
Secure Transfer Learning: Training Clean Model Against Backdoor in
Pre-trained Encoder and Downstream Dataset

Yechao Zhang1, Yuxuan Zhou1, Tianyu Li1, Minghui Li1, Shengshan Hu1, Wei Luo2, Leo Yu Zhang3

1Huazhong University of Science and Technology 2Deakin University 3Griffith University
{ycz, yuxuanchou, tianyuli, minghuili, hushengshan}@hust.edu.cn

wei.luo@deakin.edu.au leo.zhang@griffith.edu.au

Abstract—Transfer learning from pre-trained encoders has be-
come essential in modern machine learning, enabling efficient
model adaptation across diverse tasks. However, this com-
bination of pre-training and downstream adaptation creates
an expanded attack surface, exposing models to sophisticated
backdoor embedding at both the encoder and dataset lev-
els—an area often overlooked in prior research. Addition-
ally, the limited computational resources typically available
to users of pre-trained encoders constrain the effectiveness of
generic backdoor defenses compared to end-to-end training
from scratch. In this work, we investigate how to mitigate po-
tential backdoor risks in resource-constrained transfer learning
scenarios. Specifically, we first conduct an exhaustive analysis
of existing defense strategies, revealing that many follow a
reactive workflow based on assumptions that do not scale
to unknown threats, novel attack types, or different training
paradigms. In response, we introduce a proactive mindset
focused on identifying clean elements and propose the Trusted
Core (T-Core) Bootstrapping framework, which emphasizes
the importance of pinpointing trustworthy data and neurons
to enhance model security. Our empirical evaluations demon-
strate the effectiveness and superiority of T-Core, specifically
assessing 5 encoder poisoning attacks, 7 dataset poisoning
attacks, and 14 baseline defenses across 5 benchmark datasets,
addressing 4 scenarios of 3 potential backdoor threats.

1. Introduction

Transfer learning (TL) has become an essential tool in
machine learning applications, allowing developers to create
sophisticated models by modifying existing ones to suit their
specific tasks. This training paradigm is especially advan-
tageous for users with limited computational and training
resources, as it only requires collecting a small amount of
training data and minor adaptation of a pre-trained encoder
from third-party or open-source repositories. However, rely-
ing on pre-trained encoders or collecting data from external
sources opens up significant security risks, exposing transfer
learning models to malicious actors with access to the pre-
trained model or the data to launch backdoor attacks. In
backdoor attacks, an attacker may manipulate a few training
samples of the victim by embedding a backdoor trigger
and (mis)labeling them as a target class [1, 2] or directly

train a backdoor model [3–5] and deliver it to the victim.
Either way, during inference time, they allow an attacker
to stealthily control the victim model’s behavior to produce
target outcomes given specific conditions.

A Challenging Defense Context. Transfer learning
poses potential backdoor risks from both sources, creating a
complex situation where the pre-trained encoder, the dataset,
or both may be compromised, leading to three types of
backdoor threats. However, prior research has primarily
focused on only one vector of poisoning. Moreover, the
transfer learning setup poses underappreciated challenges
for general edge users with computational constraints when
addressing backdoor threats. For these users, their limited
computational resources typically can only support them in
fine-tuning only part of the model parameters in transfer
learning, e.g., the last few layers. Nevertheless, almost all
existing defenses are designed for scenarios where the entire
model can be trained, usually requiring the support to train
a model from scratch in an end-to-end learning manner.

A Exhaustive Defense Analysis. To further understand
the combat against backdoor threats in this general yet
challenging resource-limited transfer learning scenario, we
exhaustively discuss and analyze existing defense strategies
that presumably can help to mitigate the backdoor threats.
However, we found that defenses effective in eliminating
backdoors during end-to-end training from scratch fail to
produce a clean model with high accuracy when adapted
to the new defense context. Many existing defenses primar-
ily rely on a reactive workflow to identify and eliminate
poison elements associated with specific known threats,
heavily depending on assumptions about these elements.
Unfortunately, these assumptions do not scale to unknown
threats, novel attack types, or different training paradigms,
as summarized in Table 1.

A Proactive Mindset. To overcome the limitations of
reactive workflows, we advocate for a proactive mindset. In-
stead of trying to identify all poisoned elements in a mixture
of clean and poisoned samples from the post-attack model,
we emphasize the importance of identifying high-credibility
clean elements and proactively training with these trusted
samples to address unknown backdoor threats. The rationale
is that pinpointing a limited number of clean elements is
significantly easier and more accurate than identifying all
poisoned elements, particularly in complex scenarios where

ar
X

iv
:2

50
4.

11
99

0v
1

 [
cs

.L
G

]
 1

6
A

pr
 2

02
5

poison can originate from different sources and backdoor
triggers can take various forms. Defenders can then gradu-
ally expand this foundation by evaluating additional trust-
worthy elements while keeping untrusted elements separate.

A Bootstrapping Defense Framework. We propose a
Trusted Core (T-Core) Bootstrapping framework that utilizes
a proactive approach to learning a clean model through
gradually bootstrapping verified data and model neurons.
Our process begins by identifying a limited number of
high-credibility samples from each class. This selection is
based on assessing topological invariance across different
layers of a well-trained model using the entire dataset.
Next, we create a clean subset by treating these samples
as seed data. We apply a method of unlearning the seed
data while simultaneously learning from the remaining data
and selecting the sample with maximal prediction loss to
expand the dataset. Subsequently, we introduce a selectively
imbalanced unlearn-recover process to filter clean channels
within the pre-trained encoder, utilizing the clean subset
we’ve established. Finally, we leverage both the trusted
dataset and the trusted model neurons to bootstrap further
the learning of a clean model, which involves gradually
expanding the pool of clean samples and refining the model.

A Comprehensive Empirical Evaluation. We exten-
sively evaluate a diverse set of 5 encoder poisoning attacks
[4, 6–9], 7 dataset poisoning attacks [1, 2, 10–12, 12, 13],
and 5 benchmark datasets of image classification (CIFAR-
10, STL-10, GTSRB, SVHN, and ImageNet), covering 4
possible scenarios of all 3 types of backdoor threats in
transfer learning. Throughout the paper, we evaluate 14
baseline defenses [14–27] within the defense context of
transfer learning, and none of them match the effectiveness
of our Trusted Core Bootstrapping framework in any module
or in its entirety. This illustrates the potential of the proactive
mindset we advocate in defending against unknown back-
door threats.

Finally, we summarize our contributions as follows:
• We identify a complex and challenging yet general

backdoor threat model within the transfer learning sce-
nario that previous research has overlooked.

• We conduct an exhaustive analysis of the existing back-
door defense in the defense context and reveal their
limitations under the transfer learning scenario.

• We propose a proactive mindset as an alternative and
introduce a Trusted Core Bootstrapping defense frame-
work as an instantiation, providing concrete designs
that are more robust and generalizable.

• We conduct extensive experiments to demonstrate the
effectiveness of our Trusted Core Bootstrapping frame-
work, as well as its superiority over existing designs in
both module-by-module and end-to-end evaluation.

2. Preliminaries

In this section, we define our setup (Sec. 2.1), deliver
the threat model of backdoor attacks under transfer learning,
and the defense context for a general edge user (Sec. 2.2).

2.1. Training Procedure, Models and Data

We consider a popular transfer learning (TL) paradigm
in image classification, i.e.,“self-supervised pretraining fol-
lowed by supervised fine-tuning”. The self-supervised stage
involves using a large set of unlabeled data, referred to as
the pre-training dataset Dpre, to develop an image encoder
serving as a representation function g : X 7→ E , where
X = Rd represents the input space, and E is the embedding
space. In the fine-tuning stage, a task-specific classification
head f(·;ϕ) is concatenated on top of g(·; θ), creating a
combined network h(·; θ, ϕ) = f(ϕ) ◦ g(·; θ) : X 7→ ∆C ,
which is tailored for the downstream task of C-classes image
classification and ∆C representing the probability output
space over the C classes. Overall, h comprises multiple
layers, {h(l) : l ∈ [1, N]}. Given an input x, the output
of the neural network h is computed as h(x) = f(g(x)) =(
h(N) ◦ · · · ◦ h(1)

)
(x), where f only represents the last few

layers. Taking advantage of the feature extraction capability
of the encoder, the fine-tuning process primarily updates ϕ
on the C-class labeled downstream training dataset D with
training loss

∑
(xi,yi)∈D ℓ(h(xi), yi) between the probability

of output h(x) and y, while generally freezing or making
minor adjustments to θ. During inference, for any input fea-
ture x ∈ X , the resulting classifier F (·) := argmaxc hc(·)
takes F (x) as the predicted label. We use P to denote the
clean data distribution of the downstream classification task
and E(x,y)∼PI(F (x) = y) as clean accuracy (ACC).

2.2. Threat Model and Defense Context

Our work considers the scenario in which an edge user
aims to securely develop an image classifier based on an
untrusted pre-trained encoder g and an untrusted training
dataset Dpre. This is relevant for a typical user who cannot
guarantee the authenticity of the data it collects and does not
have the resources (e.g., computational power, and memory)
to train a model from scratch, thus requiring a pre-trained
model to facilitate its training. Given the growing trend of
users accessing open-source datasets and pre-trained models
from AI platforms such as HuggingFace, where anyone can
freely upload resources, we believe this considered scenario
is increasingly practical. In particular, our work focuses on
the backdoor threats within this scenario.
Attack Goals. In general, regardless of how and where the
trigger is injected, a desired backdoor attack should satisfy:

E(x,y)∼PI(F (x) = y) ≥ τACC , (1)
E(x,y)∼P|y ̸=t

I(F (T (x)) = t) ≥ τASR, (2)

where T : X 7→ X represents the adversary’s trigger func-
tion that transforms a benign input into a trigger-injected
one, and t denotes the target class chosen by the adversary.
Eq. (1) specifies that the attack shall not affect the standard
functionality, that is, a high clean accuracy (above some
τACC) for the classification model F . Eq. (2), on the other
hand, requires the backdoored classifier to classify any
trigger-injected input T (x) as the target class t with a high
probability, thus a high attack success rate (ASR).

Attack Vectors. In the context of transfer learning, we
identify three potential backdoor threats to downstream tasks
based on the adversary’s capabilities and attack approaches.
These threats are illustrated as follows:
• (Threat-1) Encoder Poisoning: The attacker of this type

aims to inject the backdoor by producing a poisoned
image encoder g so that the downstream classifier F built
based on g satisfies Eqs. (1) and (2). In this context, an
attacker may operate as follows: 1) As a dishonest model
provider, the attacker injects a backdoor into a pre-trained
encoder and distributes it to users. 2) As a malicious third
party, the attacker fine-tunes a clean encoder to include a
backdoor and uploads it to platforms like HuggingFace.
3) As a disingenuous data provider, the attacker creates
poisoned data for the pre-training dataset Dpre of others,
poisoning their encoder. Either way, the attacker targets
a specific concept associated with a downstream task.

• (Threat-2) Dataset Poisoning: Another type of attacker
can directly or indirectly poison the training dataset D
of the downstream user with a limited amount of trigger-
injected data. This can occur when the downstream user
collects data in an untrusted environment or from a disin-
genuous data provider. We assume the attacker of this type
has no knowledge of the pre-trained encoder. Even if the
attacker knows the user is resource-limited and likely to
use transfer learning, the architecture and parameters of
the pre-trained encoder remain unknown.

• (Threat-3) Adaptive Poisoning: In an extreme and yet
feasible case, an adaptive attacker could potentially com-
promise both the pre-trained encoder g and the down-
stream dataset D using the same backdoor trigger. This
could happen if the user obtains both the model and
training data from the same dishonest service provider.
The attacker maximizes effectiveness by applying the
same trigger to both g and D. Consequently, even if
the model or data is purified, the backdoor may remain
effective unless completely eliminated.

We assume that in all these types of threats, the attacker does
not know the training details of the downstream task. Once
the poisoned data or encoder is delivered to the downstream
user, how the user proceeds with the training or any potential
defense is unknown to the attackers. It is important to note
that multiple independent attackers can operate simultane-
ously. For instance, Threat-1 and Threat-2 may both occur:
one attacker compromises the encoder g with trigger T1 tar-
geting class t1, while another contaminates the downstream
training data D with a different trigger T2 targeting class t2.
Each attacker remains unaware of the other’s presence.
Defender’s Goals. The defender we considered can be
downstream users themselves or a cybersecurity service
company like Darktrace1 that provides automatic on-
premise defense for users since the users may not be willing
to adopt a cloud service and update their collected data,
sometimes personal data. The defense framework takes the
untrusted encoder g, and the untrusted training set D as
inputs and intends to build an accurate and safe classifier

1. https://darktrace.com

at the endpoint. The goals of the defense are three-fold as
follows: 1) Utility: the resulting classifier F has a high
ACC on the downstream task; 2) Security: for any injected
backdoor in g and D, its effect will be eliminated, the
resulting classifier itself F can correctly classify according
to the actual semantic of the input, i.e., exhibiting a low
ASR without additional effect at the inference time; 3)
Generalizability: The defense should effectively counter all
backdoor threats using various trigger embedding methods
T . Regardless of how the backdoor is injected, the defense
methodology must maintain the effectiveness and security
of the resulting F across different datasets, encoders, attack
vectors, and hyperparameters (e.g., poison rate).
Defender’s Capabilities and Constraints. We illustrate the
defender’s knowledge and constraints below:
1) Access limited to g and D: We consider the defender

has no access to additional data other than D, such
as the pre-training dataset Dpre or a hold-out dataset
containing a sufficient amount of clean samples. This is
because model providers typically safeguard their pre-
training dataset for proprietary or privacy reasons. Like-
wise, obtaining a completely clean hold-out dataset may
not always be feasible. Nevertheless, we assume the
defender possesses full autonomy over D and g, which
includes the ability to access, analyze, and modify their
elements as needed.

2) Ignorance of threat model: The defender is unaware of
the specific kind of backdoor threat it is dealing with. In
other words, whether the encoder g or the dataset D has
been poisoned remains uncertain. To the defender, it is
possible that neither, either, or both the encoder g and
the dataset D have been poisoned. As such, the defender
has to treat both g and D as untrustworthy.

3) Computational constraints: We assume the defense’s
computational power is limited, reflecting the reality of
defense deployments on edge users’ devices. Thus, com-
puting gradients for the entire network is often infeasible
due to the large size of pre-trained encoders and limited
memory. This also agrees with the user’s intention of
adopting the transfer learning pipeline, where the fine-
tuning process usually mainly focuses on a few layers
that are appended to the encoder. Thus, designing a
memory-efficient defense is in the defender’s interest.
Nevertheless, we assume the defense process can span
a relatively long period to ensure the successful removal
of potential backdoors from the fine-tuned model.

3. Methodological Analysis

3.1. Assessing Existing Defense Methodology

In this section, we evaluate the current defense method-
ologies within the defense context of TL to assess their ef-
fectiveness. We aim to identify their limitations and uncover
the necessities required for a successful defense in the given
context. Note that we do not elaborate the inference-time
defenses, such as preprocessing that disrupt trigger-injected

https://darktrace.com

TABLE 1: An overview of existing backdoor defense methods, their assumptions or requirements, and how they fail or are
not well-suited under the defense context.

Defense Type Approach Assumption or Requirement Limitation under the Defense Context

Poison Detection Latent separation-based detection Poisoned samples can be distinguished as
outliers in the latent space.

Poisoned samples blend into the clean sam-
ples in the latent space when only tuning
the classification head.

Confusion training-based detec-
tion

Only backdoor correlations are well-
preserved after confusion training.

A huge proportion of clean samples still
have minimal losses after confusion training
when only tuning the classification head.

Poison Suppression Training restricted suppression Demanding the computational resource to
sufficiently train an entire encoder or DNN.

Edge users’ devices typically do not support
computing the entire network’s gradients.

Spurious correlation-based sup-
pression

Backdoor features are easier to learn com-
pared to clean features.

The learning pace advantage between back-
door and clean data differs across various
backdoor attacks and threat types.

Poison Removal Fine-tuning-based removal or
Trigger synthesis-based removal

Requiring a hold-out clean dataset to fine-
tune the model or reverse the trigger.

