
Local Data Quantity-Aware Weighted Averaging for
Federated Learning with Dishonest Clients

Leming Wu1, Yaochu Jin1,2,∗, Kuangrong Hao1, Han Yu3

1College of Information Science and Technology, Donghua University, Shanghai, China
2School of Engineering, Westlake University, Hangzhou, China

3College of Computing and Data Science, Nanyang Technological University (NTU), Singapore
lemingwu@mail.dhu.edu.cn, jinyaochu@westlake.edu.cn, krhao@dhu.edu.cn, han.yu@ntu.edu.sg

Abstract—Federated learning (FL) enables collaborative train-
ing of deep learning models without requiring data to leave
local clients, thereby preserving client privacy. The aggregation
process on the server plays a critical role in the performance of
the resulting FL model. The most commonly used aggregation
method is weighted averaging based on the amount of data
from each client, which is thought to reflect each client’s
contribution. However, this method is prone to model bias, as
dishonest clients might report inaccurate training data volumes
to the server, which is hard to verify. To address this issue, we
propose a novel secure Federated Data quantity-aware weighted
averaging method (FedDua). It enables FL servers to accurately
predict the amount of training data from each client based
on their local model gradients uploaded. Furthermore, it can
be seamlessly integrated into any FL algorithms that involve
server-side model aggregation. Extensive experiments on three
benchmarking datasets demonstrate that FedDua improves the
global model performance by an average of 3.17% compared
to four popular FL aggregation methods in the presence of
inaccurate client data volume declarations.

Index Terms—Federated learning, Privacy preserving, Aggre-
gation weights, Collaborative training

I. INTRODUCTION

In recent years, artificial intelligence (AI) technology has
made significant progress and is now integrated into many
aspects of daily life, including intelligent question-answering
systems [1], smart finance [2], and autonomous driving [3],
etc. While the development of AI has greatly benefited society
by providing convenience, it has also raised concerns about the
leakage of user privacy data, as technology can act as a double-
edged sword. Federated learning (FL) [4]–[6], which allows
deep learning models to be trained without transferring local
data, can effectively mitigate the risk of privacy breaches.

FL can be classified into centralized FL [7], [8], which
involves a central node server, and decentralized FL [9], which
does not. Additionally, based on the relationship between data
labels and features, FL can be categorized into horizontal [10],
[11] and vertical types [12]. This paper primarily focuses
on centralized FL with a central node server. In this setup,
the server typically performs weighted aggregation of model
parameters. As shown in Eq. (2), the most common method
of weighted aggregation is based on the amount of client

*Corresponding author.

data. This approach has several advantages in FL. It better
reflects the contribution of data to the global model, improves
the model’s generalization ability, and reduces the impact of
noise from clients with small sample sizes, while balancing
fairness and efficiency. In addition, this method is simple, easy
to implement, and easy to interpret.

50 100 150 200 250 300
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

CIFAR-10, Non-IID, = 0.1

FedAvg + One client uploads unreal data volume
FedAvg + All clients are honest

50 100 150 200 250 300
Number of communication rounds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CIFAR-10, Non-IID, = 0.5

FedAvg + One client uploads unreal data volume
FedAvg + All clients are honest

Fig. 1. This experiment evaluates the global model accuracy of the FedAvg
algorithm on the CIFAR-10 dataset, comparing scenarios with and without
dishonest clients manipulating data volume. Two levels of Non-IID data
distribution, defined by Dirichlet parameters β = 0.1 and β = 0.5, are
considered.

When performing weighted aggregation based on the
amount of client data, the server can only aggregate according
to the data reported by the clients. Dishonest clients can
manipulate their local model weights by providing false data
amounts. We experimentally verified this behavior using the
classic FL algorithm, FedAvg. In each round, 10 clients
were randomly selected from a total of 100 to participate in
federated training. If one client dishonestly reports its data
amount, we observed a significant drop in the global model’s
accuracy, as shown in Fig. 1.

