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Abstract—This work explores the performance and scala-
bility of a hierarchical certificate authority framework with
automated certificate issuance employing post-quantum crypto-
graphic (PQC) signature algorithms. The system is designed for
compatibility with both classical and PQC algorithms, promoting
crypto-agility while ensuring robust security against quantum-
based threats. The proposed framework design expects mini-
mal cryptographic requirements from potential clients, protects
certificates of high importance against cross-dependent chains-
of-trust and allows for prompt switching between classical and
PQC algorithms. Finally, we evaluate SPHINCS+, Falcon, and
Dilithium variants in various configurations of certificate issuance
and verification accommodating a large client base, underlining
the trade-offs in balancing performance, scalability, and security.

Index Terms—post-quantum cryptography, public key infras-
tructure, quantum key distribution, cloud, certificate authority

I. INTRODUCTION

While the concept of quantum computers was introduced
less than a lifetime away from the invention of the first
electronic computer, their potential has recently alarmed the
cryptographic community. The proven robustness of classical
cryptography algorithms, among which RSA [24] holds a
prominent position, has resulted into their widespread adop-
tion. Such algorithms have received limited improvements, but
their backbone adheres to similar mathematical guarantees.
The development of Shor’s algorithm [25] has, therefore,
played a decisive role in the recent advance of cryptography,
showing that classical cryptographic methods are vulnerable
to attacks from quantum computers.

The concern is underlined by the National Institute of
Standards and Technology (NIST), a U.S. federal agency
playing a pivotal role in cryptography by establishing cryp-
tographic standards and guidelines to ensure secure commu-
nication and data protection for government and industry. In
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view of security attacks from quantum computers, NIST in
2016 initiated the concentration, trialing, assessment and stan-
dardization of post-quantum cryptography (PQC) algorithms.
These algorithms are developed within the scope of mathe-
matical foundations that avoid the vulnerability of classical
algorithms, in view of their widespread adoption. In addition
to PQC, the most promising mitigation practices also include
quantum cryptography, especially Quantum Key Distribution
(QKD) [7], [9], [29], which can be efficiently complemented
by the PQC-focused work presented here.

PQC methods are meant to replace the classical cryptogra-
phy methods; however, this transition has become a burning
subject of research, due to the need for adoption of new
requirements connected to their properties. In particular, PQC
algorithms present increased needs of memory and compu-
tation power, giving rise to the problem of cryptographic
agility (crypto-agility) [13], [14], [22], [26], defined as their
widespread implementation to existing networks. Research
is mainly focused on the incorporation of four NIST stan-
dardization finalists, including CRYSTALS-Kyber for key
establishment [6], CRYSTALS-Dilithium [1], Falcon [23] and
SPHINCS+ [5] for digital signatures. In fact, NIST announced
three finalized post-quantum safe Federal Information Pro-
cessing Standards [16]–[18] on 13th August 2024 based on
CRYSTALS-Kyber, CRYSTALS-Dilithium and SPHINCS+,
placing the latter two under the spotlight.

The current work explores the implementation of PQC in the
context of authentication, especially a public key infrastructure
(PKI). We create a framework that can assist in readily
transitioning current PKI topologies to the post-quantum era.
PKI refers to a system that functions through the management
and usage of certificates. The certificates are signed by well-
known and trusted Certificate Authorities (CA), whose digital
signature is produced using its private key and can be verified
using its public key. An entity that owns a certificate bearing
such a verified signature is considered secure, since it traces
back to the trusted CA that lent its signature. This way,
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different entities and devices over the network can authen-
ticate themselves, proving their identity through the signed
certificate. Our framework consists of the usual chain-of-trust
scheme, including a root CA and intermediate CAs (ICAs).
Clients, also referred to as end-entities (EEs), may request the
issuance of their certificates from ICAs, which, in turn, obtain
their certificates from the root Certificate Authority (CA).
We propose a holistic approach to the certificate authority
model, that considers the functionality of different compo-
nents towards security, data flow, maintenance, independence
and accessibility. This prototype sketches and safeguards the
higher levels of the certificate hierarchy against compromise
of some chain-of-trust, while keeping processing quick. For
example, keeping multiple roots, as recommended here, is a
crucial feature. After all, management of the co-existence of
classical and PQ cryptography needs radical design alterations
at the core, the root CA, in order to preserve security and
introduce cryptographic agility.

