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Deep learning (DL)-based image classification models are essential for au-
tonomous vehicle (AV) perception modules since incorrect categorization
might have severe repercussions. Adversarial attacks are widely studied cy-
berattacks that can lead DL models to predict inaccurate output, such as
incorrectly classified traffic signs by the perception module of an autonomous
vehicle. In this study, we create and compare hybrid classical-quantum deep
learning (HCQ-DL) models with classical deep learning (C-DL) models to
demonstrate robustness against adversarial attacks for perception modules.
Before feeding them into the quantum system, we used transfer learning mod-
els, alexnet and vgg-16, as feature extractors. We tested over 1000 quantum
circuits in our HCQ-DL models for projected gradient descent (PGD), fast
gradient sign attack (FGSA), and gradient attack (GA), which are three well-
known untargeted adversarial approaches. We evaluated the performance of
all models during adversarial attacks and no-attack scenarios. Our HCQ-
DL models maintain accuracy above 95% during a no-attack scenario and
above 91% for GA and FGSA attacks, which is higher than C-DL models.
During the PGD attack, our alexnet-based HCQ-DL model maintained an
accuracy of 85% compared to C-DL models that achieved accuracies below
21%. Our results highlight that the HCQ-DL models provide improved ac-
curacy for traffic sign classification under adversarial settings compared to
their classical counterparts.
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Highlights

Quantum Computing Supported Adversarial Attack-Resilient Au-
tonomous Vehicle Perception Module for Traffic Sign Classification

Reek Majumder, Mashrur Chowdhury, Sakib Mahmud Khan, Zadid Khan,
Fahim Ahmad, Frank Ngeni, Gurcan Comert, Judith Mwakalonge, Dimitra
Michalaka

• Propose hybrid classical-quantum models to improve autonomous ve-
hicle sign classification resilience.

• Compare hybrid classical-quantum deep learning vs. classical deep
learning models under gradient attack, fast gradient sign attack, and
projected gradient sign attack.

• Hybrid classical-quantum deep learning models maintain accuracy above
91% under gradient attack and fast gradient sign attack.

• AlexNet-based hybrid classical-quantum deep learning achieves 85%
accuracy under severe projected gradient sign attack vs. 21% for its
classical counterpart.

• Use over 1000 quantum circuit combinations to evaluate the robustness
of hybrid classical-quantum deep learning with alexnet and vgg-16 as
feature extractors.
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Deep learning (DL)-based image classification models are essential for au-
tonomous vehicle (AV) perception modules since incorrect categorization
might have severe repercussions. Adversarial attacks are widely studied cy-
berattacks that can lead DL models to predict inaccurate output, such as
incorrectly classified traffic signs by the perception module of an autonomous
vehicle. In this study, we create and compare hybrid classical-quantum deep
learning (HCQ-DL) models with classical deep learning (C-DL) models to
demonstrate robustness against adversarial attacks for perception modules.
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Before feeding them into the quantum system, we used transfer learning mod-
els, alexnet and vgg-16, as feature extractors. We tested over 1000 quantum
circuits in our HCQ-DL models for projected gradient descent (PGD), fast
gradient sign attack (FGSA), and gradient attack (GA), which are three well-
known untargeted adversarial approaches. We evaluated the performance of
all models during adversarial attacks and no-attack scenarios. Our HCQ-
DL models maintain accuracy above 95% during a no-attack scenario and
above 91% for GA and FGSA attacks, which is higher than C-DL models.
During the PGD attack, our alexnet-based HCQ-DL model maintained an
accuracy of 85% compared to C-DL models that achieved accuracies below
21%. Our results highlight that the HCQ-DL models provide improved ac-
curacy for traffic sign classification under adversarial settings compared to
their classical counterparts.

