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Abstract

Zero-knowledge (ZK) circuits enable privacy-preserving computa-
tions and are central to many cryptographic protocols. Systems like
Circom simplify ZK development by combining witness computa-
tion and circuit constraints in one program. However, even small er-
rors can compromise security of ZK programs —under-constrained
circuits may accept invalid witnesses, while over-constrained ones
may reject valid ones. Static analyzers are often imprecise with high
false positives, and formal tools struggle with real-world circuit
scale. Additionally, existing tools overlook several critical behav-
iors, such as intermediate computations and program aborts, and
thus miss many vulnerabilities.

Our theoretical contribution is the Trace-Constraint Consistency
Test (TCCT), a foundational language-independent formulation of
ZK circuit bugs that defines bugs as discrepancies between the exe-
cution traces of the computation and the circuit constraints. TCCT
captures both intermediate computations and program aborts, de-
tecting bugs that elude prior tools.

Our systems contribution is zkFuzz, a novel program mutation-
based fuzzing framework for detecting TCCT violations. zkFuzz
systematically mutates the computational logic of Zk programs
guided by a novel fitness function, and injects carefully crafted in-
puts using tailored heuristics to expose bugs. We evaluated zkFuzz
on 354 real-world ZK circuits written in Circom, a leading program-
ming system for ZK development. zkFuzz successfully identified
66 bugs, including 38 zero-days—18 of which were confirmed by
developers and 6 fixed, earning bug bounties.
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1 Introduction

Zero-knowledge (ZK) circuits have emerged as a foundational tech-
nology for privacy-preserving computation with succinct proofs
and efficient verification [24, 33, 40]. Their adoption spans a variety
of critical sectors, including anonymous cryptocurrencies [49], con-
fidential smart contracts [55, 62], secure COVID-19 contact tracing
protocols [39], privacy-preserving authentication [5], and verifiable
machine learning systems [61, 65]. Industry forecasts predict that
the ZKmarket will reach $10 billion by 2030, withWeb3 applications
alone expected to execute nearly 90 billion proofs [45].

Manually constructing ZK circuits is complex and error-prone, so
developers often use programming systems like Circom [7], which
allow them to express both the computation for deriving the secret
witness from the input signals and the constraints of the finite-field
arithmetic circuit (used to generate and verify proofs later) within
one ZK program written in a high-level, domain-specific language
(DSL). The DSL compiler then translates the program into (1) an
executable (e.g., in WASM) for witness generation and (2) a set of
constraints that define the circuit and support proof verification.

Even with high-level programming systems, developing correct
circuits remains notoriously difficult due to two core challenges.
First, the computation and the constraints must align exactly, yet
they operate in different domains: general-purpose logic vs. poly-
nomial constraints optimized for efficiency. Developers must often
manually translate logic into polynomial form, and any mismatch
results in incorrect or unverifiable proofs [59]. Second, the non-
intuitive behavior of modular arithmetic in finite fields often con-
fuses developers. For example, function iszero(x) should return
1 if 𝑥 = 0 and 0 otherwise—but in a field of prime order 5, expres-
sion iszero(2 + 3) evaluates to 1, since 2 + 3 ≡ 0 mod 5. Such
surprises often trip up developers unfamiliar with finite fields.

Unsurprisingly, these challenges lead to vulnerabilities: under-
constrained circuits that allow false proofs, and over-constrained

circuits that reject valid witnesses. Both can result in serious secu-
rity breaches [12, 36]. For instance, an under-constrained bug in
zkSync—a widely used zk-Rollup—allowed a malicious prover to
extract $1.9 billion worth of funds at the time of disclosure [11, 56].

Existing methods for automatically detecting vulnerabilities in
ZK programs face several limitations. Static analysis [42, 59] is
primarily pattern-based and fails to capture deep semantic inconsis-
tencies, suffering from high false positives, which waste developer
time and lose their trust [9]. Formal methods [13, 31, 32, 38, 43]
improve precision, but their reliance on SMT solvers limits scalabil-
ity to real-world circuits with thousands of constraints. (Existing
dynamic methods [19, 27, 34, 60] target compilation, proving, or
verification systems, and do not extend to individual ZK programs.)

Furthermore, current formal definitions of ZK vulnerabilities
are incomplete, leaving numerous bugs undetected. In particular,
they ignore or mishandle intermediate computations [13, 32, 43],
missing an entire class of over-constrained bugs. They also fail to
account for abnormal termination in computation—bugs that allow
inputs to crash witness generation while still satisfying circuit
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constraints, despite such cases accounting for nearly 50% of real-
world ZK bugs in our evaluation.

Our first contribution in this paper is a new theoretical formula-
tion, the Trace-Constraint Consistency Test (TCCT), that models
the vulnerabilities in ZK programs as discrepancies between (1) all
possible execution traces that a computation may produce and (2)
the set of input, intermediate, and output values permitted by the
circuit constraints. It captures both under-constrained, or sound-
ness, vulnerabilities—when an invalid trace is allowed by the circuit
constraints—and over-constrained, or completeness, vulnerabilities
when a valid trace is incorrectly rejected. TCCT correctly accounts
for intermediate computations, and is the first comprehensivemodel
to define the semantics of over-constrained ZK vulnerabilities. It
is also the first, to the best of our knowledge, to handle abnormal
termination in witness computation. Our formulation is general and
language-agnostic, laying a solid foundation for tools that detect
both soundness and completeness ZK vulnerabilities.

Our second contribution is the design and implementation of
zkFuzz, a novel dynamic analysis framework that leverages fuzzing
with program mutations to detect TCCT violations in ZK programs.
To uncover over-constrained vulnerabilities, zkFuzz systematically
fuzzes inputs to the witness computation in search of valid ex-
ecution traces incorrectly rejected by the circuit constraints. To
uncover under-constrained vulnerabilities, it mutates the witness
computation and searches for inputs that produce different out-
puts accepted by the circuit constraints. Since these outputs are
produced by a mutated computation that semantically differs from
the original, they are, by construction, invalid and should not be
accepted. zkFuzz is fully automated, and for every bug detected, it
provides a concrete counterexample, greatly simplifying diagnosis.

A key challenge for zkFuzz is the vast search space. Although
ZK program inputs are finite, they belong to large prime fields, and
behavior in small fields does not generalize to larger fields (e.g.,
iszero(2 + 3) is true in F5 but false in F7). Blindly searching
these large fields with many input signals is computationally ex-
pensive. The program mutation space is even larger—practically
infinite—since arbitrary programsmay produce outputs accepted by
buggy circuits. Traditional heuristics like coverage-guided fuzzing
are ineffective, as zkFuzz seeks specific traces that expose vulnera-
bilities, not broad code coverage.

To search this vast space efficiently, zkFuzz adopts a joint input
and programmutation-based evolutionary fuzzing algorithm. Given
a witness computation program 𝑃 and circuit constraints𝐶 , zkFuzz
generates multiple mutants of 𝑃 and heuristically samples multiple
input values likely to lead to bugs. Unlike traditional fuzzing, which
typically mutates only the inputs, zkFuzzmutates both the program
and inputs. It executes all program mutants on all sampled inputs
and checks the resulting traces against 𝐶 for TCCT violations.

In each iteration, zkFuzz scores program mutants using a novel
min-sum fitness function that estimates the likelihood of trigger-
ing a violation. For each input, it sums constraint errors across all
constraints and assigns the mutant the minimum such sum across
inputs. Unlike prior sum-only methods [14], this approach is better
suited for joint program and input fuzzing. zkFuzz then performs
crossover, favoring lower-scoring mutants, and evaluates the re-
sulting offspring on newly sampled inputs. This process repeats
until a violation is found or a timeout occurs. Each iteration is

independent once crossover mutants are generated, and zkFuzz
further improves efficiency via heuristics that prioritize mutation
of program statements and input regions most likely to cause bugs.

In our evaluation, we implement zkFuzz for Circom [7], the
most popular programming system for developing ZK circuits [59],
and compare it with four state-of-the-art detection tools on 354
real-world ZK circuits. Our results show that zkFuzz consistently
outperforms all othermethods, finding 30% to 300%more bugs, with-
out any false positives. In total, zkFuzz found 66 bugs, including
38 previously unknown zero-days—18 of which were confirmed by
developers and 6 fixed. For example, 11 under-constrained bugs in
zk-regex [66], a popular ZK regex verification tool, were confirmed
and awarded bug bounties. These bugs allow malicious provers to
generate bogus proofs claiming that they possess a string with cer-
tain properties (e.g., a valide email address) without actually having
such a string. Another confirmed bug in passport-zk-circuits [46],
a ZK-based biometric passport project, allowed attackers to forge
proofs of possessing data matching a required encoding. Our code
is publicly available at https://github.com/Koukyosyumei/zkFuzz.

In summary, this paper makes the following key contributions:
• Introduce TCCT, a language-independent formal frame-
work that captures both under- and over-constrained ZK
bugs through trace-constraint inconsistencies.

• Develop zkFuzz, a dynamic analysis tool that detects TCCT
violations by jointly mutating programs and inputs.