This work makes the following key contributions:
• Scalable certificate authority employing PQC signa-

tures. We create a certificate authority which securely
manages different chains-of-trust for a large client base,
offering certificates signed with PQC signature algo-
rithms.

• Classical and PQC compatibility and adaptability. Our
framework is designed in view of accommodating both
new and classical algorithms on-the-fly at the critical
levels of certificate authorities.

• Automated certificate issuance with PQC signatures.
We introduce a transferable framework that enables the
automated issuance and verification of digital certificates
using PQC signature algorithms, ensuring robust security
against quantum-based threats.

• Hierarchical three-Layer architecture on a full-fledged
network simulation. The proposed system is struc-
tured into three distinct layers – CA, ICA, and EEs –
facilitating efficient certificate management and scalabil-
ity. The scheme targets the application to QKD domains,
where QKD nodes represent ICAs that can easily mutu-
ally authenticate and distribute certificates to their clients.

• Performance metrics for operations including certifi-
cates. We provide detailed evaluations of the framework’s
performance, including metrics for signing, verifying,
and distributing certificates across multiple clients, with
support for up to two ICAs in the hierarchy.

• Crypto-agility promotion. Our design enhances crypto-
agility by allowing the use of PQC signature algorithms
at the CA and ICA levels, without any PQC requirements
at the client level, ensuring backward compatibility and
ease of adoption even in IoT.

II. EXISTING RELATED WORK

The relatively new field of PQC is currently being explored
in many aspects, ranging from theoretical security proofs,
to practical guidelines and preliminary application testbeds.
Apropos of recent work on PQC incorporation to PKI, Bene

and Kiss in [4] have provided an overview of basic PKI
concepts, as well as a description of the main PQC algorithms
and methods that can be integrated with PKI. Further on this
topic, Paul S. et al. [21] have proposed a 2-step PQC migration
strategy and have demonstrated a preliminary application of it
to three commonly implemented layers – the root CA, the
ICAs and the EEs. Their two-step migration approach enables
a smooth transition to PQC authentication, wherein the first
step comprises mixed certificate chains, rooted in PQC signa-
tures but incorporating classical cryptography at higher PKI
levels. This strategy aims to protect critical information, like
root CA keys and certificates, during the ongoing transition.
We adopt these recommendations to develop a cloud-based
framework that enhances crypto-agility and accelerates large-
scale implementation.

Contrary to Kampanakis and Kallitsis in [11], our current
work motivates the inclusion of ICAs in the network topology.
This choice promotes easier multiple EEs’ management, secu-
rity –by decoupling the root CA from EEs in a chain-of-trust–
and faster processing, since certificate distribution is carried
out by a group of CAs.

The size of PQ keys and certificates has sparked numerous
discussions regarding their compatibility with existent and
widespread protocols, raising concerns about increased over-
heads, memory requirements and reduced security.

Kampanakis and Kallitsis in [11], propose the suppression
of ICA involvements in PQ TLS handshakes in order to avoid
the overhead added by verifying the whole certificate chain.
Their solution follows the “supply and demand” aspect of
certificate dependence, which means that they address the issue
of the certificate chain by storing the ICA certificates that
have issued the certificates of the peers of interest. This static
approach reduces the data volume to communicate between
peers and, consequently, reduces the overhead of message
exchange, however, needs further investigation in terms of
application requirements and guarantees, as well as more
large-scale adaptations.

The concept of automated certificate issuance in classi-
cal network configurations has been primarily a concern of
well-known certificate authorities, whose operation is instru-
mented by the Automatic Certificate Management Environ-
ment (ACME) protocol [3]. Shifting to the post-quantum era,
Giron et al. [8] have studied the integration of PQC into PKI
through the adaptation of the ACME. Their work is focused
on the automated issuance of client PQC certificates from
the ACME server bearing the Let’s Encrypt Client and the
proposal of a new challenge as a part of the issuance process.
While this approach provides some intuition on the impact of
PQC to the standardized certification automation, we create the
certificate authority from scratch and examine the automated
PQC certificate issuance process of a large scale hierarchical
PKI.

