verify the blind signatures for itself. Obviously,
this time would have been longer for ballots with three or four contests. So depending on ballot
length, latency, and the processor speed of the voter’s device, the overall ballot submission time
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was typically in the range of 15-25 seconds. (For this reason, there was a visual wait indicator –
a spinner – and other safeguards to prevent a user from going back and attempting to resubmit
a ballot.) Now lambda functions run on a single core, so parallelization requires other computing
services.

As noted, we parallelized the ballot submission process using AWS Step Functions. Step Func-
tions allow one to create an automated workflow by combining various computing services. Par-
allelizing a Lambda function using Step Functions is relatively straightforward, using the Map and
Parallel workflows. The Parallel workflow allows two separate tasks to run in parallel, such as
two distinct Lambda functions, for example. The Map workflow allows one to run multiple invo-
cations of a certain task in parallel. In our implementation, the Lambda function to obtain blind
signatures was parallelized via the Map workflow, running one Lambda instance for each contest
in parallel. The second stage of ballot submission required three new Lambda functions: one to
verify the blind signatures, one to verify the ZKP, and one to process the results of the various
verifications.

In this case, the ballot submission Lambda checks and updates the voter’s voting status, cre-
ates the AnonID, calls the Step Function, then returns the AnonID to the frontend. (The ballot
submission Lambda need not wait for the verifications to finish executing, since the Step Function
runs asynchronously.) Now the verification Step Function also starts with a Map workflow, running
verifications on each contest in parallel. For each contest, a Parallel workflow is invoked, with the
signature verification and ZKP verification being processed in parallel. Upon completion of these
verifications, the Lambda function that processes results is invoked. If these verifications pass, then
this Lambda function stores the encrypted contests and sends them to the SQS queue for the totals
to be updated. We stress that with this routing, no voter information enters the Step Function.
The ballot status is updated based on the random AnonID and voter information is only handled
by the ballot submission Lambda function.

To test the effectiveness of this parallelization on ballot submission, we ran two sets of experi-
ments on ballots of 1 to 5 contests. The first set compared serial versus parallel running times of the
digital signature lambda function. The second recorded running times of the full ballot submission
process – both responsiveness on the frontend and the various backend lambda functions. In each
experiment, we submitted 300 ballots after a “warm-up” phase that was designed to invoke several
concurrent lambda functions thus reducing the overhead incurred by invoking lambda functions
during the experiment. In this way, we simulated a live election environment with a voting rate
high enough to require multiple concurrent lambda function invocations. For the first set of exper-
iments, we submitted five ballots per second and for the second set, we submitted one ballot per
second.

Table 1 compares serial versus parallel processing of blind signatures and shows that paralleliza-
tion is the better processing mode for any ballot with more than one contest. As expected, the
average running time does not vary significantly over the length of the ballot for parallel processing.
Out of 1200 ballots with more than 1 contest, obtaining blind signatures on the ballot contests takes
an average of 1.499 seconds.

The second set of experiments parallelized the entire ballot submission process. For each ballot
submission in this case, we generated a random encrypted ballot and its ZKP on the frontend,
obtained a blind signature, removed the masking factor on the blind signature, and submitted the
ballot package to the backend. Table 2 gives results on the clock time experienced on the frontend
to the receipt of the AnonID. A best-fit line of the median times indicates that each contest requires
336ms of computation time. In a live election, the frontend encrypts a contest and generates its
ZKP immediately after a voter makes a selection in that contest, that is, before a voter submits his
ballot. So in that case, most of the 336ms per-contest computing time will have been completed
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Contests Processing Min. (ms) Max. (ms) Mean (ms)

1 Serial 1095 2411 1408

2
Parallel 1146 2637 1457
Serial 1526 3280 1812

3
Parallel 1147 4826 1536
Serial 1916 3775 2281

4
Parallel 1146 2771 1494
Serial 2365 5619 2779

5
Parallel 1143 2789 1508
Serial 2759 4402 3050

Table 1: Blind signature Lambda function running times.

