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The Chronicles of Foundation AI for
Forensics of Multi-Agent Provenance

Ching-Chun Chang and Isao Echizen

Abstract—Provenance is the chronology of things, resonating
with the fundamental pursuit to uncover origins, trace connec-
tions, and situate entities within the flow of space and time.
As artificial intelligence advances towards autonomous agents
capable of interactive collaboration on complex tasks, the prove-
nance of generated content becomes entangled in the interplay of
collective creation, where contributions are continuously revised,
extended or overwritten. In a multi-agent generative chain,
content undergoes successive transformations, often leaving little,
if any, trace of prior contributions. In this study, we investigates
the problem of tracking multi-agent provenance across the
temporal dimension of generation. We propose a chronological
system for post hoc attribution of generative history from
content alone, without reliance on internal memory states or
external meta-information. At its core lies the notion of symbolic
chronicles, representing signed and time-stamped records, in
a form analogous to the chain of custody in forensic science.
The system operates through a feedback loop, whereby each
generative timestep updates the chronicle of prior interactions
and synchronises it with the synthetic content in the very act
of generation. This research seeks to develop an accountable
form of collaborative artificial intelligence within evolving cyber
ecosystems.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) emerges from the quest to
mimic human minds through the creation of computa-

tional machinery that learns through experience and evolves
beyond programmed instructions [1]. These learning machines
extract meaningful representations from data, adapt their be-
haviours based on feedback, and ultimately develop agency
for autonomous interaction with environments [2]–[10]. Yet,
it remains an open question whether general-purpose intelli-
gence can be realised within a solitary monolithic neural net-
work [11]. While the neural scaling law suggests continuous
improvements in generalisability as computational resources
and corpora of knowledge increase, an ever-scaling model may
still encounter inherent limitations when confronting tasks of
sufficient complexity. It may struggle to decompose problems
hierarchically, integrate knowledge across diverse domains
and sensory modalities, sustain multiple concurrent lines of
reasoning, or preserve coherence over extended inferential
chains.

This calls for an account of multi-agent collaboration,
in which each agent may possess specialised expertise,
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and through communication and coordination, these au-
tonomous entities collectively tackle multifaceted tasks [12]–
[18]. Against this backdrop, a fundamental question arises:
as multiple agents contribute to the formation of a shared
creation, how might one trace the individual contributions
of each agent across the temporal dimension of generation?
Without traceability, the interactions amongst multiple agents
render the accountability, transparency and trustworthiness of
AI fundamentally uncertain.

The concept of provenance resonates deeply with the funda-
mental human pursuit of understanding where we come from
and how things came to be, addressing the primordial desire
to know origins and connections across space and time. The
quest of provenance is a reflection of our intrinsic curiosity
about existence and continuity, manifesting across disciplines:
astrophysics seeking the origins of the universe; archaeology
unearthing ancient civilisations; and genetics reconstructing
the evolutionary tree of life. By examining information en-
coded in genomes, geneticists can infer evolutionary histories,
tracing the lineages of organisms across time. Likewise, when
analysing a piece of writing, linguists may identify authorial
traits through stylistic patterns, at times revealing signs of col-
laborative composition. In the realm of generative AI, however,
these principles and practices face a fundamental challenge.
Unlike genomic evidences left by biological evolution or
linguistic clues of human authorship, the outputs of multi-
agent systems may undergo complete transformation at each
step. A subsequent agent may overwrite the content produced
by its predecessors to maintain consistency in narrative flow,
or continue the task while discarding earlier material, leaving
no discernible trace of prior contributions.

One might attempt to adapt the practice of chain of custody
from forensic science—chronological documentation record-
ing the seizure, control, transfer and disposition of crimino-
logical evidence. In theory, such an external log could record
which agent acted at each timestep, preserving a complete
history of the generative process. Yet this forensic practice
remains inherently fragile. External logs, or metadata, can be-
come detached from the content it describes when transferred
across platforms or corrupted during transmission, undermin-
ing the integrity of the provenance it was meant to secure. In
the absence of metadata, how might provenance be preserved
in a form analogous to a chain of custody, maintaining a
signed and time-stamped record at each transaction amongst
collaborating AI agents?