• Propose a joint evolutionary fuzzing algorithm with a novel
min-sum fitness function and guided crossover.

• Evaluate zkFuzz on 354 real-world ZK circuits, finding 30–
300% more bugs than prior tools with zero false positives.

2 Background

This section provides an overview of ZK Proof systems (§ 2.1),
vulnerabilities in ZK circuits (§ 2.2), and Circom, the most popular
programming system for ZK circuits [8, 59] (§ 2.3).

2.1 ZK Proof Systems

ZK proofs enable a prover to convince a verifier of the validity of a
statement (e.g., knowledge of a secret value) without revealing any
information beyond the statement’s truth [35]. Formally, ZK proof
systems satisfy three properties:

• Completeness: If the statement is true, an honest prover
convinces an honest verifier.

• Soundness: A malicious prover cannot convince the veri-
fier of a false statement.

• Zero-Knowledge: The proof reveals nothing about the
secret input beyond the statement’s validity.

These properties enable the construction of privacy-preserving ver-
ifiable systems, such as anonymous cryptocurrencies (e.g., Zcash’s
zk-SNARKs), confidential smart contracts, and verifiable voting pro-
tocols. Modern applications extend to blockchain scaling (e.g., ZK-
Rollups) and verification of machine-learning integrity [1, 21, 33].

At a high level, a ZK system operates on arithmetic circuits
that perform computations over a finite field, where all variables
and operations (e.g., addition, multiplication) are defined modulo a
large prime. It exposes two primitives: Prove and Verify. The ZK

https://github.com/Koukyosyumei/zkFuzz
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Figure 1: Overview of ZK proof systems. The circuit compiler processes a ZK program into a witness computation program and

circuit constraints. Prover executes the witness program to obtain a trace (witness and public values) and creates a proof using

the proving system. The verifier validates the proof using the verification system with the public output, the constraint, and

the proof. Our fuzzer checks the inconsistencies between the computation logic and the circuit constraints in the ZK program.

proof process begins with the prover running Prove to generate a
proof: 𝜋 ← Prove(C,𝑤) where C is the circuit and𝑤 the prover’s
secret value, known as the witness. Importantly, the proof 𝜋 is
constructed to reveal no information about𝑤 . Once 𝜋 is generated,
the prover sends it to the verifier who then calls Verify(C, 𝜋) which
returns either 𝑎𝑐𝑐𝑒𝑝𝑡 or 𝑟𝑒 𝑗𝑒𝑐𝑡 . For performance reasons, it is often
desirable for the proof to be succinct and non-interactive.

ZK Programming Infrastructure. ZK protocols assume a
static secret𝑤 but, in practice, developers frequently want to make
claims about computations, such as provingmembership in aMerkle
tree for off-chain transactions—where the witness𝑤 includes not
just a secret value, but also a computation trace (e.g., a Merkle
path) that must satisfy the circuit constraints. For efficient proof
generation and verification, the constraints are often expressed in
quadratic form like in R1CS (Rank-1 Constraint System). Therefore,
general computations do not directly map to the circuit constraints.

Manually constructing circuits for such computations and deter-
mining which values belong in the witness is complex and error-
prone, so developers often use ZK programming systems [33] like
Circom, which allow them to express the witness computation and
the circuit constraints in a single ZK program written in a high-
level DSL. The DSL compiler then translates the program into a
computation program P and the corresponding set of circuit con-
straints C. When P executes, it produces a full execution trace,
including not only the input 𝑥 and output 𝑦, but also important
intermediate values 𝑧, to match the required constraint format. For
example, computing 𝑦 = 𝑥4 typically requires two quadratic con-
straints: 𝑧 = 𝑥2 and 𝑦 = 𝑧2. The resulting execution trace (𝑥, 𝑧,𝑦)
becomes the witness (typically, 𝑦 is public, while 𝑥 and 𝑧 are secret;
however, developers sometimes make 𝑥 public as well, depending
on the application and desired level of privacy.) Fig. 1 illustrates this
process, along with the subsequent use of proving and verification
systems like snarkjs [28].

Although some systems like Noir [4] support automatic genera-
tion of constraints from the computations, the resulting constraints
are often significantly less efficient, increasing the number of con-
straints by 3x to 300x [41]. In the remainder of our paper, we focus
on practical ZK systems that produce efficient constraints.

2.2 Overview of Vulnerabilities in ZK Programs

Even with high-level programming systems, general computations
often involve non-quadratic operations that cannot be directly
mapped to the required constraint format. As a result, it is the
developer’s responsibility to ensure that the intended computation

P and the corresponding circuit constraints C are aligned; any mis-
match may lead to incorrect or unverifiable proofs. Unfamiliarity
with finite-field arithmetic further complicates matters, as its mod-
ular behavior introduces unexpected corner cases. Consequently,
ZK programs are notoriously difficult to get right [13, 43] and may
contain the following two classes of vulnerabilities.

Under-Constrained Circuits. C is too loose for P, allowing
malicious provers to convince verifiers that "I know the input whose
corresponding output is 𝑦," even when they do not. Such vulnera-
bilities violate the soundness property.

Over-Constrained Circuit. C is too strict for P, preventing
honest provers from generating valid proofs for some correct traces.
Such vulnerabilities violate the completeness property.

Code 1 and 2 show the computation and constraints, respec-
tively, for an under-constrained vulnerability caught by zkFuzz
in a real-world 1-bit right-shift program from the circom-monolith

library [53]. Since right shift is not a quadratic operation and cannot
be directly encoded as a constraint, the developer introduces an
intermediate value b, defined as the difference between x and 2y,
where y = x » 1. Unfortunately, due to quirks in finite-field arith-
metic, multiple assignments to (y, b) can satisfy the constraints
for a given input x. For example, in the finite field F11, if x = 7, the
expected output is y = 3 and b = 1. Yet, y = 9, b = 0 also satisfy
the constraints, because 7 − 9 · 2 = −11 ≡ 0 mod 11. The circuit is
thus under-constrained, allowing an invalid proof.

In contrast, the constraints in Code 3 are too strict. They enforce
b = 0, thereby rejecting valid traces such as {x: 3, y: 1, b: 1},
and preventing an honest prover from generating a valid proof.

The safe implementation of 1-bit right shift using the bit array
can be found in Appendix B.

1 fn RShift1(x) {
2 y = x >> 1
3 b = x - y * 2
4 assert(b*(1-b) == 0)
5 return y
6 }

Code 1: 1-bit R shift

1 (b = x-y*2) && (b*(1-b) = 0)

Code 2: Under-constrained circuit.

1 (b = x - y*2) && (b = 0)

Code 3: Over-constrained circuit.

Out-of-Scope Vulnerabilities. zkFuzz focuses on soundness
and completeness vulnerabilities in ZK proofs that arise from devel-
oper mistakes in tying constraints to computation. The following
types of vulnerabilities are out of scope: (1) vulnerabilities in the
underlying compilation, proving, and verification systems (e.g., the
Frozen Heart vulnerability caused by an insecure implementation
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of the Fiat-Shamir transformation [56]); (2) bugs solely in the com-
putation logic, such as unused inputs in hashing [59] (such unused
inputs may be acceptable depending on the use case, as in comput-
ing the trace of a matrix where only diagonal elements are used);
and (3) bugs solely in ZK protocol design that leak information
and violate the zero-knowledge property [12], inline with all prior
detectors [13, 32, 42, 43, 59]—what constitutes a secret is highly
application-dependent: e.g., in Validity Rollups [15], ZK proofs are
used to accelerate transactions rather than to conceal them.

2.3 Circom Primer

While our vulnerability definition and zkFuzz techniques apply to
different ZK programming systems, this paper focuses on Circom,
the most popular DSL and infrastructure for developing ZK circuits.
Value Domains and Operators. In Circom, all computations are
performed over a finite field F𝑞 , where 𝑞 is a large prime number.
The language supports standard arithmetic operators such as ad-
dition (+), subtraction (−), multiplication (∗), and division (/), all
performed modulo 𝑞. Additionally, Circom provides integer divi-
sion (\), bitwise, and comparison operators for defining complex
circuit logic. The operands or results of these operators often need
implicit conversion between integer and finite fields.
Signals and Variables. Circom enforces a strict separation be-
tween constrained and unconstrained computation through two
data types. Signals are the primary data type and define the flow of
data and the constraints that must be satisfied. They are immutable
once defined and can serve as input, output, or intermediate values.
In contrast, variables, declared using the var keyword, are uncon-
strained local values used for the computations but are not tracked
by the constraint system. Unlike signals, variables are mutable and
can be reassigned during execution.
Constraint and Assignment Semantics. Circom constraints fol-
low a quadratic form: the product of two linear expressions equal
a third linear expression. To express such constraints alongside
computations, Circom introduces the following operators.

Weak Assignment (<--) assigns a value to a signal without gen-
erating a constraint, usually used for intermediate computations
where constraints are unnecessary.

Strong Assignment (<==) assigns a value to a signal and generates
a constraint, ensuring the assigned value is enforced by the circuit.