Contests Min. (ms) Max. (ms) Med. (ms)

1 2968 10524 3753
2 3102 10958 4147
3 3556 9057 4493
4 3484 15801 4676
5 3767 11210 5168

Table 2: Ballot submission running times on the frontend with parallelized backend.

before ballot submission. With this new architecture, therefore, most voters will wait between
about 3 and 15 seconds from ballot submission to receive their AnonID.

In what follows, we break down the backend operations. Table 3 lists the running times of the
six Lambda functions used in ballot submission: (1) Obtain a blind signature, (2) Overall ballot
submission, (3) Verify the blind signature on a contest, (4) Verify the ZKP on a contest, (5) Process
the signature and ZKP verifications, and (6) Update the Paillier-encrypted ballot totals. When
ballot submission is run in parallel on the backend, the Process Verifications Lambda function is
the only function whose average running time varies as a function of the number of contests on
a ballot. From this, we can obtain a few reasonable estimates. First, we can estimate how long

Step Min. (ms) Max. (ms) Mean (ms)

Blind Signature 1085 6212 1588
Submit Ballot 1384 7646 1942
Verify Signature 375 1381 437
Verify ZKP 2410 4146 2529
Process Verifications 390 3651 1365
Update Totals 228 2632 341

Table 3: Lambda function running times with parallelized backend.

the frontend would have to wait to receive the AnonID if the backend processed all verifications in
parallel before returning the AnonID. Second, we can estimate how long the frontend would have
to wait to receive the AnonID if the backend ran all computations in serial before returning the
AnonID. Finally, if everything runs in parallel, we can estimate how long voters need to wait before
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checking if the ballot with their AnonID has passed verifications.
The Step Function that the Submit Ballot Lambda function calls runs the Verify Signature and

Verify ZKP Lambda functions in parallel and the Process Verification Lambda function collects
and processes these verifications, calls an API to record the ballot’s AnonID on the blockchain, and
sends each encrypted contest to an SQS queue for totaling. This results in a variable running time
for the Process Verifications function and the Step Function. Tables 4 and 5 list the respective
running times, based on the number of contests in the ballot.

Contests Min. (ms) Max. (ms) Mean (ms)

1 390 2045 532
2 676 2780 908
3 904 3416 1171
4 1050 3620 1466
5 1377 3651 1749

Table 4: Running times for the Process Verification Lambda function.

Contests Min. (ms) Max. (ms) Mean (ms)

1 2789 4604 3066
2 3108 5695 3474
3 3396 4774 3743
4 3532 6913 4061
5 3864 7182 4331

Table 5: Running times for the Ballot Verification Step Function

Combining the results from Tables 1-5, we compare average elapsed times for: (a) a fully
parallelized ballot submission process, with the AnonID returned before verifications, (b) a fully
parallelized ballot submission process, with the AnonID returned after all verifications, (c) all a
fully serialized ballot submission process, and (d) the amount of time for a voter to wait before
checking an AnonID for completion of the associated ballot verifications.

Contests (a) Parallel (b) Par. w/ AnonID (c) Serial (d) Check AnonID

1 3753 6819 6819 3066
2 4147 7621 9720 3474
3 4493 8236 12981 3743
4 4676 8737 16303 4061
5 5168 9449 19386 4331

Table 6: Mean running times for serial vs. parallel backend

For ballots with more than 5 contests, it is apparent that serialization would present a significant
bottleneck and a poor user experience; a best-fit line of the data in column (c) indicates a per-
contest processing time of about 3.17s. A fully parallelized approach, on the other hand, has a
0.336s per-contest processing time, most of which is performed before submitting the ballot. The
time to process ballot verifications in that case – the time a user must wait before checking on the
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status of the AnonID – is about 2.8 seconds, plus 321ms per-contest. Both are reasonable wait
times from a voter’s perspective.