In this study, we introduce a chronological system for
tracking provenance in the context of multi-agent collabo-
ration. At its core is the concept of chronicles—symbolic

ar
X

iv
:2

50
4.

12
61

2v
1 

 [
cs

.A
I]

  1
7 

A
pr

 2
02

5



2

sequences that represent the chronologically ordered identities
of agents throughout the generative process. The system op-
erates through a feedback loop, in which each generative step
updates the chronicle of prior interactions and synchronises
it with the generated content in a steganographic manner.
The scope of this study centres on generative chains of
natural language created by foundation AI models. Each valid
chronicle is associated with a binary codeword that defines
a lexical subset of the vocabulary. The present state of the
chronicle is then embedded into the generated text via a biased
language generation process conditioned on the associated
subset. The chronicle can subsequently be retrieved from the
text through statistical analysis. This chronological system
archives multi-agent provenance within the text itself, evolving
alongside the act of generation without reliance on external
meta-information.

II. PROVENANCE

This section reviews foundational methodologies for at-
tributing the provenance of digital content. We examine three
primary techniques, including metadata annotation, finger-
printing, and watermarking, outlining their principal capabil-
ities and inherent limitations.

A. Metadata Annotation

Metadata annotation involves attaching descriptive informa-
tion to data, detailing aspects such as origin of data, identity
of author, time of creation, and history of usage. This archival
practice facilitates data organisation and retrieval, forming the
backbone of many provenance management systems [19]–
[21]. Cryptographic techniques are often applied for certi-
fying signatures [22], timestamps [23] and audit trails [24].
However, the fundamental limitation of metadata lies in its
extrinsic nature. Metadata exists apart from the content it
describes, making it susceptible to removal, manipulation or
disassociation. This separation can compromise traceability,
particularly in environments where imperfect transmission,
format conversion or adversarial actions may occur.

B. Fingerprinting

Fingerprinting refers to the process of generating identifi-
able representations, known as fingerprints, that can uniquely
identify objects [25]–[27]. Fingerprinting methods can be
broadly classified into two primary categories: cryptographic
hashing and perceptual hashing. Cryptographic hashing com-
putes fixed-size digests from arbitrary-length inputs using one-
way hash functions designed to be sensitive to input changes
with low probability of collisions [28]–[30]. It is characterised
by the avalanche effect, whereby a minimal change in the
input propagates and results in a drastically different hash
output. However, this sensitivity to data integrity, albeit essen-
tial for tamper-proofing, poses limitations in scenarios where
content-preserving transformations are expected. Perceptual
hashing extracts robust content-dependent features from data
that remain stable under content-preserving transformations,
thereby enabling similarity-based identification [31]–[33]. It is

particularly applicable to multimedia content, which is often
subject to compression, resampling, or format conversion. By
determining the degree of similarity between two pieces of
content, it facilitates fuzzy matching for applications such
as duplicate detection and similarity search. However, this
robustness to modifications comes at the cost of reduced dis-
criminability, potentially causing collisions between different
contents that share similar global structures. Cryptographic
hashing offers high sensitivity for discriminability but fails
under content transformations, whereas perceptual hashing
provides robustness against content transformations but lacks
strong guarantees of uniqueness. This trade-off between col-
lision resistance and fault tolerance reflects a fundamental
dilemma between sensitivity and robustness.

