
CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent

Liang-bo Ning∗
The Hong Kong

Polytechnic University
Hong Kong, China

BigLemon1123@gmail.com

Shijie Wang∗
The Hong Kong

Polytechnic University
Hong Kong, China

shijie.wang@connect.polyu.hk

Wenqi Fan†
The Hong Kong

Polytechnic University
Hong Kong, China

wenqifan03@gmail.com

Qing Li
The Hong Kong

Polytechnic University
Hong Kong, China

qing-prof.li@polyu.edu.hk

Xin Xu
The Hong Kong

Polytechnic University
Hong Kong, China

xin.xu@polyu.edu.hk

Hao Chen
The Hong Kong

Polytechnic University
Hong Kong, China

sundaychenhao@gmail.com

Feiran Huang
Jinan University
Guangzhou, China
huangfr@jnu.edu.cn

ABSTRACT
Recently, Large Language Model (LLM)-empowered recommender
systems (RecSys) have brought significant advances in personalized
user experience and have attracted considerable attention. Despite
the impressive progress, the research question regarding the safety
vulnerability of LLM-empowered RecSys still remains largely under-
investigated. Given the security and privacy concerns, it is more
practical to focus on attacking the black-box RecSys, where attack-
ers can only observe the system’s inputs and outputs. However,
traditional attack approaches employing reinforcement learning
(RL) agents are not effective for attacking LLM-empowered RecSys
due to the limited capabilities in processing complex textual inputs,
planning, and reasoning. On the other hand, LLMs provide unprece-
dented opportunities to serve as attack agents to attack RecSys
because of their impressive capability in simulating human-like
decision-making processes. Therefore, in this paper, we propose
a novel attack framework called CheatAgent by harnessing the
human-like capabilities of LLMs, where an LLM-based agent is de-
veloped to attack LLM-Empowered RecSys. Specifically, our method
first identifies the insertion position for maximum impact with min-
imal input modification. After that, the LLM agent is designed to
generate adversarial perturbations to insert at target positions. To
further improve the quality of generated perturbations, we utilize
the prompt tuning technique to improve attacking strategies via
feedback from the victim RecSys iteratively. Extensive experiments
across three real-world datasets demonstrate the effectiveness of
our proposed attacking method.

∗Both authors contributed equally to this research.
†Corresponding author: Wenqi Fan, Department of Computing, and Department of
Management and Marketing, The Hong Kong Polytechnic University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671837

CCS CONCEPTS
• Security and privacy → Vulnerability management; • Infor-
mation systems→ Recommender systems.

KEYWORDS
Recommender Systems, Adversarial Attacks, Large Language Mod-
els, LLM-Empowered Recommender Systems, LLMs-based Agent.

ACM Reference Format:
Liang-boNing, ShijieWang,Wenqi Fan, Qing Li, Xin Xu, HaoChen, and Feiran
Huang. 2024. CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’24), August 25–
29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3637528.3671837

1 INTRODUCTION
Recommender Systems (RecSys) play a vital role in capturing
users’ interests and preferences across various fields [11], such
as e-commerce (e.g., Amazon, Taobao), social media (e.g., Twitter,
Facebook), etc. Traditional RecSys typically rely on users’ historical
interactions to analyze user behaviors and item characteristics [21].
Recent developments in deep learning (DL) have introduced neu-
ral networks like Graph Neural Networks (GNNs) and Recurrent
Neural Networks (RNNs) in RecSys to further improve recommenda-
tion performance [12, 20]. Although DL-based methods effectively
model the representations of users and items, they struggle with
encoding textual information (e.g., item titles, user reviews) for rea-
soning on user’s prediction [29, 50]. Recently, due to the powerful
language understanding and in-context learning capabilities, Large
Language Models (LLMs) have provided great potential to revo-
lutionize RecSys [2, 18, 34]. For instance, P5 [18] leverages LLM’s
(i.e. T5 [31]) capabilities to significantly enhance recommendation
performance by understanding nuanced user preferences and item
descriptions. Despite the aforementioned success, there is a critical
issue that remains largely unexplored: the safety vulnerability
of LLM-empowered recommender systems under adversarial
attacks, which hinders their adoption in various real-world appli-
cations, especially those high-stake environments like finance and
healthcare.

ar
X

iv
:2

50
4.

13
19

2v
2

 [
cs

.C
R

]
 2

4
A

pr
 2

02
5

https://doi.org/10.1145/3637528.3671837
https://doi.org/10.1145/3637528.3671837
https://doi.org/10.1145/3637528.3671837

KDD ’24, August 25–29, 2024, Barcelona, Spain Liang-bo Ning et al.

(a) Benign Prompt

I have bought Skirt,
Heels. What should I
buy next?

Yes. I want.

You may want to buy
Dresses.

No. I don't want.

You may want to buy
Suit.

I have bought
Skirt, Heels. What
should I buy next?

Conversations Knowledge
...

Reasoning

User

User

LLM-Empowered
RecSys LLM-Empowered

RecSys

User

(b) Adversarial Prompt
User

[...]Insert
tokens

Brain
(Human-level Intelligence)

[...]Insert
items

[possible]
[Tie,]

LLM Agent (Attacker)

Insert
Insert

Adversarial Perturbations

Figure 1: The illustration of the adversarial attack for rec-
ommender systems in the era of LLMs. Attackers leverage
the LLM agent to insert some tokens (e.g., words) or items
in the user’s prompt to manipulate the LLM-empowered rec-
ommender system to make incorrect decisions.

Given the need for security and privacy, a practical attacking
strategy in black-box recommender systems involves utilizing rein-
forcement learning (RL) agents to conduct poisoning attacks [9, 15].
To be specific, under the black-box setting, attackers have no access
to the models or parameters of the victim RecSys. Instead, they are
limited to observing the system’s inputs and outputs only. For exam-
ple, most existing solutions, such as KGAttack [4], PoisonRec [33],
and CopyAttack [9], develop RL-based agents to obtain malicious
user profiles (i.e., a series of items) and inject them into the victim
RecSys for manipulating system’s decision. Despite the impressive
progress in attacking recommender systems under the black-box
setting, most existing attack approaches still suffer from several
limitations. First, vanilla RL-based agents struggle with processing
the textual input (e.g., item’s title and descriptions) and context
awareness, resulting in difficulty in attacking LLM-empowered
RecSys which mainly takes text as input and generates relevant
responses in natural language. Second, due to the lack of a vast
amount of open-world knowledge, most existing methods optimize
the RL-based agent attackers from scratch without human-level in-
telligence, which subsequently leads to poor capability in planning
and reasoning the attacking strategies under the black-box set-
ting. Hence, it is desirable to design a novel paradigm for attacking
black-box recommender systems in the era of LLMs.

More recently, Large Language Models (LLMs) have achieved
great success in various fields, such as psychology [1], drug discov-
ery [28], and health [46], demonstrating their remarkable potential
in approximating human-level intelligence. This impressive capa-
bility is attributed to the training on vast textual corpora (i.e., open-
world knowledge) with a huge amount of model parameters [49, 50].
As such, LLMs can well comprehend human common sense in nat-
ural language and perform complex reasoning, so as to simulate
human-like decision-making processes [36]. Given their advantages,
LLMs provide unprecedented opportunities to overcome the limita-
tions faced by current RL-based attack methods and serve as attack

agents to attack RecSys. Therefore, in this work, we propose a novel
attacking strategy to attack the LLM-empowered recommender sys-
tems by taking advantage of LLM as the autonomous agent for
making human-like decisions. As shown in Figure 1, an LLM-based
agent with human-like intelligence is introduced to generate an
adversarial prompt by adding slight perturbations (e.g., words and
items) on the original prompt, so as to mislead LLM-empowered
RecSys to make unsatisfactory recommendations.

In this paper, we propose a novel attack framework (CheatAgent)
to investigate the safety vulnerability of LLM-empowered RecSys
under the black-box setting. Specifically, an LLM is introduced as
an intelligence agent to generate adversarial perturbations in users’
prompts for attacking the LLM-based system. To address the vast
search space on insertion position and perturbation selection for
the LLM agent, we first propose insertion positioning to identify
the input position for maximum impact with minimal input modifi-
cation. After that, LLM agent-empowered perturbation generation
is proposed to generate adversarial perturbations to insert at target
positions. Due to the domain-specific knowledge gap between the
attack agent and LLM-empowered RecSys, we further develop a
self-reflection policy optimization to enhance the effectiveness of
the attacks. Our major contributions of this paper are as follows:

• We study a novel problem of whether the existing LLM-
empowered recommender systems are robust to slight ad-
versarial perturbations. To the best of our knowledge, this is
the first work to investigate the safety vulnerability of the
LLM-empowered recommender systems.

• We introduce a novel strategy to attack black-box recom-
mender systems in the era of LLMs, where an LLM-based
agent is developed to generate adversarial perturbations on
input prompts, so as to mislead LLM-empowered recom-
mender systems for making incorrect decisions.

• We propose a novel framework CheatAgent to attack LLM-
empowered recommender systems under the black-box set-
ting via the LLM-based attack agent, which efficiently crafts
imperceptible perturbations in users’ prompt to perform
effective attacks.

• We conduct extensive experiments on three real-world datasets
to demonstrate the safety vulnerability of the LLM-empowered
recommender systems against adversarial attacks and the
attacking effectiveness of our proposed attack method.