An additional completely hold-out clean
dataset may not be feasible.

Lipschitz-based removal The channels with larger upper bounds of
Lipschitz constant are more likely to be
backdoor-related.

There is no absolute correlation between
the Triggered-Activation Change and the
Lipschitz constant’s upper bound.

input before forwarding into the model [28–30] or input-
based detection that assesses and rejects malicious inputs
[23, 24, 31, 32]. This exclusion stems from our commitment
to the model’s inherent security and creating a backdoor-
free classifier for reliable deployment. Also, inference-time
defenses can drastically raise processing costs by up to two
orders of magnitude [31], and they often fail to provide a
satisfactory security-utility trade-off (see Table 19).

Thus, we exhaustively explore the other types of de-
fenses that can presumably mitigate the backdoor threats
and can help to fulfill the defender’s goals in the defense
context: (1) poison detection to identify backdoor poison
data, (2) poison suppression to obstruct backdoor learning
during training, and (3) poison removal to eliminate back-
door within a model after the attack. It is important to note
that most of these defenses are proposed to address a specific
backdoor threat, which only applies to part of the cases in
the defense context. Therefore, we evaluate each defense
fairly, focusing on its intended purpose or presumably solv-
able backdoor threat. From a defender’s perspective in the
defense context, we assess whether existing methods can
achieve their intended goals and discuss their limitations.

In this section, we primarily utilize two standard back-
door dataset poisoning methods, BadNet, and Blended at-
tacks for Threat-2. For Threat-1 and Threat-3, we lever-
age two encoder poisoning methods, BadEncoder [4], and
DRUPE [7]. In Threat-3, we use the trigger of backdoor
encoders for downstream poisoning. For both Threat-2 and
Threat-3, 20% of the samples from the target class are
poisoned in the downstream dataset. More configuration
details are included in Appendix-B.2 and Appendix-B.3.

3.2. Defense Type I: Poison Detection

Poison detection involves identifying and removing ab-
normal samples from a backdoor dataset to ensure the cre-
ation of a purified dataset, which is then used to train a clean
model [11, 18–22]. Thus, poison detection techniques are
meant to address dataset poisoning of Threat-2. However,

TABLE 2: Poison detection and subsequent evaluation of
fine-tuned model under Threat-2 with CIFAR-10 as the
downstream dataset and STL-10 as pre-training dataset: 20%
samples of the target class are poisoned ones. Both CT and
ASSET are granted 1000 clean samples.

Methods BadNets Blended
TPR↑FPR↓ACC↑ASR↓TPR↑FPR↓ACC↑ASR↓

No Defense - - 85.04 92.21 - - 84.84 89.12
STRIP 6.08 6.18 82.80 87.16 6.00 5.15 83.24 83.01

AC 71.92 5.61 82.88 76.02 0.00 6.86 83.74 82.48
Spectral 49.76 37.19 78.33 59.24 64.48 36.81 78.44 39.21

SPECTRE 22.16 37.89 76.54 74.80 29.44 37.71 76.40 68.60
CT 0.00 - 85.04 92.21 0.00 - 84.84 89.12

ASSET 32.16 1.23 84.28 64.68 22.88 1.46 83.76 87.10

one would face a dilemma when adopting prior techniques
for this defense context.

First, almost all prior literature on poison detection relies
on a preset end-to-end supervised learning (SL) approach,
assuming the training of the entire network is feasible2.
These approaches initialize and train an end-to-end DNN
from scratch on the entire poisoned dataset, identifying
and removing backdoor samples based on their distinctive
characteristics in the post-attacked model. Most focus on
feature characteristics, claiming poisoned samples can be
identified as outliers in the latent space, as demonstrated
in the BadNets detection of STRIP [22], AC [18], Spectral
[19], and SPECTRE [16]. However, this assumption is inval-
idated by latent space adaptive attacks [11, 12, 12]. Second,
to effectively filter out poisoned samples, many methods
[20–22, 32, 33] require a certain number of clean samples
to build their outlier detectors, which can conflict with the
defender’s constraints in our context. This includes state-
of-the-art poison detection methods, CT [21] and ASSET
[20], which do not rely on latent separability. Both adopt
a confusion training approach, optimizing over a hold-out

2. ASSET, the only method claiming effectiveness on TL, still requires
training an additional full DNN.

(a) BadNets

CleanPoison

(b) Blended

FT-all FT-head FT-all FT-head

Clean Poison

(a) BadNets
(a) BadNets

CleanPoison

(b) Blended

FT-all FT-head FT-all FT-head

Clean Poison

(b) Blended

Figure 1: t-SNE comparison of feature space from a model
trained on poisoned CIFAR-10: contrasting fine-tuning the
entire network (FT-all) with fine-tuning only the 3-layer
classification head (FT-head) under Threat-2.

clean set and the poisoned training dataset in the reverse
direction. For instance, CT aims to reduce the model’s
accuracy on clean samples by unlearning on clean data while
learning from the training set, leading it to focus primarily
on the backdoor data. Then, samples predicted correctly or
with the smallest loss are considered poisoned [20, 21].

Despite assuming a clean hold-out set, we still evaluate
the effectiveness of CT, ASSET, and others in detecting
poisoned samples, measuring True Positive Rate (TPR) and
False Positive Rate (FPR) in the context of Threat-2 under
the vanilla BadNets [1] and Blended [2] attacks. We further
fine-tune models on each purified dataset for subsequent as-
sessment of ASR and ACC, with model training adjusted for
the classification head to fit the defense context. However, as
shown in Table 2, none of these backdoor detection methods
achieve a sufficient TPR or produce a clean classifier free
from the backdoor of Threat-2.

We now examine why these detection methodologies are
inadequate in this TL setting. In this context, the encoder is
inherited with knowledge from pre-training, and fine-tuning
is limited to the linear layers of the classification head.
As a result, features from the penultimate layer, which the
latent separation-based detector depends on, are merely a
linear transformation of the fixed encoder’s output, leading
to a condensed feature space that complicates the distinction
between clean and poisoned samples. In Fig. 1, we show that
if we fine-tune the entire network on the poisoned dataset, a
clear boundary between poisoned and clean samples would
still exist. However, when only the classification head is
tuned, this distinction blurs or disappears. Furthermore,
the narrow optimization space limits the ability to offset
clean features in the poisoned set under CT and ASSET.
As illustrated in Fig. 2, the low-loss region in the fine-
tuned head scenario contains many clean samples, making
them indistinguishable from poisoned samples. These results
highlight the challenges of eliminating poisoned samples
from a poisoned dataset in this defense context.

Remark 1 – The constraint on training the entire network
also constrains the ability to detect backdoor-poisoned
samples, as their supposedly distinguishable characteris-
tics become indistinct. Detecting poisoned samples based
on some assumption about them is unreliable because it
may not scale across different training paradigms.

0 1 2
FT-all

0.0

0.5

1.0

1.5

2.0

2.5

Pr
op

or
tio

n
(%

)

0.000 0.002 0.004
FT-head

0

5

10

15

0.000 0.001 0.002 0.003 0.0040.0

0.5

1.0

1.5

2.0

Clean Poison

(a) BadNets

0 1 2
FT-all

0.0

0.5

1.0

1.5

2.0

2.5

Pr
op

or
tio

n
(%

)

0.00 0.01 0.02
FT-head

0

2

4

6

8

10

0.00 0.01 0.020.0

0.5

1.0

1.5

Clean Poison

(b) Blended

Figure 2: Distribution of poisoned and clean samples in
the low-loss region (lowest 40% loss of the training set)
after Confusion Training (CT), contrasting results from fine-
tuning the entire network h (FT-all) and just the 3-layer
classification head f (FT-head) under Threat-2.

3.3. Defense Type II: Poison Suppression

Poison suppression reduces the impact of poisoned sam-
ples during training, allowing for direct learning of a clean
model under dataset poisoning as Threat-2 without needing
access to clean datasets. However, we found that many
defenses of this type, by design, require training the entire
network, limiting their applicability in the defense context.
For instance, DBD [34] explicitly demands a self-supervised
learning process over the entire encoder for semantic cluster-
ing. Other defenses [35, 36] observe that backdoors increase
the linearity through activation functions, thus filtering out
potentially affected neurons with more linearity during train-
ing. As a result, they depend on monitoring specific non-
linear layers and activation functions during training, but
fine-tuning only the classification head does not affect them.

The two poison suppression methods suitable for the
defense context are Anti-Backdoor Learning (ABL) [15]
and Causality-inspired Backdoor Defense (CBD) [14], both
aim to suppress the model’s spurious correlations to mit-
igate backdoor attacks. Since DNNs often confuse causal
relationships with statistical associations, favoring easier
correlations, ABL and CBD target features that are easier
to learn. ABL identifies samples with rapidly decreasing
training losses and applies unlearning to these easy-to-learn
samples. In contrast, CBD first trains an initial backdoor
model on the poisoned dataset for a few epochs, allowing
backdoor features to be learned while clean features remain
underdeveloped. Then, it trains a clean model from the poi-
soned set while minimizing the mutual information between
its representations and those of the initial backdoor model.

Since both ABL and CBD assume that backdoor fea-
tures are learned faster, we infer that they may also be
suitable for the case when both the encoder and downstream
dataset contain the same trigger. Thus, we evaluate them
under both Threat-2 and Threat-3. We adjust their key
hyperparameters to assess the security-utility trade-off. For
ABL, the isolation ratio indicates the percentage of lowest-
loss training samples selected for unlearning. For CBD,
the training epoch number indicates how well backdoor’s
spurious correlation is captured. According to the results in
Tables 3 and 4, neither ABL nor CBD can achieve a high
ACC and low ASR at any point. ABL shows much lower
ACC compared to when the defense is inactive, with inad-

TABLE 3: ABL’s defense performance (ACC and ASR) under
Threat-2 and Threat-3 using GTSRB as the downstream dataset and
CIFAR-10 as the pre-training dataset while varying the isolation ratio. We
also report the number of isolation data (NID) and the number of poison
data (NPD) within the isolation data for each ratio.

Threat Type Threat-2 Threat-3

Isolation Ratio BadNets Blended BadEncoder DRUPE
ACC↑ASR↓NID NPDACC↑ASR↓NID NPDACC↑ASR↓NID NPDACC↑ASR↓NID NPD

No Defense 77.51 91.12 - - 77.57 83.14 - - 78.10 99.97 - - 74.42 98.58 - -
0.01 46.70 64.92 392 0 46.63 49.83 392 0 44.74 98.29 392 0 20.44 96.20 392 1
0.05 38.30 61.78 1960 0 39.03 57.69 1960 0 42.05 97.96 1960 401 17.22 1.26 1960 458
0.10 27.90 72.45 3920 36 25.66 66.45 3920 0 30.14 95.86 3920 519 13.51 0.37 3920 464
0.15 17.50 83.70 5881 147 16.48 30.40 5881 0 17.51 0.00 5881 520 11.03 0.40 5881 480
0.20 14.26 68.12 7841 146 10.37 38.70 7841 122 13.62 0.03 7841 520 7.07 0.02 7841 482

TABLE 4: CBD’s defense performance (ACC
and ASR) under Threat-2 and Threat-3 using
GTSRB as the downstream dataset and CIFAR-
10 as the pre-training dataset while varying the
training epochs of the initial backdoor model.

Threat Type Threat-2 Threat-3
Epoch Number of

Initial Model
BadNets Blended BadEncoder DRUPE

ACC↑ASR↓ACC↑ASR↓ACC↑ASR↓ ACC↑ASR↓
No Defense 79.15 96.36 77.08 92.10 79.41 99.71 74.71 99.30

1 75.14 93.75 74.58 89.78 75.80 99.48 45.60 96.97
3 72.90 93.53 73.64 89.53 72.06 98.47 44.37 95.91
5 68.91 92.49 64.73 88.18 61.47 87.65 42.87 94.86
7 63.19 78.64 57.51 88.64 54.04 0.19 39.46 93.28
9 61.46 77.48 51.93 54.88 53.38 0.75 38.78 92.78

equate ASR reduction, as it isolates clean samples instead
of poisoned ones and fails to isolate poisoned samples at
small isolation ratios (0.01 and 0.05) under Threat-2. CBD
consistently decreases both ACC and ASR as the training
epochs increase, indicating entanglement between poison
and clean features in the representation, and minimizing
mutual information could harm both.

To analyze their failure, we plot the loss trajectories
under end-to-end supervised learning (SL), Threat-2, and
Threat-3. Fig. 3 shows that the model learns backdoor data
faster than clean data in the SL. Overall, in the TL, the
model learns both types of data faster. Under Threat-3,
poisoned data is learned faster than clean data only in the
initial epochs. Under Threat-2, the model learns poisoned
and clean data at similar paces for BadNets but learns clean
data faster for Blended. Thus, there is no consistent evidence
to support that backdoor features are easier to learn than
clean features, indicating that both ABL and CBD target
inaccurate objects for suppression, whether sample-wise or
representation-wise.

0 1 2 3 4 5 6 7 8 9
SL

0.0

0.5

1.0

1.5

2.0
Poison Loss
Clean Loss

0 1 2 3 4 5 6 7 8 9
Threat-2

0.0

0.2

0.4

0.6
Poison Loss
Clean Loss

(a) BadNets

0 1 2 3 4 5 6 7 8 9
Threat-3

0.0

0.2

0.4

0.6
Poison Loss
Clean Loss

(b) BadEncoder

0 1 2 3 4 5 6 7 8 9
SL

0.0

0.5

1.0

1.5

2.0
Poison Loss
Clean Loss

0 1 2 3 4 5 6 7 8 9
Threat-2

0.0

0.2

0.4

0.6

0.8 Poison Loss
Clean Loss

(c) Blended

0 1 2 3 4 5 6 7 8 9
Threat-3

0.0

0.2

0.4

0.6
Poison Loss
Clean Loss

(d) DRUPE

Figure 3: Comparison of average training losses for poi-
soned and clean samples in early epochs: SL trains from
scratch on a poisoned dataset (BadNets or Blended).
Threat-2 fine-tunes a classifier head after a clean encoder
on a poisoned dataset. Threat-3 fine-tunes a classifier head
after a poisoned encoder (BadEncoder or DRURE) on a
poisoned dataset with the same trigger.

Remark 2 – The shift of the training paradigm also
dramatically shifts the learning dynamic of both backdoor
features and clean features. Locating the accurate “poison”
for poison suppression based on some assumptions about
how they are learned differently is also unreliable, espe-
cially in such a complex scenario where diverse triggers
and backdoor threats are possible.

3.4. Defense Type III: Poison Removal

Poison removal works during the post-attack period,
aiming to reconstruct a clean model by directly modify-
ing the backdoor model, regardless of how the backdoor
was injected, which makes it suitable to address Threat-1,
Threat-2, and Threat-3 all. However, most backdoor re-
moval methods also rely on a clean dataset, including fine-
tuning methods that use clean data to adjust the model
[25, 26, 37] and trigger synthesis methods that generate
potential backdoor patterns from clean data [38–41]. The
only method that operates independently of clean data is
Channel-wise Lipschitz Pruning (CLP) [17].

CLP is based on an observation that channels associ-
ated with backdoors exhibit greater changes in activation
when presented with backdoor samples. Specifically, the
Trigger-Activated Change (TAC) TAC(l)

k (x) = ∥F (l)
k (x) −

F
(l)
k (T (x))∥2 should be larger for backdoor-related channels

than for normal ones, where F (l)
k (·) is the output of the k-

th channel at the l-th layer for input x. Additionally, the
Lipschitz-continuous function h(l)k (·) has an upper bound of
Channel Lipschitz Constant (UCLC) σ(θ(l)k), which limits
output differences. For any inputs z1 and z2 at layer l,
∥h(l)k (z1)− h

(l)
k (z2)∥2 ≤ UCLC, and σ(θ(l)k) is the spectral

norm of model parameters θ(l)k at k-th channel of l-th layer.
Since TAC is untraceable due to the unknown backdoor
trigger T , CLP identifies channels with high σ(θ(l)k) values
as backdoor-related. A larger σ(θ(l)k) indicates more room
for activation changes when a backdoor trigger is present,
suggesting a higher likelihood of being backdoor-related.