III. POST-QUANTUM AUTHENTICATION SERVICES

We hereafter present our scalable and extensible framework
along with some experimental reproducible results related to



its function in the employment of PQC signature algorithms.
The proposed framework comprises a certificate authority and
an automatic certificate issuance system able to readily incor-
porate PQC algorithms to existing networks. The certificates
produced reflect the implemented hierarchy, which is widely
adopted, yet the different entities’ roles are remodeled. We
make a start in post-quantum readiness for authentication,
including that of QKD nodes’, by preparing a system with
services that can manage and monitor the respective certifi-
cates. Ultimately, the existing QKD systems have their own
simplified key management system (ETSI014 [2] in most
existing devices) and a novice authentication system. In fact,
certification is a major missing fundamental functionality of
the existing QKD networks, therefore, our system can easily
fill this gap with proper adaptations. The realization of the
authentication among peers can then be addressed through the
QKD server or defining domains on physical layer, left for
future work. We will initially present the roles of the entities
designed to participate in the proposed framework, followed
by the description of their implementation in our experimental
setup and the analysis of our experiments in Section V and
Section VI respectively.

A. Root CA

The root CA activity is distributed into three services aimed
at serving the intermediate CAs’ requests. EEs are not included
in the list of intermediate CAs held by the root CA, hence
service is declined by default. Overall, the clients of these
services are allowed to be registered entities which are destined
to own intermediate CAs’ certificates. EEs are never given
access to CA’s certificate and public key. The services are
distinguished into enrollment, certification and verification and
are exposed through different endpoints that correspond to
different steps of the certification process, as shown in Fig. 1.

a) enroll: The enrollment service exposes an /enroll
endpoint where the intermediate CA POSTs the entity’s
information that has already been communicated to the root
CA. The service subsequently generates a new certificate
specifically generated for the current client, ensuring that the
chain of certificates derived from the root CA remains distinct
and independent from other client’s chains. This approach pre-
serves the integrity and independence of the original certificate
path linked to the root CA.

b) certify: Before accessing the main certificate issuance
service endpoints, the client produces a certificate signing
request (CSR) using their own public key. The main certificate
issuance service includes three steps; the first step is served
through the /certify/login endpoint, where the client POSTs
their own information to get a timed token. The token helps
in raising defense against replay attacks [27] and is necessary
for requesting service through the main endpoints. Afterwards,
the client POSTs a request that contains the client’s token
and CSR to /certify/download. If the token is valid, the root
CA responds with the root CA and intermediate CA signed
certificates, which are added to the intermediate CA’s database.
The intermediate CA’s certificate is sent back to the root CA as

a message of acknowledgement and for monitoring purposes
through a POST request to the /certify/upload endpoint.

intermediate CAroot CA

/certify/login

REPLY {token}

POST {username, password}

create
csr

/certify/download

REPLY {cacrt,crt,session,dgst}

POST {token,csr}sign 
cacrt 

&
icacrt

/certify/upload

REPLY {200 OK}

POST {token,crt,dgst}

client

Fig. 1. Interactions between the root CA and an intermediate CA. The root
CA endpoints are reached in the context of the certify service using HTTP
requests.

clientintermediate CA

/enroll

/certify/download

/certify/upload

REPLY {200 OK}

REPLY {crt,hash}

REPLY {200 OK}

POST {username, password}

POST {token}

POST {token,crt}

certify request

client
specific

client

verify request

Fig. 2. Interactions between an intermediate CA (ICA) and the EE (client).
The ICA endpoints are reached in the context of the enroll and certify service,
while the root CA endpoints are reached in the context of the verify service,
using HTTP requests.

c) verify: The verification service is available through
the /verify/check endpoint, once the /verify/login endpoint has
granted access by providing a token to the enrolled client.
This is used to validate the certificate chain, along with the
embedded signatures, when an EE requests the issuance of a
certificate. It is mainly used as a confirmation message from
the root CA that the intermediate CA is, in various aspects,
entitled to sign certificates.