2 PROBLEM STATEMENT
2.1 Notation and Definitations
The objective of RecSys is to understand users’ preferences by mod-
eling the interactions (e.g., clicks, purchases, etc.) between users
𝑈 = {𝑢1, 𝑢2, · · · , 𝑢 |𝑈 | } and items𝑉 = {𝑣1, 𝑣2, · · · , 𝑣 |𝑉 | }. Within the
framework of a general LLM-empowered RecSys 𝑅𝑒𝑐Θ with param-
eters Θ, we denote an input-output sequence pair as (𝑋,𝑌), consist-
ing of a recommendation prompt template 𝑃 = [𝑥1, 𝑥2, · · · , 𝑥 |𝑃 |],
user 𝑢𝑖 , and the user’s historical interactions towards items 𝑉𝑢𝑖 =
[𝑣1, 𝑣2, · · · , 𝑣 |𝑉𝑢𝑖 |] (i.e., user’s profile). Based on the above defini-
tion, a typical input can be denoted as:
𝑋 = [𝑃 ;𝑢𝑖 ;𝑉𝑢𝑖] = [𝑥1, · · · , user_𝑢𝑖 , · · · , items_𝑉𝑢𝑖 , · · · , 𝑥 |𝑃 |].

CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent KDD ’24, August 25–29, 2024, Barcelona, Spain

For instance, as shown in Figure 2, a specific input-output pair with
user-item interaction in the language model for recommendation
can be represented as:
𝑋 = [What, is, the, top, recommended, item, for, User_637, who,

has, interacted, with, item_1009, ..., item_4045, ?],
𝑌 =[item_1072],

where 𝑢𝑖 = [𝑈𝑠𝑒𝑟_637] and 𝑉𝑢𝑖 = [item_1009, ..., item_4045]. The
other tokens belong to the prompt template 𝑃 .

After that, LLM-empowered RecSys will generate recommen-
dations based on the textual input. The auto-regressive language
generation loss (i.e., Negative Log-Likelihood) is employed to eval-
uate the discrepancy between the predictions and the target output,
defined as follows:

L𝑅𝑒𝑐 (𝑋,𝑌) = 1
|𝑌 |

∑ |𝑌 |
𝑡=1 − log𝑝 (𝑌𝑡 |𝑋,𝑌<𝑡),

where 𝑝 (𝑌𝑡 |𝑋,𝑌<𝑡) represents the probability assigned to the item
that users are interested in. Small L𝑅𝑒𝑐 (𝑋,𝑌) indicates that RecSys
can accurately predict the target label 𝑌 and vice versa.

2.2 Attacker’s Capabilities
In this work, we will focus on attacking black-box LLM-empowered
recommender systems, where inherent details of the victim LLM-
empowered recommender system, including architectures, gradi-
ents, parameters, etc., are restricted from access. In other words, the
attackers can devise adversarial perturbations by solely querying
the target system and observing the resulting output probabilities,
similar to the soft-label black-box setting in [22, 30].

2.3 Attacker’s Objective
The overall objective of attackers is to conduct untargeted attacks by
undermining the overall performance of the victim LLM-empowered
RecSys, specifically by causing the target RecSys to prioritize ir-
relevant items that are of no interest to users. Note that these ma-
licious manipulations can undermine the overall user experience
and compromise the trustworthiness of RecSys. More specifically,
to generate incorrect recommendations for user 𝑢𝑖 , attackers aim
to carefully craft adversarial perturbations and insert them into
the input 𝑋 = [𝑃 ;𝑢𝑖 ;𝑉𝑢𝑖] as 𝑋 = I(𝑋, 𝛿 |𝑠) to deceive the vic-
tim RecSys to learn the users’ preference, where I(𝑋, 𝛿 |𝑠) repre-
sent to insert perturbation 𝛿 at the position 𝑠 of the input 𝑋 . In
the context of LLM-based recommender systems, two operations
can be designed for attackers to generate adversarial perturba-
tions on input: 1) insert the tailored perturbations into the prompt
template (i.e., 𝑋 = [𝑃 ;𝑢𝑖 ;𝑉𝑢𝑖] = [I(𝑃, 𝛿 |𝑠);𝑢𝑖 ;𝑉𝑢𝑖]), and 2) per-
turb the users’ profiles to distort their original preference (i.e.,
𝑋 = [𝑃 ;𝑢𝑖 ;𝑉𝑢𝑖] = [𝑃 ;𝑢𝑖 ; I(𝑉𝑢𝑖 , 𝛿 |𝑠)]).

Given these two different attacking operations, adversarial per-
turbations applied to the recommendation prompt 𝑃 and users’
profiles 𝑉𝑢𝑖 differ in nature. Specifically, words or characters can
be used as perturbations inserted into the recommendation prompt
𝑃 , while items serve as perturbations inserted into user profiles𝑉𝑢𝑖 .
For the simplicity of notation, 𝛿 is employed to uniformly represent
these two forms of perturbations. Mathematically, adversarial per-
turbations 𝛿 can be generated by decreasing the recommendation
performance, and the overall objective is formulated as follows:

𝛿 = argmax
𝛿 :∥�̂�−𝑋 ∥0≤△

L𝑅𝑒𝑐 (𝑋,𝑌),

where ∥𝑋 −𝑋 ∥0 is the Hamming distance between the benign input
and adversarial input [48] and the △ is the predefined upper bound
to constrain the magnitude of perturbations.

3 METHODOLOGY
3.1 An Overview of the Proposed CheatAgent
In order to conduct black-box attacks on target LLM-empowered
RecSys, adversarial perturbations are generated to modify the input
prompts to mislead the generation of LLM-empowered systems. To
achieve this goal, we propose a novel attacking strategy, in which
an LLM-based agent (attacker) is developed to effectively craft input
prompts, due to the powerful language comprehension, reasoning
abilities, and rich open-world knowledge of LLMs. However, devel-
oping malicious LLM-based agents to perform attacks under the
black-box setting faces challenges due to numerous options for
both insertion positions and perturbation selection.

To address these challenges, we propose a novel framework
(CheatAgent), which utilizes the prompt tuning techniques to learn
attacking strategies and generate high-quality adversarial pertur-
bations via interactions with the victim RecSys iteratively. As illus-
trated in Figure 2, the overall framework of our proposed method
consists of two main components: Insertion Positioning and LLM
Agent-Empowered Perturbation Generation. First, we aim to posi-
tion the inserting tokens to achieve maximum impact with minimal
input modification. Specifically, we identify the tokens within the
prompt that possess the substantial impact to deceive the victim
model by employing minimal perturbations. Second, LLM agent-
empowered perturbation generation is proposed to fully leverage
the powerful capabilities of LLMs in comprehending and generating
natural language, as well as reasoning with open-world knowledge
to generate adversarial perturbations to deceive the target system.
The proposed approach contains two processes: initial policy gen-
eration and self-reflection policy optimization. These two processes
initialize and fine-tune the attack policy based on the feedback from
the target system by utilizing prompt tuning techniques to perform
effective attacks.

3.2 Insertion Positioning
As the impact of each token within the prompt can vary signifi-
cantly, positioning the insertion tokens is crucial for conducting
effective attacks [16, 17]. Consequently, we propose to insert new
tokens adjacent to the tokens that contribute more towards the
final prediction and can achieve maximum impact with minimal
input modification. Therefore, we first evaluate the importance of
each word/item within the input 𝑋 and locate the token with the
maximum impact. As shown in the first component of Figure 2,
we propose to mask the token from the input sentence and then
examine the change it brings to the final predictions, so as to evalu-
ate the token importance of the input prompt. Given an input 𝑋
containing |𝑋 | tokens, masking a specific 𝑖-th token from the input
𝑋 can be defined as follows: 𝑋𝑀𝐴𝑆𝐾𝑖

= I(𝑋, [𝑀𝐴𝑆𝐾] |𝑖). The signif-
icance of the 𝑖-th token is determined by measuring the variation
in prediction performance between the original input and the input
with the token masked, as follows:

𝐼𝑖 = L𝑅𝑒𝑐 (𝑋𝑀𝐴𝑆𝐾𝑖
, 𝑌) − L𝑅𝑒𝑐 (𝑋,𝑌) .

KDD ’24, August 25–29, 2024, Barcelona, Spain Liang-bo Ning et al.

#1 Insertion Positioning

Embedding Projection

...:whisper :lately :item :possibly ...:whisper :lately :item :possibly

Prefix Prompt

#2.1 Initial Policy Generation

#2 LLM Agent-Empowered Perturbation Generation

Adversarial Prompt

Potential haveis the top recommended item for user_637 who interacted with item_1009, item_2298,item_4045?What

#2.2 Self-Reflection Policy Optimization

Position Selection

Perturbation Generation

Loss Calculation Backpropagation

Token Importance Calculation

is the top recommended item for user_637 who interacted with item_1009, item_2298, item_4045?What

Benign Prompt

goods

Please generate some letters or words that can change your
prediction of the {Benign Prompt} after inserting it into the .

Malicious Instruction

Perturbation Selection Perturbation

 Perturbation Generation

is the recommended item ...[MASK] for user_637 who

...

top

Token Mask

Attack Instruction
 EmbeddingPrefix PromptPrefix Prompt

 Perturbation Generation

...:whisper :lately :item :possibly

...:Potential :Capability :Promise :Prospect

:Potential

Prefix Prompt

...:breeze :cascade :input :potential

LLM-Based AgentLLM-Empowered
RecSys

Attackers
Frozen Parameters

Trainable ParametersMasked Position

Unmasked Position

:whisper
:breeze
:Potential

Perturbations
Forward

Backward
Embeddings

Prefix Prompt Selection

Figure 2: The overall framework of the proposed CheatAgent. Insertion positioning first locates the token with the maximum
impact. Then, LLM agent-empowered perturbation generation is proposed to leverage the LLM as the attacker agent to generate
adversarial perturbations. It contains two processes: 1) Initial Policy Generation searches for a great attack policy initialization,
and 2) Self-Reflection Policy Optimization fine-tunes the prefix prompt to update the attack policy of the LLM-based agent.