7 Considerations for Scaling

The number of voters using the Voatz platform in public elections has increased from under 20
voters in the 2018 Primaries[8] to the point where we could handle 100 million. In this section, we
discuss the various computing constraints of our AWS backend, estimate the maximum number of
voters our architecture could support without modifications, and what changes could be made to
increase that limit. We will focus on the two most significant computing services which permit us to
handle elections at a large scale: Lambda functions and SQS queues. We note that improvements
could certainly be made on the algorithmic level as well, such as using more efficient cryptographic
protocols, for example. Such important study is reserved for future work and is outside the scope
of this article.

The two most significant bottlenecks in the overall architecture of a homomorphic voting ap-
plication are the allowable number of concurrent Lambda function invocations and the process of
updating the encrypted totals. To that end, we need to know the average running time of the
Lambda function that updates totals, the quota on the number of concurrent Lambda function
invocations, the throughput of the SQS queue, the maximum length of a queue, and the maximum
wait time of a queue. Another factor to consider when discussing these limitations is voting rate.
The rate at which people vote fluctuates and is generally the highest during the first and last cou-
ple hours of the voting period. Therefore, we will estimate points at which one needs to introduce
adjustments to the architecture to support larger elections based on those hours with the highest
voting rates.

First, “tens of thousands” of Lambda functions can be invoked concurrently in a given region
(i.e., spanning all API calls), with a default of 1000 concurrent executions [2]. In the Mexican
elections, the number of concurrent Lambda function invocations peaked at 39 in the final hour of
voting. This included all activity from both the remote and in-person voting modalities. Since this
metric scales linearly with the number of voters, we estimate that our architecture could process up
to 144734 · 1000/39 ≈ 3.7 million voters with this default limitation. This limit could be increased
by a factor of 10 to 100 by increasing concurrency quotas, and even higher by deploying clones of
the web app to different AWS regions. The architecture is sufficient, therefore, to handle elections
on a national scale, so we need not be concerned with the constraint on the number of allowable
concurrent Lambda function executions.

Shifting our focus to updating totals, we consider SQS queues. SQS queues have a very high
throughput – up to 70,000 messages per second, with a default of 300 messages per second. The
length of time that messages can remain in a queue is configurable between 1 minute and 14 days,
with a default of 4 days. For the sake of timely results reporting, though, it would be desirable
for all queues to have finished processing ballots within an hour after the close of the election.
There is no limit on the number of queues nor on the number of messages in a queue in a given
region [1]. In the Mexican election, the highest voting rates were in the first hour of remote voting
and the last hour of in-person voting: 1593 and 2572 ballots, respectively. This translates to
4632 and 7281 encrypted contests in those two hours (and therefore, SQS messages), respectively.
So at the peak, SQS was processing roughly 2 contests per second. Based on the default SQS
throughput, the election could support roughly 122496 · 300 · 3600/4632 ≈ 28.6 million remote and
22238 · 300 · 3600/7281 ≈ 3.3 million in-person voters voting in a similar time span with a similar
ballot. To scale to a larger election, we would simply create more queues, provided that each contest
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total could only be updated by a Lambda function queued up by a single queue. This approach
was in fact used in the Mexican election. We used two queues – one for remote voting and one for
in-person voting. Each contest had separate subtotals for each state and voting modality. In the
case of the race for President, for example, there were therefore 64 subtotals. (The motivation for
this approach, however, was the desire to generate results reports for each state and modality as
quickly as possible after the election closed.)