To address this issue, we propose a first-of-its-kind secure
Federated Data quantity-aware weighted averaging method
(FedDua). The core idea is to design a data quantity-aware
branch and integrated it into the client model. This branch
accurately predicts the adjustment factor α related to the
amount of data. By combining ∆θ from the client model, the
learning rate, and the average gradient from client training,
we can estimate the client’s data amount. Additionally, we
found that the distribution of the adjustment factor α remains
similar across different amounts of data. Therefore, once the

ar
X

iv
:2

50
4.

12
57

7v
1

 [
cs

.L
G

]
 1

7
A

pr
 2

02
5

server receives the adjustment factor α from the client, it can
verify the reported data amount by comparing it with the pre-
trained distribution of α. If a dishonest client is detected, the
server will issue a warning, encouraging the client to report
the data amount honestly. If the client persists in dishonesty,
the server can exclude it from federated training.

Our proposed FedDua method can be implemented as a
module in other federated algorithms that require aggregation.
Extensive experiments have demonstrated that the algorithm
can successfully identify clients that dishonestly report data
amounts and mitigate the reduction in model accuracy caused
by such dishonest reporting. Extensive experiments on three
benchmarking datasets demonstrate that FedDua improves the
global model performance by an average of 3.17% compared
to four popular FL aggregation methods in the presence of
inaccurate client data volume declarations.

II. RELATED WORK

Existing methods [7], [13]–[15] for weighted aggregation
in FL typically perform aggregation based on the amount of
client data. This approach enhances the stability and gen-
eralization performance of the global model, making it an
important and effective aggregation strategy. However, if a
dishonest client uploads an incorrect amount of training data,
the global model’s performance will degrade. To address this,
[16], [17] proposed a weighted aggregation method based on
client contributions. However, methods that more accurately
measure client contributions, such as those in [18], [19], often
involve high computational complexity. [20] proposed using
the client’s verification loss as a measure of contribution,
allowing weighted aggregation based on verification loss.
However, this method is sensitive to data volume differences
and Non-IID data, and it introduces additional computational
overhead and instability. [21], [22] proposed robust aggrega-
tion strategies, but these still rely on client data volume for
weighted aggregation.

While these methods improve the robustness of FL to
some extent, they significantly reduce training performance
when dishonest clients are present. The proposed FedDua
approach is designed to bridge this important gap in current
FL literature.

III. PRELIMINARIES

In an FL scenario with a central server, there are N clients,
each with data Di = (xi, yi), i = {1, . . . , |Di|}, where |Di|
denotes the number of data points on client i, and (xi, yi)
represents the input sample xi and its corresponding label yi.
In each communication round, the server selects K clients to
participate in federated training. Initially, the server sends the
global model θ0g to each client. Upon receiving the model,
client i trains its local model θ0i using its local data Di

without transferring data, as shown in Eq. (1). Here, f(xi; θ)
is the model’s prediction, and l is the loss function. The client
then uploads its model parameters θ1i to the server, where the
parameters are aggregated, as shown in Eq. (2).

Li(θi;Di) = E(xi,yi)∼Di
[l (f(xi; θ), yi)] , (1)

min
{{θi}}K

i=1

|Di|∑K
i=1 |Di|

K∑
i=1

Li(θi;Di). (2)

If there is an incorrect data volume in the weighted aggrega-
tion of Eq. (2), the actual data volume is denoted as |Dj |real,
and the reported (false) data volume is |Dj |unreal, where
|Dj |real ̸= |Dj |unreal. The weight in the global loss function
is determined by the data volume. If client j dishonestly
reports its data volume, the optimization objective becomes:

L
′
=

∑
i ̸=j

wi · Li + (wj +∆wj) · Lj . (3)

Here, ∆wj = w
′

j − wj , which shows that if ∆wi > 0, the
increase in wj +∆wj amplifies the impact of client j on the
global model. Additionally, if the loss distribution Lj differs
significantly from that of other clients, the global optimization
direction will be biased towards client j.

