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Abstract

The security of private communication is in-
creasingly at risk due to widespread surveil-
lance. Steganography, a technique for embed-
ding secret messages within innocuous carri-
ers, enables covert communication over mon-
itored channels. Provably Secure Steganogra-
phy (PSS) is state-of-the-art for making stego
carriers indistinguishable from normal ones by
ensuring computational indistinguishability be-
tween stego and cover distributions. However,
current PSS methods often require explicit ac-
cess to the generative model’s distribution for
both sender and receiver, limiting their prac-
ticality in black-box scenarios. In this paper,
we propose a provably secure steganography
scheme that does not require access to explicit
model distributions for both sender and receiver.
Our method incorporates a dynamic sampling
strategy, enabling generative models to em-
bed secret messages within multiple sampling
choices without disrupting the model’s nor-
mal generation process. Extensive evaluations
of three real-world datasets and three LLMs
demonstrate that our black-box method is com-
parable with existing white-box steganography
methods in terms of efficiency and capacity
while eliminating the degradation of steganog-
raphy in model-generated outputs.

1 Introduction

Personal privacy, particularly the right to pri-
vate communication and freedom of speech in
cyberspace, is increasingly threatened by exten-
sive surveillance and censorship (Gill et al., 2015;
Sundara Raman et al., 2020). To protect privacy,
many encrypted communication systems, such as
Tor (Reed et al., 1998; Dingledine et al., 2004),
are employed to safeguard the confidentiality of
transmitted messages. However, the traffic gen-
erated by these encrypted systems can be easily
identified, making it susceptible to detection and
blocking by censors. Steganography is a tech-
nique for embedding and transmitting private mes-

sages (stego) within seemingly innocuous carriers
(cover), such as images or text, over monitored
channels (Cogranne et al., 2022; Sharifzadeh et al.,
2020; Kaptchuk et al., 2021; Ding et al., 2023). Its
primary goal is to conceal not only the content of
secret messages but also the fact that secret com-
munication is taking place.

Steganographic methods can generally be cat-
egorized into modification-based (Li et al., 2015;
Fridrich and Goljan, 2004), retrieval-based (Zhou
et al., 2019; Liu et al., 2020), and generation-based
approaches. With the rapid advancement of gen-
erative models capable of approximating target
data distributions and synthesizing realistic carri-
ers (e.g., ChatGPT generating human-like text or
Diffusion models creating high-quality images),
generative steganography has become the dom-
inant approach. It eliminates the need for pre-
existing cover carriers and significantly boosts ca-
pacity by leveraging generative distributions. Many
researchers have developed advanced steganogra-
phy techniques for mapping model distributions to
cover data in the text domain, such as Bins (Fang
et al., 2017), Arithmetic Coding (AC)(Ziegler et al.,
2019), Huffman Coding (HC) (Yang et al., 2018),
and Adaptive Dynamic Grouping (ADG) (Zhang
et al., 2021), enabling the generation of fluent ste-
gotext with high embedding capacity. However,
these heuristic methods often alter the original gen-
erative model’s distribution, introducing security
risks. Well-designed steganalysis classifiers (Xue
et al., 2023; Yang et al., 2020a) can exploit these
discrepancies, gaining a non-negligible advantage
in distinguishing between cover and stego distribu-
tions.

Researchers began exploring provably secure
steganography decades ago (Cachin, 1998; Hop-
per, 2004). In 1998, Cachin (Cachin, 1998)mod-
eled steganography systems from an information-
theoretic perspective, using Kullback–Leibler (KL)
divergence between cover and stego distributions
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to evaluate security, with perfect security achieved
when the KL divergence is zero. From a compu-
tational complexity perspective, Hooper (Hopper,
2004) laid the groundwork for secure steganog-
raphy and provided example constructions. A
stegosystem is considered secure if any probabilis-
tic polynomial-time distinguisher cannot differen-
tiate between the distributions of stego and cover,
meaning they are computationally indistinguish-
able, thus making the stegosystem provably secure.

Recent advancements in generative models have
enabled the simulation and generation of realistic
carrier distributions, driving the practical applica-
tion of provably secure steganography. For textual
carriers, the rise of Large Language Models has
made text distributions more accessible. State-of-
the-art methods like METEOR (Kaptchuk et al.,
2021), DISCOP (Ding et al., 2023), and iMEC
(de Witt et al., 2022), with formal security proofs,
embed secret bits by manipulating the sampling
process based on the predicted symbol distribu-
tions. A detailed introduction to provably secure
steganography can be found in the Appendix A.

However, the quality of the stego generated by
the aforementioned provably secure methods de-
pends entirely on the explicit distributions provided
by generative models. In real-world scenarios,
many model owners who offer high-quality gen-
erative models do not disclose the underlying dis-
tributions, as they seek to protect their intellectual
property and prevent targeted attacks such as model
distillation. Instead, they only provide the final
generated output. This lack of access to model dis-
tributions makes it difficult to apply these provably
secure methods in black-box scenarios where the
model’s internal probability is unknown.

Unlike the aforementioned provably secure
steganography algorithms that rely on white-box
models, we propose a provably secure steganogra-
phy algorithm effective in black-box scenarios. Our
method relies on sampling rather than explicit dis-
tributions to embed secret information. The sender
and receiver communicate securely through the
sampling results transmitted by the channel.