B. Intermediate CA

The intermediate CA server activity concerns EE clients
and offers services similar to the root CA. In other words,
it includes the /enroll, /certify/login, /certify/download, /cer-
tify/upload, /verify/login and /verify/check endpoints, however
the clients have different permissions compared to the interac-
tion of root CA and ICA. The interactions of clients and ICAs
are shown in Fig. 2.



TABLE I
LIST OF PQC ALGORITHMS USED WITH THE CORRESPONDING NIST SECURITY LEVEL, PUBLIC KEY SIZE, PRIVATE KEY SIZE AND SIGNATURE SIZE.

PQC Signature Algorithms
Algorithm Claimed NIST Level Public key (bytes) Secret key (bytes) Signature (bytes)
falcon512 1 897 1281 752

falcon1024 5 1793 2305 1462
Dilithium2 2 1312 2528 2420
Dilithium3 3 1952 4000 3293
Dilithium5 5 2592 4864 4595

SPHINCS+-SHA2-128f-simple 1 32 64 17088
SPHINCS+-SHA2-192f-simple 3 48 96 35664

a) enroll: The enrollment service exposes an /enroll
endpoint where the EE POSTs the entity’s information. The
intermediate CA subsequently follows the certification process
by creating a certificate signing request (CSR) and applying
for a new certificate to the root CA, which will be used for
creating the EE’s certificate chain.

b) certify: Before accessing the main certificate issuance
service endpoints, the client produces a CSR using their own
public key. The main certificate issuance service includes the
same three steps as before; the first step is served through
the /certify/login endpoint, where the client POSTs their
own information to get a timed token. Afterwards, the client
POSTs a request that contains the client’s token and CSR to
/certify/download. If the token is valid, the intermediate CA
validates its own certificate chain by accessing the verify ser-
vice of the root CA. If verified, the intermediate CA responds
with the client’s signed certificate. The EE’s certificate is sent
back to the intermediate CA through a POST request to the
/certify/upload endpoint.

c) verify: A verification service is also available for
EEs through the /verify/check endpoint, once the /verify/login
endpoint has granted access by providing a token to the
enrolled client. It can be used from the EE each time its
certificate is accessed in the context of another application.

C. EE clients

The EEs referred to as clients interact with the ICA services
and are deployed on multiple devices. Specifically, they are
implemented as workflows that POST requests to ICA’s /enroll
along with their credentials and, subsequently, request certifi-
cate issuance. This is done by POSTing requests to the ICA’s
/certify/download and /certify/upload, after they have logged
into the service at /certify/login, much like the interactions
between ICA and CA.

The system effectively mimics the diverse and concurrent
interactions of a large-scale client base, providing a realistic
environment to test and validate the functionality and scal-
ability of the proposed framework. Each ICA is uniquely
responsible for its clients, and the root CA manages the ICAs,
distributing management between the different PKI layers and
promoting security and scalability. Details are described in
Section V-B.

IV. DESCRIPTION OF EXPERIMENTS

Our framework is formed using containerized applications
which involve cryptography providers. The providers consti-
tute modules that offer a set of cryptographic libraries, in this
case including classical and post quantum algorithms. With
just a couple runtime adjustments within the containerized
applications of the different CA levels, the circulated certifi-
cates can be signed with either classical or PQC algorithms on
the corresponding level, a feature that will later be automated
within security limitations. We test our system by performing
two sets of experiments on the employment of PQC signature
algorithms for certificate issuance. The results from the two
sets of experiments highlight the impact of PQC adoption at
different levels of the PKI, but also empirically reflect the 2-
step migration to PQC strategy proposed in [21].

In the first set of experiments, different PQC signature algo-
rithms are employed at the CA level only. We perform our tests
using the Dilithium, SPHINCS+ and Falcon variants shown in
Table I, the first two being the foundations for the formulation
of the recent NIST-approved standards FIPS 204 [16] and
205 [18], while Falcon is an efficient alternative currently
being processed to constitute the basis of another NIST-
approved standard. The different variants produce different key
sizes, and, as a result, different certificate sizes, and correspond
to different security levels [12], [19]. In these experiments, the
system comprises the root CA and two different ICAs located
at Machine 2 and Machine 3 of Table II respectively. Each
ICA receives requests from 25,50,100,250 and 500 natively
located clients concurrently, and then produces the matching
requests addressed to the root CA according to the workflow
described in Section III.