Assert (assert) inserts a runtime assertion into the computation
without adding a constraint.

Equality Constraint (===) asserts equality between two signals
and generates a constraint. If the constraint_ assert_ disabled
flag is set, the assertion is not inserted into the computation.

Variable Assignment (=) assigns a value to a variable, and does
not add a constraint to the circuit.

Other than ===, Circom operators do not allow adding con-
straints without performing the corresponding computation, so
=== with constraint_assert_disabled set is the only way to
introduce over-constrained bugs. Nonetheless, over-constrained
circuits can arise in other languages such as halo2 [54, 63], making
it important to define them formally.
Templates and Components. Circom templates are parameter-
ized circuit blueprints that can be instantiated as components by
other circuits. The parameters can be, for example, the dimensions

of input arrays, making them highly flexible. Templates and compo-
nents enable modular design, but also introduce the risk that bugs
in one template can propagate across all circuits that instantiate it,
potentially affecting many downstream ZK programs.

3 Definitions of ZK Program Vulnerabilities

This section formulates the typical ZK circuit’s vulnerabilities as the
Trace-Constraint ConsistencyTest (TCCT), a unifiedmodel that
rigorously formulates bugs within ZK circuits as the inconsistency
between the computation logic and its associated circuit constraint.

3.1 Incompleteness of Prior Definitions

Prior formal definitions of ZK program vulnerabilities are incom-
plete on two fronts. First, when detecting under-constrained vul-
nerabilities, they focus on identifying nondeterministic circuit con-
straints [32, 43], while ignoring computation aborts. If the circuit
constraints C allow the same input𝑥 tomap to an output𝑦′ different
from the computed output𝑦, the circuit is clearly under-constrained.
However, even if C is deterministic—accepting only one value of 𝑦
for a given 𝑥—the circuit can still be under-constrained if the com-
putation P aborts on 𝑥 (e.g., due to a runtime assertion). Attackers
can exploit such aborts by crafting inputs that cause the compu-
tation to fail while still satisfying the circuit constraints, thereby
producing bogus proofs for traces that never actually occurred. Our
evaluation shows that such abort vulnerabilities account for nearly
50% of the real-world bugs zkFuzz identified.

Second, when detecting over-constrained vulnerabilities, prior
work [13] considers only a special case where C permits an empty
set of traces. A complete definition must consider the full set of
execution traces produced by P and those accepted by C. In partic-
ular, it must account for intermediate values. Suppose P produces a
trace (𝑥, 𝑧,𝑦) for input 𝑥 , but C accepts only (𝑥, 𝑧′, 𝑦) where 𝑧 ≠ 𝑧′.
In this case, C is over-constrained with respect to P, as an honest
prover with the valid trace (𝑥, 𝑧,𝑦) would be unable to generate a
valid proof. If, however, C accepts both (𝑥, 𝑧,𝑦) and (𝑥, 𝑧′, 𝑦) (a com-
mon optimization in practice), there is no violation, as the prover
can produce a valid proof.

3.2 Trace-Constraint Consistency Test

Let F𝑞 be a finite field of order 𝑞, where 𝑞 is a prime number.
Definition 3.1 (ZK Program). A ZK program is defined as a pair

of a computation and a set of circuit constraints (P, C), where:
P : F𝑛𝑞 → F𝑘𝑞 × (F𝑚𝑞 ∪ {⊥}) is a computation that takes as input

a tuple (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛𝑞 , and behaves as follows:
• On successful termination, outputs a pair (𝑧,𝑦) where 𝑧 =

(𝑧1, . . . , 𝑧𝑘 ) ∈ F𝑘𝑞 represents intermediate values necessary
to construct a witness and 𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈ F𝑚𝑞 the final
outputs. Each value is assigned exactly once.

• On abnormal termination, it returns the special value (_,⊥).
C : F𝑛𝑞 × F𝑘𝑞 × F𝑚𝑞 → {true, false} is a set of circuit constraints,

which evaluates to true if the given input, intermediate, and output
values satisfy the required conditions; and false otherwise.

Definition 3.2 (Execution Trace). For an input 𝑥 ∈ F𝑛𝑞 and com-
putation P, if P(𝑥) = (𝑧,𝑦) where 𝑧 ∈ F𝑘𝑞 and 𝑦 ∈ F𝑚𝑞 , then the
triplet (𝑥, 𝑧,𝑦) is called an execution trace of P.
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Definition 3.3 (Trace Set). For a computation P, the trace set
T (P) is defined as:

T (P) := {(𝑥, 𝑧,𝑦) |𝑥 ∈ F𝑛𝑞 , 𝑧 ∈ F𝑘𝑞 , 𝑦 ∈ F𝑚𝑞 ,P(𝑥) = (𝑧,𝑦)}

Definition 3.4 (Constraint Satisfaction Set). For circuit constraints
C, the constraint satisfaction set S(C) is defined as:

The trace set T (P) is the set of all possible traces, except aborts,
generated by the computation P while the constraint satisfaction
set S(C) is the set of all tuples satisfying the circuit constraints C.

S(C) := {(𝑥, 𝑧,𝑦) | 𝑥 ∈ F𝑛𝑞 , 𝑧 ∈ F𝑘𝑞 , 𝑦 ∈ F𝑚𝑞 ,𝐶 (𝑥, 𝑧,𝑦) = true}

In addition, we introduce an operator that projects a set of tuples
of input, intermediate, and output values to a set of pairs of input
and output values.

Definition 3.5 (Projection). Let {(𝑥1,𝑧1,𝑦1),. . .}⊆ 2F
𝑛
𝑞×F𝑘𝑞×F𝑚𝑞 be a

set of tuples of inputs, intermediates and outputs. Then, we define
the projection operatorΠ𝑥𝑦 asΠ𝑥𝑦 ({(𝑥1, 𝑧1, 𝑦1), (𝑥2, 𝑧2, 𝑦2), . . .}) :=
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . .}.

Given the above building blocks, we formally define under-
constrained and over-constrained circuits.

Definition 3.6 (Under-Constrained Circuit). We say thatC is under-
constrained for P if

Π𝑥𝑦 (S(C)) \ Π𝑥𝑦 (T (P)) ≠ ∅ (1)

Intuitively, C is under-constrained for P if C accepts (𝑥, _, 𝑦) but
P(𝑥) = (_, 𝑦′) and 𝑦 ≠ 𝑦′ or P(𝑥) aborts. Projection out the in-
termediate values here is necessary for the following reason. In
contrast to over-constrained vulnerabilities, if P(𝑥) = (𝑧,𝑦) and C
accepts (𝑥, 𝑧′, 𝑦) such that 𝑧 ≠ 𝑧′, it is not an under-constrained vul-
nerability, since malicious provers still cannot create bogus proofs
asserting that P(𝑥) yields an output 𝑦′ ≠ 𝑦. Similarly, even if C
accepts both (𝑥, 𝑧,𝑦) and (𝑥, 𝑧′, 𝑦), adversaries cannot forge proofs
with outputs differing from 𝑦.

This definition naturally takes care of abnormal termination
of the computation. Any input 𝑥 that causes P to abort will not
appear in the trace set T (P). If S(C) includes any tuple of the
form (𝑥, _, _), then the circuit is under-constrained, as it accepts an
input that the computation cannot successfully process.

Definition 3.7 (Over-Constrained Circuit). We say that C is over-
constrained for P if

T (P) \ S(C) ≠ ∅ (2)

Intuitively, C is over-constrained w.r.t. P if any valid trace of P
is not accepted by C. For example, if P(𝑥) yields output 𝑦, but C
accepts only𝑦′ ≠ 𝑦 for the same input 𝑥 , then C is over-constrained.

This definition must include intermediate values 𝑧, as they are es-
sential for satisfying C. Given P(𝑥) = (𝑧,𝑦), consider the two cases
discussed in the previous subsection: (1) C accepts only (𝑥, 𝑧′, 𝑦)
with 𝑧′ ≠ 𝑧. Since T (P) \ S(C) ≠ ∅, C is over-constrained. (2) C
accepts both (𝑥, 𝑧,𝑦) and (𝑥, 𝑧′, 𝑦). Since execution trace (𝑥, 𝑧,𝑦)
occurs in S(C), this is not an over-constrained vulnerability, even
though multiple traces share the same input 𝑥 and output 𝑦. In fact,

allowing a broader range of intermediate values in C is a common
optimization in practical ZK circuit design.

We now combine Eq. 1 and Eq. 2 and define a test for the consis-
tency between the trace and the constraint satisfaction sets:

Definition 3.8 (Trace-Constraint Consistency Test). For compu-
tation P and constraints C, the Trace-Constraint Consistency Test
(TCCT) ascertains the following:

Π𝑥𝑦 (S(C)) \ Π𝑥𝑦 (T (P)) = ∅ ∧ T (P) \ S(C) = ∅ (3)
If Eq. 3 holds, we say that ⟨P, C⟩ is well-constrained. This condi-
tion is equivalent to T (P) ⊆ S(C) ∧ Π𝑥𝑦 (T (P)) = Π𝑥𝑦 (S(C)),
meaning that all execution traces satisfy the constraints, and the
set of input-output pairs is identical between the execution traces
and the constraint satisfaction set.