Our main contributions are as follows:
1. We propose a provably secure steganogra-

phy scheme based on sampling and provide formal
security proof.

2. We propose an adaptive dynamic stegano-
graphic sampling method that adjusts the number
of samples based on the current sampling collision

situation, aiming to balance collision and embed-
ding capacity.

3. Extensive experiments show that our scheme
is both effective and efficient. In black-box scenar-
ios, it achieves comparable or even superior em-
bedding capacity and high efficiency to white-box
methods, while ensuring guaranteed security.

2 Proposed Method

2.1 Definition

Formally, our steganography scheme
∑

C is
a triple of probabilistic algorithms

∑
C =

(KeyGenC ,EncC ,DecC) parameterized by a sam-
plable covertext channel C.

• KeyGenC(1λ) takes arbitrary input with
length λ and generates the key K shared be-
tween the sender and receiver.

• EncC(K,m,H) takes the key K, a secret mes-
sage m ∈ {0, 1}∗ and the channel history
H = {h0, h1, ..., h|H|−1} and returns a ste-
gotext s = s1||s2||...||sn, which is a symbol
sequence with si ∈ C.

• DecC(K, s,H) takes as input the key K, the
stegotext s and the histroy H and returns the
extracted secret message m on success or a
empty string on failure.

The steganography scheme
∑

C should satisfy cor-
rectness and security.

• Correctness:
∑

C is correct if for any his-
tory H and any message m, an encoded secret
message should be recover by the decoding
algorithm only with negligible probability of
error.

Pr[DecC(K, EncC(K,m,H),H) = m] ≥ 1− negl(λ),
(1)

where negl(λ) is the negligible function that
correlates to the secure parameter λ.

• Security:
∑

C is computationally indistin-
guishable against chosen hiddentext attack if
for all polynomial-time adversaries AC , for
all K:

|Pr[AEncC(K,·,·)
C = 1]− Pr[AOC(·,·)

C = 1]| ≤ negl(λ),
(2)

where OC(·, ·) is an oracle that can sample ran-
domly from cover distribution C.



2.2 Intuition

High-level sketch: At a high level, our steganog-
raphy scheme operates autoregressively; each step,
we sample multiple candidate from the efficiently
sampleable channel using the secret key at that
time, We map the secret information onto the sam-
ples taken at each time step. To illustrate with
a simple example in Figure 1, if we sample four
times (random number), the four sampling results
can correspond to fragments of the secret informa-
tion: "00", "01", "10", and "11" respectively. If
the secret information corresponds uniquely to a
sampling result, we can decode the secret informa-
tion at that moment with a unique extraction result.
However, if the sampling result corresponding to
the secret information is the same as that of an-
other possible piece of information, this is known
as a collision (time t+ 2 in Figure 1). A collision
does not affect the embedding process of the secret
information. In fact, it can still provide useful in-
formation to help us rule out some possible secret
messages. We do not avoid situations where colli-
sions occur. We will explain this in greater detail
in later sections.

2.3 Steganography Scheme

2.3.1 Encoding
Our embedding method can be divided into two
steps: determining the number of samples, sam-
pling and identifying conflict intervals. The pseu-
docode for the overall encoding algorithm is pre-
sented in Algorithm 1, while the pseudocode for
the adaptive dynamic sampling algorithm at each
time step is shown in Algorithm 2.

Determining the number of samples At each
time step, we do not sample deterministically; in-
stead, we dynamically adjust the number of sam-
ples based on the conflicts from the previous step.
The intuition is that if many conflicts occurred pre-
viously, we reduce the number of samples this time
to avoid conflicts, implicitly increasing the unique
decoding probability.

Specifically, we record the size of the collision
set CS at each time step to determine the num-
ber of samples for the next step. Unlike instant
code construction, we fully utilize the accumulated
information from each time step. At every step,
we expand the secret information to be embed-
ded, with the number of expansions determined by
log2(2

N/|CS|), where N is the maximum num-
ber of secret bits that can be expanded at once.

This function is inspired by TCP flow control with
sliding window adjustments. If a collision occurs,
the window size decreases; otherwise, it increases
multiplicatively. Once the expansion length L is
determined, we expand the secret information by
adding a bit (0 or 1). In decimal, this corresponds to
multiplying by 2 or by 2 and adding 1. The result-
ing expand_list contains the bits to be embedded,
and its size determines the number of samples for
this step.

Sampling and Identifying Collision Set
In the sampling phase, the only difference from

standard language model sampling is that we sam-
ple |expand_list| samples at once with replace-
ment. We first determine the token corresponding
to the secret information as the output s⋆ for this
time step in the language model. At the same time,
we identify all other expand_list values that fall
within the result of s⋆ , building a new conflict list
CS (which must include at least one item—the
secret information itself). Finally, the secret infor-
mation’s bit index is shifted by L positions, and the
updated conflict list is carried into the next autore-
gressive time step.

Moreover, since the source distribution for mul-
tiple sampling attempts at each step remains the
same, we can leverage fast sampling methods, such
as alias sampling (Walker, 1977, 1974), to effi-
ciently draw multiple samples from the same dis-
tribution. This ensures that the sampling process
does not impose a significant time burden on the
overall steganographic procedure.

Algorithm 1 Main Loop of Secret Message Encod-
ing

Input: Language Model M , History H , Shared
Key K, Secret Message m, Max Embedded
Bits N .