In the second set of experiments the same set of PQC
signature algorithms is used. Each algorithm is employed both
at the ICA level, as well as the CA level. In these experiments,
the ICA is placed at Machine 1 and clients at Machine 2
and Machine 3 of Table II . The ICA receives requests from
50,100,200,500 and 1000 remotely located clients concur-
rently, and then produces the matching requests addressed to
the root CA.

In both sets of experiments, the PKI levels where PQC
algorithms are absent use the vastly adopted RSA with
SHA256 for key generation and/or signature creation, which
produces a 2048-bit public/secret key. This is chosen so that
the framework is tested against a classical algorithm with a



large load, contrary to the case in which ECDSA is used. The
certificates produced follow the X.509 format and are encoded
in PEM, while the information load is consistent among
experiments and minimal. This helps focusing on metrics
associated with network loads and process times independently
to the CSR/certificate size. The results of the experiments are
discussed in the next.

V. EXPERIMENTAL SETUP

The designed software components constitute our frame-
work’s backbone, being supported by the hardware compo-
nents listed in Table II. Our software components are designed
to communicate over the Internet using simple HTTP requests
and are easily transferable. In this work, the topology imple-
mented for conducting our experiments is designed to follow
a Full-Cloud-Fog architecture [10], described in Section V-A.
Implementation details regarding the software and hardware
components of the setup are elaborated on in Section V-B.

A. System Architecture

The proposed topology in this work is organized over a
three-layer scheme encompassing cloud, fog and client nodes.
Within this structure, cryptographic and management related
tasks are distributed among the cloud and fog nodes, effec-
tively balancing computational demands between these two
layers. This approach reduces computational complexity on
edge devices, however, it is aligned with the principles of edge
computing by situating certain processing tasks closer to the
data sources. In the presented topology, the top layer consists
of a remote server that acts as the cloud node and monitors
the activities of the fog nodes. The middle layer comprises
fog nodes that serve as domain-local gateway devices. The fog
nodes are responsible for managing the device nodes within
their respective domains, which act as clients to the fog nodes.
The network is described by a hybrid star and hierarchical
topology:

1) Server-Router Link: The remote server S is accessed
through a central router R.

2) Router-Fog Nodes Links: The central router R is con-
nected to multiple fog (QKD) nodes Q1 ,Q2 , ...,Qn

representing the corresponding domains D1 ,D2 , ...,Dn

. In the case of QKD nodes, the classical channel is
complemented by the quantum channel connecting the
QKD nodes directly for key agreement through quantum
mechanics operations.

3) QKD Nodes-End Devices Links: Each fog node Qi is
connected to a set of end devices Ei1 ,Ei2 , ...,Eim . The
end devices rely on the fog nodes for cryptographic
services such as authentication or encryption.

Each layer mentioned above serves a distinct function in
the automated certification issuance process, with different
tasks and permissions defined at the top level. The certifi-
cate hierarchy and process flow are closely linked to the
software components developed that were distributed among
the hardware components, all of which will be described in
Section V-B.

B. Implementation details

Our implementation involves various software components
that constitute the backbone of a scalable automated cer-
tification issuance system. We included different hardware
components that we connected over a real-world physical
network and distributed the software components accordingly.
The setup was tested on three separate devices. The im-
plementation involves three main software entities that were
distributed among the physical devices connected through a
correspondingly configured network.