C. Watermarking

Watermarking is the practice of embedding auxiliary in-
formation into the content subject to imperceptibility con-
straints with respect to human perception, thereby enabling
self-contained traceability without reliance on external meta-
data [34]–[40]. A watermark can carry provenance-related in-
formation such as unique identifiers and timestamps, providing
the capability of collision resistance. In addition, it can be
embedded in a way that survives common content-preserving
operations such as compression, photometric distortion or
geometric transformation, thus offering robust proof of prove-
nance in multimedia distribution. The concept of watermarking
has been applied to generative foundation models for prove-
nance tracing of AI-generated synthetic content [41]. A repre-
sentative methodology is based on biasing the token sampling
process during text generation, controlling the distribution of
selected tokens to form statistically detectable patterns [42].
It follows the principle of zero-bit watermarking, in which no
explicit information is embedded; rather, provenance is verified
by testing for the presence or absence of a given watermark.
In multi-agent environments, however, zero-bit watermarking
may not be directly applicable because it typically attributes
each piece of content to a single source authority. While in
principle it is possible for multiple watermarks to coexist
within a single object without mutual interference or overwrit-
ing each other, such coexistence is not always guaranteed [43].
Even when multiple watermarks coexist, the temporal order of
sequential embedding may not be reliably determined. This
uncertainty calls for methodological reconsideration under
circumstances where multiple agents interact and collaborate
in a generative chain.

III. CHRONOLOGY

This section introduces the proposed chronological system
for tracking multi-agent provenance in language generation.
We formalise the notion of a chronicle, present a scalable code-
book construction, describe the feedback loop for recursively
updating chronicles, and detail the encoding and decoding pro-
cedures that enable post hoc recovery of generative histories
from text alone.
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Fig. 1. Overview of the chronological system for provenance tracking through encoding, decoding and updating of chronicles within a feedback loop.

A. Chronicle Definition

Consider a set of n distinct AI agents powered by foun-
dation models. A chronicle is defined as a symbolic chain of
length T (i.e. the number of generative steps), represented by

x = [x1, x2, . . . , xT ], (1)

where each symbol xt ∈ {0, 1, . . . , n} indicates the identity
of the agent assigned at timestep t, and the symbol 0 denotes
a null or unassigned agent. The set of all valid chronicles is
defined as

X = {0, 1, . . . , n}T . (2)

Each unique chronicle x is associated with a corresponding
binary codeword

c(x) ∈ {0, 1}|V|, (3)

where V denotes the vocabulary of the underlying foundation
model. The codeword marks a sparse subset of the vocabulary
(e.g. with 50% of entries set to 1). The tokens corresponding
to indices marked with 1 in the codeword are biased towards
during generation. The collection of all codewords defines the
codebook

C = {c(x) | x ∈ X}. (4)

The cardinality of the codebook is |X | = (n + 1)T , encom-
passing all possible chronicle configurations.

B. Codebook Construction

A codebook C is of dimension |X | × |V|, where |X | =
(n+ 1)T is the number of all valid chronicles and |V| is the
vocabulary size of the foundation model. Direct generation
and storage of such a codebook with unique codewords can

be computationally prohibitive and memory-intensive, partic-
ularly as the agent population, the chronicle length and the
vocabulary size scale up. To keep the construction within a
tractable combinatorial space, we formulate a scalable code-
book generation strategy that first constructs a base codebook,
where each codeword has reduced dimensionality d and then
expands each codeword to match the full vocabulary size
|V| through repetition and structured padding. In the base
codebook, each codeword is generated randomly as a binary
vector of constant Hamming weight kmin = ⌊ρ · d⌋, where
ρ ∈ (0, 1) is a vocabulary coverage rate. A generated vector
is added to the codebook only if its pattern does not duplicate
any previously stored codeword, and this stochastic generation
process repeats until (n+1)T unique codewords are obtained.
Each base codeword is then repeated as many times as possible
to reach length |V|, with the remaining positions padded to
satisfy the target Hamming weight k = ⌊ρ · |V|⌋.

C. Chronological System with Feedback Loop

At each timestep t, an antecedent chronicle x(t−1) is
decoded and then updated into a subsequent chronicle x(t)

to be encoded, as illustrated in Figure 1 and presented in
Algorithm 1. The process begins with an initial chronicle set
to the all-zero sequence. The chronicler updates the antecedent
chronicle by inserting the informed agent identity at position
t, leaving the remaining entries as zeros. In other words,
the subsequent chronicle is formed by concatenating a prefix
of agent identities up to the preceding timestep, an infix
corresponding the current agent identity, and a suffix of zero
symbols to match the predefined chronicle length, yielding

x(t) = x
(t−1)
1:t−1 ∥ xt ∥ 0t+1:T . (5)
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Fig. 3. Procedure of chronicle decoding, where the chronicle is retrieved from the generated text through statistical analysis of lexical choices.