Output: Stego Message S.
1: S ←− ∅
2: CS0 ←− {0, 1}
3: while not the end of m And EOS /∈ S do
4: Ct ←−M(H)
5: s⋆, CSt, bitst ←−

ADS(Ct,m,K, CSt−1, N, bitst−1)

6: H ←− H||s⋆
7: S ←− S||s⋆
8: end while
9: return S



a b c d e

a b c d e
0 1

10

(2)
m=10100111...   

(10)
m=10100111... 

a b c d e
10

(41)
m=10100111...   

a b c d e
10

(83)
m=10100111... 

Figure 1: An example of our method when the maximum sampling attempts are set to 4 at each time step. Here, m
represents the secret information, and st is the steganographic token output at time t. The red arrows ↓ indicate
the sampling results corresponding to the secret information, red secret information denotes the already embedded
secret bits, and underlined text represents the secret information that can be immediately extracted.

2.3.2 Decoding

The decoding process mirrors the encoding process,
with the algorithm executing the same two stages,
as shown in Algorithm 3. To be specific, the re-
ceiver inputs the stego text S into the generative
model M autoregressively to obtain a sampleable
channel. Similar to the sending process, the re-
ceiver calculates the required number of samples at
the current timestep t and samples from the channel.
By observing how many sampling results match the
current stego token s⋆, an updated collision set CS

′

is constructed. If the collision set contains only one
element, it means the sampling result representing
the secret information is unique, allowing determin-
istic decoding of all secret message m up to the
current timestep. If the collision set contains more
than one element, the new collision set is recorded
for decoding in the next time step. At this point, the
determinable secret information m corresponds to
the common prefix of the binary representations of
all elements in the collision set. This process con-
tinues until all stego tokens are processed, yielding
the fully recovered secret message m. The specific
decoding algorithm for a single time step is shown
in Algorithm 4.

2.4 Proof of security

Firstly we consider the case where only 1 bit
of secret message (mi = 0 or 1) is embedded.
P [mi = 0] + P [mi = 1] = 1. Then we sample
twice from the model distribution can get 2 sample
results, namely c0 and c1. Considering any symbol
a from the model alphabet, we assume PS [a] is the
probability of token a being selected within our
steganography framework which can be calculated

as:

PS [a]

= P [mi = 0] · PS [a|mi = 0] + P [mi = 1] · PS [a|mi = 1]

= P [mi = 0] · P [c0 = a] + P [mi = 1] · P [c1 = a]

= P [mi = 0] · PM [a] + P [mi = 1] · PM [a]

= PM [a]

Similarly, this conclusion also holds when em-
bedding multiple bits of information because our
steganography schemes only sample multiple times
from the model and do not distort the original
model distribution. A more rigorous hybrid proof
of the security of our method is provided in the
appendix B.

3 Experiments and Analysis

3.1 Experiment Settings

Task Our steganography method is essentially a
universal steganography method that, in theory,
can be compatible with any sequential form of
carriers, as long as sampling results from the car-
rier distribution are available. It is well-suited for
black-box scenarios where the detailed distribu-
tion is unknown. In the following discussion, We
primarily use text generation tasks to demonstrate
out scheme’s effectiveness, as text generation with
large language models is currently widely popular.

Baseline We evaluated our adaptive dynamic
sampling steganography method using the random
sampling decoding approach, alongside the ideal
steganography algorithm and provably secure gen-
erative steganography algorithms with 100% de-
terministic decoding: METEOR (Kaptchuk et al.,
2021) and DISCOP (Ding et al., 2023), as well



Algorithm 2 ADAPTIVEDYNAMICSAMPLING

(ADS)
Input: Sampleable Channel C, Secret Message

m, Shared Key K, Collision Set CS, Max
Embedded Bits N , Bit Index bits.

Output: Selected Symbol s⋆,Updated Collision
Set CS

′
Updated Bit Index bits.

1: L←− ⌊log2(2N/|CS|)⌋
2: CS

′ ←− ∅
3: expand_list←− CS
4: for j = 0 to L− 1 do
5: tmp←− expand_list.copy()
6: expand_list←− ∅
7: for i ∈ tmp do
8: expand_list.append(2 · i)
9: expand_list.append(2 · i+ 1)

10: end for
11: end for
12: n←− |expand_list|
13: {s0, ...sn}

Sample with K←−−−−−−−− C

14: index
map←−− m[: bits+ L]

15: s⋆ ←− sindex
16: for xj ∈ expand_list do
17: if sj = s⋆ then
18: CS

′
.append(xj)

19: end if
20: end for
21: bits+ = L
22: return Selected Symbol s⋆,Updated Collision

Set CS
′
, Bit Index bits.

as its variant, DISCOP Reorder (DISCOP with ca-
pacity boost). DISCOP and its variant were im-
plemented in Cython, while the others were imple-
mented in Python.

Dataset We used three types of datasets to simu-
late cover text channels. The first is a uniform dis-
tribution, simulating high entropy situations where
each token in the language model’s tokenizer vo-
cabulary has an equal probability. The second is a
QA dataset, using the WILD (Ni et al., 2023), a typ-
ical application scenario where the language model
answers questions. Finally, we used the XHS (Bai
et al., 2024) dataset, which simulates social me-
dia text in Chinese, characterized by an informal,
fragmented style typical of social network commu-
nication.