For each layer, CLP sets the threshold for the l-th layer
with K channels as µ(l) + u · s(l), where µ(l) and s(l) are
the mean and standard deviation of the layer’s {σ(θ(l)k) :
k = 1, 2, . . . ,K}. A smaller u results in more channels
being pruned. We evaluate CLP’s effectiveness by varying

0246810
u

0
20
40
60
80

100

AC
C/

AS
R

BadEncoder

ASR
ACC

0246810
u

0
20
40
60
80

100

AC
C/

AS
R

DPURE

ASR
ACC

(a) Threat-1

0246810
u

0

20

40

60

80

AC
C/

AS
R

BadNets

ASR
ACC

0246810
u

0
10
20
30
40
50
60
70

AC
C/

AS
R

Blended

ASR
ACC

(b) Threat-2

0246810
u

0
20
40
60
80

100

AC
C/

AS
R

BadEncoder

ASR
ACC

0246810
u

0
20
40
60
80

100

AC
C/

AS
R

DPURE

ASR
ACC

(c) Threat-3

Figure 4: CLP performance on different types of threat from an omniscient defender’s perspective: (a) CLP is applied to
the encoder g only because the pre-trained encoder is poisoned and the downstream dataset D is clean under Threat-1; (b)
CLP is applied to the linear layers of the classification head f because the encoder g is clean and only f is fine-tuned over
a poisoned D under Threat-2; (c) CLP is applied to f and g since both encoder and dataset are poisoned under Threat-3.

u from 0 to 10 in increments of 0.1 across all three backdoor
threat types. Note that the original CLP is only employed
on the convolution operators. In this experiment, we apply
CLP to g, f , or both, depending on the specific threat model
from an omniscient defense perspective. As shown in Fig. 4,
CLP fails to achieve low ASR and high ACC for any u
across all threat types. The ACC and ASR descend almost
together with the decline of u, suggesting that wherever the
backdoor is injected, the channels of the backdoor do not
depend exclusively on the ones with the larger upper bound
on activation changes (UCLC).

To understand the gap in CLP’s performance between
the end-to-end SL and the FT-head setting, we visualize the
correlation between UCLC and TAC in Fig. 5. Under SL,
it does show a positive correlation (corr) between UCLC
and TAC. However, under the transfer learning context with
novel backdoor injection, there is no absolute correlation
between UCLC and TAC, indicating a lack of strong ev-
idence linking real backdoor-related channels (high TAC)
with the presumptive ones (high UCLC). In other words,
the backdoor trigger in SL inductively chooses the channels
that can help induce TAC more easily. Instead, the backdoor
trigger under TL is more covert as it depends on channels
that are, in a way, more dispersed.

Remark 3 – The change in how the backdoor is injected
also changes where the backdoor activation relies on.
Blindly making assumptions on what kind of neurons are
more likely to be responsible for backdoor, only based on
the model itself, is also unreliable, as there is no guarantee
of the distribution of where the backdoor activates.

3.5. Towards A Proactive Mindset

To mitigate backdoor risks and achieve a clean classifier
with high ACC and low ASR, poison detection, poison
suppression, and poison removal are the typical solutions
for a defender. At a high level, each of them requires
identifying what constitutes poisoned features or character-
istics—whether on a sample-wise, representation-wise, or
neuron-wise basis—followed by eliminating these poison el-
ements. In a sense, these solutions can be seen as reactive, as
they primarily focus on defending against somewhat known

10 20 30
0.0

0.5

1.0

1.5
corr=0.35

20 40
0.0

0.5

1.0

1.5
corr=0.37

0 10 20
0.0

0.5

1.0

corr=0.93

0 25 50
0.00

0.25

0.50

0.75
corr=0.70UC

LC

TAC

(a) BadNets

0 10
0.0

0.5

1.0
corr=-0.43

0 50 100
0.0

0.2

0.4

corr=-0.37

0 5 10
0.0

0.5

1.0
corr=-0.37

0 5 10
0

1

2

3

corr=-0.33UC
LC

TAC

(b) DRUPE

Figure 5: The scatter plot of the upper bound of acti-
vation changes (UCLC) versus actual triggered-activation
changes (TAC) for all channels in the last four convolution
layers. corr presents the Pearson Correlation Coefficient.
(a) depicts an end-to-end SL-trained ResNet18 classifier
with BadNets dataset poisoning. (b) illustrates a ResNet18
encoder injected by DRUPE through encoder poisoning.

threats with a specific threat model (targeting what has or
may have been compromised), then taking action to locate
the poison elements and minimize their malicious influences
by directly removing them or suppressing them. In general,
these reactive strategies rely heavily on certain assumptions
about the characteristics of the poison elements. However,
these assumptions may not hold across unknown threats,
novel types of attacks, or different training paradigms. As
a result, their effectiveness is significantly compromised, as
they fail to accurately identify poison elements.

In this study, rather than responding to specific backdoor
threats by searching for poisoned elements, we advocate
for a proactive mindset that focuses on identifying and
amplifying clean elements to defend against unknown back-
door threats. On the one hand, poison elements can arise
from multiple sources (such as the dataset and encoder)
and manifest in various forms (including different types of
backdoor triggers), making their accurate characterization
challenging. In contrast, clean elements are generally more
stable and uniform, making it easier to locate at least a
small number of them. On the other hand, in a complex
environment where many available resources are untrusted,
it makes sense for defenders to utilize their limited trusted
resources to bootstrap and obtain more trustworthy elements.

4. Trusted Core Bootstrapping

In this section, we present the pipeline of our Trusted
Core Bootstrapping framework, which consists of three
stages that align with the proactive mindset we promote in
Sec. 3.5 to develop an accurate and secure classifier within
the defense context. We start with sifting a limited high-
credible seed data from the poisoned dataset (Sec. 4.1.1),
followed by a data expansion that expands the seed data into
a small clean subset (Sec. 4.1.2). Then an encoder neuron
filtering is employed to filter the trusted model neurons for
the clean downstream task (Sec. 4.2). Finally, we bootstrap
the training process using the filtered encoder and clean
data pool, progressively improving the model by gradually
incorporating more trusted data (Sec. 4.3).

4.1. Sifting A Clean Set

In this section, we introduce how to extract a trusted
subset, referred to as Dsub, from the untrusted downstream
dataset D, that can support the successful training of a clean
model for the downstream task. Intuitively, directly locating
a clean subset will be non-trivial. Thus, we propose to first
screen a limited number of representative data points from
each class by setting a very high standard, then using these
samples as seed data to bootstrap a clean subset.

4.1.1. Selecting Seed Data. As illustrated in Sec. 3.2, poi-
son samples blend with benign samples, making it challeng-
ing to sift out clean samples through simple representation
analysis in feature space. To address this, we sidestep the full
dependence on latent separability in a single feature space
and instead resort to examining the topological invariance
of each sample across different DNN layers. The rationale
is that the most representative samples should maintain
consistency in their position within the data distribution
as they propagate through the network. Specifically, we
propose two rules to identify high-credible samples:
• Majority Rule: A high-credible sample should belong to

the majority group of samples in a DNN layer. This rule
assumes that the number of poisoned samples in a given
class is smaller than that of clean samples, a condition
generally met in backdoor poisoning. This rule imposes
a global topological invariance, as it requires selection
to avoid small groups in the whole data distribution. By
enforcing this rule, we expect selected samples to be
embedded within the core of the distribution across layers.

• Consistency Rule: A high-credible sample should have
consistent nearest neighbors from its class across different
DNN layers. This rule imposes local topological invari-
ance as it requires selection to favor a consistent local
neighborhood. By enforcing this rule, we expect that a
selected sample is truly representative of its class, not
because of the clustering effect of DNN.

We present the detail of the topological invariance sifting
(TIS), which are based on these two rules, in Algorithm 1.

Concretely, given the untrusted encoder g(·; θpre) and
the classification head f(·;ϕdown) fine-tuned over D, for

Algorithm 1: Topological Invariance Sifting
Input: θpre (Untrusted encoder parameters);

D (Untrusted downstream dataset);
Output: S (A small set of seed data);
Parameters: L (Number of considered layers);

m (Number of nearest neighbors);
α (Seed data proportion selected);

1 /* Record samples activations of L layers */
2 A ← RECORDACTIVATIONS(h, L, [D1, . . . ,DK]);
3 for k ← 1 to K do
4 /* Cluster activations in each layer */
5 for l← 1 to L do
6 Cl ← CLUSTERING(A[l, k]);
7 Cl

max ← MAX(Cl);

8 Bk ← C1
max ∩ C2

max · · · ∩ CL
max;

9 /* Obtain consistent neighbors of x */
10 for x ∈ Bk do
11 Numbers← ∅;
12 for l← 1 to L do
13 N l

x ← NEARESTNEIGHBORS(x,A[l],m);

14 Numbers.APPEND(|N1
x ∩N2

x · · · ∩NL
x ∩ Dk|);

15 /* Sort by consistent neighbors number */
16 B∗k ← SORTDESCENDING(Bk, KEY = Numbers);
17 Sk ← B∗k[0 : α× |Dk|];
18 S ← S1 ∪ S2 · · · ∪ SK ;
19 return S

each class k, we record the activations of its all samples Dk
of the L layers before the final layer of the entire network
h = f(ϕdown) ◦ g(·; θpre) (line 2). Then, we proceed with
the data sifting in each Dk.

We first apply the majority rule using a clustering pro-
cedure on the output activations of each layer. We notice
a poison detection [18] uses clustering to identify poisoned
samples, relying on the last hidden layer’s representation
with K-means for two-class clusters. However, in our ap-
proach, the majority rule is applied before the consistency
rule, aiming to remove samples from any smaller clusters
that may contain poisoned samples across all layers. Thus,
we utilize density-based clustering to partition Dk and
obtain the intersection Bk of the largest clusters in each
layer (lines 6 to 8). Unlike fixed-number clustering methods,
density-based clustering dynamically determines the number
of clusters, effectively detecting irregularly shaped clusters
and managing both dense and sparse regions.

After applying the majority rule, we use the consistency
rule to refine the output Bk. For each sample x in Bk, we
identify its nearest m neighbors N l

x in each layer l (lines 12
and 13). We then filter these neighbors by class and assess
how many are consistent across all layers. The number of
consistent neighbors from the same class across L layers can
be denoted as |N1

x ∩N2
x ∩ · · · ∩NL

x ∩Dk| (line 14). Finally,
we select samples with the most consistent neighbors from
each class, maintaining a proportion of α (lines 16 and 17)
to ensure an equal number of seed data per class.

4.1.2. Boostrapping the Clean Set. Once we obtain a set
of high-credible samples from each class, we can use them
as seed data to bootstrap a clean subset. In Sec. 3.2, we

Algorithm 2: Seed Expansion
Input: S (A small set of clean seed data);

D (Downstream dataset);
Output: Dsub(A clean subset);
Parameters: rexpand (Select ratio for expansion);

1 Dsub ← S;
2 repeat
3 Randomly initialize ϕ;
4 Fine-tune ϕ with ℓ (f(·;ϕ) ◦ g(θpre), ·) over D;
5 /* Confusion training with Dsub */

6 ϕ← CT
(
ϕ,D \ Dsub,Dsub

)
with Eq. (3);

7 Loss← {ℓ (h (x) , y) |(x, y) ∈ D \ Dsub};
8 /* Sort by loss in descending order */
9 R← SORTDESCENDING(D \ Dsub, KEY = Loss);

10 /* Add samples with the largest loss */
11 Dsub ← Dsub ∪R

[
1 : |D \ Dsub| × rexpand

]
;

12 until i← 1 to I ;
13 return Dsub

introduced a state-of-the-art poison detection method called
Confusion Training (CT) [21], which uses a hold-out clean
dataset to offset clean features, resulting in lower loss values
for poisoned samples. However, this approach is ineffective
in identifying poisoned samples in the defense context, as
the lowest loss area is mixed with both poisoned and clean
samples, due to the optimization limited to the classification
head, as shown in Fig. 2. Nevertheless, the largest loss area
is exclusively filled with clean samples regardless of the
dataset poisoning type (see Fig. 6). Therefore, we tailor CT
as an expansion tool to bootstrap a clean subset using the
seed data.

We perform two concurrent minimizations: one over
poisoned dataset and another over mislabeled clean samples.
The joint loss is defined as:

λ · ℓ(h(Xi),Yi) + (1− λ) · ℓ(h(X′
i),Y

∗), (3)

where (Xi,Yi) is a mini-batch from the poisoned dataset,
and (X′

i,Y
∗) is created by randomly mislabeling a clean

batch from a clean base set. The overall procedure is out-
lined in Algorithm 2. We start with a small set of clean seed
data S and the entire untrusted dataset D. We randomly
initialize the classification head parameters ϕ and fine-tune
it on D \ Dsub, then apply confusion training (CT) using
both D \ Dsub and seed data Dsub. After CT, we add the
rexpand samples with the highest loss from D \ Dsub to D.
We then sort the remaining samples by loss in descending
order and add the top |D \ Dsub| × rexpand samples to the
clean subset Dsub. This process is repeated until we achieve
a sufficient subset, stopping when Dsub reaches 10% of D.

4.2. Filtering the Encoder Channel

After obtaining a trusted subset of downstream data
Dsub, the next stage is to locate clean neurons within the en-
coder. To facilitate defense operations on user devices with
limited computational resources, which can only support the
gradient computation of a limited number of model parame-
ters, we introduce a selectively imbalanced unlearn-recover

process to identify clean neurons in the pre-trained encoder.
Typically, an encoder DNN is constructed in a modular
fashion, with each module containing a transformation layer
for feature extraction and a normalization layer for scaling
and shifting features. For instance, in a convolutional net-
work, different convolution channels extract both backdoor-
related and normal features, with normalization parameters
adjusting them for the final classification representation. As
shown in Sec. 3.4, assumptions about which neurons may
be responsible for the backdoor are unreliable in data-free
analysis using CLP. Therefore, we propose utilizing both
the untrusted downstream dataset D and the trusted Dsub to
directly locate clean channels in the encoder. The procedure
of our encoder channel filtering is described in Algorithm 3.
Selective Unlearning. We start by an unlearning process on
the downstream data D as follows:

max
θnorm

E(x,y)∈D [ℓ (f(ϕdown) ◦ g(x; θpre), y)] (4)

Here, f(ϕdown) represents the previously fully trained clas-
sification head on D, with the encoder g(·; θpre) fixed.
θnorm denotes the parameters within the normalization lay-
ers. This approach allows the model to intentionally “lose”
some performance over the entire downstream data while
keeping other layers and classification heads frozen during
the unlearning phase. Additionally, this process is memory-
efficient, selectively adjusting only the normalization param-
eters, which typically constitute less than 1% of the encoder
parameters. Consequently, the encoder’s ability to extract
clean or backdoor features, along with the functionality of
the classification head, remains largely intact.
Filter Recovering. The recovering process aims to restore
the model’s ability to predict clean samples, which the
previous unlearning process has impaired. This recovery is
crucial for discerning clean channels. By enforcing recovery
of the downstream clean task, the network enhances the
association between clean samples and clean channels over
backdoor-related ones. To achieve this, we introduce a filter
mask mκ to indicate which operators to select for enhancing
associations. Formally, the recovery works by solving the
following minimization:

min
mκ

E(x,y)∈Dsub

[
ℓ
(
f(ϕdown) ◦ g(x;mκ ⊙ θ̂pre), y

)]
, (5)

where θ̂pre denotes the modified encoder parameters updated
by the unlearning process, which only affects normalization
layers, and mκ denotes the masks applied to the channels
in transformation layers. In this minimization, mκ, which
constitutes less than 1% of the encoder parameters, acts
as a soft filter to identify the channels most beneficial
for recovering clean task performance, reinforcing correct
associations between inputs and outputs. We initialize mκ

as all ones and apply a clipping operation during updates
(line 9).
Channel Filtering. Once recovery is complete, the mask
values indicate each channel’s contribution to the clean task.
A high value suggests that the channel (and its correspond-
ing neurons) has a greater correlation with the downstream

Algorithm 3: Encoder Channel Filtering
Input: θpre (Untrusted encoder parameters);

Dsub (A clean subset);
θnorm (Unlearning parameters)

Output: mκ (A suspected filter binary mask);
Parameters: ACCmin (Clean accuracy threshold);

σ (Filter threshold);

1 /* Selective Unlearning */
2 repeat
3 Optimize θnorm with Eq. (4) using downstream data D;
4 until training accuracy of classifier F reaches ACCmin ;
5 /* Filter Recovering */
6 mκ = [1]n;
7 repeat
8 Optimize mκ with Eq. (5) using trusted subset Dsub;
9 mκ = clip[0,1](m

κ);
10 until training converged;
11 /* Channel Filtering */
12 Untrusted channels parameters ψ ← θ[I (mκ ≤ σ)];
13 Trusted channels parameters χ← θ[I (mκ > σ)];
14 return ψ and χ

clean task, identifying these channels as trusted. In practice,
filtering is applied to the original encoder with parameters
θpre, based on the mask learned from θ̂pre. The threshold σ
is determined by the percentage of channels to preserve in
each layer. After thresholding, we obtain both the untrusted
channels ψ and trusted channels χ from the encoder.