Finally, we estimate the voting volume that would lead to a 1-hour backlog in an SQS queue. The
Lambda function that updated totals had an average running time of 174 ms, so if the voting rate
remains under roughly 5.75 ballots per second for each contest, then the SQS queue will essentially
remain empty. A 1-hour wait time in the queue would therefore imply roughly 3600/0.174 ≈ 20700
ballots from a single jurisdiction that could not be processed during the election window. In the
case of Mexico, 45773 of the 184326 expatriate voters7, or roughly a quarter, were from the Federal
District of Mexico City [7]. This would translate to roughly 83300 total voters with backlogged
ballots in each modality. Now with the aforementioned voting volume of 1593 and 2572 ballots
in the first hour of remote voting and the last hour of in-person voting, respectively, we expect
that the queues would have been sufficient to process roughly 122496 · 3600/(1593 · 0.174) ≈ 1.6
million remote voters and 22238 · 3600/(2572 · 0.174) ≈ 180000 in-person voters per contest (i.e.,
voters from the largest state) voting in a similar time frame (2 weeks for remote and 16 hours for
in-person voting), without a backlog. Considering the proportion of voters registered in Mexico
City, this translates to roughly 6.4 million remote and 720,000 in-person voters. Adding in the extra
83,300 voters, the current architecture could reliably process roughly 6.5 million remote voters over
a 2-week span and about 800,000 in-person voters over a 16-hour span. Scaling this to a larger
election, therefore, one would simply create additional SQS queues to handle larger voting volumes,
with dedicated queues at the precinct, county, state, or regional levels, for example.

This analysis shows that the most significant bottlenecks for such an election are the number of
concurrent Lambda function invocations and the efficiency of the Lambda function that updates the
totals for a particular contest. If the expected voting volume is expected to exceed the capacity of
the SQS queue and the Lambda function that updates these totals, the straightforward mitigations
are to simply increase the quota on concurrent Lambda function executions, create more queues,
and divide encrypted totals into multiple subtotals. Therefore, the queueing architecture we used
could support a much larger election and can readily scale to a national level, up to 100 million or
more voters.

8 Conclusions

In this article, we described how we secured the voting and reporting processes of the expatriate
component of the 2024 Mexican elections. Homomorphic encryption, with the decryption key split
using a threshold scheme, prevents election results from being known and released until after the
close of the election. Furthermore, it allows for a timely reporting of results. All election totals
were decrypted within seconds and full results, with write-in candidates, were generated within a
few minutes after election officials downloaded all individually encrypted ballots. Tallies from the
individual ballots matched the encrypted running tallies and the number of ballots cast matched
the number of voters who voted. Zero-Knowledge Proofs and blind digital signatures allowed voters
to cast their ballots anonymously and verify that their ballots were unaltered. Various measures
prevented a voter from voting more than once and ensured that each ballot was tallied exactly once.
Our security measures assumed that an adversary had access to source code and the ability to read,

739,592 ex-patriate voters voted using a non-internet modality.
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copy, and modify all traffic between the frontend and backend. All this lends confidence to the
notion that internet voting, when designed with thorough testing and thoughtful risk mitigation
for security, accessibility, availability, and scalability, is a safe and viable means to conduct a public
election.

Our experiments and analysis showed how to overcome certain bottlenecks. We showed how to
parallelize ballot submission efficiently using AWS Step Functions in order to accommodate longer
ballots and to improve the voter experience. We also analyzed the capabilities of various AWS
computing services, such as Lambda functions and SQS queues, to show that a secure election
could be run on a national scale over the internet.

We claim, therefore, that voting via the internet using techniques described in this paper is a
feasible and secure solution for public elections. In the United States, internet voting is currently
restricted to voters registered in a handful of states who cannot make it to a polling location
in their home precinct, including voters with disabilities, overseas voters, and deployed military
personnel [9]. We would also obviously want robust voter identification methods to verify that
the person voting is a registered citizen, such as those used in the Voatz Mobile App and the
KYC/AML identification techniques in common use by banks and other institutions. As a first
step towards implementing such a solution in a United States election, though, some states could
allow in-person voting at selected American embassies and consulates, with voters voting on a kiosk
much like what was done for Mexico. Voting can progress beyond the outdated and error-prone
methods in common use today to enable provable results efficiently and restore provable confidence
in the election process.
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