Model We evaluate our steganography method
on three large language models: MISTRAL3 (Jiang
et al., 2023), QWEN2 (Bai et al., 2023), and

Algorithm 3 Main Loop of Secret Message Decod-
ing

Input: Stego Message S, Language Model M ,
History H , Shared Key K, Max Embedded
Bits N .

Output: Secrect Message m.
1: m←− ∅
2: CS0 ←− {0, 1}
3: Parse S = {s0, s1, ...s|c|−1}
4: for i ∈ 0, 1, ..., |c| − 1 do
5: Ct ←−M(H||S[: i])
6: m, CSt, bitst ←−

ADS−1(Ct, si,K, CSt−1, N, bitst−1)
7: end for
8: return m

LLAMA3 (Dubey et al., 2024), using the WILD
and XHS datasets, each with a model scale of 7B
parameters. We customize the vocabulary size for
testing under the uniform distribution. The prompts
used for WILD and XHS datasets correspond to the
questions within each dataset. These prompts are
loaded into the function apply_chat_template
and then become the input of LLMs. For each
test, we let the models generate 1,000 samples with
top-p = 1.0, base temperature = 1.0, the max
generated length is 500. All our experiments were
conducted on 2 × NVIDIA A5000 GPUs (32GB
RAM) and 24 × Intel Xeon w5-3423 CPUs.

3.2 Metrics

We evaluate the performance of our steganogra-
phy scheme in terms of Security, Efficiency, and
Capacity.

3.2.1 Security
Although our steganography scheme’s computa-
tional security has been theoretically proven in the
Methods section, we further validate its security
through linguistic steganalysis in adversarial sce-
narios and assess its intuitive imperceptibility based
on linguistic quality.

Steganalysis. We utilized three classic steganal-
ysis models to assess the imperceptibility of ste-
gotexts: TS-CSW (Yang et al., 2020b) based on
pre-trained BERT (Liu et al., 2023). We trained the
detectors on 1,000 samples of generated stegotext
and corresponding cover texts, randomly sampled
from the same language model, using a 3:1:1 split
for training, validation, and testing. With a learn-
ing rate of 1e-4, training was conducted for three



Algorithm 4 ADAPTIVEDYNAMICSAMPLING−1

(ADS−1)
Input: Sampleable Channel C, Shared Key K,

Collision Set CS, Max Embedded Bits N , Bit
Index bit, Selected Symbol s⋆.

Output: Decoded Secret Message m, Updated
Collision Set CS

′
.

1: L←− ⌊log2(2N/|CS|)⌋
2: CS

′ ←− ∅
3: expand_list←− CS
4: for j = 0 to L− 1 do
5: tmp←− expand_list.copy()
6: expand_list←− ∅
7: for i ∈ tmp do
8: expand_list.appned(2 · i)
9: expand_list.append(2 · i+ 1)

10: end for
11: end for
12: n←− |expand_list|
13: {s0, ...sn}

Sample with K←−−−−−−−− p
14: for sj ∈ {s0, ...sn} do
15: if sj = s⋆ then
16: CS

′
.append(expand_list[j])

17: end if
18: end for
19: if |CS

′ | = 1 then
20: m

map←−− CS
′
[0]

21: end if
22: m

CommonPrefix−map←−−−−−−−−−−−−−− CS
′

23: bits+ = L
24: Return: Decoded Secret Message m, Updated

Collision Set CS
′
, Bit Index bits.

epochs. After repeating the process three times, the
average F1 score from the test set was used as the
steganalysis F1 score.

Linguistic Quality. We evaluate linguistic qual-
ity using perplexity (PPL) and diversity. PPL mea-
sures the fluency of generated text, with lower PPL
values indicating smoother and more natural text.

PPL = exp

(
− 1

N

N∑
i=1

log p(xi|x1:i−1)

)
. (3)

As for text diversity, we used the distinctn met-
ric. This metric needs to find the unique pieces of
tokens in the text and calculate their ratio.

distinctn =
count(unique n− grams)

count(n− grams)
. (4)

3.2.2 Efficiency

Time. For real-time covert communication, it’s
important to complete stego embedding quickly.
To measure this efficiency, We measure the average
time of stego generation, calculated by dividing the
total time taken for the entire process by the length
of the embedded message. The shorter, the better.

3.2.3 Capacity

Entropy. This represents the theoretical upper
bound of the embedding capacity, measured in bits
per symbol. For texts, a symbol usually refers
to a token generated by large language models
(LLMs). Entropy is calculated as: Entropy =
1
N

∑N
i p(xi|x<i) log2 p(xi|x<i).

Embedding Capacity. This metric measures the
average number of bits that can be successfully em-
bedded and extracted, expressed in bits per token.

Utilization. This metric reflects the efficiency
of the embedding process, representing the ratio
of the actual embedding capacity to the theoretical
capacity limit (Entropy). The larger the number,
the better.