4.3. Bootstrapping Learning

After completing the previous stages, we have estab-
lished two trustworthy elements: the clean subset Dsub and
the trusted channels χ of the pre-trained encoder. We now
explain how to leverage these trusted elements to bootstrap
the learning of a clean model. The bootstrapping process
involves gradually training the model with the clean pool
Dclean and expanding Dclean until it reaches a sufficient
proportion of the entire dataset. The bootstrapping procedure
is detailed in the overall T-Core framework in Algorithm 4.
Optimization of Untrusted Channels. The untrusted chan-
nels demonstrate a lower correlation with the downstream
clean task. As a result, they misalign with the input-label
mapping of the clean subset and harbor backdoor-related
channels. Thus, we reinitialize the parameters of these un-
trusted channels and optimize them along with the classifi-
cation head through gradient computation3 as follows:

min
ϕ,ψ

E(x,y)∈Dclean
[ℓ (f(ϕ) ◦ g(x;ψ ∪ χ), y)] . (6)

This not only eliminates the backdoor from the encoder but
turns them into the channels of the clean downstream task.
Empirically, we identify 90% of the channels in transforma-
tion layers as clean in Encoder Channel Filtering, thus we
merely optimize less than 10% of the encoder’s parameters
in subsequent training.

3. In PyTorch, we define a list of parameters as leaf tensors, each tensor
having the same shape as the untrusted channels of a respective layer, and
assign the values of these leaf tensors to the untrusted channels accordingly.

Algorithm 4: Trusted Core Bootstrapping
Input: g(·; θpre) (Untrusted encoder);

D (Untrusted downstream dataset);
Output: Trusted encoder
Parameters: WarmupEpoch (Epoch number)

ρ (filtered out data size);

1 Randomly initialize ϕ;
2 Train ϕ with ℓ

(
fϕ ◦ g(·|θpre), ·

)
over Dclean;

3 S ← Topological Invariance Sifting (θpre, D);
4 Dsub ← Seed Expansion (S,D);
5 ψ, χ← Encoder Channel Filtering (θpre,D);
6 Randomly initialize classifier head ϕ and untrusted neurons ψ;
7 Dclean ← Dsub;
8 for i = 1 to Iter1 do
9 Train ϕ and ψ using Dclean for T epochs ;

10 Select γ1% samples with the smallest loss from each class
of D \ Dclean and add into Dclean;

11 for i = 1 to Iter2 do
12 Train ϕ and ψ using Dclean for T epochs ;
13 Select γ2% samples with the smallest loss from entire

dataset of D \ Dclean and add into Dclean;

14 repeat
15 Train ϕ and ψ with Dclean ;
16 ϕ′ ← ϕ, ψ′ ← ψ;
17 Train ϕ′, ψ′ using D \ Dclean for one epoch ;
18 Loss1 ← {ℓ(f(ϕ)◦g(x;ϕ∪χ), y) | (x, y) ∈ D\Dclean};
19 Loss2 ← {ℓ(f(ϕ′)◦g(x;ϕ′∪χ), y) | (x, y) ∈ D\Dclean};
20 Select γ3% samples with the lowest values in

Loss1 − Loss2 and add them into Dclean;
21 until |Dclean|/|D| ≥ ρ;
22 return ϕ, ψ, χ

Clean Pool Expansion with Loss Guidance. This stage
involves two processes to expand Dclean and train the model.
We first initialize the clean pool Dclean with Dsub (line 7).
In the first process, we gradually expand Dclean based on
the model’s prediction loss for each class in D \ Dclean.
After training the model with Dclean for T epochs, we add
samples with the lowest γ1 loss in each class to maintain
class balance (line 10). This process is repeated for Iter1
iterations. After this, the model achieves a certain accuracy
on clean samples. In the second process, we incorporate
samples with the lowest γ2 loss from the entire set D\Dclean

(line 13) for Iter2 iterations. This strategy helps avoid
selecting poisoned samples from the target class, enabling
the selection of more clean samples from non-target classes.
Clean Pool Expansion with Meta Guidance. After ex-
panding with loss guidance, continually adding samples with
the smallest prediction loss may include poisoned samples.
To differentiate clean complex samples from poisoned ones,
we adopt a meta-learning approach [42, 43] to augment
Dclean. We first train a temporary model on D\Dclean, then
select samples with the smallest loss reduction between the
original and temporary models to add to Dclean (line 20).
The rationale is that clean hard examples are more challeng-
ing to learn compared to easily inserted backdoor-poisoned
examples. Even if some hard-to-learn backdoor samples are
mistakenly selected, they require significantly more data and
training to become effective. We halt this process once the
ratio |Dclean|/|D| reaches 0.9 (90% of the dataset).

5. Experiments

In this section, we first evaluate the effectiveness of our
Trusted Core Bootstrapping framework by analyzing both
its individual modules and the end-to-end framework as a
whole. Since no prior work has considered the complex
defense context we explore, and existing methodologies
cannot serve as standalone solutions—even when adjusted
as shown in Sec. 3—we compare each of our modules
with existing approaches that aim to achieve the same goals
to demonstrate the superiority and irreplaceability of ours.
Finally, we assess the end-to-end defense performance of
our T-Core framework. In summary, our main evaluation
aims to answer the following research questions:

• RQ1: How effective is our Clean Data Sifting in obtaining
a clean subset from various dataset poisoning types across
downstream datasets under threats Threat-2 and Threat-3?

• RQ2: How effective is our Encoder Channel Filtering in
producing a purified encoder for transfer learning over a
clean downstream dataset against Threat-1?

• RQ3: How effective is our Bootstrapping Learning in
developing the clean classification head from a clean subset
and clean encoder under dataset poisoning of Threat-2?

• RQ4: How effective is our end-to-end Trusted Core Boot-
strapping framework in defending against any unknown
backdoor threats Threat-1, Threat-2, Threat-3, or the
scenario where both Threat-1 and Threat-2 exist?

In addition, we then evaluate the scalability of our T-
Core bootstrapping framework across different dimensions
to provide a holistic understanding of its practical deploy-
ment potential. Specifically, we extend our analysis be-
yond static threat scenarios and basic performance metrics
to explore T-Core’s resilience against adaptive attacks, its
sensitivity to configuration choices, adaptability to emerg-
ing transformer architecture, and efficiency in resource-
constrained settings. These aspects evaluate whether a the-
oretically sound defense of T-Core is a viable solution for
real-world applications. In general, our scalability evaluation
aims to answer the following research question:

• RQ5: How scalable is T-Core in terms of defense ef-
fectiveness against adaptive adversaries, sensitivity to hy-
perparameter variations, adaptability to pre-trained Vision
Transformer (ViT) models, and computational efficiency
compared to other defense mechanisms?

5.1. Experimental Setups

Datasets. We use five image datasets: CIFAR-10 [44], GT-
SRB [45], SVHN [46], STL-10 [47], and ImageNet [48] to
construct clean and poisoned pre-trained encoders, as well
as clean or poisoned downstream datasets, to evaluate our
defense effectiveness. Additional details, including image
dimensions, dataset sizes, and evaluation applicability, are
provided in Appendix-B.1.
Models. We adopt ResNet18 as the default backbone for the
pre-trained encoders, following [4, 6–9], which allows us to
leverage their clean and poisoned checkpoints for evaluation.

For transfer learning, we use a simple MLP consisting of
three linear layers for the classification head.
Encoder Poisoning Attacks. We consider five attacks that
aim to inject backdoors into the pre-trained encoder: BadEn-
coder [4], DRUPE [7], SSLBackdoor [8], CTRL [6], and
CorruptEncoder [9]. Details about how these encoder poi-
soning attacks are conducted and how we process their
outcome encoders are provided in Appendix-B.2.
Dataset Poisoning Attack. We consider seven data poison-
ing backdoor attacks on the downstream dataset to evaluate
the generalizability of our Clean Bootstrapping approach.
These include: 1) the vanilla dirty label attacks: BadNets
[1] and Blended [2], 2) the clean label attack: SIG [10],
3) the sample-specific attack: WaNet [13], 4) the latent
space adaptive attacks: TaCT [11], Adap-Blend [12], and
Adap-Patch [12]. In our primary evaluation, we default to
the poison ratio as 20% of the target class. We further
adjust the poison ratio to showcase the scalability of our
seed data filtering approach in Sec. 5.2. We strictly follow
the guidelines from each attack’s paper for implementation.
Detailed configurations are outlined in the Appendix-B.3.

5.2. RQ1: Effectiveness of Clean Data Sifting

We evaluate the effectiveness of our Topological Invari-
ance Sifting (TIS) across various poison ratios (0.1, 0.15,
0.2, 0.23, 0.3) of the target class in dataset poisoning attacks,
addressing threats Threat-2 and Threat-3. We maintain a
sifting ratio α of 0.01, selecting 1% of the most credible
samples from each class as seed data. For comparison,
we utilize two poison detection methods, SPECTRE [16]
and Spectral [19], alongside two state-of-the-art test-time
backdoor input detection techniques, IBD-PSC [23] and
SCALE-UP [24], which do not require an additional clean
base set. We also evaluate META-SIFT [49], the only prior
method for sifting clean data tested on backdoor poisoning
under the SL setting, in our TL setting. To compete with
our TIS, we configure the thresholds of each method to meet
1% selection, categorizing the remaining 99% as potentially
untrustworthy. Additionally, we apply our Seed Expansion
at a default poison ratio of 20% of the target class, using the
corresponding seed data to continually expand and recording
results when the expansion ratio |Dsub|/|D| reaches 10%,
20%, 40%, and 50% to assess effectiveness.

We report the number of poisoned samples sifted out
as clean seed data (False Positive cases) in Table 5, along
with the number of poisoned data (NPD) and the number of
filtered data (NFD) in the target class. Our TIS effectively
identifies clean samples with minimal false positives for
most backdoor attacks across all downstream datasets. In
212 out of 225 scenarios, covering various poison ratios,
backdoor types, and datasets, TIS achieves a 100% preci-
sion, meaning all sifted samples are clean. For SVHN, false
positive cases are slightly higher due to its noisy nature,
where extraneous digits appear in images, resulting in fewer
high-credibility samples.

Our TIS framework consistently outperforms exist-
ing methods, demonstrating robust reliability across all

TABLE 5: Number of poisoned samples in the sifted-out samples (deemed clean) from poisoned datasets with varying poison
ratios (0.1, 0.15, 0.2, 0.23, 0.3) in the target class, covering 5 datasets and 7 dataset poisoning attacks in Threat-2 and 4
adaptive poisoning attacks in Threat-3. NPD denotes the number of poisoned data in the target class, and NFD denotes
the number of filtered data in the target class deemed clean. Cells with zero NPD in filtered data are marked green , while
cells with NPD exceeding NFD × Poison Ratio × 0.5 are marked red .

Threat Type Threat-2 Threat-3
BadNets Blended SIG WaNet TaCT Adap-Blend Adap-Patch BadEncoder DRUPEDataset Methods 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

NPD 55 88 125 166 214 55 88 125 166 214 50 75 100 125 150 55 88 125 166 214 55 88 125 166 214 55 88 125 166 214 55 88 125 166 214 55 88 125 166 214 55 88 125 166 214
NFD 5 5 6 6 7 5 5 6 6 7 5 5 5 5 5 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7

IBD-PSC 2 2 0 0 1 3 3 3 5 5 1 1 1 3 1 4 4 5 6 6 2 3 1 3 2 4 3 5 6 5 5 4 3 6 7 0 0 0 0 0 0 0 0 0 0
SCALE-UP 1 0 0 0 1 0 0 3 3 3 1 1 1 1 2 1 1 1 2 1 0 2 2 0 1 2 0 2 3 2 1 2 0 3 2 0 1 3 1 2 1 1 5 3 3

Spectral 0 0 0 0 4 0 0 0 0 0 2 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0
SPECTRE 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

META-SIFT 0 0 0 0 1 0 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 0 0 1 1 3

STL-10

Ours 0 1

NPD 555 882 125016662142 555 882 125016662142 500 750 100012501500 555 882 125016662142 555 882 125016662142 555 882 125016662142 555 882 125016662142 555 882 125016662142 555 882 125016662142
NFD 55 58 62 66 71 55 58 62 66 71 50 50 50 50 50 55 58 62 66 71 55 58 62 66 71 55 58 62 66 71 55 58 62 66 71 55 58 62 66 71 55 58 62 66 71

IBD-PSC 0 0 0 0 0 0 0 0 5 7 7 9 14 9 17 6 14 19 33 54 0 0 1 11 1 0 0 12 1 8 6 17 19 12 30 0 0 0 0 0 0 0 0 0 0
SCALE-UP 4 0 2 5 3 6 11 17 20 26 7 6 9 17 16 5 8 12 16 21 5 0 6 18 13 10 11 10 18 26 4 5 14 19 28 6 9 13 18 22 8 14 21 24 35

Spectral 5 2 4 5 10 2 1 0 3 3 9 4 0 2 1 6 6 12 12 18 0 0 1 3 6 2 3 4 4 6 9 6 14 6 16 0 0 0 0 2 0 0 0 0 1
SPECTRE 3 13 14 15 24 1 0 0 12 11 0 0 1 0 0 5 10 14 13 27 0 1 1 0 2 7 6 12 19 15 18 10 11 22 10 0 0 0 0 0 0 0 0 0 0

META-SIFT 1 0 59 0 70 0 0 10 0 68 5 19 34 29 48 0 0 0 0 2 1 0 1 0 0 1 0 0 0 1 0 0 0 0 2 55 1 62 66 71 0 58 49 66 71

CIFAR-10

Ours 0 1 0 2 0 0 0 0 0 0 1

NPD 250 397 562 750 964 250 397 562 750 964 225 337 450 562 675 250 397 562 750 964 156 248 352 470 604 250 397 562 750 964 250 397 562 750 964 233 370 525 700 900 233 370 525 700 900
NFD 25 26 28 30 32 25 26 28 30 32 22 22 22 22 22 25 26 28 30 32 15 16 17 18 20 25 26 28 30 32 25 26 28 30 32 23 24 26 28 30 23 24 26 28 30

IBD-PSC 2 0 1 1 1 0 0 0 0 0 0 3 2 0 0 7 21 11 24 31 3 4 0 4 2 2 2 6 9 7 10 15 20 24 26 1 0 0 0 0 1 2 1 4 4
SCALE-UP 25 26 28 30 32 25 26 28 30 32 1 3 2 4 9 25 26 28 30 32 0 0 0 0 0 25 26 28 30 32 25 26 28 30 32 23 24 26 28 30 23 24 26 28 30

Spectral 0 0 0 3 8 1 0 1 0 3 1 3 1 1 3 0 0 2 6 10 1 3 6 8 8 0 1 0 1 2 1 0 3 4 14 0 0 0 0 0 1 0 2 12 3
SPECTRE 0 0 1 0 0 0 0 0 0 0 0 0 1 4 0 1 1 1 0 6 1 0 0 12 13 0 0 0 1 7 0 1 1 6 7 0 0 0 0 0 0 0 0 0 0