The computational complexity of TCCT is as follows:

Theorem 3.9 (Complexity). Let ⟨P, C⟩ denote a TCCT instance.

a) DeterminingwhetherC is under-constrained forP is NP-complete.

b) Determining whether C is over-constrained forP is NP-complete.

c) The Trace-Constraint Consistency Test is co-NP-complete.

Proof is based on the reduction from the Boolean Satisfiability
problem (SAT) and the Boolean tautology problem and can be
found in Appendix A.
Comparison to Prior Definitions. Tab. 1 compares our model,
TCCT, with prior definitions. For under-constrained bugs, prior
work detect only non-deterministic behaviors [32, 43], and fail to
capture those caused by computation aborts. For over-constrained
bugs, prior work considers only a special case where the constraint
satisfaction set is empty [13]. In contrast, TCCT is more general
and complete, capturing all bugs detectable by existing models,
as well as additional bugs that prior definitions overlook. A key
advantage of TCCT is its DSL-independence: even though different
DSLs may offer varied primitives or syntactical sugar for specifying
constraints and computations in ZK circuits, TCCT ’s definitions
consistently apply across all of them.

Table 1: Comparison of formal definitions of ZK vulnerabili-

ties. Our TCCT is more general than existing models.

Model Under-Constrained Over-Constrained

[32, 43] ∃𝑥, 𝑧, 𝑧′, 𝑦,𝑦′ .
𝑦 ≠ 𝑦′∧ 𝐶 (𝑥, 𝑧,𝑦) ∧𝐶 (𝑥, 𝑧′, 𝑦′) -

[13] Same as [32, 43] S(C) = ∅
TCCT Π𝑥𝑦 (S(C)) \ Π𝑥𝑦 (T (P)) ≠ ∅ T (P) \ S(C) ≠ ∅

3.3 Vulnerable and Benign Examples

This subsection shows two real-world Circom circuits, an under-
constrained circuit that illustrates our definition, particularly the
role of computation aborts; and a well-constrained circuit that
highlight the importance of acounting for intermediate values.

Code 4 shows a real-world under-constrained circuit (slightly
modified for clarity) caught by zkFuzz from circom-zkVerify [3]. it
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1 template Verify () {
2 signal input x1;
3 signal input x2;
4
5 component h = Hash();
6 h.x <== x1;
7 assert(x2==h.y);
8 }

Code 4: Under-constrained

circuit from [3] undetectable

by existing formal definitions.

Only our TCCT can capture

it, and zkFuzz successfully

identifies it.

1 template IsZero () {
2 signal input x;
3 signal output y;
4 signal z;
5
6 z <-- x != 0 ? 1/x : 0;
7 y <== -x*z + 1;
8 x*y === 0;
9 }

Code 5:

Benign circuit from [29]

incorrectly flagged by

prior static tools. Its trace

and constraint satisfaction

sets are shown in Tab. 2.

had previously gone undetected until our discovery, later confirmed
and fixed by the developers. The code instantiates a Hash template
as component h (line 5), computes the hash value of input x1 (line 6),
and checks whether it matches x2 using assert (line 7). Circom’s
assert, however, performs runtime checks only without adding
any constraint. As a result, the computation aborts when x1 does not
hash to x2, the constraints remain satisfiable for any combination
of x1 and x2. No prior formal tools can detect this bug because
the circuit has no output and is thus always deterministic. While a
static tool [59] does flag this code, it relies on pattern matching and
produces many false positives. The fact that this bug went unfixed
indicates that suggests that developers who may have run the tool
did not inspect all of its warnings. To fix this circuit, assert should
be replaced with ===, which explicitly encodes the equality check
into the constraints.

Table 2: Trace and Con-

straint Satisfaction Sets of

IsZero in Code 5 (𝑞 = 3)

T (P) S(C)
x z y x z y
0 0 1 0 0 1

0 1 1
0 2 1

1 1 0 1 1 0
2 2 0 2 2 0

Code 5 shows a benign cir-
cuit template from Circom’s de
facto standard library, circom-

lib [29], which returns one if the
input 𝑥 is zero and zero other-
wise. Line 6 introduces an inter-
mediate value 𝑧 using a weak
assignment, which does not add
any constraint since it is not
a quadratic expression. Line 7
assigns the output 𝑦 and intro-
duces a constraint relating 𝑥 , 𝑧,
and 𝑦. Line 8 adds both a run-
time assertion and an equality
constraint. The full execution
trace and constraint satisfaction sets are shown in Tab. 2. Notably,
T (P) and S(C) are not identical: S(C) includes two additional
tuples. However, TCCT correctly handles this case. After project-
ing out intermediate values, the sets of (𝑥,𝑦) pairs are identical,
indicating no under-constrained bug. While S(C) includes three
different intermediate values, 𝑧 = 0, 1, 2, for the case where 𝑥 = 0
and 𝑦 = 1, it includes the valid tuple (0, 0, 1) from T (P), so there is
no over-constrained bug either. Despite being benign, this circuit is
incorrectly flagged by prior static analyzers, which rely on pattern
matching rather than a precise semantic definition of ZK bugs.

More examples, including under-constrained circuits caused by
insecure use of the LessThan template, a bug that only zkFuzz can
detect; and over-constrained circuits can be found in Appendix B.

4 zkFuzz Design

This section introduces our novel fuzzing framework, zkFuzz, which
detects bugs in ZK circuits by jointly optimizing program mutation
and input generation, guided by target selectors. Fig. 2 provides
an overview of the workflow. The design is DSL-agnostic, with an
implementation for Circom described in § 5.

4.1 Joint Program Mutation & Input Generation

zkFuzz uses both program mutation and input fuzzing for detect-
ing vulnerabilities. Although program mutation is widely used in
mutation testing to assess test case effectiveness [44], our objective
differs: we leverage mutation specifically to generate alternative
traces that continue to satisfy the constraint, exposing undesired
behaviors in ZK circuits.

Algo. 1 describes the key steps that examine both P and its as-
sociated circuit constraints C by using two testing modes:
Detection of Over-Constrained Circuits.We first generate in-
put data and execute the computation P. If it completes without
crashing, yet the resulting trace fails to satisfy the constraints C,
this circuit is over-constrained.
Detection of Under-Constrained Circuits. To uncover under-
constrained circuits, we construct a mutated version of the computa-
tion program, denoted by P′. For example, the mutation algorithm
can randomly substitute one operator for another. If P′ produces a
non-crash trace whose output differs from P while still meeting
the circuit constraint, then the constraint is insufficient to enforce
correctness—indicating an under-constrained circuit. Note that if
the original computation P crashes on the input while the mutated
computation P′ successfully generates an execution trace that sat-
isfies the constraint, the original output 𝑦 is ⊥. Since ⊥ ≠ 𝑦′, this
case is naturally captured by zkFuzz.

Algorithm 1 Fuzzing with Program Mutation to solve TCCT
1: for 𝑖 ← 1, 2, · · ·MAX_GENERATION do

2: Generate input data 𝑥 .
3: Mutate P to P′
4: Execute both P and P′ on 𝑥 :
5: P(𝑥) = (𝑧,𝑦), P′ (𝑥) = (𝑧′, 𝑦′).
6: if 𝑦 ≠ ⊥ and C(𝑥, 𝑧,𝑦) = false then
7: Report "Over-Constrained Problem."
8: if 𝑦′ ≠ ⊥ and 𝑦 ≠ 𝑦′ and C(𝑥, 𝑧′, 𝑦′) = true then
9: Report "Under-Constrained Problem."

For simplicity, Algo. 1 shows one input and one program mutant
sampled per iteration. In practice, we set the number of input sam-
ples and program mutants to 30. Both input sampling and program
mutation can be biased toward targets that are more likely to expose
vulnerabilities. The algorithm also requires minimal bookkeeping
across iterations: once program mutants are generated, the current
iteration operates independently of the previous ones.
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Figure 2: Basic workflow of zkFuzz. This fuzzing framework systematically mutates program logic and feeds artificially

generated input data to the original and mutated programs to catch inconsistencies between the program and the constraint.

The error-based fitness function is utilized to steer the selection and crossover of mutants. Several target selectors are also

applied for input generation and program mutation to guide the search.

4.2 Guided Search

Since the search space of the program mutation and input gener-
ation is huge, we adopt a genetic algorithm with a novel fitness
score and target selectors to achieve scalable bug detection.
Genetic Algorithm with Error-based Fitness Score. Genetic
algorithm (GA) is a search heuristic commonly used in fuzzing,
where candidate solutions are mutated over successive generations,
with higher-performing candidates prioritized to guide the search.

zkFuzz uses the smoothed error function transformed from
the constraints C as the fitness score to find an execution trace
that satisfies the constraints while producing a different output
from the original. This means that we guide the mutation towards
under-constrained circuits, and we adopt this design since under-
constrained circuits tend to cause more critical outcomes than
over-constrained circuits [13].