After calculating the importance for |𝑋 | tokens respectively, we
can obtain the importance list [𝐼1, 𝐼2, ..., 𝐼 |𝑋 |]. Then, a position list
is generated by selecting the tokens with top-△ importance scores,
defined by: S = [𝑠1, 𝑠2, · · · , 𝑠△] .

3.3 LLM Agent-Empowered Perturbation
Generation

Once the tokens with the highest impact have been identified, the
next crucial step is to determine the perturbations to be inserted.
Due to the superiority of the LLM-based agent in comprehending
natural language and its abundant knowledge derived from abun-
dant training data, we propose an LLM-based agent paradigm to
attack LLM-empowered RecSys, where an auxiliary large language
model is designed as the attack agent to generate high-quality per-
turbations for the specific positions. However, manipulating the
target RecSys needs to select the most effective token as an adver-
sarial perturbation from a vast collection of options, which is a
highly complex and challenging task. Direct utilization of adver-
sarial perturbations generated by the LLM-based agent based on
the initial attack policy often fails to achieve the desired attack per-
formance due to the lack of domain-specific knowledge. Moreover,
due to the extensive number of internal parameters in the LLM, it
is impractical and inefficient to fine-tune the entire LLM agent by
interacting with the target RecSys.

To address these challenges, as shown in Figure 2, we propose a
prompt tuning-based attack policy optimization strategy, in which
a trainable prefix prompt F is designed to integrate into the attack-
ers’ instruction P in the embedding space. Meanwhile, we only
fine-tune the prefix prompt F by interacting with the target Rec-
Sys to optimize the attack policy of the LLM-based agent. Given
that the task performance of large language models is significantly
influenced by the quality of the input prompts [47], freezing the pa-
rameters of the LLM-based agent results in the attack policy being
highly dependent on the input instruction provided by attackers.
Therefore, the LLM-based agent can adjust the attack policy by

fine-tuning the task-specific instruction given by attackers, thereby
effectively reducing the computational burden and time consump-
tion of retraining the entire LLM.

The proposed method in this component is comprised of two
main steps: 1) Initial Policy Generation, and 2) Self-Reflection Policy
Optimization. To be specific, Initial Policy Generation aims to search
for an appropriate prefix prompt to initialize a benchmark attack
policy to minimize subsequent iterations for policy tuning. Then,
given the initialized prefix prompt, we propose a self-reflection
policy optimization strategy to fine-tune the prefix prompt and
update the attack policy of the LLM-based agent by utilizing the
feedback from the victim RecSys.

3.3.1 Initial Policy Generation. Before updating the attack pol-
icy by fine-tuning the trainable prefix prompt, the agent must gen-
erate an initial policy to start optimization. Poor initialization can
lead the agent to get stuck in local optimal when learning the attack
policy [6], bringing difficulties in effectively attacking the target sys-
tem. Therefore, to enhance the attack performance of the generated
perturbations and decrease the number of subsequent policy tuning
iterations, we propose to search for an appropriate prefix prompt
to initialize the attack policy in the LLM-based attacker agent. To
achieve this goal, we randomly initialize multiple prefix prompts
and combine them with the attack’s instructions respectively to
generate multiple adversarial perturbations. Each perturbation is
evaluated for its attack performance, and the prefix prompt that can
generate the perturbation with the greatest impact in misleading
the target RecSys is deemed the optimal initialization.

We use P ∈ {P𝑃 ,P𝑉𝑢𝑖 } to represent the attacker’s instructions,
which is exploited to guide the LLM-based agent to generate per-
turbations. As we mentioned in Section 2.3, 𝛿 has two forms of
adversarial perturbations in attacking LLM-empowered RecSys, so
distinct instructions P𝑃 and P𝑉𝑢𝑖 are employed to generate pertur-
bations that are inserted to the prompt 𝑃 and users’ profiles 𝑉𝑢𝑖
(more details about the instructions given by attackers are shown
in Table 6 of Appendix B.2). Technically, we first initialize 𝑘 prefix

CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent KDD ’24, August 25–29, 2024, Barcelona, Spain

prompts [F1, ..., F𝑘], each prefix is combined with the attacker’s
instruction P in the embedding space and fed into the LLM-based
agent A to generate 𝑛 perturbation candidates, defined by:

B𝑗 = A(F𝑗 ⊕ P), (1)

where ⊕ is the combination operator andB𝑗 = [𝛿 𝑗1, 𝛿 𝑗2, ..., 𝛿 𝑗𝑛], 𝑗 ∈
{1, 𝑘} is the perturbation candidates generated by the LLM-based
agent A based on the combined prompt F𝑗 ⊕ P. After that, each
perturbation candidate of B𝑗 is iteratively inserted into the prompt
𝑋 at the position 𝑠𝑖 . The perturbation that maximally undermines
the prediction performance of the victim system is selected from
all candidates, and the prefix used to generate this perturbation is
considered as the initial prefix F0, defined by:

F0 = argmax
A(F𝑗⊕P)

L𝑅𝑒𝑐 (I(𝑋, 𝛿 𝑗𝑚 |𝑠𝑖), 𝑌), 𝑗 ∈ {1, 𝑘},𝑚 ∈ {1, 𝑛}. (2)

Here we use L𝑚𝑎𝑥
𝑅𝑒𝑐

= maxL𝑅𝑒𝑐 (I(𝑋, 𝛿 𝑗𝑚 |𝑠𝑖), 𝑌) to denote the
maximum loss after inserting all candidates at position 𝑠𝑖 respec-
tively, where 𝑗 ∈ {1, 𝑘} and𝑚 ∈ {1, 𝑛}.

3.3.2 Self-Reflection Policy Optimization. Due to the domain-
specific knowledge gap between the attack agent and the LLM-
empowered RecSys that may be fine-tuned on the recommendation
data, the initial attack policy based on the given prefix prompt can
be sub-optimal. To further optimize the attack policy and enhance
the attack performance, it is necessary to fine-tune the initialized
prefix prompt F0 in LLM-based agent via the feedback (i.e., out-
put) from the victim system under the black-box setting. Specifi-
cally, we propose a black-box self-reflection prompt tuning strategy,
which aims to determine the optimization direction according to
the feedback produced by the target RecSys. First, the perturbations
B0 = [𝛿1, ..., 𝛿𝑛] generated by A(F0 ⊕ P) are divided positive and
negative categories. Subsequently, we optimize the attack policy in
a direction that enables the LLM-based agent to generate a higher
number of positive perturbations, while minimizing the production
of negative perturbations it generates. As the overall objective is
to maximize L𝑅𝑒𝑐 (𝑋,𝑌), by evaluating the effect of the perturba-
tion on attack loss, we can classify perturbations into positive and
negative, defined by: T(𝛿𝑖), where T is an indicator function:

T(𝛿𝑖) =
{
1, if L𝑅𝑒𝑐 (I(𝑋, 𝛿 𝑗 |𝑠𝑖), 𝑌) ≥ L𝑚𝑎𝑥

𝑅𝑒𝑐
,

−1, if L𝑅𝑒𝑐 (I(𝑋, 𝛿 𝑗 |𝑠𝑖), 𝑌) < L𝑚𝑎𝑥
𝑅𝑒𝑐

,
(3)

where T(𝛿𝑖) = 1 means 𝛿𝑖 can further enhance the attack perfor-
mance, and it is considered as the positive perturbation. If 𝛿𝑖 is a
negative perturbation, we compute the gradient of 𝛿𝑖 with respect
to F0 and update F0 in the direction of gradient ascent. This en-
sures that F0 ⊕ P minimally guides the LLM to generate negative
perturbations. Based on the above definition, we can formulate the
optimization problem as follows:

LF0 =
𝑛∑︁
𝑖=1
T(𝛿𝑖) · LA (F0 ⊕ P, 𝛿𝑖)

=

𝑛+∑︁
𝑖=1

LA (F0 ⊕ P, 𝛿+𝑖) −
𝑛−∑︁
𝑗=1

LA (F0 ⊕ P, 𝛿−𝑗),
(4)

where LA (F0 ⊕ P, 𝛿𝑖) = 1
|𝛿𝑖 |

∑ |𝛿𝑖 |
𝑡=1 − log𝑝 (𝛿𝑡

𝑖
|F0 ⊕ P, 𝛿<𝑡

𝑖
) is the

negative log-likelihood loss. 𝑛+ and 𝑛− are the number of positive
perturbations 𝛿+

𝑖
and negative perturbations 𝛿−

𝑗
, respectively. Mini-

mizing Eq (4) promotes the LLM-based agentA to update its attack

policy to generate more positive perturbations with a significant
impact on the manipulation of target system’s predictions. The
optimization process is defined by: F𝑇 = F𝑇−1 − 𝛾 · ∇F𝑇 −1LF𝑇 −1 ,

where 𝛾 = 0.1 is the learning rate and 𝑇 ∈ {1, 5} is the number of
policy optimization iterations.