META-SIFT 1 3 3 0 0 2 3 9 16 9 13 7 0 0 0 0 0 4 2 14 0 0 0 0 0 2 6 16 20 26 0 4 4 16 18 0 0 0 0 0 0 0 0 0 0

GTSRB

Ours 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

NPD 117618672646352845361176186726463528453610581587211726463175117618672646352845361176186726463528453611761867264635284536117618672646352845361540244634654620594015402446346546205940
NFD 117 124 132 141 151 117 124 132 141 151 105 105 105 105 105 117 124 132 141 151 117 124 132 141 151 117 124 132 141 151 117 124 132 141 151 154 163 173 184 198 154 163 173 184 198

IBD-PSC 3 5 6 7 11 0 0 1 3 7 0 0 1 0 1 23 28 55 66 75 3 3 3 0 7 2 7 7 12 8 13 19 22 32 34 3 5 4 13 17 2 3 12 11 23
SCALE-UP 4 19 14 8 17 15 21 31 35 46 10 18 27 32 41 9 16 21 28 38 12 10 9 21 24 14 12 22 32 32 10 25 30 32 45 18 23 31 46 65 42 51 72 85 87

Spectral 0 0 0 0 0 0 1 2 1 7 0 0 2 8 12 14 19 33 32 40 1 0 0 0 2 11 28 8 4 2 16 20 39 26 55 0 0 0 0 0 0 0 0 0 0
SPECTRE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 14 23 28 40 42 0 0 0 0 0 4 4 60 1 55 18 23 15 28 31 0 0 0 0 0 0 0 0 0 0

META-SIFT 1 1 27 146 145 0 1 2 56 144 4 14 30 59 73 0 0 0 0 0 4 0 5 0 3 1 0 0 0 2 0 1 2 2 2 3 134 168 183 198 3 123 12 173 197

SVHN

Ours 0 0 0 1 0 0 4 0 0 0 0 4 6 8 8 1 3 0 3 1 0

BadNets Blended SIG WaNet TaCT Adap-Blend Adap-Patch SSLBackdoor CorruptEncoderDataset Methods 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

NPD 144 299 325 433 557 144 299 325 433 557 130 195 260 325 390 144 299 325 433 557 144 299 325 433 557 144 299 325 433 557 144 299 325 433 557 144 299 325 433 557 144 299 325 433 557
NFD 14 15 16 17 18 14 15 16 17 18 13 13 13 13 13 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18

IBD-PSC 2 1 4 1 3 0 2 0 0 1 8 9 9 11 12 0 0 1 1 1 0 0 1 1 1 1 0 0 2 1 1 8 2 1 1 3 2 7 11 11 0 0 0 0 0
SCALE-UP 14 15 16 17 18 14 15 16 17 18 1 3 0 1 1 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18 14 15 16 17 18 0 0 0 0 0

Spectral 0 0 0 0 0 0 0 2 0 0 5 5 4 0 1 0 1 2 4 1 0 0 0 0 0 1 1 3 2 4 1 1 2 2 4 0 0 0 0 1 0 1 2 5 11
SPECTRE 0 0 0 0 0 0 0 0 0 1 0 0 0 4 2 0 4 1 0 4 2 3 0 3 2 0 2 1 2 5 0 0 3 0 7 0 1 2 2 1 2 2 0 0 0

META-SIFT 0 0 1 6 5 0 0 0 0 1 0 0 1 4 6 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 4 13 15 17

ImageNet-10

Ours 0 2 0 0 0 0 0 0 0 0 0 0 0

TABLE 6: Number of poisoned samples obtained by seed expansion when expanding till different expansion ratios under
Threat-2. In each cell, the first number is the number of poisoned samples in the seed data, and the second number is the
number of poisoned samples in the added data after seed expansion. NTD: number of total data after seed expansion.

Dataset 10% 20% 30% 50%

BadNets Blended SIG WaNet TaCT Adap-
Blend

Adap-
Patch NTD BadNets Blended SIG WaNet TaCT Adap-

Blend
Adap-
Patch NTD BadNets Blended SIG WaNet TaCT Adap-

Blend
Adap-
Patch NTD BadNets Blended SIG WaNet TaCT Adap-

Blend
Adap-
Patch NTD

STL-10 0+0 0+0 0+0 0+0 0+0 0+0 0+0 500 0+0 0+3 0+0 0+ 0 0+0 0+2 0+2 1000 0+ 0 0+ 6 0+22 0+ 22 0+20 0+18 0+ 16 1500 0+82 0+58 0+75 0+ 75 0+ 68 0+ 43 0+ 37 2500
CIFAR-10 0+1 0+0 0+0 0+0 0+1 0+2 0+0 5000 0+4 0+0 0+0 0+ 0 0+2 0+5 0+7 10000 0+13 0+22 0+ 0 0+115 0+36 0+76 0+ 68 15000 0+32 0+94 0+ 4 0+387 0+217 0+151 0+128 25000

GTSRB 0+0 0+0 0+0 0+1 0+0 0+0 0+0 3920 0+0 0+0 0+0 0+ 3 0+0 0+0 0+1 7841 0+ 3 0+ 0 0+ 0 0+ 84 0+ 0 0+ 5 0+ 17 11762 0+15 0+ 0 0+ 7 0+145 0+ 7 0+ 5 0+ 67 19604
SVHN 0+0 0+0 6+1 0+5 0+1 0+3 0+2 7325 0+1 0+3 6+5 0+22 0+5 0+5 0+7 14651 0+ 6 0+22 6+23 0+ 67 0+20 0+22 0+141 21977 0+14 0+89 6+77 0+245 0+ 32 0+ 65 0+300 36628

ImageNet-10 0+0 0+0 0+0 0+2 0+0 0+0 0+0 1006 0+0 0+0 0+0 0+ 7 0+0 0+0 0+0 2012 0+ 0 0+ 0 0+ 7 0+ 13 0+ 0 0+ 4 0+ 6 3018 0+95 0+91 0+24 0+119 0+ 1 0+ 14 0+ 40 5030

tested scenarios. While IBD-PSC, SCALE-UP, Spectral,
and SPECTRE struggle with sample-specific (WaNet) and
adaptive attacks (Adap-Blend, Adap-Patch) due to poisoned
sample dispersion in latent space, META-SIFT fails against
straightforward backdoors (BadNets, Blended, SIG), partic-
ularly under Threat-3 in noisy datasets like SVHN. In con-
trast, TIS maintains high precision, achieving 100% clean
sifting in 212 out of 225 cases—spanning varying poison
ratios, attack types, and datasets. SVHN exhibits marginally
higher false positives, yet its large class sizes still allow
effective 1% sifting.

For T-Core’s Seed Expansion, Table 6 shows that poi-
soned sample counts remain low even at high expansion
rates. False positives stay below 1% at 50% expansion,
while 10% and 20% rates exhibit negligible contamina-
tion—sufficient for most defense mechanisms requiring
clean subsets. Given this balance between security and
utility, we adopt 20% as the default expansion rate.

5.3. RQ2: Effectiveness of Encoder Filtering

Our encoder channel filtering is designed to create a
backdoor-free encoder to facilitate the clean classifier of the
downstream task. Employing knowledge distillation tech-
niques, some prior methods [27, 50, 51] utilize a clean
dataset to distill clean knowledge from the backdoor encoder
to also produce a clean student encoder. We evaluate our
approach against SSL-Distillation [27], the only publicly
available distillation-based method, under Threat-1, to com-
pare efficacy in removing backdoors. SSL-Distillation uses
a subset of the clean pre-training dataset, referred to as
SSL-Distillationpre, which we additionally extend to the
downstream dataset, denoted as SSL-Distillationdown.

For a fair comparison, we use the same 20% of
the downstream dataset for both our method and SSL-
Distillationdown, while SSL-Distillationpre uses an equivalent
size subset from the clean Dpre. We assess their impact

TABLE 7: Comparison with SSL-Distillation under
Threat-1. Results are shown for two configurations of our
approach (Ourshead and Ourshead+untrusted), as well as for two
configurations of SSL-Distillation(SSL-Distillationpre and
SSL-Distillationdown). Note that for CTRL, SSLBackdoor,
and CorruptEncoder, the downstream dataset is the same as
or a subset of the clean pre-training dataset.

Encoder
Poisoning

Pre-training
Dataset

Downstream
Dataset

No Defense SSL-
Distillationpre

SSL-
Distillationdown

Ourshead Ourshead+untrusted

ACC↑ASR↓ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ASR↓ACC↑ ASR↓

BadEncoder

CIFAR-10
STL-10 76.58 98.51 64.41 6.21 54.49 3.50 64.46 0.01 76.26 0.90
GTSRB 80.77 99.63 68.09 1.51 69.29 1.57 63.70 1.12 90.07 0.43
SVHN 65.35 97.56 66.68 10.38 71.75 32.32 64.64 3.49 92.20 2.82

STL-10
CIFAR-10 70.57 98.93 50.27 13.09 51.77 12.27 61.09 1.36 66.59 2.92
GTSRB 70.83 98.99 50.89 2.08 49.98 1.45 53.14 0.12 88.22 1.98
SVHN 64.89 98.98 53.16 10.02 53.75 9.61 62.07 3.15 86.99 3.26

DRUPE

CIFAR-10
STL-10 71.85 97.72 60.91 5.36 53.59 3.54 68.38 1.89 72.06 2.04
GTSRB 76.39 98.10 60.85 0.17 61.76 0.48 63.49 2.26 90.81 0.02
SVHN 72.99 92.71 65.72 57.69 72.76 50.08 74.09 5.23 92.20 2.82

STL-10
CIFAR-10 71.14 80.49 55.70 8.74 55.14 8.34 61.15 3.64 73.42 0.91
GTSRB 65.11 85.03 51.00 1.64 53.70 0.74 52.63 4.03 85.86 1.00
SVHN 58.43 96.28 46.22 23.19 50.44 4.99 60.10 5.11 91.20 3.99

CTRL
STL-10 STL-10 52.15 9.88 - - 50.47 2.49 48.13 2.86 50.99 0.32

CIFAR-10 CIFAR-10 75.31 44.90 - - 62.35 1.65 50.83 2.54 62.42 0.74
GTSRB GTSRB 66.78 6.54 - - 55.75 0.70 55.06 0.61 84.45 0.22

SSLBackdoor ImageNet ImageNet-10 82.85 36.48 - - 70.47 3.12 65.88 2.94 85.76 2.73
CorruptEncoder ImageNet ImageNet-10 82.35 58.46 - - 69.55 4.67 63.59 2.61 84.53 0.36

on downstream tasks by training a classification head on
each purified or distilled encoder. Notably, SSL-Distillation
requires complete fine-tuning of the backdoor encoder and
building the student encoder from scratch, whereas our En-
coder Channel Filtering only necessitates training less than
1% of the total parameters. During subsequent training, we
apply two configurations: one trains only the classification
head after pruning untrusted channels (Ourshead), and the
other trains both the classification head and the initialized
untrusted channels (Ourshead+untrusted).

The results from Table 7 show that our method generally
trumps SSL-Distillation across all downstream tasks and
achieves a very low ASR. Notably, SSL-Distillation per-
forms poorly on the noisy downstream dataset of SVHN,
supporting findings in [27] that SVHN poses increased
security risks due to its exploitable noisy features under
backdoor attacks. In contrast, our encoder filtering method
performs significantly better on SVHN. We believe this is
because our approach progressively selects channels benefi-
cial for the clean classification task that aims to distinguish
features apart. On the other hand, SSL-Distillation indis-
criminately distills feature embeddings, especially from the
already noisy samples in SSL-Distillationdown, which allows
the backdoor to traverse through distillation. Besides, our
method yields an increased ACC for many cases due to the
additional optimization of the original untrusted channels.

5.4. RQ3: Effectiveness of Bootstrapping Learning

We compare our Bootstrapping Learning with backdoor-
removal methods that utilize a clean subset under Threat-2.
Specifically, we consider two state-of-the-art methods: the
trigger synthesis-based I-BAU [25] and the fine-tuning-
based FT-SAM [26]. We apply them to the post-attack
classification head. We also limit the training of our Boot-
strapping Learning to the classification head without the
untrusted channels. In this experiment, we vary the clean
data ratio to assess its impact on subset size dependence.

TABLE 8: Comparison of our method with FT-SAM and
I-BAU under Threat-2, using poisoned GTSRB as down-
stream dataset and a CIFAR-10 encoder, with a clean subset
at varying ratios of the original clean GTSRB for defense.

Clean Ratio Methods BadNets Blended SIG WaNet TaCT Adap-Blend Adap-Patch
ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

No Defense 81.79 95.02 81.30 90.39 81.90 74.37 80.74 8.81 81.95 89.20 80.85 69.73 78.54 28.20

0.1
FT-SAM 21.88 20.61 22.24 4.50 22.00 51.68 19.03 0.69 22.82 15.20 22.02 2.33 21.54 1.13
I-BAU 16.98 26.36 17.36 0.74 17.03 46.20 13.86 1.40 18.39 28.80 17.22 0.35 15.38 0.59
Ours 78.65 4.13 78.47 4.15 77.91 3.70 79.73 3.59 78.99 7.07 78.24 3.11 78.08 3.12

0.3
FT-SAM 23.82 19.41 24.70 10.87 23.91 39.52 22.27 0.97 24.96 2.13 23.35 3.40 23.89 0.92
I-BAU 16.60 21.17 17.82 0.75 17.66 42.94 13.15 1.41 16.36 18.67 16.68 0.13 14.73 0.08
Ours 80.78 2.07 80.24 1.04 79.82 0.06 80.55 1.40 80.31 2.00 79.78 1.93 79.70 1.55

0.5
FT-SAM 25.69 19.31 27.58 10.70 26.56 31.04 26.19 0.94 27.71 3.73 26.07 3.51 26.07 0.97
I-BAU 17.50 29.51 15.60 0.48 13.98 37.63 12.25 1.78 17.51 30.67 16.23 0.13 15.04 0.05
Ours 82.12 0.04 80.95 0.13 80.68 0.00 81.08 0.79 80.99 0.53 80.34 0.64 80.82 0.47

Table 8 demonstrate that these methods cannot produce
a satisfying result under any clean ratio, while our Boot-
strapping Learning works exceptionally well even when the
subset is small. These results again reveal that the backdoor
and clean features are tangled in the hidden representation
space when the training is restricted to the classification
head, as previously illustrated in Sec. 3.3. In this setting,
the clean subset also cannot help to remove the backdoor
without sacrificing the clean accuracy. In that sense, it
also indicates the necessity of the proactive mindset behind
Bootstrapping Learning, whose design aims to explicitly
train on clean elements while keeping the clean and poison
elements separated in the whole training process.

5.5. RQ4: Effectiveness of T-Core Bootstrapping

As we previously discussed, in the defense context of
transfer learning, the defender may not know what kind
of backdoor risks it is facing in general, so a successful
defense should be able to deal with all kinds of backdoor
threats. Thus, we evaluate the end-to-end procedure of our
proposed T-Core Bootstrapping framework in defending all
four scenarios: the encoder poisoning alone of Threat-1, the
dataset poisoning alone of Threat-2, the adaptive poisoning
with both the encoder and dataset with the same backdoor
trigger of Threat-3, as well as the independent encoder
poisoning and dataset poisoning with the different backdoor
triggers of Threat-1 and Threat-2.

Overall, T-Core effectively defends against all consid-
ered backdoor threats, as shown in Tables 9 to 11. Specif-
ically, the attack success rates for Threat-1, Threat-2, and
Threat-3 are all below 10%. Additionally, T-Core improves
accuracy (ACC) in most cases, due to the optimization
of the original untrusted channels. However, ACC often
decreases for STL-10 due to its limited training images.
T-Core halts training at 4,500 samples (90%), resulting
in incomplete training. For cases where two independent
attackers of Threat-1 and Threat-2 both exist, the results in
Table 9 indicate that the attack potency of encoder poisoning
is consistently greater than that of downstream poisoning.
For downstream poisoning, Adap-Patch, Adap-Blend, and
WaNet also produce limited attack potency as they inject
different trigger patterns for different poisoned samples.
Nevertheless, T-Core can ensure low ASRs of both encoder
poisoning and dataset poisoning, regardless of the attack’s
original strength.