Algorithm 1: The pseudo-code of FedDua

1 for each round of local model update do
2 S ← The set of clients;
3 for each client i in the set of clients S do
4 θti ← Train the local model by the local data in

i-th client;
5 ∇θti ← Calculate the model’s gradient in the

local training;
6 αt

i ← Calculate the α by training data
quantity-aware branch;

7 Send (∇θti , αt
i) to the server;

8 end
9 On the server:

10 Verify α and the amount of data on the client
through α, ∇θti and ∆θ;

11 The server evaluates the reliability of the data
provided by each client by combining αt

i with the
pre-trained distribution of α;

12 if αt
i is not True then

13 |Di| ← For clients that are found to upload
unrealistic amounts of data, aggregate based
on the predicted amount of data:
|Di| = ∆θi

η·∇θi·α ;
14 else
15 θtg ← Aggregate based on the amount of

training data uploaded by the client:
θtg =

∑K
i=1

|Di|∑K
i=1 |Di|

θti ;
16 end
17 Send θtg to clients in set S;
18 end

IV. THE PROPOSED FedDua APPROACH

In this section, we describe the proposed algorithm
FedDua. The algorithm consists of two main parts: the client
obtains the adjustment factor α through the quantity-aware
branch, and the server determines whether the data volume

...

Server

2. Aggregation

1. Verify Credibility

...

Device K

Local Training

Dataset

Training data quantity-

aware branch

Predict the α

 α

 α

Dataset

Training data quantity-

aware branch

Predict the α

Local Training

Y

α

Device 1

Fig. 2. The proposed FedDua approach architecture.

uploaded by the client is credible. The architecture of the
proposed algorithm is shown in Fig. 2. The detailed process
of the algorithm is provided in Algorithm 1.

A. Quantity-aware Branch

If the client directly uploads the number of training data to
the server, the server cannot verify its authenticity. To address
this, we designed a quantity-aware branch and integrated it into
the client model. This branch enables accurate prediction of
the client’s training data volume based on the model parameter
change ∆θ, the learning rate η, and the average gradient of
the mini-batch.

During the training of the neural network model, the training
set is divided into multiple batches. The model is updated
once for each batch, as shown in Equations 4 and 5, where
∇Lr(θi) represents the model gradient at the r-th iteration.
One epoch of training requires R iteration updates. Therefore,
the client’s training data volume is R× batch size. From Eq.
(5), we can deduce R ≈ ∆θi

η·E[∇L(θi)]
, where ∆θi is the model

parameter difference for one epoch. However, since both ∆θi
and ∇L(θi) are vectors rather than scalars, directly taking
the norm for calculation may cause significant deviation. To
address this, we use the quantity-aware branch to predict the
adjustment factor α. Using α, we can accurately estimate the
client’s training data volume, as shown in Eq. (6).

θ
′
= θ − η∇Lr(θ), (4)

θ(t+1) = θt − η

T∑
r=1

∇Lr(θ), (5)

R =
∆θi

η · E[∇L(θi)] · α
. (6)

The client deploys the quantity-aware branch to predict the
α value, as shown in Eq. (7). Here, φ is the parameter of the
quantity-aware branch, and embedding(clienti) is the input to
the quantity-aware branch corresponding to client i, which can

either be fixed or learnable. The loss function of the quantity-
aware branch is shown in Eq. (8). Using this loss function,
we can train the quantity-aware branch model fdua so that
its predicted α accurately estimates the client’s training data
volume.

α = fdua(φ; embedding(clienti)), (7)

Lossdua =
1

2

∥∥∥∥ ∆θi
η · E[∇L(θi)] · α

− |Di|
∥∥∥∥2 . (8)

The optimization process of the quantity-aware branch is as
follows: the gradient of Lossdua with respect to α is shown
in Eq. (9), and the chain rule for the derivative of the loss
Lossdua with respect to φ is shown in Eq. (10). Finally, the
parameter φ of the quantity-aware branch can be updated using
Eq. (11).

∂Lossdua
∂α

=(
∆θi

η · E[∇L(θi)] · α
− |Di|

)
·
(
− ∆θi
η · E[∇L(θi)] · α2

)
,

(9)

∂Losspred

∂φ
=

∂Losspred

∂α
· ∂α
∂φ

, (10)

φ(t+1) = φ(t) − λ ·
∂Losspred

∂φ
. (11)

In FL, the client uploads the model gradient parameters
to the server in each communication round, and the server
aggregates the model gradients from the clients. During each
communication round, the client typically performs E epochs
of training. After each epoch, the client predicts the adjustment
factor α using the quantity-aware branch. At the end of the
communication round, the client uploads the E adjustment
factors α and the parameter φ of the quantity-aware branch to
the server.