3.3.3 Final Perturbation Selection. Through backpropagation,
we can obtain an optimized prefix prompt F𝑇 that equips the LLM-
based agent A with the powerful attack policy to generate high-
quality perturbationsB𝑇 = [𝛿1

𝑇
, ..., 𝛿𝑛

𝑇
]. Finally, the perturbation 𝛿𝑇 ,

which can not only induce the largest decrease in the performance
of the target RecSys but also preserve high semantic similarity, is
considered the optimal solution and inserted into the input prompt
𝑋 . The optimal perturbation selection process is defined by:

𝛿𝑇 = argmax
𝛿𝑚
𝑇

L𝑅𝑒𝑐 (I(𝑋, 𝛿𝑚𝑇 |𝑠𝑖), 𝑌) + 𝜆 · 𝑆𝑖𝑚(I(𝑋, 𝛿𝑚𝑇 |𝑠𝑖), 𝑋), (5)

where 𝑆𝑖𝑚(I(𝑋, 𝛿𝑚
𝑇
|𝑠𝑖), 𝑋) is the cosine similarity between the per-

turbed prompt I(𝑋, 𝛿𝑚
𝑇
|𝑠𝑖) and the benign prompt 𝑋 , and 𝜆 = 0.01

is the hyper-parameter to balance the impact of these two aspects.
The semantic similarity is computed by introducing an additional
embedding model bge-large-en [41]. The whole process of the pro-
posed CheatAgent is shown in Algorithm 1 (Appendix A).

4 EXPERIMENTS
In this section, comprehensive experiments are conducted to demon-
strate the effectiveness of the proposed method. Due to the space
limitation, some details of the experiments and discussions are
shown in Appendix B and Appendix D.

4.1 Experimental Details
4.1.1 Datasets. All experiments are conducted on three commonly-
used datasets in RecSys: Movielens-1M (ML1M) [19], Taobao [51],
and LastFM [43] datasets. The ML1M dataset provides movie rat-
ings and user information, theTaobao dataset contains e-commerce
transaction data, and the LastFM dataset offers user listening his-
tories and music information. The details of these datasets are
summarised in Appendix B.1.

4.1.2 Victim LLM-based Recommender Systems. P5 [18] and
TALLRec [2] are exploited to investigate the safety vulnerability
of LLM-empowered recommender systems:

• P5 first converts all data, including user-item interactions,
user descriptions, etc., to natural language sequences. It
proposes several item indexing strategies, introduces the
whole-word embedding to represent items, and fine-tunes
the T5 [31] to improve the recommendation performance.

• TALLRec transfers the recommendation problem to a binary
textual classification problem. It fine-tunes the LLaMA [35]
on the recommendation task and utilizes the user’s interac-
tion history to forecast their interest in a forthcoming item
by integrating item titles into a pre-defined prompt.

4.1.3 Baselines. Multiple baselines are employed to investigate
the vulnerability of the LLM-empowered RecSys, shown as follows:

• MD manually designs an adversarial prompt with the oppo-
site semantic meaning to the original prompt 𝑋 by inserting
"not". The used prompt is shown in Appendix B.2 Table 5.

KDD ’24, August 25–29, 2024, Barcelona, Spain Liang-bo Ning et al.

• RL [13] uses the Proximal Policy Optimization (PPO) [32] to
train the attack policy to generate adversarial perturbations.

• GA [26] employs the genetic algorithm to find the adversarial
perturbation and insert them to the end of the benign input.

• BAE [17] masks the crucial words within the input prompt
and exploits the language model, i.e., BERT [25], to predict
the contextually appropriate perturbations.

• LLMBA [44] directly utilizes large language models to gen-
erate adversarial perturbations and insert them to the end
of the benign input. The prompts used for perturbation gen-
eration are shown in Table 6 of Appendix B.2.

• RP selects items randomly from the item set and inserts
them at a random position in users’ profiles.

• RT selects words randomly from the vocabulary and inserts
them at a random position in the benign prompt.

• RPGP selects tokens randomly and inserts them at the posi-
tion specified by the proposed method.

• C-w/o PT directly uses prompts to guide the LLM-based
agent to generate perturbations without policy tuning.

• CheatAgent uses prompt-tuning to guide the LLM-based
agent to produce high-quality perturbations.

4.1.4 Implementation. The proposed methods and all baselines
are implemented by Pytorch. All victim models (P5 and TALLRec)
are implemented according to their official codes. For P5model, we
use two different item indexing methods (i.e., random indexing and
sequential indexing) to demonstrate the robustness of the gener-
ated adversarial perturbations. For TALLRec model, since it needs
ratings to divide the user-interested items and user-hated items, we
fine-tune the LLaMA model on a textual dataset reconstructed by
ML1M dataset and test its vulnerability on this dataset.

We initialize the population with a quantity of 50 and iterate for
10 epochs to obtain the final perturbation for GA. Bert [25] is used
to generate 50 candidates, and BAE selects the perturbation that is
most effective in undermining the recommendation performance.
As for the proposed CheatAgent, we use distinct prompts P ∈
{P𝑃 ,P𝑉𝑢𝑖 } to generate candidates as mentioned in Section 2.3. The
prompts used for perturbation generation are shown in Table 6
of Appendix B.2. For P5, we set 𝑘 = 10 and 𝑛 = 10 as defaults,
and for TALLRec, we set 𝑘 = 6 and 𝑛 = 12. T5 [31] is employed
as the LLM-based agent A. △ is set to 3 for all methods, which
means we can only insert three perturbed words/items into the
input prompt 𝑋 . Besides, during experiments, for the item within
the user’s profile 𝑉𝑢𝑖 , we observe that masking a pair of items
and inserting perturbations to the middle of the maximum-impact
items can achieve better attack performance.We argue that this may
be due to the significant impact of the order of item interactions
on user preferences. More experiments and discussion about this
phenomenon are shown in Table 4 of Appendix B.3.

4.1.5 Evaluation Metrics. For P5 model, we consider two met-
rics, formulated as ASR-H@𝑟 = 1 − �H@𝑟/H@𝑟 and ASR-N@𝑟 =

1−�N@𝑟/N@𝑟 . H@𝑟 and N@𝑟 are Top-𝑟 Hit Ratio and Normalized
Discounted Cumulative Gain [4, 18], which are two widely-used
metrics for evaluating the performance of LLM-empowered RecSys.�H@𝑟 and �N@𝑟 are the Top-𝑟 Hit Ratio and Normalized Discounted
Cumulative Gain when the victim model is under attack. The larger
the decrease in H@𝑟 and N@𝑟 , the better the algorithm’s attack

performance. In this paper, 𝑟 is set to 5 and 10, respectively. For
TALLRec model, the recommendation results only contain "Yes"
and "No," which can be considered as a binary classification task.
We adopt Area Under the Receiver Operating Characteristic (AUC)
as the metric to measure the recommendation performance, which
is consistent with the work of Bao et al. [2]. ASR-A = 1−�AUC/AUC
is introduced to evaluate the attack performance, where �AUC is the
AUC when the TALLRec is under attacks.

4.2 Attack Effectiveness
We first evaluate the attack effectiveness of the proposed method
in this subsection. The attack performance of different approaches
based on P5 are summarised in Table 1 and Table 3 (Appendix B.3).
ForTALLRec, the AUC and ASR-A are illustrated in Figure 3. Based
on comprehensive experiments, we have some following insights:

• As shown in Table 1, the recommendation performance de-
creases by randomly inserting some token or item pertur-
bations (e.g., RT and RP), indicating that the existing LLM-
empowered recommender systems are highly vulnerable.
This observation will inspire researchers to pay more atten-
tion to the robustness and trustworthiness of utilizing LLMs
for other downstream tasks.

• We have discovered that the manually designed adversarial
examples, i.e., MD, cannot deceive the target victim model
effectively by comparing it with other baselines. Therefore,
we require more potent attack strategies instead of relying
solely on the manual construction of adversarial examples
to explore the vulnerability of LLM-empowered RecSys.

• As shown in Table 1 and Table 3 (Appendix B.3), the pro-
posed method outperforms other baselines and undermines
the recommendation performance dramatically, indicating
the effectiveness of the proposed method. Despite the nu-
merous distinctions between P5 and TALLRec, the proposed
method effectively deceives both, showcasing its resilience
against the architecture of the victim RecSys.

• By comparing RPGP with RP and RT, we can observe that
inserting random perturbations adjacent to the important to-
kens leads to a rise in attack performance. This demonstrates
the effectiveness of the proposed insertion positioning.

• Based on the results of C-w/o PT, we observe that perturba-
tions generated by the LLM-based agent can effectively at-
tack the RecSys even without prompt tuning, demonstrating
the potential of the LLM-based agent in performing attacks.
Besides, this phenomenon also leads us to speculate that
despite the fine-tuning of existing LLM-empowered RecSys
on downstream recommendation tasks, they still retain some
vulnerabilities of LLMs.

• By comparing the experimental results of C-w/o PT with
CheatAgent, we have observed a significant improvement
in the attack performance of the agent through policy tun-
ing, demonstrating the effectiveness of the proposed prompt
tuning-based attack policy optimization strategy.

4.3 Semantic Similarity
In this subsection, we test whether inserting adversarial perturba-
tions will change the semantic information of the benign prompt.

CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent KDD ’24, August 25–29, 2024, Barcelona, Spain

0.41

0.46

0.51

0.56

0.61

0.66

0.71

A
U

C

Benign MD
RP RT
RL GA
BAE LLMBA
RPGP C-w/o PT
CheatAgent

(a) AUC

0.09

0.14

0.19

0.24

0.29

0.34

0.39

A
SR

-A

MD RP
RT RL
GA BAE
LLMBA RPGP
C-w/o PT CheatAgent

(b) ASR-A

Figure 3: Attack performance of different methods (Victim
model: TALLRec).

0.98

0.98

0.99

0.99

1.00

1.00

1.01

1.01

C
os

in
e

Si
m

ila
ri

ty

Benign MD
RP RT
RL GA
BAE LLMBA
RPGP C-w/o PT
CheatAgent

(a) Cosine similarity

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1-
N

or
m

Benign MD
RP RT
RL GA
BAE LLMBA
RPGP C-w/o PT
CheatAgent

(b) 1-Norm

Figure 4: The semantic similarity between the benign and
adversarial prompts.