3.3 Evaluation Results and Discussion

3.3.1 On the Capacity & Entropy

Although we do not use explicit distribution in-
formation, we prove that with a sufficiently large
number of samples, our method can still approx-
imate entropy, achieving a steganographic capac-
ity comparable to, or even better than, methods in
white-box scenarios. As shown in Tables 1 and
2, our method achieves the highest embedding ca-
pacity and entropy utilization, even outperforming
DISCOP Reorder, which has the best capacity un-
der white-box distribution. Suppose at a certain
time we sample samples from a uniform distribu-
tion of size n, with one sample representing the
secret information. The size of the set of all pos-
sible secret messages is m. Samples that do not
conflict with the one representing the secret infor-
mation can be eliminated during decoding, as their
corresponding secret information can be ruled out.
The expected number of secret information that can



Model Algorithm Capacity Time Linguistic Quality Imperceptibility

Entropy/token Embed bit/token↑ Utili.↑ Time↓ PPL Dist2 Dist3 Dist4 TS-CSW F1↓

MISTRAL

Random Sampling 0.9489 0 0 0.0295 1.9890 0.6073 0.8377 0.9208 -
METEOR 0.9870 0.5732 0 .5633 0.0298 2.0888 0.6135 0.8458 0.9275 54.23%3.95

DISCOP (R.) 0.9506 0.7683 0.7930 0.0427 2.0141 0.6086 0.8389 0.9215 51.42%1.24

DISCOP 0.9267 0.4242 0.4631 0.0379 1.9848 0.6044 0.8351 0.9192 51.51%1.32

Ours 0.9872 0.8964 0.9137 0.0295 2.0788 0.6097 0.8415 0.9246 50.18%1.62

QWEN RandomSampling 0.6934 0 0 0.0308 2.7253 0.5984 0.8298 0.9153 -
METEOR 0.7172 0.3977 0.5502 0.0312 2.7979 0.5989 0.8349 0.9203 54.75%2.26

DISCOP(R.) 0.6955 0.5166 0.7336 0.0756 2.7103 0.5958 0.8303 0.9147 50.84%2.01

DISCOP 0.6928 0.3261 0.4741 0.0533 2.76938 0.5974 0.8356 0.9238 49.94%1.39

Ours 0.7068 0.6491 0.9251 0.0308 2.7567 0.6024 0.8372 0.9204 49.83%1.58

LLAMA3 RandomSampling 0.6934 0 0 0.0312 1.7340 0.6090 0.8399 0.9222 -
METEOR 0.7172 0.4031 0.5574 0.0317 1.7815 0.6100 0.8465 0.9284 53.86%2.39

DISCOP(R.) 0.6955 0.5221 0.7425 0.0765 1.7083 0.6060 0.8408 0.9219 50.28%0.96

DISCOP 0.6928 0.3297 0.4795 0.0540 1.7405 0.6078 0.8456 0.9301 49.98%1.57

Ours 0.6983 0.5861 0.8393 0.0313 1.6896 0.6063 0.8339 0.9260 49.73%2.79

Table 1: Main Results on WILD. Higher capacity and utilization are better. Lower time is better. Linguistic quality
closer to random sampling is better. In our method, the number of sampling iterations is fixed at 29.

Model Algorithm Capacity Time Linguistic Quality Imperceptibility

Entropy/token Embed bit/token Utili. Time PPL Dist2 Dist3 Dist4 TS-CSW F1↓

MISTRAL RandomSampling 2.1963 0 0 0.0294 4.8066 0.5367 0.7639 0.8657 -
METEOR 2.2195 1.5028 0.6635 0.0299 4.8673 0.5183 0.7560 0.8614 52.91%3.83

DISCOP(R.) 2.2863 2.0416 0.8825 0.0427 5.0154 0.5345 0.7723 0.8792 51.84%3.67

DISCOP 2.2291 0.8450 0.3837 0.0370 4.8425 0.5219 0.7564 0.8620 50.97%3.03

Ours 2.1986 2.0378 0.9308 0.0298 4.9094 0.5341 0.7675 0.8721 50.81%2.12

QWEN RandomSampling 3.5673 0 0 0.0319 12.6965 0.7527 0.9198 0.9585 -
METEOR 3.6247 2.5283 0.6892 0.0328 13.4175 0.7634 0.9309 0.9704 52.38%3.10

DISCOP(R.) 3.5478 3.2606 0.9118 0.0824 14.7447 0.7498 0.9171 0.9542 50.28%2.64

DISCOP 3.5371 1.3595 0.3852 0.0523 12.8203 0.7365 0.9066 0.9467 50.03%2.96

Ours 3.7272 3.4928 0.9393 0.0299 13.3314 0.7642 0.9209 0.9588 49.83%2.58

LLAMA3 plain 1.3315 0 0 0.0313 3.3848 0.5394 0.7649 0.8635 -
METEOR 1.3410 0.8466 0.5760 0.0319 7.4924 0.5427 0.7720 0.8743 52.38%3.10

DISCOP(R.) 1.4737 1.2137 0.8243 0.0762 4.9633 0.5583 0.7762 0.8721 50.01%2.70

DISCOP 1.3739 0.5625 0.4380 0.0519 4.3652 0.5399 0.7639 0.8678 49.98%2.09

Ours 1.4267 1.2560 0.9223 0.0314 4.3966 0.5447 0.7727 0.8745 49.66%2.58

Table 2: Main Results on XHS. Higher capacity and utilization are better. Lower time is better. Linguistic quality
closer to random sampling is better. In our method, the number of sampling iterations is fixed at 29.

be eliminated E(e) at this time step is:

E(e) =

m−1∑
k=0

(m− 1− k)

(
m− 1

k

)
(n− 1)m−1−k

nm−1

= (m− 1)!
(n− 1)m−1

nm−1

m−1∑
k=0

(n− 1)−k

k!(m− 2− k)!