After receiving the model parameters uploaded by the client,
the server will first verify whether the amount of training data

0 20 40 60 80 100
The index of epoch

0.000

0.001

0.002

0.003

0.004

0.005

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.000

0.001

0.002

0.003

0.004

0.005

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.000

0.001

0.002

0.003

0.004

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Th
e

va
lu

e
of

 a
lp

ha

0 20 40 60 80 100
The index of epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Th
e

va
lu

e
of

 a
lp

ha

Fig. 3. Distribution of α values under different communication rounds using data quantity-aware branch prediction by the client under different data amounts.

reported by the client is accurate and reliable, based on the
adjustment factor. For the specific verification process, refer
to part IV-B. Once the server confirms that the reported data
volume is accurate, it will perform weighted aggregation on
the model parameters θ and the parameters φ of the quantity-
aware branch, based on the client’s actual data volume.

Compared to directly calculating the adjustment factor α
using Eq. (12), using the quantity-aware branch to predict
α offers three main advantages. First, it can handle the
dynamic and complex characteristics of the client. Factors
such as the distribution of client data, computing power, and
training performance can all influence α. The quantity-aware
branch integrates these complex characteristics into the client’s
embedding vector, allowing for a more accurate prediction of
α and making the model more adaptable to the diversity of
different clients. Second, it improves the robustness of the
model. Direct calculation of α can lead to large deviations
when there is noise or an attack during model training, which
affects the aggregation quality of the global model. By learning
the mapping from the embedding vector to α, the model
can tolerate noise or abnormal data, enhancing the system’s
robustness and fault tolerance. Third, the proposed method is
highly scalable. The quantity-aware branch, as a module, can
seamlessly integrate with other components of the model.

α =
∆θi

η · E[∇L(θi)] · |Di|
(12)

B. Reliability of the Adjustment Factor

With its powerful computing capability, the server can
calculate the trend of the adjustment factor α predicted by
the quantity-aware branch under different training data vol-
umes. Through experiments, we found that, under the same
batch size, learning rate, and loss function, the α value of
each communication round of the training model varies with
different data volumes, as shown in Fig. 3. From Fig. 3,
we observe significant differences in the size of the α value
across communication rounds, but the distribution of the α
value remains similar. Therefore, the server can acquire prior

knowledge of the α value distribution through pre-training and
use this information to verify whether the data volume reported
by the client is accurate. If the reported data is found to be
false, the server can issue an early warning to the client to
discourage dishonest behavior.

Specifically, the server can predict the distribution of the
predicted α values under different data volumes by fitting or
using convolutional neural networks. The authenticity of the
α value uploaded by the client can then be assessed based on
the predicted distribution.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

In the experiment, we set the number of clients to 100 and
selected 10 clients in each round to participate in federated
training. One client was set to report three times the amount
of data to the server in each training round, simulating a
scenario with a dishonest client. Other experimental settings
are as follows.

Datasets. We selected CIFAR-10 [23] and the medical
dataset MedMNIST for the experiments. CIFAR-10 is an
image dataset with 10 categories, containing 50,000 training
samples and 10,000 test samples, all of which are 3-channel
images of size 32*32. MedMNIST [24] is a medical dataset
that includes 12 2D sub-datasets and 6 3D sub-datasets, with
image types covering X-rays, CT scans, MRIs, and more.
For this experiment, we selected two 2D sub-datasets from
MedMNIST: OrganaMNIST [25] and PathMNIST [26].