TABLE 9: Performance of our end-to-end defense framework under scenarios where both Threat-1 and Threat-2 exist. In
this setting, transfer learning is subjected to both encoder poisoning and downstream poisoning attacks concurrently, each
with a different backdoor trigger. We report the accuracy, the attack success rate of the encoder poisoning attack (ASR-E),
and the attack success rate of the dataset poisoning attack (ASR-D) for the classifier, both with and without our defense.

BadNets Blended SIG WaNet TaCT Adap-Blend Adap-PatchEncoder
Poisoning

Pre-training
Dataset

Downstream
Dataset

Dataset
Poisoning ACC ASR-EASR-D ACC ASR-EASR-D ACC ASR-EASR-D ACC ASR-EASR-D ACC ASR-EASR-D ACC ASR-EASR-D ACC ASR-EASR-D

No Defense 76.30 99.51 91.50 76.28 99.96 60.10 76.51 99.99 59.36 76.43 99.56 4.51 75.71 99.90 62.75 76.19 96.54 10.14 76.93 99.99 1.57STL-10 Ours 67.75 4.67 1.00 67.04 6.85 6.68 53.10 3.88 2.53 67.54 5.11 1.82 67.46 5.72 4.25 68.75 6.65 1.40 68.28 6.03 6.22
No Defense 72.60 99.24 93.75 73.22 99.77 86.36 73.16 99.15 74.81 78.17 99.94 6.09 73.86 99.20 91.73 72.98 95.95 65.60 72.22 99.69 28.43GTSRB Ours 90.54 0.01 1.38 88.27 0.31 5.05 91.69 0.00 0.98 91.88 0.04 0.66 92.60 0.80 0.00 87.79 0.00 3.30 93.90 0.27 0.29
No Defense 68.47 98.80 99.27 67.98 98.95 98.11 68.19 98.70 96.63 67.99 98.78 11.86 68.19 98.80 94.12 68.07 98.81 90.81 68.26 97.90 71.75

CIFAR-10

SVHN Ours 92.19 4.29 3.79 92.19 4.29 0.10 92.80 4.80 0.65 90.20 7.94 2.76 91.51 2.49 0.75 90.30 4.23 0.14 92.72 4.86 0.07
No Defense 69.56 97.88 78.00 70.33 98.39 71.98 69.72 99.83 77.42 69.94 99.82 9.12 69.66 99.66 70.00 69.84 99.77 16.28 70.03 99.76 5.78CIFAR-10 Ours 63.27 5.76 4.76 62.73 6.28 4.97 68.42 8.29 3.64 62.63 6.61 4.47 65.47 6.36 0.00 64.38 7.71 2.03 63.05 6.08 0.13
No Defense 70.67 97.52 83.43 69.59 98.77 82.33 70.86 99.19 74.56 69.63 99.80 4.33 68.33 98.05 81.07 68.56 99.10 54.45 69.58 98.95 12.30GTSRB Ours 85.65 0.11 5.45 86.03 0.70 0.87 85.18 1.73 0.24 85.27 0.22 4.39 86.03 0.05 1.06 85.58 1.10 5.13 87.05 1.80 1.52
No Defense 67.44 85.95 98.85 66.29 85.93 98.93 67.45 88.96 93.92 64.88 84.07 11.91 67.78 87.69 94.53 67.60 81.29 89.94 66.77 80.30 26.85

BadEncoder

STL-10

SVHN Ours 83.90 4.30 10.10 86.63 3.72 5.32 85.96 9.18 2.55 88.96 5.10 1.01 86.34 3.15 0.31 86.40 4.87 2.09 86.92 6.15 4.50

No Defense 71.94 99.43 75.22 71.09 98.00 53.97 72.49 93.63 35.50 72.08 90.18 10.14 71.78 97.54 49.75 71.34 99.39 11.42 71.63 98.35 1.89STL-10 Ours 63.16 14.90 10.92 68.30 10.89 5.89 64.34 7.49 0.49 64.59 6.38 4.29 63.63 11.24 13.00 64.74 7.92 2.67 65.00 7.39 2.96
No Defense 74.35 73.36 94.19 74.57 72.99 87.63 74.95 74.70 69.57 74.48 73.02 6.58 74.67 72.91 87.07 73.95 73.01 61.30 73.76 72.97 14.79GTSRB Ours 87.98 7.05 3.16 90.17 7.23 6.66 88.16 3.18 0.74 89.14 3.61 0.47 89.93 5.82 6.82 89.14 5.05 7.63 89.87 3.10 1.85
No Defense 71.35 75.53 99.45 71.37 75.74 97.60 71.21 75.81 94.45 71.04 76.95 11.60 71.31 72.91 96.35 71.26 77.03 85.17 71.09 76.30 51.23

CIFAR-10

SVHN Ours 89.54 9.64 6.78 88.73 6.92 4.90 89.02 9.88 4.32 87.19 6.66 3.66 92.34 3.60 2.77 89.20 5.10 1.01 89.70 5.04 2.97
No Defense 70.26 78.54 74.24 70.71 77.58 74.19 70.83 79.10 69.62 70.87 78.66 9.27 70.62 78.55 69.00 70.81 78.63 14.13 71.15 78.63 4.93CIFAR-10 Ours 64.74 6.87 7.43 63.46 7.53 7.69 67.31 4.94 1.91 66.18 4.02 1.73 66.28 5.49 0.10 62.63 4.96 3.40 63.56 3.31 6.31
No Defense 63.40 78.25 90.50 63.71 84.92 88.70 64.29 85.40 74.55 63.99 78.12 6.09 63.47 86.80 78.54 61.18 80.32 67.40 62.00 79.83 18.46GTSRB Ours 86.10 0.21 3.94 87.08 1.42 5.85 86.44 2.82 0.03 84.47 1.00 3.18 82.18 0.25 5.45 81.90 1.61 2.95 81.32 0.62 7.58
No Defense 59.12 94.66 96.56 59.77 97.48 97.43 58.03 92.94 91.53 59.77 95.08 15.17 59.47 97.46 92.33 60.02 98.69 84.58 59.74 96.81 16.52

DRUPE

STL-10

SVHN Ours 82.13 5.95 6.25 83.22 4.03 4.56 83.75 9.64 2.77 82.76 2.45 3.59 83.85 2.93 0.98 81.13 9.01 5.10 83.17 3.05 1.65

No Defense 51.80 9.97 56.39 53.20 10.15 17.67 53.14 8.99 18.96 53.43 10.19 5.75 52.06 10.83 40.25 53.28 8.79 4.99 52.88 8.65 4.64STL-10 STL-10 Ours 48.81 1.79 1.21 49.80 2.23 2.51 45.56 3.57 0.99 49.68 0.24 2.44 50.43 2.58 3.51 49.63 2.44 5.93 48.44 1.03 1.96
No Defense 75.33 48.93 93.29 75.22 44.92 50.59 76.19 38.54 52.56 74.31 41.14 13.98 75.80 48.87 84.00 75.08 49.41 16.93 75.93 46.74 14.90CIFAR-10 CIFAR-10 Ours 61.78 0.94 0.10 62.72 2.87 6.88 61.94 0.59 0.00 62.32 3.60 3.44 62.79 0.57 0.70 63.51 8.78 8.84 58.80 0.63 6.72
No Defense 64.68 4.60 73.81 67.16 3.05 69.37 65.83 4.96 60.30 66.00 3.76 4.67 65.86 5.82 62.40 66.94 0.94 52.71 65.13 4.84 21.36

CTRL

GTSRB GTSRB Ours 85.30 0.09 2.79 88.28 0.19 0.14 87.05 0.00 0.07 87.82 0.08 0.34 88.37 0.15 0.40 88.13 1.77 4.97 87.73 0.11 0.03

No Defense 84.47 19.15 84.79 83.88 24.97 32.85 82.85 45.88 60.00 81.18 24.61 2.48 83.12 40.18 93.00 82.47 26.36 26.42 82.94 33.70 2.24SSLBackdoor ImageNet ImageNet-10 Ours 80.65 2.61 3.15 80.82 1.21 6.55 79.94 3.21 4.97 78.00 3.21 2.24 83.47 1.88 3.21 83.18 0.67 3.82 83.47 1.82 2.61

No Defense 84.41 34.91 82.73 83.76 57.45 26.73 82.53 54.18 61.82 81.41 44.06 3.94 83.76 60.12 91.00 80.06 53.09 15.03 83.47 57.27 3.45CorruptEncoder ImageNet ImageNet-10 Ours 82.35 1.33 4.55 82.35 2.00 4.61 82.06 1.33 5.88 80.00 1.58 3.15 81.65 1.21 6.50 82.53 0.97 6.36 84.06 1.82 1.76

TABLE 10: Peformance of our entire end-to-end defense
framework under Threat-2.

BadNets Blended SIG WaNet TaCT Adap-Blend Adap-PatchDataset Dataset
Poisoning ACC↑ASR↓ACC↑ASR↓ACC↑ASR↓ACC↑ASR↓ACC↑ASR↓ACC↑ASR↓ACC↑ASR↓

No Defense 75.64 90.24 75.65 50.35 76.51 59.97 76.21 4.76 75.19 64.13 75.75 9.04 76.43 1.92STL-10 Ours 64.08 2.15 65.59 1.60 62.85 6.00 64.55 1.60 66.26 1.00 65.93 3.24 62.55 1.08
No Defense 85.04 92.21 84.84 89.12 84.72 89.10 84.40 9.11 84.28 82.60 83.39 34.34 84.16 5.66CIFAR-10 Ours 87.38 3.48 87.35 5.90 87.31 2.54 87.58 0.23 89.04 0.10 87.31 2.54 87.38 3.48
No Defense 81.79 95.02 81.30 90.39 81.90 74.37 80.74 8.81 81.95 89.20 80.85 69.73 78.54 28.20GTSRB Ours 92.03 1.31 91.37 3.04 94.13 0.38 91.10 1.31 91.82 1.87 90.87 0.62 92.25 1.09
No Defense 59.80 99.42 60.11 98.30 59.83 97.58 59.65 15.77 59.91 91.90 59.84 89.90 59.87 70.86SVHN Ours 91.19 4.14 90.88 6.82 91.09 3.22 90.11 1.45 91.25 2.92 90.22 1.31 90.95 1.23
No Defense 85.06 92.85 85.00 40.42 86.29 55.33 85.71 3.33 85.88 95.00 86.35 24.06 85.71 6.48ImageNet-10 Ours 80.46 3.86 81.65 2.42 82.00 2.85 83.71 0.94 84.53 3.33 80.24 1.94 81.71 2.48

5.6. RQ5: Scalability of T-Core Bootstrapping

5.6.1. Resilience against Adaptive Attack. T-Core relies
on the initial topological invariance sifting (TIS) of high-
credible samples, which are carried out based on the as-
sumptions of both majority rule and consistency rule. To
launch an effective adaptive backdoor poisoning, we exploit
the seed data sifted by TIS by conducting a layerwise ad-
versarial attack to construct backdoor triggers. Specifically,
we generate a universal adversarial perturbation (UAP) δ on
input samples that minimizes the activation distance between
perturbed inputs and target class samples across multiple
layers as follows:

min
δ

1

|D| × L

∑
x1∈D

N−1∑
l=N−L−1

∥hl(x1+δ)−
1

|St|
∑
x2∈St

hl(x2)∥,

where St is the seed data of the target class (sifted from
clean data Dt by TIS). TIS is conducted on the last L layers

TABLE 11: Peformance of our entire end-to-end defense
framework under Threat-1 and Threat-3.

Threat Type Threat-1 Threat-3
Encoder

Poisoning
Pre-training

Dataset
Downstream

Dataset Methods ACC↑ ASR↓ ACC↑ ASR↓

No Defense 76.58 98.51 76.79 100.00STL-10 Ours 55.23 4.29 66.24 1.40
No Defense 80.77 99.63 78.45 99.97GTSRB Ours 90.86 3.90 91.92 0.01
No Defense 65.35 97.56 67.93 99.44

CIFAR-10

SVHN Ours 85.93 3.76 92.52 0.65
No Defense 70.57 98.93 69.66 99.96CIFAR-10 Ours 60.65 5.22 62.90 6.80
No Defense 70.83 98.99 66.67 99.83GTSRB Ours 87.08 4.93 90.43 0.76
No Defense 64.89 98.98 63.55 99.57

BadEncoder

STL-10

SVHN Ours 86.76 6.09 87.34 0.54

No Defense 71.85 97.72 72.39 99.94STL-10 Ours 54.54 6.28 66.38 5.19
No Defense 76.39 98.10 75.22 99.20GTSRB Ours 93.28 4.50 90.65 3.73
No Defense 72.99 92.71 71.34 99.87

CIFAR-10

SVHN Ours 87.27 6.47 89.57 3.60
No Defense 71.14 80.49 71.21 99.66CIFAR-10 Ours 63.93 1.61 63.07 5.70
No Defense 65.11 85.03 64.90 99.18GTSRB Ours 84.51 3.97 85.82 0.86
No Defense 58.43 96.28 58.35 99.66

DRUPE

STL-10

SVHN Ours 87.37 5.58 83.91 0.37

No Defense 52.15 9.88 53.08 9.81STL-10 STL-10 Ours 48.01 0.18 48.56 1.41
No Defense 75.31 44.90 75.63 53.56CIFAR-10 CIFAR-10 Ours 56.66 3.07 59.35 3.72
No Defense 66.78 6.54 64.29 26.11

CTRL

GTSRB GTSRB Ours 82.42 0.87 88.11 1.91

No Defense 82.85 36.48 83.29 87.94SSLBackdoor ImageNet ImageNet-10 Ours 72.35 0.42 81.35 1.76

No Defense 82.35 58.46 82.47 92.12CorruptEncoder ImageNet ImageNet-10 Ours 72.82 1.03 81.47 4.79

before the final layer, i.e., from (N−L−1)-th layer to (N−
1)-th layer. Here we use the mean activation of target class
samples screened by TIS as the optimization in each layer.

TABLE 12: Performance of seed-sifting module TIS and the entire framework of T-Core against adaptive attack on CIFAR-
10. We test out the perturbation budget as 4, 8, 12, and 16 of the infinite norm, respectively. ‘Poi Num’ denotes the number
of poisons are deemed as clean seed data by TIS.

Perturbation
Range

4 8 12 16
ACC ASR Poi Num ACC ASR Poi Num ACC ASR Poi Num ACC ASR Poi Num

No Defense 83.37 83.71 - 83.65 96.08 - 83.41 96.51 - 84.04 96.75 -
Ours 81.79 5.65 0 82.97 13.42 1 81.67 21.49 4 81.42 92.52 38

TABLE 13: Ablation on the hyper-parameters γ1, γ2 of
bootstrapping learning on CIFAR-10. γ1 is the selection rate
from each class, γ2 is the selection rate from entire dataset.

SIG
ACC↑ ASR↓No Defense 84.72 89.1

γ2(%) 2 5 7 10
γ1(%) ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

1 88.24 2.24 88.36 2.34 87.79 4.53 87.22 7.92
2 89.09 2.76 87.31 2.54 86.91 4.27 87.13 8.44
5 87.98 4.49 86.16 9.59 83.55 21.73 81.84 40.57

Blended
ACC↑ ASR↓No Defense 84.84 89.12

γ2(%) 2 5 7 10
γ1(%) ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

1 88.64 4.48 87.38 4.93 88.01 6.37 86.93 13.75
2 88.09 4.43 87.35 5.9 87.14 7.37 86.26 16.07
5 86.63 8.46 85.31 12.74 83.21 26.07 82.55 44.15

TABLE 14: Ablation on bootstrapping rate ρ in Bootstrap-
ping Learning, i.e., when we choose to halt the bootstrapping
learning, on CIFAR-10, ‘Poi Num’ denotes the final number
of poison samples that are included.