= (m− 1)!
(n− 1)m−1

nm−1

(n− 1)m+1nm

nm+1(n− 1)m

= (m− 1)
n− 1

n
.

When m→ n, the expectation approaches m− 1 ,
meaning that in each step, the secret message can
be uniquely decoded and recovered.

The results from the uniform distribution show
that as the maximum allowed sampling approaches

the vocabulary size, the embedding capacity asymp-
totically approaches the entropy of the uniform dis-
tribution. More sampling iterations result in higher
embedding capacity. This trend holds across all
three models with different vocabulary sizes. For
all models and scenarios, our method achieves high
entropy utilization, even when the distribution is
unknown. However, the upper limit of embedding
capacity still depends on the distribution’s entropy.

3.3.2 Time Efficiency

The runtime of our method is primarily constrained
by two factors: sampling time and the generation
speed of the generative model. Although increas-
ing the number of samples does raise the time re-
quired, it does not impose a significant burden and
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Figure 2: The relationship between the number of uniform distribution samples and embedding capacity. num
represents the number of samples as 2num, the red dashed line indicates entropy, and the green line represents the
generation time per token.

remains within an acceptable range. On average,
our method takes less than 100 milliseconds to pro-
cess each token. On the WILD QA dataset, the
Table 1 shows that our method is on the same time
scale as existing provably secure steganography
algorithms and can be faster than the reordering
distribution version of DISCOP. On the social net-
work XHS dataset in Table 2, our method’s run-
time is nearly identical to that of standard random
sampling algorithms, and its time performance is
comparable to existing provably secure algorithms
such as METEOR and the non-reordering version
of DISCOP, demonstrating the time efficiency of
our approach. In the uniform distribution scenario,
when the number of samples does not exceed 214,
our method achieves the same generation speed
as random sampling. This trend is consistently
observed across the LLAMA3, MISTRAL, and
QWEN models. Our implementation is in Python,
so performance could be significantly optimized
by replacing the sampling component with C/C++.
This would bring the encoding speed closer to the
model’s generation rate.

3.3.3 On the Generation Quality of Stego
In Tables 1 and 2, we present the experimental re-
sults on the XHS dataset and the QA dataset. (In
the uniform distribution scenario, there is no need
to discuss the quality of the generated text.) It is ev-
ident that, in the text generation task, the stegotext
produced by our method exhibits linguistic quality
similar to that of text generated through random
sampling, both in terms of PPL (perplexity) and di-
versity metrics. This aligns with our security proof,
demonstrating that the stegotext generated by our
method is indistinguishable from the cover text. In
terms of fluency, our method achieved PPL scores
similar to those of texts generated through random

sampling. Higher PPL scores can sometimes result
from increased entropy. In fact, studies have shown
that blindly aiming for low PPL scores can lead to
bland, redundant text or repetitive loops (Holtzman
et al., 2019). However, the texts generated by our
method did not exhibit these undesirable patterns
and maintained good readability.

4 Conclusion

In this paper, we propose a provably secure
steganography scheme for black-box scenarios
based on Adaptive Dynamic Sampling. Unlike
existing methods that rely on explicit model distri-
butions to conceal secret messages, our approach
only requires random sampling results. We design
a strategy to determine the number of samples at
each step and embed secret messages into the sam-
pling indices without altering the model’s original
generation process, ensuring theoretical indistin-
guishability between stego and cover. Extensive
evaluations on three popular LLMs and three bench-
mark datasets show that our scheme achieves high
generative quality, efficiency, and capacity, compa-
rable to white-box provably secure methods.

5 Ethics Statement

We propose a steganography framework based
on LLMs. Given the ease of accessing LLMs,
this method may pose a risk of abuse with texts
generated by these models. In future work, we
will explore detection methods for LLM-generated
steganographic texts. In our implementation and
experiments, we adhere to the licenses of the scien-
tific artifacts used.
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A Related Works

A.1 Provable Secure Steganography
A.1.1 Definition of Security
There are two definitions of security in steganogra-
phy. Cachin (Cachin, 1998) first modeled stegano-
graphic security by the Kullback-Leibler Diver-
gence (KL-Divergence) between the stegotext and
covertext approaching zero:

DKL(PS ||PC) =
∑
x

PS(x) log
PS(x)

PC(x)
< ϵ, (5)

where DKL(PS ||PC) = 0 denotes perfect secu-
rity. Different from the Cachin, Another widely
used steganography security is based on the com-
plexity theory in the perspective of adversarial cho-
sen hiddentext attacks. They (Hopper, 2004) as-
sume for all polynomial-time (PPT) adversaries A,

k ← KeyGen(1λ),the advantage ofA in the games
that distinguishes stego and cover is negligible:

|Pr[AOEncode(k,·,·) = 1]− Pr[AOR(·,·) = 1]| < negl(λ),
(6)

where OR denotes random sampling, OEncode rep-
resents the steganography sampling algorithm, and
negl(λ) is a negligible function.