Keywords:
Quantum Machine Learning, Quantum-circuits, Deep Learning, Adversarial
Attacks

1. Introduction

1.1. Background

Autonomous vehicles (AVs) widely use deep learning (DL) models to im-
plement object detection (Ren, 2017; Lin, 2017) and classification (Liu, 2020)
for their perception (Pendleton, 2017) module tasks, such as detecting lanes,
obstacles, and traffic signs. Nevertheless, these models are susceptible to
adversarial attacks, and their performance deteriorates significantly when a
carefully crafted perturbation/noise has been injected with the input image
(Szegedy, 2014; Moosavi-Dezfooli, 2016; Wei, 2019; Akhtar, 2018; Goodfel-
low, 2015). Adversarial attacks that introduce small, nearly invisible changes
to input images can manipulate the output from the DL models, thus prov-
ing disastrous to AV deployment. The severity of these adversarial attacks
on DL models depends mainly on an attacker’s goals and knowledge of the
model. The attacker’s intent can be to perform a targeted or non-targeted
attack. In a targeted attack, the goal is to manipulate the model’s output
to a particular output. In contrast, a non-targeted attack seeks to alter the
model’s prediction to any incorrect output as long as it differs from the true
output. These attacks have been categorized into three groups based on the
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attacker’s knowledge of DL models: white-box, gray-box, and black-box at-
tacks. An attacker that uses a white-box attack is aware of the trained DL
model and creates carefully considered perturbations to the input data to
deceive it. In a gray-box attack, an attacker knows the model’s design but is
uninformed of its training weights. In a black-box attack, the attacker cre-
ates random disruption, with no knowledge of the model, to trick a trained
model.

Various defense strategies have been suggested, including image transfor-
mation or model re-training techniques. The image transformation technique
involves input reconstruction (Ren, 2020; Aprilpyone, 2019; Panda, 2019) and
inputs denoising (Ren, 2020) methods, which aim to pre-process the images
before entering the DL models using techniques like smoothing, filtering (e.g.,
JPEG filter (Liu, 2019; Das, 2017), binary filter (Xu, 2018), random filtering
(Khan, 2022)), and feature squeezing (Xu, 2018). Model re-training involves
adversarial attack detection (Feinman, 2017) and training (Yuan, 2019) meth-
ods, where adversarial samples are generated using vigorous attacks, and the
DL models are re-trained on adversarial samples. Another method called
the defensive distillation technique (Papernot, 2016) is another strategy that
combines detection and training networks. In this method, the detection
network creates the probability of vectors to label the original dataset, and
the training network is used to re-train the model using the labeled adver-
sarial samples dataset generated by the detection network. However, these
techniques can perform well for known adversarial attacks used to create ad-
versarial samples for re-training, but they can perform poorly for unknown
attacks in the future; therefore, we need resilient DL models during adversar-
ial attacks. Based on (Björck, 2015) definition of cyber-resilience, we define
DL resilience as the capability to correctly categorize the image, although
malicious parties perturb the input image.

Since quantum computing is becoming more mainstream, quantum com-
puters have recently joined the race for high-performing computing systems
due to their computational advantages of using quantum mechanical prop-
erties like superposition and entanglement. Theoretically, hilbert space for
quantum systems (Griffiths, 2013) increases exponentially to system size,
which makes it harder to simulate on classical computers. For example, a
quantum system with tens and hundreds of qubits is classically intractable
and proposed to demonstrate quantum supremacy over classical supercom-
puters (Preskill, 2012). Companies like Google have recently claimed quan-
tum supremacy with its 53-qubit system named Sycamore, which will take
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classical supercomputers almost 10,000 years to solve (Arute, 2019). Further-
more, a 56-qubit H21 quantum computer from Quantinuum has surpassed
Google’s record by a factor of 100 (Montanez-Barrera, 2025).