The up-to-date chronicle is passed to the encoder, which
embeds it into the text during the generation process of the
designated agent. Once the text is generated, it is returned
to the decoder, which retrieves the embedded chronicle. For
the next generation step, the chronicle is updated, and the
generated text is formatted into a prompt that includes the task
description and, optionally, a persona that specifies the role-
specific traits, behavioural constraints or stylistic preferences.
The continuation of this feedback loop recursively updates the
chronicle across timesteps, thereby enabling the tracking of
agentic provenance throughout the generative process. Note
that the update of the chronicle may optionally be performed
without explicit knowledge of the current timestep; instead, the
position of the next zero symbol serves as a clue for inferring

it. While the relaxation of timestep awareness offers flexibility
in application scenarios where timestep tracking is unavail-
able or undesirable, it sacrifices fault tolerance. The update
mechanism under this relaxation becomes sensitive to errors
in preceding steps, where a single erroneous chronicle may
trigger a cascading collapse across the remaining timesteps.

D. Chronicle Encoder

At each timestep t, the encoder receives a prompt and an
up-to-date chronicle x(t), along with access to a predefined
codebook, as illustrated in Figure 2. The codeword corre-
sponding to the given chronicle c(x(t)) is retrieved from the
codebook. Given the prompt, the designated agent predicts
an unnormalised probability distribution (i.e. logits) over the
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Algorithm 1: Chronological System

// --- functions ---
Function Encoder(prompt, C, x):

retrieve codeword c(x) from codebook C
while terminal criterion not met do

predict logits ℓv conditioned on prompt
apply bias according to codeword c(x):
foreach v ∈ V do

if cv = 1 then
ℓ̃v ← ℓv + δ;

else
ℓ̃v ← ℓv;

convert logits to probabilities pv = softmax(ℓ̃v)
sample a token from probability distribution pv

detokenise tokens v to text
return text

Function Decoder(text, C):
tokenise text into tokens v
generate all valid chronicles X
foreach x ∈ X do

retrieve codeword c(x) from codebook C
compute frequency f(x) =

∑
v∈v I(cv = 1)

infer likeliest chronicle x̂ = argmaxx f(x)
return x̂

// --- main program ---
set vocabulary V
set number of agents n
set number of timesteps T
initialise codebook C ← {c(x) | x ∈ X}
where X = {0, 1, . . . , n}T and c(x) ∈ {0, 1}|V|

initialise chronicle x(0) ← 01:T

for t← 1 to T do
assign agent identity xt for generation process
construct prompt for generation process
update chronicle:
x(t) ← x

(t−1)
1:t−1∥xt∥0t+1:T

encode chronicle:
text← Encoder(prompt, C, x(t))
decode chronicle:
x(t) ← Decoder(text, C)

entire vocabulary. Let ℓv denote the logit associated with token
v ∈ ∥V∥, and let cv denote the corresponding binary digit in
the codeword. Each logit is then selectively biased to favour
tokens marked in the codeword; that is,

ℓ̃v =

{
ℓv + δ, if cv = 1,

ℓv, otherwise,
(6)

where δ > 0 is a bias parameter. The biased logits are then
normalised via the softmax function to obtain a probability
distribution

pv = softmax(ℓ̃v) =
eℓ̃v∑∥V ∥
i=1 eℓ̃i

. (7)

A token is sampled from the probability distribution, and the
text generation process continues until an end criterion is met,
such as reaching a maximum token limit or a terminal state.
The resulting sequence of tokens v is then detokenised to form
natural language text, within which the chronicle is implicitly
embedded via lexical bias.