SIG BlendedBootstrapping
Rate(%) ACC↑ ASR↓ Poi Num ACC↑ ASR↓ Poi Num

No Defense 84.72 89.10 - 84.84 89.12 -

97 85.13 12.48 65 85.54 71.54 568
95 87.62 3.11 9 86.62 79.38 88
90 87.31 2.54 0 87.35 5.90 13
85 81.09 1.87 0 82.26 3.71 5
80 79.41 2.06 0 80.63 2.31 0
70 76.22 1.63 0 77.10 1.56 0

The optimized adversarial perturbation is then used as the
trigger for backdoor injection. Such an adaptive adversary is
provided with total knowledge of our TIS, as well as access
to the pre-trained encode and the downstream dataset.

The experiments reveal a clear trade-off between the
adversarial budget and attack effectiveness. As demonstrated
in Table 12, even under this adaptive attack, a significant
adversarial perturbation budget is required to completely un-
dermine our defense, specifically, an l∞ norm of 16 (where
each pixel value is expected to change by 16). In contrast,
TIS remains effective under smaller adversarial budgets of
l∞ norm from 4 to 12, only minimum poisoned samples (0
to 4) are mistakenly selected as clean seed data. The ASR
rises as the adversarial budget increases, though, T-Core
does demonstrate resilience against moderate perturbations.

We conducted ablations on the selection rate for each
class γ1, the selection rate for the entire dataset γ2 (Ta-
ble 13) and the stopping criterion ρ for Clean Bootstrapping

(Table 14) using two standard dataset poisoning attacks,
SIG and Blended. Results in Table 13 show that selecting
from each class requires more caution than selecting from
the entire dataset. A smaller selection rate (more cautious
approach) leads to a lower ASR. On the other hand, results
in Table 14 demonstrate that for the Blended attack, when
ρ exceeds 85%, a few poison samples are already included
for training, increasing the ASR while the ACC is not
high enough. For the SIG attack, a ρ of 90% or lower
effectively eliminates poison samples, achieving a low ASR
while maintaining a high ACC. A ρ above 90% has made
the ASR significantly high. Thus, the choice of ρ should be
carefully tuned, considering different dataset poisoning.

The concept of channels in Encoder Channel Filter-
ing, originally designed for Convolutional Neural Networks
(CNNs), does not directly translate to Vision Transformers
(ViTs). However, we can adapt it by reinterpreting each
linear layer in the transformer as having multiple channels.
For example, a linear layer with dimensions 1536×512 can
be viewed as having 1536 channels, where each channel
generates a 512-dimensional feature vector (see the code
implementation in Fig. 7). This enables the application of a
learnable mask to the channels of the linear layer, mirroring
the approach used in CNNs. Unlike CNNs, which often rely
on batch normalization, ViTs utilize layer normalization.
Thus, we leverage layer normalization for the unlearning
process. Results in Table 15 demonstrate that T-Core ef-
fectively defends against Threat-1, Threat-2, and Threat-3,
achieving low ASRs while maintaining accuracy close to
the original undefended models.

We present a detailed comparison of the time expenses
of various seed-sifting methods in Table 16. Our Topological
Invariance Sifting (TIS) module significantly outperforms
state-of-the-art data-sifting approaches, such as MetaSift and
SPECTRE, in both efficiency and effectiveness, requiring
substantially less computation time. In contrast, faster al-
ternatives like IBD-PSC, SCALE-UP, and Spectral exhibit
markedly inferior performance in data sifting. In Table 17,
we report the time expenses and memory usage for each
module of T-Core. The total runtime is 1102.3 seconds
(under 20 minutes), which we consider highly practical for
a defense mechanism that delivers a clean, backdoor-free
classifier. Additionally, memory efficiency is achieved by
targeting a subset of parameters, with peak GPU memory

TABLE 15: Performance of T-Core on Vision Transformer against different types of backdoor threats of Threat-1 (Dataset
Poisoning), Threat-2 (Encoder Poisoning), and Threat-3 (Adaptive Poisoning).

Threat Type
Threat-2 Threat-1 Threat-3

BadNets Blended SIG BadEncoder DRUPE BadEncoder DRUPE

ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

No Defense 72.17 87.57 72.09 82.53 72.03 62.99 60.33 98.79 66.22 99.83 58.02 99.99 66.20 99.99
Ours 70.94 4.35 70.91 3.55 70.94 3.15 56.46 0.26 64.95 4.50 55.55 2.50 65.25 5.57

TABLE 16: Time expenses (seconds) in comparison of
different seed-sifting methods, on the CIFAR-10 dataset at
varying dataset sizes per class. According to Table 5, the
faster IBD-PSC, SCALE-UP, and Spectral generally perform
poorly.

Data Size
per Class 100 500 1000 2500 5000

IBD-PSC 3.83 14.94 26.81 64.81 139.69
SCALE-UP 0.69 3.02 6.00 14.81 29.51

Spectral 0.32 1.85 3.07 7.01 14.13
SPECTRE 14.53 74.23 117.95 231.71 456.57

META-SIFT 47.99 83.68 128.34 267.09 489.26
Ours 7.01 26.05 46.68 129.29 294.38

TABLE 17: Time expenses and memory usage of T-Core.
We report the total time and memory expenses for T-Core,
along with the breakdown for each module: Topological
Invariance Sifting (TIS), Seed Expansion (SE), Encoder
Channel Filtering (ECF), and Bootstrapping Learning (BL).
Experiments are conducted on the CIFAR-10 dataset (50,000
samples) using a ResNet18 encoder with a batch size of 128.

Stages TIS SE ECF BL Total Expenses

Time (s) 294.4 60.1 105.6 642.2 1102.3

VRAM (MB) 5312 3338 3484 4794 5312

usage remaining below 5 GB. These demonstrate the scala-
bility of T-Core, making it a viable solution for real-world
applications where computational resources are limited.

6. Limitation and Future Work

Our T-Core framework is designed to defend against
unknown backdoor threats in blind transfer learning sce-
narios, where neither the attack pattern nor the integrity
of the pre-trained model or data is known. By adopting
a proactive defense strategy—identifying and amplifying
clean elements—we mitigate potential backdoors without
prior knowledge of the threat.

However, this approach relies on sifting a number of
clean samples to bootstrap a reliable trust core. A key
limitation arises when the training data is scarce, making
it difficult to isolate enough clean elements for robust ini-
tialization. For instance, STL-10 (with only 5,000 samples)
exhibits a more noticeable accuracy drop compared to larger

datasets. Future work will explore better trade-offs between
security and utility in low-data regimes.

Additionally, our current focus is on vision-based back-
doors in scenarios where users fine-tune pre-trained en-
coders on image datasets. We have not yet investigated
language-domain backdoors or multimodal zero-shot set-
tings (e.g., CLIP-like models), where threats could emerge
from both image and text encoders. Extending T-Core to
these domains remains an open challenge for future work.

7. Conclusion

In this study, we address the critical challenge of secur-
ing transfer learning models from backdoor attacks, where
the security risk is amplified by the employment of untrusted
pre-trained encoders and potentially poisoned datasets. Our
exhaustive analysis shows that traditional defenses, which
often depend on reactive approaches, are inadequate to the
unknown threats and diverse attack vectors within transfer
learning. To overcome this limitation, we thus advocate for
a proactive mindset focused on identifying and expanding
trustworthy elements and introduce the Trusted Core (T-
Core) Bootstrapping framework. T-Core effectively neutral-
izes backdoor risks by initializing with meticulously vetted,
high-credibility samples and progressively expanding the
trusted dataset and model elements. Our comprehensive
empirical evaluation, spanning a wide array of encoder and
dataset poisoning, demonstrates the superiority of the T-
Core. On the big picture, our work underscores the im-
portance of adopting a proactive mindset in developing
backdoor defenses, particularly in transfer learning, where
an expanded attack surface and unknown threats heighten
the security risk.

References

[1] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, 2019.

[2] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[3] S. Liang, M. Zhu, A. Liu, B. Wu, X. Cao, and E.-C. Chang, “Badclip:
Dual-embedding guided backdoor attack on multimodal contrastive
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024.

[4] J. Jia, Y. Liu, and N. Z. Gong, “BadEncoder: Backdoor Attacks to
Pre-trained Encoders in Self-Supervised Learning,” in 2022 IEEE
Symposium on Security and Privacy (SP 22), pp. 2043–2059, 2022.

[5] S. Wang, S. Nepal, C. Rudolph, M. Grobler, S. Chen, and T. Chen,
“Backdoor Attacks Against Transfer Learning With Pre-Trained
Deep Learning Models,” IEEE Transactions on Services Computing,
vol. 15, pp. 1526–1539, May 2022.

[6] C. Li, R. Pang, Z. Xi, T. Du, S. Ji, Y. Yao, and T. Wang, “An em-
barrassingly simple backdoor attack on self-supervised learning,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 4367–4378, October 2023.

[7] G. Tao, Z. Wang, S. Feng, G. Shen, S. Ma, and X. Zhang, “Dis-
tribution Preserving Backdoor Attack in Self-supervised Learning,”
in 2024 IEEE Symposium on Security and Privacy (SP 24), IEEE
Computer Society, 2024. ISSN: 2375-1207.

[8] A. Saha, A. Tejankar, S. A. Koohpayegani, and H. Pirsiavash, “Back-
door attacks on self-supervised learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 22), pp. 13337–13346, 2022.

[9] J. Zhang, H. Liu, J. Jia, and N. Z. Gong, “CorruptEncoder: Data poi-
soning based backdoor attacks to contrastive learning,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR 24), 2024.

[10] M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns
by training set corruption without label poisoning,” in 2019 IEEE
International Conference on Image Processing (ICIP 19), pp. 101–
105, IEEE, 2019.

[11] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon in the variant:
Statistical analysis of DNNs for robust backdoor contamination de-
tection,” in 30th USENIX Security Symposium (USENIX Security
21), pp. 1541–1558, 2021.

[12] X. Qi, T. Xie, Y. Li, S. Mahloujifar, and P. Mittal, “Revisiting the
assumption of latent separability for backdoor defenses,” in The
eleventh International Conference on Learning Representations (ICLR
23), 2023.

[13] T. A. Nguyen and A. T. Tran, “WaNet - imperceptible warping-
based backdoor attack,” in International Conference on Learning
Representations (ICLR 21), 2021.

[14] Z. Zhang, Q. Liu, Z. Wang, Z. Lu, and Q. Hu, “Backdoor defense
via deconfounded representation learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 23), pp. 12228–12238, 2023.

[15] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-Backdoor
Learning: Training Clean Models on Poisoned Data,” in Advances
in Neural Information Processing Systems (NeurIPS 21), vol. 34,
pp. 14900–14912, Curran Associates, Inc., 2021.

[16] J. Hayase, W. Kong, R. Somani, and S. Oh, “SPECTRE: defending
against backdoor attacks using robust statistics,” in Proceedings of
the 38th International Conference on Machine Learning (ICML 21),
2021.

[17] R. Zheng, R. Tang, J. Li, and L. Liu, “Data-free backdoor re-
moval based on channel lipschitzness,” in European Conference on
Computer Vision (ECCV 22), pp. 175–191, Springer, 2022.

[18] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards,
T. Lee, I. Molloy, and B. Srivastava, “Detecting backdoor attacks
on deep neural networks by activation clustering,” arXiv preprint
arXiv:1811.03728, 2018.

[19] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor
attacks,” in Advances in Neural Information Processing Systems
(NeurIPS 18), pp. 8000–8010, 2018.

[20] M. Pan, Y. Zeng, L. Lyu, X. Lin, and R. Jia, “ASSET: Robust back-
door data detection across a multiplicity of deep learning paradigms,”
in 32nd USENIX Security Symposium (USENIX Security 23),
pp. 2725–2742, 2023.

[21] X. Qi, T. Xie, J. T. Wang, T. Wu, S. Mahloujifar, and P. Mittal,
“Towards a proactive ML approach for detecting backdoor poison
samples,” in 32nd USENIX Security Symposium (USENIX Security
23), pp. 1685–1702, 2023.

[22] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“STRIP: A defence against trojan attacks on deep neural networks,”
in Proceedings of the 35th Annual Computer Security Applications

Conference (ACSAC 19), pp. 113–125, 2019.
[23] L. Hou, R. Feng, Z. Hua, W. Luo, L. Y. Zhang, and Y. Li, “IBD-PSC:

Input-level backdoor detection via parameter-oriented scaling consis-
tency,” in Forty-first International Conference on Machine Learning
(ICML 24), 2024.

[24] J. Guo, Y. Li, X. Chen, H. Guo, L. Sun, and C. Liu, “SCALE-
UP: An efficient black-box input-level backdoor detection via ana-
lyzing scaled prediction consistency,” in The Eleventh International
Conference on Learning Representations (ICLR 23), 2023.

[25] Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia, “Adversarial
unlearning of backdoors via implicit hypergradient,” in International
Conference on Learning Representations (ICLR 22), 2022.

[26] M. Zhu, S. Wei, L. Shen, Y. Fan, and B. Wu, “Enhancing fine-tuning
based backdoor defense with sharpness-aware minimization,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV 23), 2023.

[27] T. Han, S. Huang, Z. Ding, W. Sun, Y. Feng, C. Fang, J. Li,
H. Qian, C. Wu, Q. Zhang, et al., “On the effectiveness of distil-
lation in mitigating backdoors in pre-trained encoder,” arXiv preprint
arXiv:2403.03846, 2024.

[28] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe, “Februus: Input
purification defense against trojan attacks on deep neural network
systems,” in Proceedings of the 36th Annual Computer Security
Applications Conference (ACSAC 20), pp. 897–912, 2020.

[29] Y. Li, T. Zhai, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor attack in the
physical world,” arXiv preprint arXiv:2104.02361, 2021.

[30] H. Qiu, Y. Zeng, S. Guo, T. Zhang, M. Qiu, and B. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating dnn back-
door attacks using data augmentation,” in Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security
(AsiaCCS 21), pp. 363–377, 2021.

[31] X. Liu, M. Li, H. Wang, S. Hu, D. Ye, H. Jin, L. Wu, and C. Xiao,
“Detecting backdoors during the inference stage based on corruption
robustness consistency,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR 23), pp. 16363–
16372, 2023.

[32] X. Mo, Y. Zhang, L. Zhang, W. Luo, N. Sun, S. Hu, S. Gao, and
Y. Xiang, “Robust backdoor detection for deep learning via topo-
logical evolution dynamics,” in 2024 IEEE Symposium on Security
and Privacy (SP 24), (Los Alamitos, CA, USA), pp. 174–174, IEEE
Computer Society, may 2024.

[33] W. Ma, D. Wang, R. Sun, M. Xue, S. Wen, and Y. Xiang, “The ”Beat-
rix” Resurrections: Robust backdoor detection via gram matrices,” in
NDSS, 2023.

[34] K. Huang, Y. Li, B. Wu, Z. Qin, and K. Ren, “Backdoor defense via
decoupling the training process,” in Proceedings of the International
Conference on Learning Representations (ICLR 22), 2022.

[35] Z. Wang, H. Ding, J. Zhai, and S. Ma, “Training with more confi-
dence: Mitigating injected and natural backdoors during training,” in
Advances in Neural Information Processing Systems (NeurIPS 22)
(A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, eds.), 2022.

[36] Y. Chen, H. Wu, and J. Zhou, “Progressive poisoned data isolation
for training-time backdoor defense,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI 24), pp. 11425–11433,
2024.

[37] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-Pruning: Defending
against backdooring attacks on deep neural networks,” in International
Symposium on Research in Attacks, Intrusions and Defenses (RAID
18), pp. 273–294, Springer, 2018.

[38] W. Guo, L. Wang, Y. Xu, X. Xing, M. Du, and D. Song, “Towards
inspecting and eliminating trojan backdoors in deep neural networks,”
in 2020 IEEE International Conference on Data Mining (ICDM 20),
IEEE, 2020.

[39] G. Shen, Y. Liu, G. Tao, S. An, Q. Xu, S. Cheng, S. Ma, and
X. Zhang, “Backdoor scanning for deep neural networks through k-
arm optimization,” in International Conference on Machine Learning
(ICML 21), pp. 9525–9536, PMLR, 2021.

[40] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural Cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP 19), pp. 707–723, May 2019.

[41] S. Feng, G. Tao, S. Cheng, G. Shen, X. Xu, Y. Liu, K. Zhang,
S. Ma, and X. Zhang, “Detecting backdoors in pre-trained encoders,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 23), pp. 16352–16362, 2023.