An experiment for classifying traffic signs with DL models during an ad-
versarial attack in (Papernot, 2017) incorrectly detected a stop sign as a
speed sign which can lead to severe collisions if AVs operate with the help
of these DL models. In this regard, a possible approach to improving model
robustness in AV applications is to use hybrid classical-quantum deep learn-
ing (HCQ-DL) models. With quantum layers within a DL, HCQ-DL struc-
tures can also take advantage of quantum entanglement and superposition
to be more resistant to attacks by the adversary (Majumdar, 2023; Baral,
2023). The goal is to test the performance and resiliency of HCQ-DL models
against adversarial attacks without using image transformation or model re-
training techniques. We use transfer learning (TL) to extract features from
pre-trained DL models like alexnet and vgg-16 before inputting the data to
the quantum systems because currently available quantum processors, also
known as noisy intermediate-scale quantum (NISQ) systems, cannot embed
image data into a quantum system directly. These pre-trained models are
developed using 1.2 million images for 1000 categories from the imagenet
dataset (Deng, 2009). For image classification, the initial convolution layer
of these models is frozen, which acts as a feature extractor. Finally, the last
layers are replaced with custom layers of artificial neural networks (ANNs) or
quantum neural networks (QNN) and tuned for our LISA traffic sign dataset
(Mogelmose, 2012). The LISA dataset consists of traffic signs taken from
video shots from driving vehicles. We designed our QNN model consist-
ing of low-depth variational quantum circuits (VQC) (Endo, 2020; Mitarai,
2018; Benedetti, 2019; Khan, 2023), which can be learned based on the quan-
tum circuit learning framework (Mitarai, 2018) for currently available NISQ
hardware from IBM (Wille, 2019), Xanadu (Bergholm, 2022) and Google
(Ho, 2018).

1.2. Contribution

To our knowledge, the performance and resilience comparison of the
QML-based HCQ-DL with C-DL models has not been studied in the trans-
portation sector. In this research, we tested over 1000 quantum circuit-based
QNN layers for traffic sign classification by designing HCQ-DL models. We
compared them against C-DL models for traffic sign classification, primarily
for the AV sign perception module. Both our HCQ-DL and C-DL models
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are developed using alexnet and vgg-16 as feature extractors. Traditionally,
vgg-16 models aimed to improve performance by using a deeper network with
smaller filters (sixteen layers) than other models like alexnet (eight layers).
C-DL models with alexnet and vgg-16 as feature extractors are vulnerable
to adversarial attacks like gradient attacks (GA), fast gradient sign attacks
(FGSA), and projected gradient descent attacks (PGD). Overall, our alexnet-
based HCQ-DL model has a lower attack success rate of 0%-8% compared to
its classical counterpart, with an attack success rate of 6% to 73%. Similarly,
for vgg-based models, the HCQ-DL models show an attack success rate of 0%
to 77%, while C-DL models range from 4%-88%. This study aims to address
quantum-enabled robustness in AV perception, which presents opportunities
for extending the security of AV systems against adversarial attacks using
quantum-enabled DL architecture.

1.3. Outline

Section 2 discusses datasets describing the dataset’s origin and attack
dataset’s generation. The creation of the C-DL and HCQ-DL models and
a description of the performance metrics applied in our study are covered
in Section 3, a discussion of the research method. Section 4 summarizes
the findings of our investigation and shows how the model’s performance
changes as cyberattack intensity rises. The conclusion based on the findings is
discussed in Section 5. Section 6 provides suggestions for additional analysis
for future studies.

2. Dataset

This section introduces the development of a balanced LISA traffic sign
dataset to train HCQ-DL and C-DL models for stop sign classification. More-
over, we also discuss the adversarial dataset generation for various white box
attacks such as fast gradient sign attack (FGSA), gradient attack (GA), and
projected gradient descent (PGD) attack to assess model robustness.

2.1. Image Dataset

We used a portion of the extended LISA (Mogelmose, 2012) traffic sign
dataset, which contains around 7,855 annotations from 6,610 video frames
identifying 47 different traffic signs. To examine the performance of the
HCQ-DL and C-DL models, we focused on stop signs and a combination of
other signs to design a balanced dataset. Image frames vary from 640 x 480
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to 1024 x 522 pixels. The size of annotation boxes for traffic signs ranges
from 6 x 6 to 167 x 168 pixels. The number of samples for each type of
traffic sign differs significantly. Initially, we grouped the traffic sign dataset
into 18 traffic signs and cropped up the images to reduce the noise in their
surroundings.