Table 1: Attack Performance of different methods. (Victim
Model: P5; Indexing: Sequential)

Methods H@5 ↓ H@10 ↓ N@5 ↓ N@10 ↓ ASR-H@5 ↑ ASR-H@10 ↑ ASR-N@5 ↑ ASR-N@10 ↑

M
L1

M

Benign 0.2116 0.3055 0.1436 0.1737 / / / /
MD 0.1982 0.2818 0.1330 0.1602 0.0634 0.0775 0.0735 0.0776
RP 0.2051 0.2940 0.1386 0.1671 0.0305 0.0374 0.0347 0.0380
RT 0.1949 0.2800 0.1317 0.1591 0.0790 0.0835 0.0826 0.0839
RL 0.1917 0.2788 0.1296 0.1576 0.0939 0.0873 0.0974 0.0926
GA 0.0829 0.1419 0.0532 0.0721 0.6080 0.5355 0.6298 0.5849
BAE 0.1606 0.2440 0.1047 0.1315 0.2410 0.2011 0.2712 0.2432

LLMBA 0.1889 0.2825 0.1284 0.1585 0.1072 0.0753 0.1061 0.0876
RPGP 0.1733 0.2588 0.1164 0.1439 0.1808 0.1528 0.1893 0.1715

C-w/o PT 0.0844 0.1392 0.0531 0.0706 0.6009 0.5442 0.6303 0.5935
CheatAgent 0.0614 0.1132 0.0389 0.0555 0.7097 0.6293 0.7290 0.6805

La
st
FM

Benign 0.0404 0.0606 0.0265 0.0331 / / / /
MD 0.0339 0.0477 0.0230 0.0274 0.1591 0.2121 0.1333 0.1713
RP 0.0394 0.0550 0.0241 0.0291 0.0227 0.0909 0.0921 0.1195
RT 0.0413 0.0550 0.0271 0.0315 -0.0227 0.0909 -0.0216 0.0463
RL 0.0294 0.0468 0.0200 0.0256 0.2727 0.2273 0.2460 0.2272
GA 0.0248 0.0431 0.0156 0.0216 0.3864 0.2879 0.4111 0.3477
BAE 0.0165 0.0339 0.0093 0.0149 0.5909 0.4394 0.6480 0.5497

LLMBA 0.0404 0.0541 0.0291 0.0336 0.0000 0.1061 -0.0969 -0.0150
RPGP 0.0294 0.0514 0.0184 0.0253 0.2727 0.1515 0.3076 0.2349

C-w/o PT 0.0138 0.0275 0.0091 0.0135 0.6591 0.5455 0.6580 0.5924
CheatAgent 0.0119 0.0257 0.0072 0.0118 0.7045 0.5758 0.7269 0.6445

Ta
ob

ao

Benign 0.1420 0.1704 0.1100 0.1191 / / / /
MD 0.1365 0.1624 0.1085 0.1170 0.0392 0.0471 0.0130 0.0180
RP 0.1250 0.1512 0.0977 0.1061 0.1200 0.1125 0.1117 0.1091
RT 0.1396 0.1658 0.1090 0.1174 0.0173 0.0269 0.0092 0.0145
RL 0.1376 0.1650 0.1075 0.1163 0.0311 0.0317 0.0222 0.0234
GA 0.1294 0.1579 0.0993 0.1086 0.0888 0.0731 0.0966 0.0886
BAE 0.1278 0.1519 0.0989 0.1066 0.1003 0.1087 0.1009 0.1050

LLMBA 0.1353 0.1624 0.1050 0.1138 0.0473 0.0471 0.0452 0.0448
RPGP 0.1258 0.1512 0.0971 0.1053 0.1142 0.1125 0.1167 0.1159

C-w/o PT 0.1017 0.1258 0.0737 0.0815 0.2837 0.2615 0.3298 0.3161
CheatAgent 0.0985 0.1229 0.0717 0.0796 0.3068 0.2788 0.3480 0.3319

Bold fonts and underlines indicate the best and second-best attack performance, respectively.

We use the bge-large-en model [41] to map the adversarial and
benign prompt to a 512-dimension vector. Cosine similarity and
1-Norm difference are calculated to measure the semantic similarity.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

6 8 10 12 14

H@5 H@10 N@5 N@10

(a) H@𝑟 and N@𝑟 w.r.t. 𝑘

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

6 8 10 12 14

ASR-H@5 ASR-H@10
ASR-N@5 ASR-N@10

(b) ASR-A@𝑟 and ASR-N@𝑟 w.r.t. 𝑘

0.000

0.005

0.010

0.015

0.020

0.025

0.030

6 8 10 12 14

H@5 H@10 N@5 N@10

(c) H@𝑟 and N@𝑟 w.r.t. 𝑛

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

6 8 10 12 14

ASR-H@5 ASR-H@10
ASR-N@5 ASR-N@10

(d) ASR-A@𝑟 and ASR-N@𝑟 w.r.t. 𝑛

Figure 5: Effect of the hyper-parameters 𝑘 and 𝑛.

First, as shown in Figure 4, all methods exhibit a high cosine
similarity and a low 1-norm difference, primarily due to the im-
posed constraint on the intensity of perturbations. Second, there is a
minimal semantic discrepancy between RP and the benign prompt,
indicating that inserting perturbations to the users’ profiles 𝑉𝑢𝑖 is
more stealthy than perturbing input prompts 𝑃 . Third, apart from
RP, our proposed method achieves the highest cosine similarity
and the smallest 1-norm difference, demonstrating the effectiveness
of our approach in attacking RecSys while maintaining stealthi-
ness. This characteristic makes our method more difficult to detect,
thereby posing a greater threat.

4.4 Ablation Study
In this subsection, some ablation studies are constructed to in-
vestigate the effectiveness of each proposed component. Three
variants are introduced here for comparison: 1) CheatAgent-RP
uses the LLM agent-empowered perturbation generation to pro-
duce perturbations and insert them into the random positions. 2)
CheatAgent-I fine-tunes the prefix prompt with random initializa-
tion. 3) CheatAgent-T directly employs the initial prefix prompt
to produce the adversarial perturbations without further policy
tuning. The results are shown in Table 2. Through the comparison
of CheatAgent with CheatAgent-RP, we demonstrate that the in-
sertion of perturbations into random positions within the input
leads to a significant decrease in attack performance. Therefore,
it is imperative to identify the token with the maximum impact
in order to enhance the attack success rate. By comparing the re-
sults of CheatAgent with those of CheatAgent-I and CheatAgent-T,
we demonstrate that both the initial policy generation and the
self-reflection policy optimization processes are necessary for the
LLM-based agent to increase the attack performance.

4.5 Parameter Analysis
In this subsection, we study the impact of model hyper-parameters.
There are mainly two hyper-parameters, i.e., 𝑛 and 𝑘 , associated

KDD ’24, August 25–29, 2024, Barcelona, Spain Liang-bo Ning et al.

Table 2: Comparison between CheatAgent and its variants on three datasets. Bold fonts denotes the best performance.

Datasets Methods H@5 ↓ H@10 ↓ N@5 ↓ N@10 ↓ ASR-H@5 ↑ ASR-H@10 ↑ ASR-N@5 ↑ ASR-N@10 ↑

LastFM

CheatAgent 0.0119 0.0257 0.0072 0.0118 0.7045 0.5758 0.7269 0.6445
CheatAgent-RP 0.0193 0.0358 0.0111 0.0166 0.5227 0.4091 0.5816 0.4995
CheatAgent-I 0.0147 0.0284 0.0096 0.0140 0.6364 0.5303 0.6377 0.5769
CheatAgent-T 0.0128 0.0259 0.0074 0.0120 0.6818 0.5730 0.7199 0.6371

ML1M

CheatAgent 0.0614 0.1132 0.0389 0.0555 0.7097 0.6293 0.7290 0.6805
CheatAgent-RP 0.1336 0.2036 0.0881 0.1107 0.3685 0.3333 0.3866 0.3630
CheatAgent-I 0.0810 0.1354 0.0512 0.0686 0.6174 0.5566 0.6437 0.6050
CheatAgent-T 0.0727 0.1205 0.0456 0.0608 0.6565 0.6054 0.6825 0.6497

Taobao

CheatAgent 0.0985 0.1229 0.0717 0.0796 0.3068 0.2788 0.3480 0.3319
CheatAgent-RP 0.1258 0.1497 0.0960 0.1037 0.1142 0.1212 0.1271 0.1293
CheatAgent-I 0.1024 0.1263 0.0744 0.0821 0.2791 0.2587 0.3233 0.3107
CheatAgent-T 0.0985 0.1243 0.0718 0.0802 0.3068 0.2702 0.3468 0.3272

with the attack performance. 𝑘 is the number of the randomly ini-
tialized prefix prompt during the initial policy generation process.
Given an attack instruction,𝑛 is the number of the generated pertur-
bations of the LLM-based agent. We fix one of them and gradually
vary the other, observing its impact on the attack performance.
The results are illustrated in Figure 5. With the change of 𝑘 , the
H@𝑟 , N@𝑟 , ASR-A@𝑟 and ASR-N@𝑟 fluctuate within a small range,
which demonstrates the robustness of the proposed method to the
hyper-parameters 𝑘 . As for 𝑛, the attack performance gradually
strengthens as𝑛 increases. However, large𝑛 will consume abundant
time. Consequently, we set 𝑛 = 10 as the default in this paper to
achieve a balance of the attack performance and efficiency.