Comparison algorithms. In this paper, we selected four
classic FL algorithms: FedAvg, FedProx, Ditto, and Scaffold.
Among them, FedAvg is the most fundamental FL algorithm
and introduced the concept of FL. The FedProx algorithm adds
a regularization term to FedAvg to address the heterogeneity
problem in FL. The Ditto algorithm deploys both personalized
and global models on the client, using the global model as a
constraint on the personalized model during training to prevent
the personalized model from deviating too far from the global
model. The Scaffold algorithm introduces control variables and

50 100 150 200 250 300
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CIFAR-10, Non-IID, = 0.5

FedAvg + One client uploads unreal data volume
FedAvg + All clients are honest
FedAvg + Ours

50 100 150 200 250 300
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CIFAR-10, Non-IID, = 0.5

FedProx + One client uploads unreal data volume
FedProx + All clients are honest
FedProx + Ours

50 100 150 200 250 300
Number of communication rounds

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CIFAR-10, Non-IID, = 0.5

Scaffold + One client uploads unreal data volume
Scaffold + All clients are honest
Scaffold + Ours

0 200 400 600 800 1000
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

CIFAR-10, Non-IID, = 0.5

Ditto + One client uploads unreal data volume
Ditto + All clients are honest
Ditto + Ours

(a) CIFAR-10

50 100 150 200 250 300 350
Number of communication rounds

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

OrganaMNIST, Non-IID, = 0.5

FedAvg + One client uploads unreal data volume
FedAvg + All clients are honest
FedAvg + Ours

100 200 300 400 500 600
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y
PathMNIST, Non-IID, = 0.5

FedProx + One client uploads unreal data volume
FedProx
FedProx + Ours

0 100 200 300 400 500 600
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

PathMNIST, Non-IID, = 0.5

Scaffold + One client uploads unreal data volume
Scaffold + All clients are honest
Scaffold + Ours

100 200 300 400 500 600
Number of communication rounds

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

PathMNIST, Non-IID, = 0.5

Ditto + One client uploads unreal data volume
Ditto + All clients are honest
Ditto + Ours

(b) MedMNIST-PathMNIST

0 100 200 300 400 500 600
Number of communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

OrganaMNIST, Non-IID, = 0.5

FedAvg + One client uploads unreal data volume
FedAvg + All clients are honest
FedAvg + Ours

0 100 200 300 400 500 600
Number of communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

OrganaMNIST, Non-IID, = 0.5

FedProx + One client uploads unreal data volume
FedProx
FedProx + Ours

0 100 200 300 400 500 600
Number of communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Te

st
 A

cc
ur

ac
y

OrganaMNIST, Non-IID, = 0.5

Scaffold + One client uploads unreal data volume
Scaffold + All clients are honest
Scaffold + Ours

0 100 200 300 400 500 600
Number of communication rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

OrganaMNIST, Non-IID, = 0.5

Ditto + One client uploads unreal data volume
Ditto + All clients are honest
Ditto + Ours

(c) MedMNIST-OrganaMNIST

Fig. 4. The proposed algorithm is tested with four FL methods: FedAvg, FedProx, Scaffold, and Ditto. Two scenarios are considered: (1) all clients behave
honestly, and (2) one client uploads falsified data volumes. The evaluation measures test accuracy on the CIFAR-10, MedMNIST-PathMNIST, and MedMNIST-
OrganaMNIST datasets. The datasets are non-IID, with a Dirichlet distribution (β = 0.5) used to define the data distribution.

control gradients, ensuring model stability even in scenarios
with heterogeneous data.

B. Results and Discussion

We evaluate four FL algorithms—FedAvg [7], FedProx [13],
Scaffold [15], and Ditto [14]—on the three datasets mentioned
above to compare the accuracy of the proposed algorithm
under two scenarios: when all clients are honest and when
one client uploads unreal data volume. In the experiment, we
use a Dirichlet distribution to partition the Non-IID data for
each client, with β = 0.5. The experimental results are shown
in Fig. 4.

From Fig. 4, we can observe that when a client uploads an
unreal amount of training data during FL, it negatively affects
the performance of the aggregated global model. For example,
in the Cifar-10 dataset, when a client reports an unreal amount
of training data, the accuracy of the global model after
aggregation decreases by 2.58%, 3.79%, 3.2%, and 3.51%
for the four FL algorithms—FedAvg, FedProx, Scaffold, and
Ditto—compared to the weighted aggregation based on the
client’s actual data volume. Furthermore, we can see that

when the client uploads unreal data, the accuracy of the global
model fluctuates significantly during training. This is because
unreal reporting of client data volume leads to inaccurate
weighted aggregation, which over-amplifies the influence of
dishonest clients. In Non-IID settings, clients that report unreal
data volumes may provide data that differs significantly from
the global distribution, causing the global model to deviate
from the true characteristics of the overall data, thus reducing
accuracy. During training, the model updates become unstable
due to the unreal data volume, and the imbalance in weights
leads to frequent adjustments in the global model, resulting in
large accuracy fluctuations.