The constraints C usually consist of a set of polynomial equal-
ities,

∧ | C |
𝑖=1 (𝑎𝑖 == 𝑏𝑖 ), where 𝑎𝑖 and 𝑏𝑖 are quadratic expressions,

and |C| denotes the number of those equations. Following [14], we
convert each equality into an error term |𝑎𝑖 − 𝑏𝑖 |, which evaluates
to 0 when the constraint is satisfied and a positive value when
violated. The total error for a given trace is defined as the sum
of these errors if the trace produces a different output from the
original. Otherwise, the error is set to∞, reflecting the failure to
find a diverging execution. The final fitness score of a mutated pro-
gram is determined by evaluating its error over multiple inputs and
selecting the minimum score. Our min-sum method differs from
prior max-only method [14] because zkFuzz jointly mutates both
programs and inputs.

In each iteration, zkFuzz uses roulette-wheel selection [47], a
widely adopted method in genetic algorithms, to generate new
program mutants or perform crossover between mutants from the
previous iteration. The selection is biased toward mutants with
lower scores, as lower values indicate higher fitness. zkFuzz repre-
sents a programmutant as a map from candidate mutation locations
to the actual mutations applied, so crossover is implemented as a
straightforward merging of the maps from the two parent mutants.

zkFuzz can also optionally guide input generation via the above
error-based fitness score, where the final fitness score of an input
is defined as the minimum score over multiple program mutations.
Target Selectors. We further improve the search of zkFuzz by
incorporating target selectors, which guide both input generation
and program mutation. Unlike traditional targeted fuzzers—which
primarily detect issues like memory access violations by finding

inputs that reach specific code blocks [58]—our target selectors
are designed to maximize the odds of uncovering discrepancies
between the computation program P and the circuit constraints C.

One of the key target selectors is skewed distribution, which
generates input data randomly while biasing the distribution to
regions more likely to contain vulnerabilities. Specifically, empirical
analysis reveals that many bugs stem from edge-case inputs, par-
ticularly values such as 0 and the prime modulus 𝑞. To effectively
target these scenarios, our tool samples inputs and substitutes con-
stants in unconstrained assignments using a skewed distribution
that increases the likelihood of uncovering hidden vulnerabilities.
Specifically, values are sampled from predefined ranges with the
following probabilities: binary values (0 and 1) with 15%, small
positive integers (2 to 10) with 34%, large values near the field order
(𝑞 − 100 to 𝑞 − 1) with 50%, and all other values (11 to 𝑞 − 101) with
1%. By biasing input selection toward these critical edge cases, our
approach enhances the detection of subtle bugs that might other-
wise go unnoticed. The impact of the choice of skewed distribution
can be found in § 6.4.

In addition, our zkFuzz leverages static analysis to mutate com-
putation programs and generate inputs more likely to trigger un-
expected behaviors. For example, one of the main root causes of
real-world under-constrained circuits is the zero-division pattern,
wherein the division’s numerator and denominatormay be zero [59].
In this scenario, a naive constraint for computing 𝑦 = 𝑥1/𝑥2 might
be written as 𝑦 · 𝑥2 = 𝑥1. However, if both 𝑥1 and 𝑥2 are zero, any
value of 𝑦 will satisfy this constraint, leaving the circuit under-
constrained. Therefore, when this pattern is detected, increasing
the chance that generated values for 𝑥1 and 𝑥2 are zero can help
reveal these vulnerabilities. Details of these static-analysis-based
target selectors are provided in § 5.2.

5 zkFuzz Implementation

We implemented zkFuzz for Circom in about 4,500 lines of Rust. It
begins with an enhanced parser that decomposes Circom programs
into an Abstract Syntax Tree (AST) for the computation P and
corresponding circuit constraints C. A mutator generates program
variants (P′), and an emulator produces execution traces for these
variants using artificial inputs. A bug detector checks if these traces
satisfy the original circuit constraints based on TCCT. Target se-
lectors strategically guide input generation and program mutation
towards likely bugs. Finally, mutants’ fitness scores drive selection
and crossover in subsequent generations (Fig. 2).
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5.1 Circom Program Mutation

zkFuzz mutates Circom programs using the following methods.
(a) Assertion Removal: We begin by removing all assert state-

ments from P to reduce the likelihood of abnormal termination in
the mutated program P′.

(b) Weak-Assignment Transformations: We randomly alter the
right-hand side of weak assignment operators (<--). Recall that <--
does not introduce constraints, meaning that modifying its right-
hand side does not affect the constraints derived from the original
Circom file. Based on the popular mutation strategies used in mu-
tation testing [44], we apply two types of mutations: 1) By default,
we replace the right-hand expression with a random value over the
finite field sampled from the skewed distribution (see § 4.2); 2) If the
right-hand side contains an operator, we may also substitute it with
a different operator with the same category, where we categorize
the operators into arithmetic, bitwise, and logical operators. Note
that mutating the strong assignment (<==) is ineffective, as it is
likely to violate the associated condition.

We implement two optional mutation methods, random value
addition and expression deletion. We show detailed results in Ap-
pendix D.2.

5.2 Target Selection with Static Analyzers

Finding bugs in ZK circuits is particularly challenging due to the
vast search space imposed by large finite fields. To overcome this
challenge, zkFuzz leverages static analysis for selecting promising
targets that guide both program mutation and input generation.

Table 3: Summary of static target selectors used in zkFuzz.

Target Selector Type Pattern
Zero-Division Input Generation y <-- x1/x2
Invalid Array Subscript Input Generation x[too_big_val]
Hash-Check Input Generation h(x1) === x2
White List Prog. Mutation IsZero, Num2Bits

Zero-Division Pattern. As discussed in § 4.2, the zero-division
pattern is a common source of under-constrained circuits where
both the division’s numerator and denominator can be zero. Since
Circom lacks native support for non-quadratic constraints like
division, programmers must manually specify equivalent quadratic
constraints. Notably, when the denominator is zero, Circom treats
the division as yielding zero.

Code 6 illustrates a simple case of this issue: when both nu-
merator and denominator are zero, the multiplication constraint
(see line 7) is trivially satisfied for any value of y, due to missing
checks for zero-division. Appendix B also presents a real-world cir-
cuit example from circomlib, where zkFuzz successfully detects an
under-constrained condition using only the zero-division selector.

To find this problem, we introduce a target selector that specifi-
cally seeks input combinations setting both the numerator and the
denominator to zero. When a numerator or denominator reduces
to a polynomial of degree at most two in an input variable, we
solve the simplified quadratic equation over finite fields to generate
suitable inputs. More concretely, our approach is as follows:

(Degree 1) Consider the expression 𝑥 + 𝑎 ≡ 0 mod 𝑞, where
𝑥 denotes the input variable and 𝑎 is the remaining terms. The
solution is then given by 𝑥 ≡ −𝑎 mod 𝑞;

(Degree 2) Consider the quadratic expression𝑎𝑥2+𝑏𝑥+𝑐 ≡ 0 mod
𝑞. A solution for 𝑥 is given by 𝑥 ≡ −𝑏+

√
𝑏2−4𝑎𝑐
2𝑎 mod 𝑞, provided that

a square root of𝑏2−4𝑎𝑐 exists modulo𝑞. Its existence can be verified
using Euler’s criterion, and the Tonelli-Shanks algorithm [50, 57]
is then employed to compute

√
𝑏2 − 4𝑎𝑐 , yielding the solution.

If coefficients, 𝑎, 𝑏, and 𝑐 in the above, involve additional input
variables, their values are determined by substituting artificially
generated values.

Hash-Check Pattern. A common pattern in ZK circuit is the
hash-check pattern, where a circuit verifies that the hash of some in-
put data matches a provided hash value (see Code 7). Naive fuzzing
with program mutation may struggle to generate valid input-hash
pairs, especially when cryptographic hash functions are involved.
To overcome this limitation, we employ a heuristic: with a certain
probability if an equality constraint (e.g., A == B) is encountered
where A is an input signal that has not been assigned at this point,
we update the assignment of A to match the value of B. This ad-
justment increases the likelihood that the input data will satisfy
the hash-check constraint. A real-world example is shown in Ap-
pendix B, where zkFuzz identifies the circuit as under-constrained
using only the Hash-Check selector.

1 template ZeroDiv () {
2 signal input x1;
3 signal input x2;
4 signal output y;
5
6 y <-- x1 / x2;
7 y * x2 === x1;
8 }

Code 6: Example of Zero

Division pattern. If both x1
and x2 are 0, any value for y
can satisfy the constraint.

1 template HashCheck () {
2 signal input x1;
3 signal input x2;
4
5 component h = Hash();
6 h.x <== x1;
7 x2 === h.y;
8 }

Code 7: Example of Hash

Check pattern. Finding x1
whose hash is x requires

inversing the hash function.