5 RELATEDWORK
In this section, we briefly overview some related studies focusing
on adversarial attacks for recommender systems. Due to the space
limitation, some studies about the LLM-empowered RecSys and
vulnerabilities of LLM are reviewed in Appendix C.

Generally, adversarial attacks for recommender systems are
broadly divided into two categories [14]: 1) Evasion Attack hap-
pens during the inference phase. Given a fixed, well-trained RecSys,
attackers aim to modify the user’s profiles to manipulate the recom-
mendation outcome. 2) Poisoning Attack occurs during the data
collection before model training. The attackers inject the poisoned
fake users into the training set to misguide the model training and
undermine its overall performance.

Early methods including heuristic attacks [3, 38] and gradient-
based attacks [5, 27] have demonstrated a high rate of success in
attackingwhite-box recommendationmodels. However, thesemeth-
ods cannot be directly applied to attack black-box recommender
systems (RecSys) due to the limited knowledge about the victim
model. Recently, reinforcement learning has emerged as a viable
approach for attacking the black-box victim model. PoisonRec is
the first black-box attack framework, which leverages the reinforce-
ment learning architecture to automatically learn effective attack
strategies [33]. Chen et al. [4] propose a knowledge-enhanced black-
box attack by exploiting items’ attribute features (i.e., Knowledge
Graph) to enhance the item sampling process. Instead of generating
fake users’ profiles from scratch, Fan et al. [9, 15] have developed a
copy-based mechanism to obtain real user profiles for poisoning the
target black-box RecSys. MultiAttack [13] also considers utilizing
social relationships to degrade the performance of RecSys.

6 CONCLUSION
In this paper, we propose a novel attack frameworkCheatAgent by
introducing an autonomous LLM agent to attack LLM-empowered
recommender systems under the black-box scenario. Specifically,
our method first identifies the insertion position for maximum im-
pact with minimal input modification. Subsequently, CheatAgent
crafts subtle perturbations to insert into the prompt by leveraging
the LLM as the attack agent. To improve the quality of adversarial
perturbations, we further develop prompt tuning techniques to
improve attacking strategies via feedback from the victim RecSys it-
eratively. Comprehensive experiments on three real-world datasets
show the effectiveness of our proposed methods and highlight the
vulnerability of LLM-empowered recommender systems against
adversarial attacks.

ACKNOWLEDGMENTS
The research described in this paper has been partly supported
by the National Natural Science Foundation of China (project no.
62102335), General Research Funds from the Hong Kong Research
Grants Council (project no. PolyU 15200021, 15207322, and 15200023),
internal research funds from The Hong Kong Polytechnic Uni-
versity (project no. P0036200, P0042693, P0048625, P0048752, and
P0051361), Research Collaborative Project no. P0041282, and SHTM
Interdisciplinary Large Grant (project no. P0043302).

REFERENCES
[1] Gati V Aher, Rosa I Arriaga, and Adam Tauman Kalai. 2023. Using large language

models to simulate multiple humans and replicate human subject studies. In
International Conference on Machine Learning. PMLR, 337–371.

[2] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan
He. 2023. TALLRec: An Effective and Efficient Tuning Framework to Align
Large Language Model with Recommendation. In Proceedings of the 17th ACM
Conference on Recommender Systems.

[3] Robin Burke, Bamshad Mobasher, and Runa Bhaumik. 2005. Limited knowledge
shilling attacks in collaborative filtering systems. In Proceedings of 3rd interna-
tional workshop on intelligent techniques for web personalization (ITWP 2005), 19th
international joint conference on artificial intelligence (IJCAI 2005). 17–24.

[4] Jingfan Chen, Wenqi Fan, Guanghui Zhu, Xiangyu Zhao, Chunfeng Yuan, Qing
Li, and Yihua Huang. 2022. Knowledge-enhanced Black-box Attacks for Recom-
mendations. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 108–117.

[5] Konstantina Christakopoulou and Arindam Banerjee. 2019. Adversarial attacks
on an oblivious recommender. In Proceedings of the 13th ACM Conference on
Recommender Systems. 322–330.

[6] Amit Daniely, Roy Frostig, and Yoram Singer. 2016. Toward deeper understanding
of neural networks: The power of initialization and a dual view on expressivity.
Advances in neural information processing systems 29 (2016).

CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent KDD ’24, August 25–29, 2024, Barcelona, Spain

[7] Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu
Wang, Tianwei Zhang, and Yang Liu. 2023. Jailbreaker: Automated Jailbreak
Across Multiple Large Language Model Chatbots. arXiv preprint arXiv:2307.08715
(2023).

[8] Swati Dongre and Jitendra Agrawal. 2023. Deep Learning-Based Drug Recommen-
dation and ADR Detection Healthcare Model on Social Media. IEEE Transactions
on Computational Social Systems (2023).

[9] Wenqi Fan, Tyler Derr, Xiangyu Zhao, Yao Ma, Hui Liu, Jianping Wang, Jiliang
Tang, and Qing Li. 2021. Attacking black-box recommendations via copying
cross-domain user profiles. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 1583–1594.

[10] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.
Graph Trend Filtering Networks for Recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 112–121.

[11] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[12] Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, and Qing Li. 2019.
Deep social collaborative filtering. In Proceedings of the 13th ACM Conference on
Recommender Systems. 305–313.

[13] Wenqi Fan, Shijie Wang, Xiao-yong Wei, Xiaowei Mei, and Qing Li. 2023.
Untargeted Black-box Attacks for Social Recommendations. arXiv preprint
arXiv:2311.07127 (2023).

[14] Wenqi Fan, Xiangyu Zhao, Xiao Chen, Jingran Su, Jingtong Gao, Lin Wang,
Qidong Liu, Yiqi Wang, Han Xu, Lei Chen, et al. 2022. A Comprehensive Survey
on Trustworthy Recommender Systems. arXiv preprint arXiv:2209.10117 (2022).

[15] Wenqi Fan, Xiangyu Zhao, Qing Li, Tyler Derr, Yao Ma, Hui Liu, Jianping Wang,
and Jiliang Tang. 2023. Adversarial Attacks for Black-Box Recommender Systems
Via Copying Transferable Cross-Domain User Profiles. IEEE Transactions on
Knowledge and Data Engineering (2023).

[16] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-box genera-
tion of adversarial text sequences to evade deep learning classifiers. In 2018 IEEE
Security and Privacy Workshops (SPW). IEEE, 50–56.

[17] Siddhant Garg and Goutham Ramakrishnan. 2020. BAE: BERT-based Adversarial
Examples for Text Classification. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6174–6181.

[18] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on
Recommender Systems. 299–315.

[19] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (2015).

[20] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In ACM SIGIR.

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[22] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is bert really
robust? a strong baseline for natural language attack on text classification and
entailment. In Proceedings of the AAAI conference on artificial intelligence.

[23] Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tat-
sunori Hashimoto. 2023. Exploiting programmatic behavior of llms: Dual-use
through standard security attacks. arXiv preprint arXiv:2302.05733 (2023).

[24] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining. 197–206.

[25] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL-HLT. 4171–4186.

[26] Raz Lapid, Ron Langberg, and Moshe Sipper. 2023. Open Sesame! Universal Black
Box Jailbreaking of Large Language Models. arXiv preprint arXiv:2309.01446
(2023).

[27] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poi-
soning attacks on factorization-based collaborative filtering. Advances in neural
information processing systems 29 (2016).

[28] Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and
Qing Li. 2023. Empowering Molecule Discovery for Molecule-Caption Trans-
lation with Large Language Models: A ChatGPT Perspective. arXiv preprint
arXiv:2306.06615 (2023).

[29] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Xiangyang Li, Chenxu
Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, et al. 2023. How Can Recom-
mender Systems Benefit from Large Language Models: A Survey. arXiv preprint
arXiv:2306.05817 (2023).

[30] Han Liu, Zhi Xu, Xiaotong Zhang, Feng Zhang, Fenglong Ma, Hongyang Chen,
Hong Yu, and Xianchao Zhang. 2023. HQA-Attack: Toward High Quality Black-
Box Hard-Label Adversarial Attack on Text. In Thirty-seventh Conference on
Neural Information Processing Systems.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[33] Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li, and
Jun Gao. 2020. Poisonrec: an adaptive data poisoning framework for attacking
black-box recommender systems. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 157–168.

[34] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[36] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. 2023. A survey on large
languagemodel based autonomous agents. arXiv preprint arXiv:2308.11432 (2023).

[37] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. 2023. Jailbroken: How
does llm safety training fail? arXiv preprint arXiv:2307.02483 (2023).

[38] Chad Williams and Bamshad Mobasher. 2006. Profile injection attack detection
for securing collaborative recommender systems. DePaul University CTI Technical
Report (2006), 1–47.

[39] Chuhan Wu, Fangzhao Wu, Yongfeng Huang, and Xing Xie. 2023. Personal-
ized news recommendation: Methods and challenges. ACM Transactions on
Information Systems 41, 1 (2023), 1–50.

[40] Yiqing Wu, Ruobing Xie, Zhao Zhang, Yongchun Zhu, Fuzhen Zhuang, Jie Zhou,
Yongjun Xu, and Qing He. 2023. Attacking Pre-trained Recommendation. In
Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1811–1815.

[41] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighof. 2023. C-pack:
Packaged resources to advance general chinese embedding. arXiv preprint
arXiv:2309.07597 (2023).

[42] Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. 2023.
Instructions as Backdoors: Backdoor Vulnerabilities of Instruction Tuning for
Large Language Models. arXiv preprint arXiv:2305.14710 (2023).