A.1.2 Entropy Coding Based Steganography
Baron et al. (Barron et al., 2003) first introduced
the duality between information embedding and
source coding. Van Le (Van Le, 2003) explored
the use of arithmetic coding (AC) in steganogra-
phy, and Satir et al. (Satir and Isik, 2014) ap-
plied Huffman coding (HC) for the same purpose.
These methods leverage entropy coding to assign
codewords to symbols based on their probabili-
ties. As the codewords are prefix-free, secret bits
can be matched to a single codeword, and the cor-
responding symbol transmitted. However, these
approaches suffer from mismatched probabilities
between codewords and symbols, as symbol proba-
bilities are not always negative integral powers of
2. This causes the output distribution to deviate
from the channel distribution, making the method
more detectable. Additionally, when symbol alpha-
bets are large, constructing the codebook becomes
time-consuming. Despite these limitations, entropy
coding represents the theoretical upper limit for
channel entropy utilization. With improved secu-
rity measures, the focus will shift towards maxi-
mizing the steganographic embedding rate, with
entropy coding offering valuable insights for future
research.

A.1.3 METEOR
Kaptchuk et al.(Kaptchuk et al., 2021) proposed
METEOR, a secure steganography that re-encrypts
the embedded bits step by step. This work points
out that previous informal methods (Yang et al.,
2018; Ziegler et al., 2019) have the problem of
randomness reuse, which will cause the leakage
of hidden information. METEOR collects several
tokens until the entropy is enough for embedding,
and re-encrypts the rest of bits to avoid information
leakage.

This method is perfectly secure but the entropy
is not fully used. The bits are re-encrypted after a
loop of embedding which can be seen as a trunca-
tion of coding. The truncation of the embedding
process results that entropy is wasted at the end



of each embedding loop. When the entropy of
channel is extremely low, this situation may occur
frequently and results in low capacity.

In order to further improve the expectation of
embedding capacity, an reorder algorithm is pro-
posed for METEOR. The complexity of the reorder
algorithm is linearly related to the size of alphabet.
Reordering the distributions increases capacity by
20%-25%.

A.1.4 Distribution Copies
Ding et al.(Ding et al., 2023) proposed a provably
secure steganography method based on the copies
of distribution. In the situation that the random
numbers r ∈ [0, 1) and r + 1

2 mod 1 point to
different tokens in the copies, these 2 special tokens
can be chosen according to the secret bit 0 or 1. If
the random numbers r, r + 1

2n mod 1, r + 2
2n

mod 1, ... , r + 2n−1
2n mod 1 point to different

tokens, the embedding capacity is n bits.
Since copies of distribution may have lots of

overlapping zones, the embedding rate is highly
restricted. Ding et al.(Ding et al., 2023) proved that
the embedding rate is asymptotic to the minimum
entropy, computed in token level.

In order to further improve the embedding capac-
ity, they proposed a recursion version of DISCOP.
The distribution is reordered by a binary tree that
keeps the probability of nodes as balance as possi-
ble, which is similar to a huffman tree. However,
this process needs lots of time and thus makes it
not efficient.

A.1.5 Minimum Entropy Coupling (MEC)
Minimum Entropy Coupling (MEC) is the problem
that given the marginal distribution of the random
variables, compute the joint distribution that has
the minimum entropy. The core of this problem is
to find how relevant it is likely to be between these
variables. More details can be found in excellent
work of Cicalese et al. (Cicalese et al., 2019).

De Witt et al.(de Witt et al., 2022) first ex-
plore using MEC to construct secure and efficient
steganography. They try to compute MEC matrix
between the uniform distributed n-bit codewords
and the distribution predicted by language mod-
els. Then they choose the n-bit prefix of secret
messages as the chosen codeword, and randomly
sample a token from the marginal distribution of
this codeword. Usually the n-bit codewords cannot
be embedded in one loop, this process will be re-
peated several times until the bits can be uniquely

decoded.
However, computing the minimum entropy cou-

pling is a NP-Hard problem. Many efforts have
been made to design a poly-time algorithm to
asymptotically approach the MEC (Kocaoglu et al.,
2017a; Cicalese et al., 2019; Kocaoglu et al., 2017b;
Li, 2021).

MEC-based steganography has 2 weaknesses:
(i) up to now the best MEC algorithm is only
able to compute a joint distribution whose en-
tropy is within 1 bit of MEC, resulting in sus-
tained loss of capacity and (ii) the complexity is at
least O(nlogn)(Cicalese et al., 2019). Therefore
the large set of codewords will make this type of
steganography not efficient. Beside these, there are
still some minor issues like decoding error and dead
cycles in practical. MEC-based steganography still
needs more exploration.

B Proof of security
From a more formal standpoint, we prove the
computational-indistinguishable security by a se-
quence of games G0 : G1 : G2 : G3, as shown in
Figure 3. The security of our framework relies on
the pseudo-random generator and the i.i.d. prop-
erty of samples drawn from the same distribution.
G0 = G1: G0 is the steganographic sampling pro-
cedure controlled by the secret bit, while G1 is
independent of secret bit.

PS [a] =
∑

mi∈M

P [mi] · PS [a|mi]

=
∑

mi∈M

P [mi] · PM [a]

= PM [a]

G1 ≈c G2: G2 uses random generator
RANDOMORACLE(·) (R(·)) to substitute the
pseudo-random generator PRGk(·) (Gk(·)) in G1.
From the definition of pseudo-random generator,
for any probabilistic polynomial time (p.p.t.) ad-
versary A,∣∣∣P{

APRGk(·)(1k) = 1
}
− P

{
AR(·)(1k) = 1

}∣∣∣ ≤ negl(k).