Similarly, when clients dishonestly report the amount of
training data, the accuracy of the global model using the
proposed method, FedDua, remains nearly the same as when
the data is honestly reported. This is because, in the FedDua
algorithm, the server can verify the authenticity of the training
data uploaded by each client based on the distribution of the
adjustment factor α, combined with the prior knowledge of
α distribution obtained through pre-training. If a dishonest
client is detected, the server will issue a warning. If the client

continues to upload false data volume, it will be excluded from
federated training.

Computation and communication complexity analysis.
The proposed FedDua algorithm introduces two additional
computations: client training of the data quantity-aware branch
and server pre-training of prior knowledge about the α distri-
bution. The server possesses sufficient computing, storage, and
communication capabilities. Therefore, the additional compu-
tational cost primarily arises from client training of the data
quantity-aware branch. Typically, the number of parameters
in the data quantity-aware branch model, φ, is much smaller
than the local model θ on the client, and the corresponding
computational complexity is O(1dθ), with d > 10. As a result,
the additional computational cost for the client due to the
data quantity-aware branch is less than 10%. Furthermore, no
additional communication cost is incurred.

VI. CONCLUSIONS

In the proposed FedDua algorithm, the data quantity-aware
branch and server pre-training enable accurate judgment of the
authenticity of the data uploaded by the client and prediction
of the client’s data volume. The proposed method addresses the
issue of performance degradation in the global model due to
clients dishonestly reporting their data volume during weighted
aggregation in FL. However, this paper focuses only on
dishonestly reported data volume. The quality of the data also
significantly impacts the performance of the aggregated global
model. In future work, we will analyze weighted aggregation
in FL from the perspective of data quality to further improve
model performance.

VII. ACKNOWLEDGMENTS

This work is funded in part by an international Col-
laboration Fund for Creative Research of National Science
Foundation of China (NSFC lCFCRT) under the Grant no.
W2441019; National Natural Science Foundation of China
(62136003); Shanghai Pujiang Program (22PJ1423400) and
Shanghai Sailing Program (22YF1401300); the Ministry of
Education, Singapore, under its Academic Research Fund Tier
1; the National Research Foundation, Singapore and DSO
National Laboratories under the AI Singapore Programme
(AISG Award No. AISG2-RP-2020-019).

REFERENCES

[1] Murray Shanahan, Kyle McDonell, and Laria Reynolds, “Role play with
large language models,” Nature, vol. 623, no. 7987, pp. 493–498, 2023.

[2] Rajani Singh, Ashutosh Dhar Dwivedi, Gautam Srivastava, Pushpita
Chatterjee, and Jerry Chun-Wei Lin, “A privacy-preserving internet
of things smart healthcare financial system,” IEEE Internet of Things
Journal, vol. 10, no. 21, pp. 18452–18460, 2023.

[3] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas
Geiger, and Hongyang Li, “End-to-end autonomous driving: Challenges
and frontiers,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[4] Randy Goebel, Han Yu, Boi Faltings, Lixin Fan, and Zehui Xiong, Eds.,
Trustworthy Federated Learning, Springer, Cham, 2023.

[5] Yaochu Jin, Hangyu Zhu, Jinjin Xu, and Yang Chen, Federated
Learning, Springer, 2023.

[6] Tao et al. Fan, “Ten challenging problems in federated foundation
models,” IEEE Transactions on Knowledge and Data Engineering, 2025.

[7] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Artificial intelligence and
statistics. PMLR, 2017, pp. 1273–1282.

[8] Leming Wu, Yaochu Jin, Yuping Yan, and Kuangrong Hao, “Fl-otcsenc:
Towards secure federated learning with deep compressed sensing,”
Knowledge-Based Systems, vol. 291, pp. 111534, 2024.