Invalid Array Subscript. Circom-generated programs may
crash due to assert violations or out-of-range array indices. Al-
though our mutation algorithm removes assertions, crashes can
still occur from invalid array subscripts. To address this, we monitor
for repeated out-of-range errors and, when detected, shrink the
maximum value of generated input to the minimum value of array
dimensions in that program. This constraint can reduce the chance
of triggering such crashes, ensuring the fuzzing remains stable.

White List. Existing research and public audit reports have
formally proven the safety of certain commonly used circuits, even
if they contain weak assignments. Since mutating these circuits
would immediately lead to constraint violations, zkFuzz allows
specifying a white list of circuit templates to be skipped during the
mutation phase, concentrating the mutation efforts on less well-
understood or more error-prone components. In this study, we
include the two most commonly used circomlib circuits with weak
assignments, IsZero and Num2Bits, in the white list.
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Collectively, these target selectors enable zkFuzz to navigate the
enormous search space inherent in ZK circuits efficiently. By strate-
gically guiding both program mutation and input generation, they
significantly enhance our ability to detect critical vulnerabilities.

6 Evaluation

In this section, we present a comprehensive experimental evaluation
designed to address the following research questions:

• RQ1: How effective is zkFuzz at detecting vulnerabilities
in real-world zero-knowledge (ZK) circuits?

• RQ2: How quickly can zkFuzz detect bugs?
• RQ3: Can zkFuzz uncover previously unknown bugs in

production-grade ZK circuits?
• RQ4: What is the individual contribution of each heuristic

and static analyzer in zkFuzz to efficient bug detection?
• RQ5: How sensitive is zkFuzz’s performance?

We further consider the following questions in Appendix D:
• RQ6: Is TCCT more general than existing formulations?
• RQ7: Is there an alternative mutation strategy?
• RQ8: How effective are the other baselines (the default

version of ZKAP and circomspect with recursive analysis)?
• RQ9: How many over-constrained circuits are observed

when the constraint_assert_disabled flag is set?
Benchmark Datasets.We evaluate zkFuzz on 354 real-world

test suites written in Circom. Our benchmark extends the dataset
fromZKAP [59] by adding new test cases from 30 additional projects.
Following Pailoor et al. [43], we classify the circuits into four cate-
gories based on the number of clauses in the constraint, denoted
as |C| (e.g., for C(𝑥, 𝑧,𝑦) := (𝑥 ∗ 𝑥 = 𝑧) ∧ (𝑧 ∗ 𝑧 = 𝑦), |C| = 2).
The categories are defined as follows: Small (|C| < 100); Medium

(100 ≤ |C| < 1000); Large (1000 ≤ |C| < 10000); Very Large:

(10000 ≤ |C|). Detailed benchmark stats are in Appendix C.
Configurations. We set a timeout of 2 hour and a maximum

of 50000 generations for all our tests. We also set the number of
program mutants per generation to 30, each paired with generated
inputs of the same size. Programmutation and crossover operations
are applied with probabilities of 0.3 and 0.5, respectively. By default,
the right-hand side of a weak assignment is replaced with a ran-
dom constant. However, if it consists of an operator expression, the
operator is randomly substituted with a probability of 0.1. When a
zero-division pattern is detected, we analytically solve for the vari-
able and substitute it with the computed solution with a probability
of 0.2. Those parameters are determined with reference to prior
works on genetic algorithm mutation testing [25, 37, 52], and we
empirically demonstrate the robustness of zkFuzz across different
hyperparameter settings in § 6.5. We run zkFuzz with five different
random seeds. All experiments were run on an Intel(R) Xeon(R)
CPU @ 2.20GHz and 31GB of RAM, running Ubuntu 22.04.3 LTS.

Baseline Approaches.We compare zkFuzz against four state-
of-the-art Circom bug detection tools: Circomspect [42], ZKAP [59],
Picus [43], and ConsCS [32]. We use two SMT solvers, Z3 [17] and
CVC5 [6] for Picus. To ensure a fair comparison, we do not count
warnings related to IsZero and Num2Bits as false positives, since
zkFuzz explicitly whitelists these templates. Additionally, ZKAP’s
unconstrained signal (US) detector flags any circuit containing un-
used signals as unsafe. Although the original ZKAP paper considers

unused inputs problematic, our work does not regard them as bugs
(see § 7). Moreover, as noted in [59], the primary source of ZKAP’s
false positives is its unconstrained sub-circuit output (USCO) check,
which targets unused component outputs. Therefore, we exclude
both US and USCO from our main results to improve ZKAP’s preci-
sion. Note that the original Circomspect does not analyze internally
called templates recursively. Lastly, zkFuzz-Naive is a simplified
variant of zkFuzz that mutates both strong and weak assignments,
uses a constant function as the fitness function, and disables all
static-based target selectors listed in Tab. 3.

6.1 RQ1: Effectiveness of zkFuzz

Tab. 4 summarizes the total number of unique bugs detected by each
tool across different benchmark categories. We manually check all
potential bugs flagged by at least one tool and categorize them into
TP (True Positive), which refers to cases where the tool correctly
flags ZK circuits as unsafe, and FP (False Positive), which refers to
cases where the tool incorrectly flags a test suite as unsafe. Precision
is calculated as TP / (TP + FP). Since there may be undetected bugs
not flagged by any tool, we do not report true or false negatives. The
#Bugs column shows the number of unique vulnerabilities detected
by at least one tool. A bug in a Circom template (§ 2.3) may affect all
programs that instantiate the template, but we count it as a single
bug to avoid double counting. Moreover, when a vulnerability is
detected in multiple categories (for example, if a bug is identified in
both a small and a medium circuit because the use the same buggy
template), it is counted only in the smallest applicable category to
prevent double counting. Note this way of counting favors existing
formal tools due to their limited scalability. We report the maximum
and minimum TP of zkFuzz with five different random seeds. Our
evaluation shows that zkFuzz significantly and stably outperforms
existing methods, detecting about 96% (66/69) of all bugs without
any false positives. While very large templates present a bottleneck
for dynamic testing, causing zkFuzz to underperform Circomspect
in the "Very Large" category slightly, zkFuzz still identifies 66%
(4/6) of the bugs.

In addition, zkFuzz-Naive, which performs the search without
any guidance, still detects more bugs than other existing tools,
demonstrating the strength of our core approach. The default zk-
Fuzz detects 10% more bugs overall compared to zkFuzz-Naive,
especially in larger circuits.

Our benchmark shows that the performance of ZKAP is worse
than that reported in [59]. This stems from not classifying potential
logic issues, such as unused inputs, as vulnerabilities. Furthermore,
the official implementation of ZKAP is known to crash on certain
templates written in recent Circom versions—an issue acknowl-
edged by ZKAP’s developers but yet to be fixed. The results of
ZKAP with US and USCO detectors and our modified version of
Circomspect with recursive analysis are provided in Appendix D.

Our analysis also reveals that 53.5% of root causes stem from
computation abort bugs, while 46.5% are due to non-deterministic
behavior. This result highlights the importance of comprehensively
addressing both types of bugs, whereas Picus and ConsCS focus
solely on non-deterministic cases.

ConsCS detects fewer bugs overall compared to Picus. Although
Jiang et al. [32] reports a higher success rate for ConsCS, it is
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Table 4: The number of unique bugs detected by each tool, categorized by circuit size (measured by the size of constraint, |C|).
TP and FP denote true positive and false positive, respectively. Precision is computed as TP / (TP + FP). Max / Min refers to the

highest and lowest number of detected bugs across five different random seeds. The results show that zkFuzz significantly

outperforms the existing methods. The magnitude of TP and Precision, and FP are highlighted in blue and red , respectively.

Constraint
Size #Bench #Bug Circomspect [42] ZKAP [59] Picus [43]

(Z3 / CVC5) ConsCS [32] zkFuzz (Naive)

(Max / Min)
zkFuzz (Ours)

(Max / Min)
TP FP TP FP TP FP TP FP TP FP TP FP

Small 144 41 37 16 32 9 19 / 20 0 14 0 40 / 39 0 41 / 41 0
Medium 51 6 3 6 0 12 0 0 0 0 6 / 6 0 6 / 6 0
Large 76 16 6 12 3 2 0 0 0 0 12 / 12 0 15 / 15 0
Very Large 83 6 5 18 2 2 0 0 0 0 2 / 2 0 4 / 3 0
Total 354 69 51 52 37 25 19 / 20 0 14 0 60 / 59 0 66 / 65 0
Precision 0.50 0.60 1.00 1.00 1.00 1.00
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Figure 3: Detection Time Analysis. For zkFuzz, we plot the

average and standard deviation from five different random

seeds. zkFuzz is superior to other methods.

important to note that their evaluation measures both safe and
unsafe circuits (demonstrating either security or vulnerability). In
contrast, our experiment focuses solely on vulnerability detection
and does not include formal verification of circuit safety.

Result 1: Effectiveness of zkFuzz

zkFuzz has efficiently detected 66 out of 69 vulnerabilities
in the benchmark of real-world ZK circuits without any
false positives, demonstrating its reliable ability to identify
critical security flaws in ZK circuits.