E. Chronicle Decoder

Given the generated text, the decoder estimates the embed-
ded chronicle by comparing the lexical statistics computed
over all possible codewords, as illustrated in Figure 3. The
generated text is first tokenised into a sequence of tokens v.
For each possible chronicle x, the corresponding codeword
c(x) is retrieved from the codebook. The frequency of matches
f(x) is then computed based on the number of marked tokens
in the codeword that appear in the generated text; that is,

f(x) =
∑
v∈v

I(cv = 1), (8)

where I denotes the indicator function that returns 1 if the
condition holds and 0 otherwise. The most probable chronicle
x̂ is then estimated by selecting the one with the maximal
frequency:

x̂ = argmax
x∈X

f(x). (9)

The decoded chronicle x̂ serves as the reconstructed trace
of agentic interactions, enabling post hoc forensic attribution
from the generated text alone.

IV. EXPERIMENTS

This section evaluates the proposed chronological system
through simulations of continual language generation in-
volving multiple agents, in which the content is subject to
successive transformations. We assess the complexity of the
chronicle space, the accuracy of the recovered provenance, and
the quality of the generated text under varying experimental
conditions.

A. Experimental Setup

Data: We adopted the final paragraph from Computing
Machinery and Intelligence by A. M. Turing as the initial seed
text. At each generation step, an agent was randomly selected
and prompted with the instruction: Continue the writing from
this point onwards, as illustrated in Figure 4. This process
forms a Markovian chain of generation, where the prompt
provided to each agent depends solely on the text generated
by its immediate predecessor. This experimental design reflects
a continual writing process that operates without memory of
the full generation history. As a result, little, if any, trace
of past agent assignments is preserved in the text, posing a
challenge for recovering the underlying chronology of agent
participation.
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We may hope that machines will eventually compete with men in all purely intellectual fields. But which are the best
ones to start with? Even this is a difficult decision. Many people think that a very abstract activity, like the playing
of chess, would be best. It can also be maintained that it is best to provide the machine with the best sense organs
that money can buy, and then teach it to understand and speak English. This process could follow the normal
teaching of a child. Things would be pointed out and named, etc. Again I do not know what the right answer is, but
I think both approaches should be tried. We can only see a short distance ahead, but we can see plenty there that
needs to be done.

Continue the writing from this point onwards:

CHRONICLE

1 3 1 2

 Continue the writing from this point onwards:

 Continue the writing from this point onwards:

 Continue the writing from this point onwards:

text by agent 1 @ timestep 1

text by agent 1 @ timestep 1

text by agent 3 @ timestep 2

text by agent 1 @ timestep 3

text by agent 2 @ timestep 4

text by agent 3 @ timestep 2

text by agent 1 @ timestep 3

Dear agent 1

 Dear agent 3

 Dear agent 1

 Dear agent 2

timestep 1 timestep 2 timestep 3 timestep 4

— A. M. Turing in Computing Machinery and Intelligence (1950)

Fig. 4. Continual generative chain with multiple agents, where the chronicle
is inferred post hoc from the generated content at the final timestep.

Agents: All agents were instantiated from the same open-
source foundation language model, Llama with 1 billion
parameters, chosen for its efficiency and practicality in deploy-
ment on lightweight hardware. The generation process was
controlled by standard sampling parameters to regulate the
trade-off between diversity and coherence. The temperature
was set to 0.3 to moderately sharpen the probability distribu-
tion over tokens, controlling the degree of randomness in gen-
eration. The sampling was further restricted by selecting from
the top 1000 most probable tokens (hard-threshold sampling)
and from the set of most probable tokens with cumulative
probability more than 0.9 (nucleus sampling). The maximum
token length was limited to 150 tokens per generation step.

Hyperparameters: The agent population n was varied from
2 to 4, the chronicle length T from 3 to 6, and the bias
strength δ from 1 to 3. For each experimental configuration,
we conducted 100 trials to obtain reliable statistics.

B. Chronicle Space Complexity

Figure 5 analyses the scaling effect of the number of valid
chronicles |X | with respect to the chronicle length T and
the agent population n. Recall that the decoding process
requires an exhaustive search over the entire set of valid
chronicles to infer the most probable agent sequence from the
generated text. As such, the number of valid chronicles directly
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Fig. 5. Combinatorial scaling of the chronicle space |X | as a function of
chronicle length T and agent population n.

determines the computational complexity of the decoding pro-
cedure. An exponential increase in the number of chronicles
was evident as the chronicle length grows from 3 to 6 for
varying numbers of agents from 2 to 4. This scaling effect
reflects the combinatorial nature of multi-agent provenance
tracking, where longer chronicles and larger agent populations
lead to a combinatorial explosion in the size of the search
space over possible chronicles.