The services’ API is implemented in Node.js [20], while
the PQC algorithms are accessed through the OpenSSL cryp-
tography provider developed in the context of the Open
Quantum Safe project [28]. We employed Postgres databases
to distinguish between the management of clients’, ICA and
root CA certificates, so that each ICA is uniquely responsible
for the clients’ certificates and the root CA is responsible for
ICA certificates. Each layer expects the issued certificate to be
sent back as an indication of fidelity, otherwise the client will
be considered blacklisted, in which case certificate renewal is
expected to be trialed in future work. The ICA initiates a new
chain

1) Software and hardware components: The main outcome
of our implementation concerns an automated certificate is-
suance system that is divided into three entities – the root CA,
the intermediate CA and the EE. The root CA is located at S ,
the intermediate CA is located at Qi for some i, and the EE is
situated at Eij for some j. Each authority issues certificates for
its adjacent layer from below. We assume that the intermediate
CAs with permission to receive a signed certificate are already
known to the root CA and kept in a database. Any entity
requesting a certificate from the root CA that is not listed in
the root CA’s record is denied service. The services are written
in Node.js [20] and configured as Docker [15] images, making
the implementation transferable and lightweight.

We distribute our software components among three ma-
chines, as shown in Table II. Machine 1 was used to run the
root CA’s and ICAs’ services as containerized applications,
while Machines 2 and 3 were used to run the ICAS’ services
and client processes, as described in Section IV. In the first
case of experiments, the framework comprised the two ICAs
running on Machines 2 and 3 and, in the second case, the
framework comprised one ICA running on Machine 1.

VI. RESULTS AND ANALYSIS

In this section, we present the results of our experiments
conducted as described in Section IV. We identified four main
factors affecting the obtained results, including certificate size,
network load, algorithm complexity, but also caching, which
signals good functionality of the framework. We consider
operations that include digital signatures produced using PQC
algorithms at some part of the chain-of-trust and measure the
average time taken to complete them. These operations are as
follows.

• ICA certificate issuance, including:



TABLE II
SPECIFICATIONS OF THE COMPUTER MACHINES USED FOR OUR EXPERIMENTS.

Hardware Components
Name System Model Processor RAM Operating Software

Machine 1 Alienware Aurora R15 AMD AMD Ryzen 9 7950X 4.5GHz 16 Core 64GB Windows 11 Pro
Machine 2 Inspiron 5577 Intel(R) Core(TM) i7-7700HQ 2.8GHz 4 Core 24GB Ubuntu 24.04.1 LTS
Machine 3 HP ZBook Firefly 15 G7 Mobile Workstation Intel(R) Core(TM) i5-10210U 1.6GHz 4 Core 16GB Ubuntu 20.04.6 LTS

– ICA download: This action encompasses the trans-
mission of the ICA’s CSR, the application of the PQC
signature algorithm from the root CA and the reply
to the requesting ICA.

– ICA upload: This action concludes the ICA’s certifi-
cate issuance by sending the newly received certifi-
cate back to the root CA.

• client certificate issuance, including:
– ICA verify: This action initiates the issuance of the

client’s certificate by confirming with the root CA
that the ICA certificate is valid in order to be used.

– client download: This action encompasses the trans-
mission of the client’s CSR, the application of the
PQC signature algorithm from the ICA and the reply
to the requesting client.

– client upload: This action concludes the client’s
certificate issuance by sending the newly received
certificated back to the ICA.

• root CA application of the signature algorithm for ICA
certificate issuance.

• root CA verification of the ICA’s certificate.
We observe across all experiments that SPHINCS+ with

the larger key size is consistently slow when signing, shown
in Fig. 3. This justifies the fact that the employment of the
same algorithm places a considerable overhead in the ICAs’
certificate issuance time, as seen in Fig.4. The same does
not hold for the verification time with this algorithm, which
remains relatively low for up to 200 clients in the first set
of experiments and even accelerates as the number of clients
increases for the second set of experiments. The results can
be seen in Fig. 5 This result is owed to the way the algorithm
is constructed, as the public key in SPHINCS+ often includes
precomputed hash structures and is stateless, meaning no state
needs to be tracked between signature verifications.

In the case of the experiments with PQC at the root CA
level only, we notice that operations including the Falcon
variant with the larger public key are generally quicker than
employing the “lighter” Falcon variant, in terms of measuring
the time that a client needs to obtain a signed certificate, as
shown in Fig. 6. This is probably due to efficient verification
of the ICA certificate, as well as caching and implementation
optimizations motivated by the larger key size. We also ob-
serve that operations using Falcon512 compete with the times
of these using Dilithium2 in terms of average time taken for
a client to obtain a signed certificate, while operations using
Dilithium3 conclude quicker than when using Dilithium2 for
up to 500 clients. Moreover, Dilithium5 and SPHINCS+128

appear unexpectedly efficient, but place considerable overhead
when issuing certificates to a number of clients greater than
500.