Figure 1: Example of adversarial attack on stop signs.

In the binary classification models, both HCQ-DL and C-DL models are
trained to classify stop signs and other signs by creating a balanced dataset.
On the extracted balanced dataset, which included 231 samples with an 80-20
split between training and testing data, both HCQ-DL and C-DL models were
trained and tested for twenty-five epochs (number of training samples:182,
number of testing samples: 49).

2.2. Attack Models for Adversarial Dataset

In this study, three types of white-box attacks have been chosen based
on severity (elementary, intermediate, and advanced), and attacks gener-
ated with fast gradient sign attack (FGSA) (Goodfellow, 2015), gradient
attack (GA) (Goodfellow, 2015), and projected gradient descent (PGD) at-
tack (Madry, 2017) for both HCQ-DL and C-DL models. Before the image
is entered into the classification model, these attacks create perturbations to
the input data based on the epsilon coefficient. These attacks differ in how
the perturbation is applied to the original input images to generate misclas-
sified outputs. Equation 1 illustrates how the gradient attack modifies the
input image considering the gradient of the loss function for the DL model to
produce an adversarial image. Moreover, the FGSA is a single-step gradient
ascent strategy that uses a sign of gradient with a fixed epsilon coefficient to
generate an adversarial image, as shown in equation 2. However, PGD ob-
tains adversarial samples by iteratively using the fast gradient method, and
the iteration starts uniformly at a randomly chosen data point. It projects
(Proj) the adversarial samples from each iteration into the next using the
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product of epsilon and the gradient of loss function, as represented in equa-
tion 3 (Khan, 2022).

Adversarial image = input image + [ϵ · ∇input imageJ ] (1)

Adversarial image = input image + [ϵ · sign (∇input imageJ)] (2)

Iterative Adversarial Image = Projection
(
Adversarial imageprev

+ ϵ · sign (∇input imageJ)
)

(3)

All attacks studied during this experiment modify input images to deceive
DL models, as shown in Figure 1, and attack intensity has varied from per-
turbation (epsilon) coefficients ranging from 0.05 to 0.5, discussed in Section
IV.

3. Research Method

Figure 2: Architecture for C-DL and HCQ-DL models.
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3.1. Transfer Learning

A well-known machine learning method for feature extraction and han-
dling situations when we lack training data is transfer learning (TL) (Ma-
jumdar, 2023; Zhuang, 2021; Mari, 2020). Since we have only 182 samples
in our training set and want to encode image data to a quantum system, we
use known TL models as feature extractors (alexnet and vgg-16). For image
classification tasks, initial convolution layers of these TL models are believed
to learn similar features, so their weights are fixed and extended to fine-tune
on newer tasks by replacing final layers with ANNs.

These TL models are trained on the imagenet dataset with 1.2 million
images for over 1000 categories. The objective behind employing TL models
is to utilize the initial convolution layer of these pre-trained models and swap
out the final linear layer with layers of custom linear layers according to the
given use case.

3.2. Classical Deep Learning (C-DL) and Hybrid Classical-Quantum Deep
Learning (HCQ-DL) Models

This section describes the development of the C-DL and HCQ-DL model
architecture used in our study for training and testing traffic sign classifiers.
We also represent the final hyperparameters of our HCQ-DL and C-DL mod-
els with vgg-16 and alexnet pre-trained models as feature extractors.

3.2.1. Classical Deep Learning (C-DL) Models

As shown in figure 2, our experiment uses two state-of-the-art convolu-
tional neural network-based deep learning models, vgg-16 (Simonyan, 2014)
and alexnet (Krizhevsky, 2012), as our feature extractors for our C-DL and
HCQ-DL models. Due to the lack of training samples, we use transfer learn-
ing principles for the image classification task and freeze the initial layers of
the pre-trained model. Later we introduced two linear layers for our C-DL
model (figure 2) with a rectilinear unit (ReLU) as an activation function for
linear layer one and SoftMax for the final linear layer. We later trained these
C-DL models on stop signs and other sign classes.