6.2 RQ2: Detection Speed

Fig. 3 illustrates the cumulative number of unique vulnerabilities
detected by different tools over time. For zkFuzz, we depict the
average and 1-sigma regions across five trials with different random
seeds. Notably, zkFuzz identifies over 90% of bugs within the first
100 seconds, although zkFuzz-Naive takes more than one hour to
achieve the same number of detected bugs, showing the importance
of guided search with our fitness function and target selectors.

Although ZKAP is a static analyzer, it operates more slowly than
zkFuzz due to the computational overhead of compiling Circom
files to LLVM and analyzing its dependency graph. Similarly, Picus
exhibits slower performance, as it relies on expensive queries to
SMT solvers. Our results show that ConsCS finds bugs faster than
Picus confirming the findings of Jiang e al. [32]. The dashed line of
Circomspect indicates that it finishes the analysis of all test cases
before the timeout.

Result 2: Detection Speed of zkFuzz

zkFuzz identifies 90% of bugs within just 100 seconds,
demonstrating its practical effectiveness over traditional
formal methods. The comparison with zkFuzz-Naive high-
lights the advantage of guided search, achieving a speedup
of more than 30 times.

6.3 RQ3: Previously Unknown Bugs

Out of 66 identified bugs zkFuzz, 38 were previously unknown.
Of these, 18 were found in production-level services and deployed
smart contracts, 18 were confirmed by developers, and 6 have al-
ready been fixed. One example is shown in Code 8, found in the
passport-zk-circuits [46], a Web3 project that raised $2.5 million.
For instance, when day=4, the expected assignment is {dayD:0,
dayR:4} although {dayD:0, dayR:-6} also satisfies the constraint.

1 template DateEncoder () {
2 signal output encoded;
3 signal input day , month , year;
4
5 signal dayD <-- (day \ 10);
6 signal dayR <-- (day % 10);
7 dayD * 10 + dayR === day;
8 signal dayE <== (dayD * 2**8 + dayR) + (2**4 + 2**5 +

2**12 + 2**13);
9 // Encode month and year in the same manner
10 encoded <== yearE * 2**32 + monthE * 2**16 + dayE; }

Code 8: A previously unknown bug detected by zkFuzz in

passport-zk-circuits [46]. This circuit is under-constrained.

Our zkFuzz can generate counterexamples, unlike static ana-
lyzers such as ZKAP and Circomspect, significantly reducing the
need for manual inspection after automated vulnerability detection.
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Among the six fixed vulnerabilities identified by zkFuzz, the aver-
age time to merge a fix after reporting was just 4.3 days—10 to 20
times faster than the typical resolution time for accepted security
issues in open-source projects [10, 48]. As of now, no developer has
concluded that a report from zkFuzz was a false positive.

Result 3: Previously Unknown Bugs found by zkFuzz

zkFuzz can uncover 38 previously unknown bugs in
production-grade ZK circuits, with 18 of them found in
production-level services and deployed smart contracts.

6.4 RQ4: Ablation Study of Target Selectors

Tab. 5 shows the results of ablation studies where we assess the im-
pact of removing individual target selectors: error-based fitness score,
skewed distribution, white list, invalid array subscript, hash-check
and zero-division. We report the average and standard deviation of
the cumulative number of unique bugs found at each time check-
point among five different random seeds. For skewed distribution,
we use a less skewed distribution; binary values (0 and 1) with
15%, small positive integers (2 to 100) with 34%, larger values near 𝑞
(𝑞−1000 to 𝑞−1) with 50%, and all other values (11 to 𝑞−1001) with
1%. Fig. 4 also presents the relative execution time for discovering
each unique bug, normalized against the default configuration.

Among these factors, the choice of skewed distribution has the
largest initial impact. Our default setting (Ours) finds 10 more bugs
within the first 100 seconds compared to the less skewed distri-
bution. The relative execution time indicates that adopting a less
skewed distribution or removing the whitelist slows down detection
by over 100×. In contrast, removing checks for invalid array sub-
scripts, hash integrity, or division by zero prevents the fuzzer from
detecting several bugs. However, after a reasonable amount of time,
the performance of the less skewed distribution also converges
to a similar number of unique detected bugs, demonstrating the
stability and robustness of zkFuzz regardless of the specific choice
of skewed distributions. Additionally, removing static analyzers,
such as checks for invalid array subscripts, hash mismatches, and
division by zero, results in several bugs being missed, highlighting
their importance in the system’s overall effectiveness.
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Figure 4: Relative execution time for discovering each unique

bug compared to the default setting. Removing each heuristic

degrades detection performance by over 100x.

Result 4: Individual Contribution of Each Target Se-

lector

Each target selector in zkFuzz significantly enhances bug
detection by increasing detection speed by more than 100
times and enabling the discovery of bugs that cannot be
found without them.

6.5 RQ5: Hyperparameter Sensitivity

We further examine how mutation strength and population size
affect performance. Fig. 5 compares configurations using weak mu-
tation (mutation and crossover probabilities of 0.1) versus strong
mutation (both set to 0.7) and small population (the number of
program mutants and generated inputs of 10) versus large popula-
tion (both set to 50). Our results indicate that weak mutation and
a large population yield slightly inferior performance compared
to the default setting, showing the importance of sufficient explo-
ration in navigating the vast search space since weak mutation
slows the speed of exploration while larger populations cause the
fuzzer to execute more programs before steering mutants toward
promising directions, increasing overhead. Nonetheless, regard-
less of hyperparameter choices, cumulative detections converge to
similar levels.

Result 5: Stability of zkFuzz

zkFuzz’s bug detection performance remains stable across
different hyperparameter choices.

Ethical Considerations. During our research, we identified sev-
eral previously unknown vulnerabilities in public projects. To en-
sure responsible disclosure, we contacted the project developers
directly via email or social media whenever possible. We opened
GitHub issues if we received no response or direct contact wasn’t
available. All vulnerability reports were submitted at least 30 days
before this paper, with most sent over 60 days prior.

7 Related Work

Zero-knowledge proofs are vital for privacy and trust in decen-
tralized systems, including cryptocurrencies and smart contracts.
However, flaws in circuit constraints can compromise security by
permitting malicious proofs or rejecting valid ones [36, 56]. We
summarize different approaches to automatically detect various
types of ZKP bugs below.

Static Analysis. These approaches are widely used but suffer
from high false positives. For example, Circomspect [42] flags weak
assignments (<--) indiscriminately, leading to many false positives.
ZKAP [59] improves accuracy using circuit dependence graphs,
yet it still identifies unconstrained inputs as potential vulnerabili-
ties, which may be expected behavior. Despite identifying issues,
static analyzers can’t generate counterexamples, requiring manual
verification of flagged bugs.

Formal Methods. Technique using formal methods rigorously
verify ZK circuit correctness but struggle with scalability and re-
quire manual annotations. Tools like CIVER [31] and Constraint
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Table 5: Impact of removing individual target selector on zkFuzz’s performance. Each selector contributes significantly to the

number of detected bugs and the detection speed, demonstrating their importance.

Time (s) Ours Less Skewed
Distribution w.o. White List w.o. Invalid Array

Subscript w.o. Hash Check w.o. Zero Division

0.1 23.40 ± 1.02 18.20 ± 1.94 22.40 ± 2.87 25.00 ± 3.03 24.00 ± 1.67 20.80 ± 2.71
1.0 42.60 ± 4.50 35.20 ± 0.40 43.00 ± 2.53 43.40 ± 5.04 42.00 ± 5.06 41.40 ± 4.45
10.0 51.40 ± 3.44 43.00 ± 1.41 47.60 ± 2.33 49.60 ± 4.08 49.40 ± 3.83 50.40 ± 3.56
100.0 61.80 ± 0.75 49.20 ± 0.75 57.80 ± 2.23 60.00 ± 0.89 59.80 ± 0.75 60.80 ± 0.75
1000.0 63.60 ± 0.49 54.80 ± 2.48 62.20 ± 0.75 62.00 ± 0.63 61.60 ± 0.49 62.60 ± 0.49
3600.0 65.00 ± 0.63 62.00 ± 2.10 64.40 ± 0.49 63.20 ± 0.75 63.00 ± 0.00 64.00 ± 0.63
7200.0 65.40 ± 0.49 64.00 ± 0.89 64.60 ± 0.49 63.40 ± 0.49 63.00 ± 0.00 64.60 ± 0.49
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Figure 5: Impact of mutation strength and population size on zkFuzz. zkFuzz consistently maintains strong bug detection

performance across various hyperparameter settings.

Checker [19] need human input, while others like CODA [38] re-
quire rewriting circuits in another language. Fully automatic tools
like Picus [43] and ConsCS [32] use SMT solvers but still face
scalability challenges and offer narrower definitions of under- and
over-constrained circuits than ours. For example, they don’t capture
under-constrained circuits caused by unexpected inputs [59].

Dynamic Testing. Fuzzing and mutation testing have been used
to detect bugs in ZKP infrastructures [27, 34, 60], typically focus-
ing on compiler bugs. In contrast, our approach targets security
vulnerabilities in individual ZK circuits.