(7)

Assuming the existence of a p.p.t. adversary A′,
which can distinguish the output of G1 and G2

with a noticeable probability, we can use the adver-
sary A′ to construct another p.p.t. adversary A′′

to distinguish between the output of random gen-
erator R(·) and pseudo-random generator Gk(·).
A′′ runs G1 and G2 with random generator R(·)
and pseudo-random generator Gk(·). Though now
A′′ can neither distinguish between R(·) and Gk(·)
nor G1 and G2, he can query A′ for each pair of



output of G1 and G2. Since A′ can distinguish the
output of G1 and G2 with a noticeable probabil-
ity, the adversary A′′ can distinguish the output of
random generator R(·) and pseudo-random gen-
erator Gk(·) with a noticeable probability, which
contradicts the definition of pseudo-random gener-
ator. Therefore, such adversary A′ does not exist,
and the distribution of output of G1 and G2 is com-
putationally indistinguishable. In the case where
G2 = G3 : G2 leverages the independent and
identically distributed (i.i.d.) property of samples
drawn from the same distribution. Since the output
of the sampling process adheres to the model’s dis-
tribution, randomly sampling a result from multiple
samplings is equivalent to directly sampling a result
from the model itself. Up to this point, we have
demonstrated the security of our steganographic
construction, demonstrating that it achieves compu-
tational indistinguishability from random sampling
results unaffected by the steganographic embed-
ding within the model.

C Demo of generated stegotexts

We present demo stegotexts generated by existing
provably secure generative steganography methods
and our own steganography constructions in Table
3.

G0: Steganography-Sampler

1: r ←− PRG(k)
2: for i ∈ 1, ..., n do
3: Sample token ti ∼M with r
4: end for
5: Index for t1, t2, ..., tn
6: Map message m[1 : N ]→M ∈ N+

7: M =
∑N

i=1mi · 2i−1

8: return tM

G1: Pseudorandom Multiple Sampling

1: r ←− PRG(k)
2: for i ∈ 1, ..., n do
3: Sample token ti ∼M with r
4: end for
5: Index for t1, t2, ..., tn
6: Randomly Sample a index M⋆

7: return tM⋆

G2: Random Multiple Sampling

1: for i ∈ 1, ..., n do
2: Sample token ti ∼M with RANDO-

MORACLE

3: end for
4: Index for t1, t2, ..., tn
5: Randomly Sample a index M⋆

6: return tM⋆

G3: Model Sampling

1: Sample a token t ∼M
2: return t

Figure 3: Games used in the proof of steganography
security.



Table 3: Examples in WILD with LLAMA3

Method Generated Texts

Prompt Please provide an action plan for reducing carbon footprint on a corporate level.

Random Sampling Here is a comprehensive action plan for reducing carbon footprint on a corporate
level:
**I. Set Goals and Track Progress**
1. Set specific, measurable, achievable, relevant, and time-bound (SMART)
targets for reducing carbon footprint.
2. Establish a carbon footprint tracking system to monitor progress and identify
areas for improvement.
3. Report carbon footprint reduction milestones to stakeholders, including
employees, customers, and investors...

METEOR
(Kaptchuk et al.,
2021)

Here’s a comprehensive action plan for reducing carbon footprint on a corporate
level:
**I. Assessment and Goal-Setting**
1. Conduct a carbon footprint assessment to identify areas of impact:
- Energy consumption (electricity, gas, water)
- Transportation (company-owned vehicles, employee travel)
- Supply chain emissions (procurement, logistics)
- Waste management (recycling, disposal)
2. Set specific, measurable, achievable, relevant, and time-bound (SMART)
targets...

DISCOP (Ding
et al., 2023)

Here is a comprehensive action plan for reducing carbon footprint on a corporate
level:
**I. Conduct a Carbon Footprint Assessment**
1. Engage a third-party auditor or consultant to conduct a comprehensive carbon
footprint assessment of your organization’s operations, including Scope 1 (direct
emissions), Scope 2 (indirect emissions), and Scope 3 (value chain emissions).
2. Identify key areas of energy consumption, such as:
- Buildings and facilities
- Transportation
- Supply chain and...

DISCOP (R.)(Ding
et al., 2023)

Here’s a comprehensive action plan for reducing a corporation’s carbon footprint
on a corporate level: **Step 1: Establish a Carbon Reduction Goal**
1. Set a specific, measurable, achievable, relevant, and time-bound (SMART)
goal to reduce carbon emissions.
2. Engage employees, stakeholders, and leadership in setting the goal and
establishing a sense of ownership and accountability.
3. Conduct a carbon footprint assessment to identify areas for improvement and
establish a baseline for measuring progress...

Ours Reducing a corporation’s carbon footprint is a crucial step towards sustainability
and environmental responsibility. Here is a comprehensive action plan for
corporate carbon footprint reduction:
**I. Conduct a Carbon Footprint Assessment**
1. Identify the company’s scope of activities: Determine what activities and
products fall within the company’s boundary for carbon footprint calculation.
2. Gather data: Collect data on energy consumption, water usage, waste produc-
tion, and greenhouse gas emissions from various sources...