In the case of the experiments where PQC algorithms
are used both at the root CA and ICA levels, we observe
an overall greater overhead in the certificate signing and
verification average times, however, the ICA and client cer-
tificate issuance operations exhibit an overall acceleration.
We also notice that Dilithium2 and Dilithium3 contribute to
a significant increase in overhead when the client numbers
range from 500 to 1000 clients for the clients’ (Fig. 8) and
ICAs’ (Fig. 7) certificate issuance. In fact, the ICA certificate
issuance time decreases with signature algorithms that produce
large certificates, contrary to the cases of Falcon, Dilithium2
and Dilithium3, probably due to triggering caching procedures
in the framework.

Overall, we can confirm that SPHINCS+ admits a disad-
vantage in signing overhead, particularly affecting the average
time of issuing ICA certificates from the root CA. However,
the results of our application show that this is mitigated by the
workflow we design, since the computational burden is placed
on verifying certificates at PKI levels usually comprising
heavy-duty computers. This renders the SPHINCS+ variants
a sensible choice, especially when considering SPHINCS+’
properties as an algorithm based on long-studied mathematical
foundations. Conversely, Falcon1024 outperforms Falcon512
in client certificate issuance times, likely due to caching op-
timizations and efficient verification mechanisms, challenging
the assumption that smaller key sizes always lead to faster
operations. The Dilithium algorithms present mixed results;
Dilithium3 generally outperforms Dilithium2 for workloads of
up to 500 clients, but as the number of clients grows beyond
this threshold, both algorithms encounter significant overhead.
Variants like Dilithium5 and SPHINCS+128 face scalability
challenges as client numbers increase as well, highlighting
the critical impact of certificate size and caching behavior on
system performance. These findings underscore the importance
of balancing algorithm selection, system design, and workload
distribution to optimize certificate authority performance in
post-quantum environments.

VII. CONCLUSION

In this work, we have presented a scalable framework
designed to manage chains-of-trust for a large client base
using signature algorithms that include PQC methods. The
system accommodates both classical and PQC algorithms,
ensuring backward compatibility, adaptability and seamless
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root CA PQC signature, with respect to the number of EEs (clients). Each
bar corresponds to a different PQC algorithm. The certificates signed concern
public keys produced with RSA.
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Fig. 6. Average time measured for the issuance of certificates to EEs (clients)
from two ICAs, with respect to the number of EEs. The EEs were equally
distributed to the two ICAs, whose certificates were issued by the root CA.
Each bar corresponds to a different PQC signature algorithm employed by
the root CA.
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Fig. 7. Average time measured for the issuance of certificates to one ICA,
with respect to the number of EEs. Each bar corresponds to a different PQC
signature algorithm employed by the root CA and the ICA.
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Fig. 8. Average time measured for the issuance of certificates to EEs (clients)
from one ICA, with respect to the number of EEs. Each bar corresponds to
a different PQC signature algorithm employed by the root CA and the ICA.



integration at the critical level of CAs. The framework en-
compasses services for automated certificate issuance and
verification, leveraging PQC signatures for robust protection
against quantum-based threats and promoting crypto-agility.
The architecture employs a hierarchical three-layer structure
comprising a root CA, ICAs and EEs, enabling efficient
certificate management. The framework is evaluated in a full-
fledged network simulation, demonstrating its performance
in signing, verifying, and distributing certificates to multiple
clients, with support for up to two ICAs in the hierarchy.
The vast usability of the framework’s concept motivates its
introduction to more diverse network topologies. However,
the adaptation to different hardware architectures requires time
and effort. We are currently working on including diverse ar-
chitectures and protocols, while building a versatile, powerful
system. Future work includes enhancing automated certificate
issuance to meet all ACME protocol requirements, scaling
our framework for real-world QKD node domains needing
PQC certificates, and testing mixed PQC certificate chains with
hybrid signature schemes and key encapsulation mechanisms.
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