[42] K. Gao, Y. Bai, J. Gu, Y. Yang, and S.-T. Xia, “Backdoor defense
via adaptively splitting poisoned dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 23), 2023.

[43] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning (ICML 17), pp. 1126–1135, PMLR, 2017.

[44] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” Tech Report, 2009.

[45] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: Benchmarking machine learning algorithms for traffic sign
recognition,” Neural networks, vol. 32, pp. 323–332, 2012.

[46] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

[47] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in AISTATS, 2011.

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 09),
pp. 248–255, IEEE, 2009.

[49] Y. Zeng, M. Pan, H. Jahagirdar, M. Jin, L. Lyu, and R. Jia, “META-
SIFT : How to sift out a clean subset in the presence of data poi-
soning?,” in 32nd USENIX Security Symposium (USENIX Security
23), pp. 1667–1684, 2023.

[50] T. Han, W. Sun, Z. Ding, C. Fang, H. Qian, J. Li, Z. Chen, and
X. Zhang, “Mutual information guided backdoor mitigation for pre-
trained encoders,” arXiv preprint arXiv:2406.03508, 2024.

[51] R. Bie, J. Jiang, H. Xie, Y. Guo, Y. Miao, and X. Jia, “ Mitigat-
ing Backdoor Attacks in Pre-Trained Encoders via Self-Supervised
Knowledge Distillation ,” IEEE Transactions on Services Computing,
vol. 17, pp. 2613–2625, Sept. 2024.

[52] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in KDD, pp. 226–231, 1996.

Appendix A.
Implementation Details of T-Core

In Sec. 4, we present the overall algorithmic details
of our Trusted Core Bootstrapping framework, here we
illustrate the implementation details of T-Core.
Details of Topological Invariance Sifting. The algorithm
Algorithm 1 in Sec. 4.1.1 extracts high-credibility seed data
from a poisoned dataset by utilizing topological invariance
across various layers of a well-trained poisoned model.
For clustering, we employ activations from the output of
the encoder and the first two layers of the classifier, and
implement density-based clustering using DBSCAN [52].
We set the number of nearest neighbors m to 50 and employ
Euclidean distance for neighbor determination. The seed
selection ratio α is set to 1%.
Details of Seed Expansion Algorithm 2 in Sec. 4.1.2
expand the seed data obtained from Algorithm 1. We set the
select ratio rexpand for expansion as 5%, and the expansion
ratio |Dsub|/|D| as 10%.
Details of Encoder Channel Filtering The algorithm in
Algorithm 3 from Sec. 4.2 filters trusted and untrusted chan-
nels within the pre-trained encoder. The unlearning process

stops once the training accuracy drops below 20%. The
recovery process is conducted using the Adam optimizer
with a learning rate of 0.01. Training is performed for 120
epochs. The filtering threshold is set to cut off 10% of
channels as untrusted.
Details of Clean Bootstrapping Training The clean boot-
strapping described in Algorithm 4 iteratively expands the
clean subset and refines the model parameters. We set both
Iter1 and Iter2 to 10, with both γ1% and γ2% set to 2%.
Additionally, γ3% is set to 5%. This process continues until
the clean subset reaches ρ = 90% of the entire dataset.

Appendix B.
Experimental Setup Explanation

B.1. Datasets Explanation

We detail the datasets utilized and how we process them
as pre-training or downstream datasets as follows:
• STL-10 [47]: This dataset comprises 5,000 labeled training

images, 8,000 labeled testing images, and an additional
100,000 unlabeled images, each with dimensions of 96 ×
96 × 3, and all parts of the image set can be evenly divided
into ten classes, where each image belongs to a class. We
use the unlabeled images as a pre-training dataset and the
labeled part for the downstream training and testing.

• CIFAR-10 [44]: This dataset is also a balanced dataset
containing 50,000 labeled training images and 10,000 test-
ing images, both of which are evenly divided into 10
classes. Each image has a size of 32×32×3. We use this
dataset for the downstream dataset and remove the labels
of the training images when pre-training the encoder.

• GTSRB [45]: This dataset contains 43 classes of traffic
signs, split into 39,209 training images and 12,630 test
images. Each image has a size of 32×32×3. Furthermore,
this dataset has an uneven distribution of the number
of images belonging to each class, ranging from 210 to
2250, which presents a real-world challenge, especially
when under poisoning. Thus, we use it for the downstream
dataset to evaluate the effectiveness of defenses.

• SVHN [46]: In this dataset, every image depicts a digit
from the house numbers collected from Google Street
View with the size of 32×32×3. Additionally, the images
fall into one of the ten possible digit categories. There
are 73,257 training images and 26,032 testing images in
this dataset. Moreover, extraneous digits are added at the
edges of the primary digit in focus, making it even more
challenging to separate poisoned and clean samples under
SVNH. Thus, we also use it as a downstream dataset to
test the robustness of defenses.

• ImageNet [48]: This dataset is built for large-scale object
classification and contains 1,281,167 training samples and
50,000 testing samples in 1000 classes. The input size is
224×224×3. We use a 100-class subset for the pre-training
dataset and a 10-class subset for the downstream dataset.

B.2. Pre-trained Encoder Explanation

In this section, we provide the detailed implementation
of each encoder poisoning attack, specifically how we obtain
both clean and poisoned encoders, and how these encoders
are utilized in the context of transfer learning.
BadEncoder and DRUPE: Both of these methods inject
backdoors by fine-tuning a clean pre-trained encoder, assign-
ing a target class to a specific concept within a downstream
dataset. Our experiments utilize STL-10 as the pre-training
dataset while targeting backdoors for CIFAR-10, GTSRB,
and SVHN. Conversely, we also use CIFAR-10 as the pre-
training dataset, with backdoors aimed at STL-10, GTSRB,
and SVHN.
CTRL: In contrast to the backdoor injection methods used
by BadEncoder and DRUPE, CTRL contaminates the unla-
beled images in the pre-training dataset, specifically target-
ing a concept within the label set of that dataset. As a result,
its backdoor functionality is limited to downstream datasets
that share the same label set or a subset of it. Accordingly,
we adhere to the methodology outlined in [6] and utilize
CIFAR-10, STL-10, and GTSRB as both pre-training and
downstream datasets.
SSLBackdoor and CorruptEncoder: These methods also
employ the same 100-class subset of ImageNet as the pre-
training dataset. They inject backdoors in a manner similar
to the CTRL method by directly poisoning the pre-training
data. For our experiments, we select a 10-class subset of
ImageNet as the downstream dataset, ensuring that the tar-
get classes for both SSLBackdoor and CorruptEncoder are
included in this subset.

Additionally, for the clean encoders of STL-10 and
CIFAR-10, we follow the approach in [4] to train a
ResNet18 using SimCLR, leveraging the publicly avail-
able code from SimCLR4. The clean ImageNet encoder is
sourced from [8]5. The backdoor encoders are constructed
through the respective backdoor poisoning methods. For
BadEncoder6 and DRUPE7, we directly utilize their open-
source checkpoints trained on STL-10 and CIFAR-10. For
the ImageNet backdoor encoder, we employ the checkpoints
provided by [9]8 for both SSL-Backdoor and CorruptEn-
coder.

B.3. Dataset Poisoning Explanation

For dataset backdoor poisoning, we use the backdoor-
toolbox9 benchmark to implement all the attacks on down-
stream datasets. Note that this benchmark does not provide

4. https://github.com/leftthomas/SimCLR
5. https://github.com/UMBCvision/SSL-Backdoor
6. https://github.com/jinyuan-jia/BadEncoder
7. https://github.com/Gwinhen/DRUPE
8. https://github.com/jzhang538/CorruptEncoder
9. https://github.com/vtu81/backdoor-toolbox

experimental setups for certain attack methods on some
datasets. For instance, TaCT attack on ImageNet is originally
not supported. We conducted experiments by adapting the
settings from other datasets.
Trigger and Target Class: In the context of Threat-2,
we employed distinct triggers and target classes to avoid
conflicts between Encoder Poisoning and Dataset Poisoning.
Specifically, when both Threat-1 and Threat-2 are present,
we maintained the same approach used for Threat-2. In
Threat-3, we utilized the same triggers and target classes
as those applied in the pre-trained encoder. For Threat-2,
aside from TaCT, the target classes are as follows: “Car”
for STL-10, “Bird” for CIFAR-10, “Speed limit (50km/h)”
for GTSRB, “2” for SVHN, and “n01855672 (Goose)”
for ImageNet-10. The specific target classes for TaCT and
Threat-3 across various datasets are detailed in Table 18.
Poisoning and Cover Ratio. By default, the poisoning rate
was set to 20% of the target category. For specific attacks
like TaCT, WaNet, Adap-Blend, and Adap-Patch, the cover
rate was set to 1/4 of the poisoning rate.

TABLE 18: Target Class of Various Dataset Poisoning Meth-
ods on Downstream Dataset
Threat Type Threat 2 Threat 3

TaCT BadEncoder DRUPE CTRLDataset Target Class Source Class Cover Class Target Class Target Class Target Class
STL-10 Car Truck Dog Horse Monkey Trunk Trunk Airplane

CIFAR-10 Bird Truck Dog Forg Horse Airplane Airplane Airplane

GTSRB Speed limit (60km/h)Speed limit (50km/h)
Speed limit (50km/h)

End of speed limit(80km/h)
Speed limit(100km/h)

Priority Road Priority Road Speed limit(20km/h)

SVHN 2 1 5 6 7 0 0 None
TaCT SSLBackdoor CorruptEncoder -Dataset Target Class Source Class Cover Class Target Class Target Class -

ImageNet-10
n01855672

(Goose)
n01775062

(Wolfspider)

n02120079(Whitefox)
n02447366(Badger)
n02483362(Gibbon)

n02116738
(Hunting Dog)

n02116738
(Hunting Dog) -

B.4. Baseline Defense Explanation

For baseline defense, we tailor all the end-to-end training
from scratch to transfer learning using a clean or poisoned
encoder based on the specific threat. We utilize the publicly
available code of [21]10 to implement STRIP, AC, Spectral,
SPECTRE, and CT. We utilize the toolbox11 to implement
IBD-PSC and SCALE-UP. We implement ASSET12, ABL13,
CBD14, CLP15, SSLBackdoorMitigation16, META-SIFT17,
FT-SAM18, and I-BAU19 using their respective official code
repositories.

10. https://github.com/Unispac/Fight-Poison-With-Poison
11. https://github.com/THUYimingLi/BackdoorBox
12. https://github.com/reds-lab/ASSET
13. https://github.com/bboylyg/ABL
14. https://github.com/zaixizhang/CBD
15. https://github.com/rkteddy/channel-Lipschitzness-based-pruning
16. https://github.com/wssun/SSLBackdoorMitigation
17. https://github.com/ruoxi-jia-group/Meta-Sift
18. https://github.com/SCLBD/BackdoorBench
19. https://github.com/YiZeng623/I-BAU

https://github.com/leftthomas/SimCLR
https://github.com/UMBCvision/SSL-Backdoor
https://github.com/jinyuan-jia/BadEncoder
https://github.com/Gwinhen/DRUPE
https://github.com/jzhang538/CorruptEncoder
https://github.com/vtu81/backdoor-toolbox
https://github.com/Unispac/Fight-Poison-With-Poison
https://github.com/THUYimingLi/BackdoorBox
https://github.com/reds-lab/ASSET
https://github.com/bboylyg/ABL
https://github.com/zaixizhang/CBD
https://github.com/rkteddy/channel-Lipschitzness-based-pruning
https://github.com/wssun/SSLBackdoorMitigation
https://github.com/ruoxi-jia-group/Meta-Sift
https://github.com/SCLBD/BackdoorBench
https://github.com/YiZeng623/I-BAU

TABLE 19: Performance of the state-of-the-art inference-time defenses SCALE-UP and IBD-PSC under different threat
scenarios, using the CIFAR-10 dataset.

SCALE-UP IBD-PSCThreat Type Poisoning
Method TPR(%)↑ FPR(%)↓ AUC↑ F1↑ TPR(%)↑ FPR(%)↓ AUC↑ F1↑

BadNets 92.80 33.98 0.79 0.12 0.00 3.38 0.48 0.00
Blended 20.24 38.22 0.41 0.03 0.24 3.27 0.48 0.00

SIG 14.80 37.66 0.39 0.02 0.80 3.13 0.49 0.01
WaNet 28.56 40.07 0.44 0.03 4.80 0.42 0.52 0.08
TaCT 56.88 35.98 0.60 0.07 0.00 5.29 0.47 0.00

Adap-Blend 29.60 35.54 0.47 0.04 0.80 4.14 0.48 0.01

Threat-2

Adap-Patch 32.48 34.58 0.49 0.04 1.92 2.28 0.50 0.02

Threat Type Poisoning
Method TPR(%)↑ FPR(%)↓ AUC↑ F1↑ TPR(%)↑ FPR(%)↓ AUC↑ F1↑

BadEncoder 33.60 37.00 0.48 0.04 3.76 4.59 0.50 0.03Threat-1 DRUPE 33.84 36.90 0.48 0.04 0.24 3.93 0.48 0.00
BadEncoder 53.04 38.60 0.57 0.06 50.64 3.96 0.73 0.33Threat-3 DRUPE 51.76 34.18 0.59 0.07 3.76 6.98 0.48 0.02

0.0
5 0.1 0.3 0.5 1 5 10 20

0

50

100

150

200

250

300 Poison Ratio = 0.1

0.0
5 0.1 0.3 0.5 1 5 10 20

0

100

200

300

400

500 Poison Ratio = 0.2

0.0
5 0.1 0.3 0.5 1 5 10 20

0

100

200

300

400

500 Poison Ratio = 0.3

0.0
5 0.1 0.3 0.5 1 5 10 20

0

200

400

600

800
Poison Ratio = 0.4

The proportion of the samples with the largest loss (%)Nu
m

 o
f P

oi
so

n
Sa

m
pl

es

BadNets
Blended

WaNet
SIG

TaCT
Adap-Blend

Adap-Patch

Figure 6: Number of poison samples in the largest loss region of the target class after seed expansion. Experiments are
conducted on 7 dataset poisoning attacks at poison ratios of 0.1, 0.2, 0.3, and 0.4 for the target class.

1 class MaskedLinear(nn.Module):
2 def __init__(self, original_weight, mask, bias=None):
3 super().__init__()
4 self.original_weight = original_weight
5 self.mask = mask # Trainable mask initialized as all ones
6 self.bias = bias
7

8 def forward(self, x):
9 # Clamp mask between 0 and 1

10 self.mask.data.clamp_(0,1)
11 masked_weight = self.original_weight * self.mask.unsqueeze(1)
12 return torch.nn.functional.linear(x, masked_weight, self.bias)

Figure 7: Implementation of the MaskedLinear class, which applies a trainable mask to the weights of a linear layer.
We use this code to transform a linear layer of ViT into a masked layer. The mask is clamped between 0 and 1 to ensure
valid weight adjustments.

	Introduction
	Preliminaries
	Training Procedure, Models and Data
	Threat Model and Defense Context

	Methodological Analysis
	Assessing Existing Defense Methodology
	Defense Type I: Poison Detection
	Defense Type II: Poison Suppression
	Defense Type III: Poison Removal
	Towards A Proactive Mindset

	Trusted Core Bootstrapping
	Sifting A Clean Set
	Selecting Seed Data
	Boostrapping the Clean Set

	Filtering the Encoder Channel
	Bootstrapping Learning

	Experiments
	Experimental Setups
	RQ1: Effectiveness of Clean Data Sifting
	RQ2: Effectiveness of Encoder Filtering
	RQ3: Effectiveness of Bootstrapping Learning
	RQ4: Effectiveness of T-Core Bootstrapping
	RQ5: Scalability of T-Core Bootstrapping
	Resilience against Adaptive Attack

	Limitation and Future Work
	Conclusion
	Appendix A: Implementation Details of T-Core
	Appendix B: Experimental Setup Explanation
	Datasets Explanation
	Pre-trained Encoder Explanation
	Dataset Poisoning Explanation
	Baseline Defense Explanation