[43] Shuyuan Xu, Wenyue Hua, and Yongfeng Zhang. 2023. OpenP5: Benchmarking
Foundation Models for Recommendation. arXiv preprint arXiv:2306.11134 (2023).

[44] Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang, Jingfeng Zhang, and Mohan
Kankanhalli. 2023. An LLM can Fool Itself: A Prompt-Based Adversarial Attack.
arXiv preprint arXiv:2310.13345 (2023).

[45] Jiaqi Xue, Mengxin Zheng, Ting Hua, Yilin Shen, Yepeng Liu, Ladislau Bölöni,
and Qian Lou. 2023. TrojLLM: A Black-box Trojan Prompt Attack on Large
Language Models. In Thirty-seventh Conference on Neural Information Processing
Systems.

[46] Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Jianquan Li,
Guiming Chen, XiangboWu, Zhiyi Zhang, Qingying Xiao, et al. 2023. HuatuoGPT,
towards Taming Language Model to Be a Doctor. arXiv preprint arXiv:2305.15075
(2023).

[47] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022. Automatic Chain
of Thought Prompting in Large Language Models. In The Eleventh International
Conference on Learning Representations.

[48] Zhen Zhang, Guanhua Zhang, Bairu Hou, Wenqi Fan, Qing Li, Sijia Liu, Yang
Zhang, and Shiyu Chang. 2023. Certified Robustness for Large Language Models
with Self-Denoising. arXiv preprint:2307.07171 (2023).

[49] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[50] Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Zhen
Wen, Fei Wang, Xiangyu Zhao, Jiliang Tang, et al. 2024. Recommender systems
in the era of large language models (llms). IEEE Transactions on Knowledge and
Data Engineering (2024).

[51] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning tree-based deep model for recommender systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1079–1088.

[52] Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang,
Furong Huang, Ani Nenkova, and Tong Sun. 2023. AutoDAN: Automatic and
Interpretable Adversarial Attacks on Large Language Models. arXiv preprint
arXiv:2310.15140 (2023).

[53] Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. 2023. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043 (2023).

KDD ’24, August 25–29, 2024, Barcelona, Spain Liang-bo Ning et al.

A WHOLE PROCESS OF CHEATAGENT

Algorithm 1: CheatAgent
Input:
Input 𝑋 , LLM agent A, Attacker’s Instruction
P ∈ {P𝑃 ,P𝑉𝑢𝑖 }, iteration 𝑇 .
Output: Adversarial perturbations 𝛿𝑇 .
Procedure:

1 Mask each token within 𝑋 and find the tokens S with
maximal impact for perturbation insertion ;

2 for 𝑠𝑖 in S do
3 Randomly initialize 𝑘 prefix prompts [F1, ..., F𝑘] ;
4 Generate perturbation candidates B𝑗 , 𝑗 ∈ {1, 𝑘}

according to Eq (1) ;
5 Select the optimal initialization of the prefix prompt F0

according to Eq (2) ;
6 for t in 1:T do
7 Generate a set of perturbations B𝑇 ;
8 Divide the perturbation into positive and negative

categories according to Eq (3) ;
9 Compute the loss according to Eq (4) ;

10 Update the prefix prompt according to
F𝑇+1 = F𝑇 − 𝛾 · ∇F𝑇 LF𝑇 ;

11 Select the optimal perturbation 𝛿𝑇 according to Eq (5) ;
12 end for

B EXPERIMENTAL DETAILS
Due to the space limitation, some details of the experiments and
discussions are shown in this section.

B.1 Datasets Statistics
We utilize three datasets, i.e.,ML1M, LastFM, and Taobao, to con-
struct comprehensive experiments. The ML1M dataset is a widely-
used benchmark dataset in the field of recommender systems, which
contains rating data from the MovieLens website, specifically col-
lected from around 6,040 users and their interactions with around
3,000 movies. The dataset provides information such as user ratings,
movie attributes, and timestamps, making it suitable for various rec-
ommendation tasks and evaluation of recommendation algorithms.
The LastFM dataset is another popular dataset, which consists of
user listening histories from the Last.fm music streaming service.
The dataset includes information about user listening sessions,
such as artist and track names, timestamps, and user profiles. The
Taobao dataset is a large-scale e-commerce dataset collected from
the Taobao online shopping platform. It contains a rich set of user
behaviors, including browsing, searching, clicking, and purchasing
activities. The dataset provides valuable insights into user prefer-
ences, purchasing patterns, and item characteristics.

For P5 model, all used datasets are processed according to the
work of Geng et al. [18], Xu et al. [43]. For TALLRec model, we
process the ML1M dataset according to the work of Bao et al.
[2]. It should be noted that TALLRec divides the users’ profiles

with extensive interactions into multiple segments, resulting in
numerous similar users with only one or two different items in
their profiles. To be more efficient, we randomly select 1,000 users
from the generated datasets to test the performance of different
methods.

B.2 Implementation Details
ForMD, we manually design two adversarial prompts to reverse the
semantic information of the benign input to guide the victim RecSys
to produce opposite recommendations. The manually-designed
adversarial prompts are shown in Table 5. As we mentioned in
Section 3.3, we use distinct prompts to generate perturbations. The
used prompts are shown in Table 6. For LLMBA, we design a similar
prompt to generate perturbations, which is also shown in Table 6.

B.3 Additional Experiments
Attack Effectiveness. Due to the space limitation, the results
based on the P5 model that uses random indexing strategy are
shown in Table 3. We can observe that, except for the LastFM
dataset, the proposed method consistently outperforms other base-
lines and significantly undermines the recommendation perfor-
mance. We argue that the effectiveness of the proposed method
on the LastFM dataset is hindered due to the poor recommenda-
tion performance of the target RecSys. Consequently, the limited
valuable information for policy tuning may impede CheatAgent’s
attack performance on this dataset.
Insertion positioning strategy. Asmentioned in Section 4.1.4, we
observe that masking a pair of items and inserting perturbations to
the middle of the maximum-impact items can achieve better attack
performance. To indicate the effectiveness of this strategy, we use a
variant of the proposedmethod for comparison. The results are illus-
trated in Table 4. CheatAgent-MI masks each word/item within the
input 𝑋 and inserts perturbations adjacent to the maximum-impact
words/item. From the experiment, we observe that the proposed
method outperforms the variant on three datasets, demonstrating
the effectiveness of this strategy.

C RELATEDWORK

C.1 LLM-Empowered Recommender Systems
The recent breakthrough of LLMs has initiated a new era for RecSys.
Due to its powerful capability of understanding and reasoning, LLM
has been widely used to facilitate various recommendation tasks,
such as news recommendation [39], drug recommendations [8],
etc. For example, BERT4Rec adopts Bidirectional Encoder Repre-
sentations (i.e., BERT) to model users’ sequential behavior for rec-
ommendations [34]. Furthermore, TALLRec aligns the LLM (i.e.,
LLaMA-7B) with recommendation data for sequential recommenda-
tion [2]. Additionally, by studying the user’s historical behavior and
preferences, P5 can perform various recommendation tasks such as
rating prediction and sequential recommendation and explain the
recommendations [18]. In conclusion, LLM-Empowered RecSys is
a fast-growing field, and it is necessary to study its vulnerabilities.

CheatAgent: Attacking LLM-Empowered Recommender
Systems via LLM Agent KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 3: Attack Performance of different methods. We use bold fonts and underlines to indicate the best and second-best attack
performance, respectively. (Victim Model: P5; Indexing: Random)

Datasets Methods H@5 ↓ H@10 ↓ N@5 ↓ N@10 ↓ ASR-H@5 ↑ ASR-H@10 ↑ ASR-N@5 ↑ ASR-N@10 ↑

ML1M

Benign 0.1058 0.1533 0.0693 0.0847 / / / /
MD 0.0945 0.1459 0.0619 0.0785 0.1064 0.0486 0.1065 0.0728
RP 0.0859 0.1320 0.0579 0.0728 0.1878 0.1393 0.1639 0.1401
RT 0.0901 0.1328 0.0580 0.0718 0.1487 0.1339 0.1631 0.1522
RL 0.0975 0.1419 0.0648 0.0792 0.0782 0.0745 0.0646 0.0650
GA 0.0808 0.1248 0.0531 0.0673 0.2363 0.1857 0.2342 0.2046
BAE 0.0942 0.1384 0.0611 0.0753 0.1095 0.0972 0.1181 0.1104

LLMBA 0.0785 0.1137 0.0528 0.0643 0.2582 0.2581 0.2375 0.2407

RPGP 0.0783 0.1219 0.0525 0.0665 0.2598 0.2052 0.2420 0.2142
C-w/o PT 0.0517 0.0836 0.0329 0.0433 0.5117 0.4546 0.5245 0.4889
CheatAgent 0.0449 0.0742 0.0283 0.0377 0.5759 0.5162 0.5923 0.5546

LastFM

Benign 0.0128 0.0248 0.0072 0.0110 / / / /
MD 0.0147 0.0303 0.0078 0.0128 -0.1429 -0.2222 -0.0944 -0.1586
RP 0.0156 0.0229 0.0107 0.0131 -0.2143 0.0741 -0.4967 -0.1867
RT 0.0092 0.0220 0.0045 0.0087 0.2857 0.1111 0.3678 0.2135
RL 0.0064 0.0174 0.0032 0.0068 0.5000 0.2963 0.5501 0.3860
GA 0.0073 0.0183 0.0038 0.0073 0.4286 0.2593 0.4756 0.3411
BAE 0.0046 0.0119 0.0026 0.0050 0.6429 0.5185 0.6421 0.5463