C. Chronological Accuracy

Figure 6 examines the chronological performance using a
timestep-wise accuracy metric.

At each timestep t, the accuracy was computed as the
proportion of correctly decoded chronicle symbols up to the
current step, defined as:

ACC =

∑t
i=1 I(x̂i = xi)

t
, (10)

where x̂i and xi denote the predicted and ground-truth sym-
bols at timestep i, respectively, and I(·) denotes the indica-
tor function. This metric captures the phenomenon of error
propagation, wherein an incorrectly decoded symbol is carried
forward into subsequent chronicle updates and encoding steps,
potentially leading to error accumulation. It was observed that
the accuracy tended to decrease as the timestep increased,
reflecting the challenge of preserving provenance integrity
over extended generation horizons. Moreover, as the maximum
chronicle length T increased, the accuracy further declined due
to the exponentially expanding size of the candidate chronicle
space |X |. This degradation, nevertheless, was alleviated by
increasing the bias strength δ. When the bias strength was
raised from 1 to 2 or 3, near-perfect accuracy was consistently
achieved across all experimental configurations, demonstrating
the robustness of chronological identification under appropri-
ate lexical bias.
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Fig. 6. Timestep-wise chronological accuracy under varying bias strengths, chronicle lengths and agent populations.
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Fig. 7. Timestep-wise generative perplexity under varying bias strengths and agent populations with fixed chronicle length.

D. Generative Perplexity

Figure 7 evaluates the impact of increasing bias strength in
the sampling process on generation quality. To quantify this
effect, we measured the perplexity of the generated text, which
captures the model’s uncertainty in producing the observed
sequence of tokens. Perplexity represents the inverse of the
average likelihood (i.e. the geometric mean) of the predicted
token probabilities over a given sequence v, or equivalently,
the exponentiated average negative log-likelihood, defined as:

PPL =

(∏
v∈v

pv

)− 1
∥v∥

= exp

(
− 1

∥v∥
∑
v∈v

log pv

)
, (11)

where pv denotes the probability assigned by the model to to-
ken v, and |v| is the length of the sequence. Higher perplexity
indicates that the model assigns lower confidence to the gener-
ated tokens, reflecting increased uncertainty or degradation in

generation quality. For this analysis, the chronicle length was
fixed at 6, and perplexity was computed at each timestep under
varying bias strengths and numbers of agents. As expected,
increasing the bias strength led to higher perplexity, indicating
a degradation in generation fluency and naturalness. While
the first generation step typically exhibited lower perplexity,
subsequent steps did not show a consistent increasing trend,
suggesting that the impact of biased sampling stabilises after
the initial generation step. Moreover, the number of agents
involved did not appear to have a substantial impact on
perplexity, which might imply that generation quality was
primarily influenced by the bias strength rather than the
complexity of the multi-agent setting.
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V. CONCLUSION

The problem of tracking multi-agent provenance amidst
the continual act of shared creation was investigated in this
study. We introduced a chronological system for tracking
provenance in language generation, where the history of agent
contributions is not explicitly recorded as metadata but em-
bedded within the generated content itself through the process
of sampling lexical tokens. Experimental results validated
the performance of the proposed system under conditions
of sequential content overwriting. The combinatorial growth
governed by the chronicle length and the agent population
reflects the scaling complexity of the system. Furthermore,
improved chronological accuracy came at the cost of increased
linguistic perplexity as the bias strength was raised, revealing a
trade-off between forensic traceability and generative quality.
Future research may explore chronological provenance in more
complex cyber ecosystems, including multimodal integration
and human-in-the-loop generation, where provenance trace-
ability constitutes a foundational tenet for trustworthy AI.
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