3.2.2. Hybrid Classical-Quantum Deep Learning (HCQ-DL) Models

We developed and tested over 1000 quantum circuits-based QNN models
with pre-trained DL- models to develop our HCQ-DL models. The QNN
models were composed of various single qubits and multiple qubits gates.
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These gates are fundamental building blocks for circuit-based quantum algo-
rithms. Usually, these gates are evaluated based on the impact of each gate
on 3-dimensional space for each qubit, often referred to as the bloch sphere.
The gates used in our study are explained below.

a. Hadamard gate: A fundamental quantum gate that helps create a
superposition of states |0> and |1> by moving away from the poles of
the Bloch sphere(Simonyan, 2014).

b. Rotational gates: These include three Pauli rotational gates — rotational-
x (RX), rotational-y (RY), and rotational-z (RZ). These gates rotate the
state vector about the corresponding axis and are often generated by ex-
ponentiating the Pauli operators. Specifically, Pauli-X (X) is a bit-flip
gate, Pauli-Y (Y) is a bit- and phase-flip gate, and Pauli-Z (Z) is a
phase-flip gate(Crooks, 2020).

c. Universal gates: These advanced single-qubit gates combine rotational
and phase-shift operations to represent different states on the Bloch
sphere. The most common are:

• U1: equivalent to a phase shift gate,

• U2: combines Y- and Z-axis rotations with a phase shift,

• U3: applies rotation about all three Bloch sphere axes(Barenco,
1995; Author46, n.d.).

d. Controlled gates: Our study employs 2-qubit controlled gates (control
and target) using Pauli operators (X, Y, Z) and rotational gates (RX,
RY, RZ). These gates act on the target qubit only when the control qubit
is in the |1> state. This selective behavior introduces entanglement —
a correlated state — among qubits, which is one of the unique features
of our approach.

e. Measurement gate: All 1000 quantum circuits include a final mea-
surement gate that maps quantum states to classical bits. Each circuit
was run 1000 times per sample to obtain a probability distribution over
outcomes. The state with the highest probability was used as input to
the next phase, namely linear layer 2 (see Figure 2). Figure 3 illustrates
the QNN architecture and the optimal quantum circuit in our HCQ-DL
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Table 1: Model Hyperparameters and Training Time

Transfer Learning
Model

VGG-16
(Classical)

AlexNet
(Classical)

VGG-16
(Hybrid)

AlexNet
(Hybrid)

Scheduler Step
Size

8 9 8 9

Batch Size 32 64 2 8

Learning Rate 0.000697 0.000269 0.000194 0.00291

Optimizer Adam Adam Adam Adam

Classical (Neuron)/
Hybrid (N-Qubits)

2 6 4 3

Training Time 14 min 11
sec

2 min 27
sec

47 min 38
sec

28 min 11
sec

Number of
Parameters

14,764,872 2,525,012 14,815,066 2,497,370

model, where VGG-16 and AlexNet serve as classical feature extrac-
tors. As quantum computers cannot directly process images (Baral,
2023; Mitarai, 2018; Schuld, 2018), the HCQ-DL framework first pre-
processes images using pretrained CNNs, then replaces the final layer
with a quantum layer sandwiched between two linear layers, as depicted
in Figure 2.