LLMBA 0.0165 0.0312 0.0094 0.0142 -0.2857 -0.2593 -0.3129 -0.2857

RPGP 0.0119 0.0284 0.0068 0.0121 0.0714 -0.1481 0.0496 -0.0967
C-w/o PT 0.0073 0.0174 0.0031 0.0062 0.4286 0.2963 0.5687 0.4331
CheatAgent 0.0101 0.0183 0.0050 0.0075 0.2143 0.2593 0.3067 0.3174

Taobao

Benign 0.1643 0.1804 0.1277 0.1330 / / / /
MD 0.1584 0.1764 0.1237 0.1296 0.0359 0.0218 0.0315 0.0258
RP 0.1345 0.1547 0.0983 0.1049 0.1815 0.1426 0.2306 0.2114
RT 0.1625 0.1797 0.1254 0.1310 0.0110 0.0036 0.0181 0.0149
RL 0.1609 0.1766 0.1244 0.1296 0.0209 0.0209 0.0259 0.0258
GA 0.1560 0.1740 0.1189 0.1248 0.0508 0.0354 0.0688 0.0619
BAE 0.1517 0.1692 0.1172 0.1229 0.0768 0.0618 0.0827 0.0762

LLMBA 0.1592 0.1766 0.1235 0.1291 0.0309 0.0209 0.0330 0.0292

RPGP 0.1384 0.1563 0.1005 0.1063 0.1575 0.1335 0.2134 0.2007
C-w/o PT 0.1150 0.1378 0.0808 0.0883 0.3001 0.2361 0.3671 0.3361
CheatAgent 0.1071 0.1317 0.0742 0.0823 0.3480 0.2698 0.4189 0.3815

Table 4: Attack performance of different masking methods. (Victim Model: P5; Indexing: Sequential)

Datasets Methods H@5 ↓ H@10 ↓ N@5 ↓ N@10 ↓ ASR-H@5 ↑ ASR-H@10 ↑ ASR-N@5 ↑ ASR-N@10 ↑

LastFM
CheatAgent 0.0119 0.0257 0.0072 0.0118 0.7045 0.5758 0.7269 0.6445

CheatAgent-MI 0.0128 0.0259 0.0074 0.0121 0.6818 0.5730 0.7227 0.6352

ML1M
CheatAgent 0.0614 0.1132 0.0389 0.0555 0.7097 0.6293 0.7290 0.6805

CheatAgent-MI 0.0697 0.1189 0.0444 0.0603 0.6706 0.6108 0.6908 0.6531

Taobao
CheatAgent 0.0985 0.1229 0.0717 0.0796 0.3068 0.2788 0.3480 0.3319

CheatAgent-MI 0.1045 0.1278 0.0760 0.0835 0.2641 0.2500 0.3092 0.2991

Table 5: Manually-designed adversarial prompts.

Victim Model Methods Used Prompt

P5
Benign What is the top recommended item for dataset user_id who interacted with dataset item history?

MD What is not the top recommended item for dataset user_id who interacted with dataset item history?

TALLRec
Benign Given the user’s preference and unpreference, identify whether the user will like the target movie by answering "Yes." or "No.".

MD Given the user’s preference and unpreference, identify whether the user will not like the target movie by answering "Yes." or "No.".

C.2 Adversarial Attack for LLM
Based on the generationmethod of adversarial prompts, the existing
adversarial attacks for large languagemodels can be broadly divided
into three categories:

1)Artificial-basedMethods. In the early stage of investigating the
vulnerability of LLMs, multiple studies manually devised prompts
to bypass the defense mechanism and guide LLMs to generate some

KDD ’24, August 25–29, 2024, Barcelona, Spain Liang-bo Ning et al.

Table 6: Used prompt for perturbation generation.

Methods Used Prompt

CheatAgent P𝑃
The original input is {Original Prompt} and the prediction is {Target}. Please generate a few letters or words that
can change your prediction after inserting it as the {position}-th word of the input.

P𝑉𝑢𝑖 According to the user’s historical sequence {User’s Profile}, please predict the items that the user is not interested
in.

LLMBA
The original input is {Original Prompt} and the prediction is {Target}. Please generate a few letters or words that
can change your prediction after inserting it after inserting it at the end of the input sentence.

harmful content [23, 37], which is time-consuming and ineffectively
with the development of the LLMs.
2) Optimization-based Methods. These methods exploit diverse
optimization strategies, such as genetic algorithm [26], gradient-
based search [52, 53], reinforcement learning [45], to find the op-
timal perturbation. For example, Zou et al. [53] create the desired
adversarial postfix by generating a candidate set according to the
gradient and replacing the word from a candidate randomly. Lapid
et al. [26] propose to exploit the genetic algorithm to iteratively
generate the universal adversarial prompt.
3) LLM-based Methods. LLM is employed to generate adversarial
samples automatically, which is more efficient and diverse [7, 42].
Deng et al. [7] propose to exploit the time-based characteristics
intrinsic to deconstruct the defense mechanism of LLMs. An au-
tomatic method for the generation of adversarial prompts is also
presented by fine-tuning the LLM. Xu et al. [42] leverage the LLM to
generate poisoned instructions and insert the backdoor into LLMs
via instruction tuning.

D DISCUSSIONS

Difference between APRec [40] and CheatAgent. The objective
of APRec [40] is entirely different from this work. The recommenda-
tion model employed by APRec is SASRec [24], which is not a large
language model and lacks the ability to comprehend textual lan-
guage in LLM-based recommendations. Therefore, the vulnerability
of LLM-empowered recommender systems is still not explored. To
fill the gap in this area, our work takes the pioneering investigation
into the vulnerability of LLM-empowered RecSys.
Practical Applications. The main goal of our research is to inves-
tigate the vulnerability of existing LLM-empowered RecSys, so as
to spread awareness about the trustworthiness of recommender sys-
tems. From the industry perspective, our proposed CheatAgent
can assist them in evaluating the vulnerabilities of their deployed
LLMs-based recommender systems. The enterprise desires that the
LLM-empowered RecSys it employs is robust to small perturbations
(e.g., random/bait clicks [10]). Assume that non-English-speaking
users who utilize LLM-empowered Shopping Assistant (e.g., Ama-
zon AI Shopping Assistant ‘Rufus’) may unintentionally input their
prompts with incorrect singular or plural forms, resulting in an
additional character ‘a’, considered as the token perturbation. Al-
ternatively, they may encounter enticing product titles and click on
them despite not genuinely liking the products, thereby introducing
item perturbation to their history interaction. If such perturbations
can significantly impact the recommendation outcomes of LLM-
empowered RecSys, leading to the recommendation of undesired

products to users, it would undermine their user experience. To
prevent such occurrences, the company must investigate the vul-
nerability of the LLM-empowered RecSys before deploying. In this
case, the attacker is the owner (e.g., system manager, system de-
signer, and algorithm developer) of the LLM-empowered RecSys
and possesses the ability to access user interaction histories and
modify prompts, which is entirely plausible.

Note that the assumptions required for the attack paradigm
proposed in this paper are slightly strong since attackers are not
always the system’s owner and may not be able to manipulate and
modify the prompt directly. As our work is the first to investigate
the vulnerability of LLM-Enpowered RecSys, we believe that the
insights presented in this paper can enhance people’s attention to
the security aspects of the system. We also hope that our work
can inspire future work to develop more advanced approaches and
promote the trustworthiness of LLM-empowered recommender
systems.
Query Number and Running Time. We summarize the number
of queries and time required to generate an adversarial example for
deceiving the victim system, shown as follows:

Table 7: Query number and running time of variousmethods.

Methods Query Number Running Time (s)
GA 550 1.22
BAE 151 2.72
RL 501 5.37

CheatAgent 490 4.50

Here are some insightful observations from this experiment: 1)
We can observe that the proposed CheatAgent can achieve the best
attack performance without significantly increasing the number of
queries, demonstrating the effectiveness of the proposed method.
Besides, during applications, by leveraging the batch processing
capabilities of GPUs/TPUs, we can generate multiple adversarial
examples, store them in a list, and feed them into the target system
together to significantly decrease the query times. 2) Due to the
large action space, the reinforcement learning-based agent (RL)
requires more time to generate adversarial examples compared to
CheatAgent, which demonstrates the efficiency of the proposed
LLM-based agent. 3) Regarding methods such as GA and BAE,
which utilize the genetic algorithm and BERT for perturbation
generation, they are faster than the proposed method. The reason
is that the proposed CheatAgent introduces an LLM to generate
perturbations, which increases the time consumption. However,
the discrepancy in running time is marginal and acceptable.

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Notation and Definitations
	2.2 Attacker's Capabilities
	2.3 Attacker's Objective

	3 Methodology
	3.1 An Overview of the Proposed CheatAgent
	3.2 Insertion Positioning
	3.3 LLM Agent-Empowered Perturbation Generation
	3.3.1 Initial Policy Generation
	3.3.2 Self-Reflection Policy Optimization
	3.3.3 Final Perturbation Selection

	4 Experiments
	4.1 Experimental Details
	4.1.1 Datasets.
	4.1.2 Victim LLM-based Recommender Systems.
	4.1.3 Baselines.
	4.1.4 Implementation.
	4.1.5 Evaluation Metrics.

	4.2 Attack Effectiveness
	4.3 Semantic Similarity
	4.4 Ablation Study
	4.5 Parameter Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Whole process of CheatAgent
	B Experimental Details
	B.1 Datasets Statistics
	B.2 Implementation Details
	B.3 Additional Experiments

	C Related Work
	C.1 LLM-Empowered Recommender Systems
	C.2 Adversarial Attack for LLM

	D Discussions