[9] Enrique Tomás Martı́nez Beltrán, Mario Quiles Pérez, Pedro
Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet,
Manuel Gil Pérez, Gregorio Martı́nez Pérez, and Alberto Huertas
Celdrán, “Decentralized federated learning: Fundamentals, state of the
art, frameworks, trends, and challenges,” IEEE Communications Surveys
& Tutorials, 2023.

[10] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han
Yu, Federated Learning, Springer, Cham, 2020.

[11] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao,
Qiang Yang, and Philip S. Yu, “Privacy and robustness in federated
learning: Attacks and defenses,” IEEE Transactions on Neural Networks
and Learning Systems (TNNLS), vol. 35, no. 7, pp. 8726–8746, 2024.

[12] Chao Ren, Han Yu, Hongyi Peng, Xiaoli Tang, Bo Zhao, Liping
Yi, Alysa Ziying Tan, Yulan Gao, Anran Li, Xiaoxiao Li, et al.,
“Advances and open challenges in federated foundation models,” IEEE
Communications Surveys and Tutorials, 2025.

[13] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith, “Federated optimization in heterogeneous
networks,” Proceedings of Machine learning and systems, vol. 2, pp.
429–450, 2020.

[14] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith, “Ditto:
Fair and robust federated learning through personalization,” in Interna-
tional conference on machine learning. PMLR, 2021, pp. 6357–6368.

[15] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,
Sebastian Stich, and Ananda Theertha Suresh, “Scaffold: Stochastic
controlled averaging for federated learning,” in International conference
on machine learning. PMLR, 2020, pp. 5132–5143.

[16] Lingjuan Lyu, Xinyi Xu, Qian Wang, and Han Yu, “Collaborative
fairness in federated learning,” Federated Learning: Privacy and
Incentive, pp. 189–204, 2020.

[17] Yiqiang Chen, Xiaodong Yang, Xin Qin, Han Yu, Piu Chan, and Zhiqi
Shen, “Dealing with label quality disparity in federated learning,”
Federated Learning: Privacy and Incentive, pp. 108–121, 2020.

[18] Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou, “Measure contri-
bution of participants in federated learning,” in 2019 IEEE international
conference on big data (Big Data). IEEE, 2019, pp. 2597–2604.

[19] Yuxin Shi, Zelei Liu, Zhuan Shi, and Han Yu, “Fairness-aware client
selection for federated learning,” in 2023 IEEE International Conference
on Multimedia and Expo (ICME). IEEE, 2023, pp. 324–329.

[20] Liping Yi, Wang Gang, and Liu Xiaoguang, “Qsfl: A two-level
uplink communication optimization framework for federated learning,”
in International Conference on Machine Learning. PMLR, 2022, pp.
25501–25513.

[21] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui, “Robust
aggregation for federated learning,” IEEE Transactions on Signal
Processing, vol. 70, pp. 1142–1154, 2022.

[22] Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu, “Revisiting weighted
aggregation in federated learning with neural networks,” in International
Conference on Machine Learning. PMLR, 2023, pp. 19767–19788.

[23] Alex Krizhevsky, Geoffrey Hinton, et al., “Learning multiple layers of
features from tiny images,” 2009.

[24] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian
Ke, Hanspeter Pfister, and Bingbing Ni, “Medmnist v2-a large-scale
lightweight benchmark for 2d and 3d biomedical image classification,”
Scientific Data, vol. 10, no. 1, pp. 41, 2023.

[25] Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov,
Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel
Efrain Humpire Mamani, Gabriel Chartrand, et al., “The liver tumor
segmentation benchmark (lits),” Medical Image Analysis, vol. 84, pp.
102680, 2023.

[26] Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom
Luedde, Esther Herpel, Cleo-Aron Weis, Timo Gaiser, Alexander Marx,
Nektarios A Valous, Dyke Ferber, et al., “Predicting survival from
colorectal cancer histology slides using deep learning: A retrospective
multicenter study,” PLoS medicine, vol. 16, no. 1, pp. e1002730, 2019.

	Introduction
	Related Work
	Preliminaries
	The proposed FedDua approach
	Quantity-aware Branch
	Reliability of the Adjustment Factor

	EXPERIMENTAL EVALUATION
	Experiment Setup
	Results and Discussion

	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