Furthermore, we divide the QNN layer into four broad categories. The
data encoding layer embeds data from the classical system into the quan-
tum system. The variational quantum circuit combines repetitive single and
multi-qubit gates, a pre-measurement layer consisting of single-qubit gates,
and a measurement layer that reads data from the quantum system to the
classical system. We have optimized the first linear layer’s number of neu-
rons, ranging from 2 to 8, for the C-DL, and it refers to the number of qubits
needed to initialize for quantum layers of HCQ-DL models. The ranges of
other DL parameters are scheduled step sizes ranging from 5 to 10 and learn-
ing rates ranging from 0.01 to 0.0001. We consider batch sizes 2, 4, 8, 16,
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32, and 64. We tested our models for adam and stochastic gradient descent
(SGD) optimizer and reported the tuned model parameters for our best mod-
els in Table I.

Figure 3: Quantum Circuit Architecture with chosen Circuits for our VGG16-based HCQ-
DL and AlexNet-based HCQ-DL models with better resiliency.

Comparing hyperparameters of alexnet vs. vgg-16 C-DL models in Table
1, we found that alexnet models have relatively lower training time due to
fewer parameters. Lower training time due to a lower number of parameters
can be seen as consistent in the HCQ-DL alexnet model vs. the HCQ-DL
vgg-16 model. However, HCQ-DL models have considerably higher training
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time even after having fewer parameters because we use quantum simulators
from pennyLane (Benedetti, 2019) and cannot exclude the wait time for each
batch during training. With the improvement in performance and availability
of quantum hardware, the computation time will likely go down.

3.3. Quantum Gradient Calculation and Backpropagation in HCQ-DL Mod-
els

Gradient-based optimization for HCQ-DL models combines classical back-
propagation methods with quantum differentiation techniques. The pre-
trained CNN model (vgg-16 or alexnet) performs image feature extraction
during the forward pass. The data encoding layer of QNN transforms the
extracted features into a quantum representation. The quantum representa-
tion performs data processing through VQCs using trainable unitary trans-
formation before output probabilities are extracted for classification using
the measurement layer.

The backward pass computes gradients for both the classical neural net-
work and quantum circuit layers. Gradients of pre-trained CNN layers are
kept constant because their weights have been frozen. The final linear layers
calculate their gradients using traditional backpropagation methods. Quan-
tum circuits differ from classical networks because they lack analytical deriva-
tives, which require an alternate approach to calculate quantum gradients.
We employ the parameter-shift rule that numerically computes gradients
through small adjustments in the quantum parameters, as shown in equa-
tion 4.

∂f(θ)

∂θ
=

f(θ + s)− f(θ − s)

2s
(4)

where s is a small shift. This technique ensures that the QNN layer can be
trained end-to-end along with the classical layers.

3.4. Performance Matrix

The C-DL and HCQ-DL models are evaluated using accuracy for training
and testing, where accuracy is defined as the proportion of correct predictions
to all predictions for samples in the train and test set. For our investigation
of adversarial attacks, we selected the models with higher accuracy.

We tested our models with other performance metrics like sensitivity,
specificity, false positive rate, precision, and F1 score. Specificity refers to
the proportion of other sign classes that are correctly classified. At the same
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time, sensitivity, also known as recall, relates to the fraction of stop sign
classes that are correctly classified. We also calculated the false positive
rate, which refers to the fraction of other sign class samples misclassified as
a stop sign. We also calculated the precision for each model to study how
well the models are classifying stop signs and other sign classes and tested
the balance between precision and recall by evaluating the F1 score of our
model.

MCC =

(
(TP · TN)− (FP · FN)√
(TP + FP )(TN + FN)

)
·

(
1√

(TP + FN)(TN + FP )

)
(5)

Where TP: True Positive, FP: False Positive, TN: True Negative, FN: False
Negative

Finally, we tested C-DL and HCQ-DL-based classifier models on statis-
tical measure phi-coefficient, also referred to as matthew’s correlation coef-
ficient (MCC), which measures the correlation between the actual classes of
the dataset and the predicted classes by the models and calculated as shown
in equation 5.

4. Analysis

This section discusses the performance results for our C-DL and HCQ-DL
models. And QNN models architecture for best HCQ-DL models. Our best
vgg-16-based HCQ-DL model, we initialize a 4-qubit system, where during
the data encoding phase, we use a U1 gate with a controlled-Z (CZ) entan-
glement gate, while in a variational quantum circuit includes RZ and CZ gate
repeated for three times and U2 gate in pre-measurement. In the alexnet-
based HCQ-DL model, we initialize a 3-qubit system, where the data encod-
ing phase uses a U1 gate with a CZ entanglement gate, while our variational
quantum circuit includes U3, and CZ gates repeated five times and a U1 gate
in pre-measurement layer. Finally, we perform quantum Y-measurement for
both models to map quantum states to classical output. The circuits are
executed for 1000 shots, and the state with maximum probability is consid-
ered as quantum measurement output. The measurement output is mapped
to the ANN layer with neurons equivalent to the qubit system initialized to
each model, as shown in Figure 2. Finally, an ANN layer of two neurons with
a softmax activation function provides a final output for all our models.
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Figure 4: Performance Comparison of VGG16-based C-DL and HCQ-DL models under
varying intensity of perturbation coefficients for: a) Fast Gradient Sign Attack b) Gradient
Attack c) Projected Gradient Descent Attack.

Figure 5: Performance Comparison of Alexnet-based C-DL and HCQ-DL models under
varying intensity of perturbation coefficients for: a) Fast Gradient Sign Attack b) Gradient
Attack c) Projected Gradient Descent Attack.
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Table 2: Model Performance Metrics

Transfer Learning
Model

VGG-16
(Classical)

AlexNet
(Classical)

VGG-16
(Hybrid)

AlexNet
(Hybrid)

Accuracy 96% 96% 98% 96%

Specificity 1 1 1 1

Sensitivity 0.90 0.90 0.95 0.90

False Positive
Rate

0.10 0.10 0.05 0.10

Precision Score 0.93 0.93 0.97 0.93

F1-Score 0.97 0.97 0.98 0.97

MCC Score 0.92 0.92 0.96 0.92

Table 2 represents the complete report regarding the accuracy, sensitiv-
ity, specificity, false positive rate, precision, F1 score, and MCC for each of
our best C-DL and HCQ-DL models. We analyzed these parameters and
found that all our models satisfy the criteria of higher sensitivity, specificity,
precision, F1-score, and MCC while having a lower false positive rate, which
is an essential criterion for a good classifier. As a result of our analysis of
these variables, we discovered that all our models meet the crucial criteria of
a strong classifier: higher sensitivity, specificity, accuracy, precision F1-score,
and MCC while having lower false positive rates.

Figures 4 and 5 show the performance change for alexnet-based and
vgg16-based HCQ-DL and C-DL models during GA, FGSA, and PGD at-
tacks with a perturbation coefficient ranging from 0.05 to 0.5 with an inter-
val of 0.05. We can see from figures 4 and 5 that vgg-16 and alexnet-based
HCQ-DL models are more resilient and maintain higher accuracy even after
increasing the intensity of GA and FGSA attacks.

The most aggressive attack considered in our analysis is projected gradi-
ent descent (PGD), and figure 18c and 19c shows the change in performance
of our model with increasing intensity of PGD attack. We can see that the
AlexNet-based HCQ-DL model exponentially outperforms all other models
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Table 3: Perturbation Coefficient (PC) at which Models Record its Lowest
Accuracy

Transfer Learning
Model

VGG-16
(Classical)

AlexNet
(Classical)

VGG-16
(Hybrid)

AlexNet
(Hybrid)

Accuracy
(PC)

96% (0.0) 96% (0.0) 98% (0.0) 96% (0.0)

Gradient
Attack (PC)

92% (0.05) 90%
(0.05)

98% (0.5) 96% (0.5)

Fast Gradient
Sign (PC)

79% (0.35) 77% (0.4) 92% (0.4) 94%
(0.45)

Projected Gradient
Descent Attack

(PC)
19% (0.45) 23% (0.3) 10% (0.5) 85% (0.2)

by having a lower attack success rate and maintaining higher accuracy. The
worst results of our C-DL and HCQ-DL models are shown in Table 3 during
adversarial attacks with the perturbation coefficient.

5. Conclusion

From alexnet to vgg-16, CNN-based DL models have historically evolved,
intending to add more convolutional layers for better data mapping. In this
investigation, we discovered that the performance and resiliency of DL mod-
els to adversarial attacks could be enhanced using HCQ-DL models built by
combining quantum layers with the current C-DL model. In our study, we
obtained better performance accuracy in recognizing the sign under adver-
sarial attacks, establishing the resiliency while not using well-known defenses
such as image modification or model re-training on adversarial samples, which
would take higher processing power and time. Image modification techniques
are pre-processing steps that emphasize smoothing, while filtering introduces
additional implementation steps during the training and testing phase with-
out considering the type of attack. While model re-training methods em-
phasize re-training on adversarial images, they do not account for unknown
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adversarial attacks, which could be more malicious than the known attack
models based on which these are re-trained. Our HCQ-DL method presented
in this study offers a performance accuracy boost during a known or unknown
adversarial attack by introducing a quantum network within C-DL models
without requiring pre-processing procedures like image modification or post-
processing procedures like model-re-training. This occurs because quantum
systems are known for mapping various counter-intuitive patterns, which is
leveraged in our HCQ-DL model development.

Higher accuracy, precision, recall, F1 score, specificity, mathew’s corre-
lation coefficient, and a lower false positive rate are typically required for a
classifier to function well. Our study shows that both our C-DL and HCQ-
DL satisfy these criteria; however, they are vulnerable to adversarial attacks.
Our study showed that compared to C-DL models, HCQ-DL models main-
tain a higher accuracy (above 95%) during gradient attacks and above 90%
during Fast Gradient sign attacks. For the projected gradient descent attack,
we found that the alexnet-based hybrid model outperforms other HCQ-DL
and C-DL models by constantly having an accuracy above 85%.

Our alexnet-based HCQ-DL shows better performance and resiliency dur-
ing adversarial attacks than vgg-16-based HCQ-DL models. This opens the
possibility of looking into shorter networks with quantum layers, resulting in
fewer parameters but still maintaining a higher level of feature mapping, thus
improving the performance accuracy and resilience of these next-generation
models against adversarial attacks.

6. Future Work

Our research demonstrates that the C-DL architecture may be consider-
ably strengthened by adding a single quantum layer to increase the robust-
ness of deep learning models against adversarial attacks. HCQ-DL models
can maintain relatively higher accuracy for highly effective adversarial at-
tacks like L-infinite projected gradient descent attacks.

In our future work, we will evaluate the effect of the perturbation on the
internal layers of DL models, which are used as feature extractors for our
HCQ-DL models. We also intend to test these models for different lighting
and environmental conditions to evaluate their robustness in real-world AV
deployments. We have used error-free quantum simulators from pennylane
for this study. In the future, we would also like to train and test these models
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on actual quantum computers and address quantum errors and noise, usually
present in physical quantum computers.

Furthermore, our future work will investigate Lipschitz-based regulariza-
tion implementation in quantum layers, specifically for the encoding layer to
regulate model sensitivity to adversarial perturbations beyond the current
outlined directions. Studies show that this method decreases vulnerability
while simultaneously enhancing the model’s focus on significant features in
input data to boost both interpretability and robustness. We will inves-
tigate the impact of regularization on model generalization and resilience
against unknown and transferable attacks through theoretical analysis using
Lipschitz bounds and practical evaluation of attack transfer performance as
suggested in (Wendlinger, 2024).

Finally, we intend to evaluate how adversarial attacks transfer between
classical and quantum domains. Some recent research suggests that Fourier-
based classical approximation of quantum models can provide an intermedi-
ary framework for analyzing robustness at the classical-quantum boundary.
Investigating this area allows us to analyze how hybrid models respond to
adversarial attacks and to discover design principles for creating robust ar-
chitectures.
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