8 Limitations and Future Work

Limitations. zkFuzz adopts a fuzzing approach for vulnerability
detection and thus inherits certain limitations. For example, the
execution time of zkFuzz is proportional to that of the target pro-
gram, and slicing and partially executing the target might improve
zkFuzz. In addition, our implementation currently supports only
Circom, and potential improvements include covering other DSLs.
Future Work. Integrating zkFuzz with formal verification, static
analyzers, and ML/LLM-based bug detection [20, 26, 51, 64] might
further boost its scalability and flexibility. Additionally, zkFuzz
could serve as a subroutine for fuzzing ZK compilers like Cairo [22],
Noir [4], and Leo [16], helping to detect discrepancies between com-
piled programs and circuit constraints.

9 Conclusion

We introduce zkFuzz, a fuzzing framework for detecting ZK circuit
bugs. It uses TCCT, a comprehensive and language-independent

Table 6: Comparison between zkFuzz and existing detection

methods. A partial circle represents partial capability. zk-

Fuzz demonstrates superior performance across all criteria,

offering comprehensive automatic testing capabilities.

Method Auto-
matic

Under-
Const-
rained

Over-
Const-
rained

Counter
Example

False
Posit-
ve

CIVER [31] ✗ ✓ ✓ ✓ No

CODA [38] ✗ ✓ ✓ ✓ No

Constraint
- Checker [19] ✗ ✓ ✓ ✓ No

Circomspect [42] ✓ ✗ Yes

Picus [43] ✓ ✗ ✓ No

ConsCS [32] ✓ ✗ ✓ No

AC4 [13] ✓ ✓ No

ZKAP [59] ✓ ✓ ✓ ✗ Yes

zkFuzz (Ours) ✓ ✓ ✓ ✓ No

definition of ZK circuit bugs. zkFuzz applies program mutation and
target-guided artificial inputs to find under- and over-constrained
circuits without false positives. It discovered 38 previously un-
known bugs in real-world circuits.
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A Proofs

Proof of Theorem 3.9. First, we will reduce the Boolean Sat-
isfiability Problem (SAT) to the problem of deciding whether a
program is under-constrained (or over-constrained). SAT is known
to be NP-complete.

(Detection of Under-Constrained Instance): Let 𝜙 =
∧𝑚

𝑗=1 𝜙 𝑗

be a Boolean formula in conjunctive normal form (CNF) with vari-
ables 𝑥1, . . . , 𝑥𝑛 , where 𝜙 𝑗 is the 𝑗-th conjunction of 𝜙 and𝑚 is the
total number of conjunctions. Then, we construct a program ⟨P, C⟩
as follows:

P : F𝑛2 → ((F
0
2 ∪ {⊥}) × (F

0
2 ∪ {⊥}))

C : {F𝑛2 × F
0
2 × F

0
2 → {0, 1}}

∀(𝑥1, . . . , 𝑥𝑛) ∈ F𝑛2 , P((𝑥1, . . . , 𝑥𝑛)) = (⊥,⊥)
C = 𝜙

Since P is a program that always returns (⊥, ⊥), T (P) = ∅.
Now, we claim that ⟨P, C⟩ is under-constrained if and only if 𝜙

is satisfiable.

(⇒) If ⟨P, C⟩ is under-constrained, there exists (𝑥,𝑦) ∈ Π(S(C))
such that (𝑥,𝑦) ∉ Π(T (P)). This means that there exists at least
one (𝑥, (), 𝑦) ∈ S(C). This implies that 𝑥 satisfies𝐶 = 𝜙 . Thus, 𝑥 is
a satisfying assignment for 𝜙 .

(⇐) If 𝜙 is satisfiable, let 𝑥 ′ be a satisfying assignment. Then, we
have (𝑥 ′, ()) ∈ Π(S(C)) because 𝑥 ′ satisfies all clause constraints.
However, (𝑥 ′, ()) ∉ Π(T (P)) becauseT (P) is empty. Thus, ⟨P, C⟩
is under-constrained.

Since the entire reduction can be performed in polynomial time,
we have shown that deciding whether ⟨P, C⟩ is under-constrained
is at least as hard as SAT. Therefore, deciding whether a program
is under-constrained is NP-hard.

(Detection of Over-Constrained Instance): Likewise, we con-
struct a program ⟨P, C⟩ as follows:

P : F𝑛2 → (F
0
2 ∪ {⊥}) × (F

1
2 ∪ {⊥})

C : {F𝑛2 × F
0
2 × F

1
2 → {0, 1}}

P(𝑥) =
{
((), (1)) if all clauses in 𝜙 is satisfied with 𝑥

(⊥,⊥) otherwise
C = 𝑓 𝑎𝑙𝑠𝑒

Since C always returns false, S(C) = ∅.
Now, we claim that ⟨P, C⟩ is over-constrained if and only if 𝜙 is

satisfiable.
(⇒) If ⟨P, C⟩ is over-constrained, there exists (𝑥, 𝑧,𝑦) ∈ T (P)

such that (𝑥, 𝑧,𝑦) ∉ S(C). This implies that 𝑥 satisfies all clauses
in 𝜙 , meaning 𝑥 is a satisfying assignment for 𝜙 .

(⇐) Suppose𝜙 is satisfiable, and let 𝑥 ′ be a satisfying assignment.
Then, we have (𝑥 ′, (), (1)) ∈ T (P) because 𝑥 ′ satisfies all clauses
in 𝜙 . However, (𝑥 ′, (), (1)) ∉ S(C) because S(C) is empty. Thus,
⟨P, C⟩ is over-constrained.

Since the entire reduction can be performed in polynomial time,
we have shown that deciding whether ⟨P, C⟩ is over-constrained
is at least as hard as SAT. Therefore, deciding whether a program
is over-constrained is NP-hard.

(Complexity of TCCT): Next, we prove the Trace-Constraint
Consistency Test’s co-NP-completeness by reducing the Boolean
tautology problem, a known co-NP-complete problem, to it.

Let𝜙1 and𝜙2 be Boolean formulaswith variables𝑥 = (𝑥1, . . . , 𝑥𝑛).
The Boolean equivalence problem asks whether 𝜙1 ≡ 𝜙2, i.e., 𝜙1
and 𝜙2 evaluate to the same value for all possible assignments. The
Boolean tautology problem aims to determine whether all possible
assignments to a Boolean formula yield true.

Lemma A.1. The Boolean equivalence problem is reducible to the

Boolean tautology problem.

Proof. 𝜙1 ≡ 𝜙2 if and only if (𝜙1 ∧ 𝜙2) ∨ ((¬𝜙1) ∧ (¬𝜙2)) is a
tautology. □

Lemma A.2. The Boolean tautology problem is reducible to the

Boolean equivalence problem.

Proof. 𝜙1 is a tautology if and only if 𝜙1 ≡ TRUE □

https://github.com/shuklaayush/circom-monolith
https://github.com/shuklaayush/circom-monolith
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://github.com/zkemail/zk-regex
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By these lemmas, the Boolean tautology problem and the Boolean
equivalence problem are polynomial-time reducible to each other
and, thus, are of equivalent complexity.

Given two Boolean formulas 𝜙1 and 𝜙2, we construct an instance
of the Trace-Constraint Consistency Test ⟨P, C⟩ over F2 as follows:

P : F𝑛2 → (F
0
2 ∪ {⊥}) × (F

1
2 ∪ {⊥})

C : {F𝑛2 × F
0
2 × F

1
2 → {0, 1}}

P((𝑥1, . . . , 𝑥𝑛)) =
{
((), (1)) if (𝑥1, . . . , 𝑥𝑛) satisfies 𝜙1
((), (0)) otherwise

C(𝑥, 𝑧,𝑦) =


1 if 𝑥 satisfies 𝜙2 and 𝑦 = 1
1 if 𝑥 does not satisfy 𝜙2 and 𝑦 = 0
0 otherwise

Since there are no intermediate values, Eq. 3 is equivalent toT (P) =
S(C). By the definition of P and C, we have that 𝜙1 ≡ 𝜙2 if and
only if ⟨P, C⟩ is well-constrained.

This reduction can be performed in polynomial time. Since the
Boolean tautology problem is co-NP-complete [2] and we have
shown a polynomial-time reduction to the Trace-Constraint Con-
sistency Test, we conclude that it is co-NP-complete.

□

B Additional Examples of ZK Program

Correct Implementation of RShift1. Code 9 presents a secure
implementation of a 1-bit right shift in Circom. The input is first
converted into a bit array, the shift operation is applied to this array,
and the result is then converted back into the output.

1 template RShift1(N) {
2 signal input x;
3 signal output y;
4
5 component x_bits = Num2Bits(N);
6 x_bits.in <== x;
7
8 signal y_bits[ N - 1 ];
9 for (var i = 0; i < N - 1; i++) {
10 y_bits[i] <== x_bits.out[i + 1];
11 }
12
13 component y_num = Bits2Num(N - 1);
14 y_num.in <== y_bits;
15 y <== y_num.out;
16 }

Code 9: Secure implementation of 1-bit right shift.

LessThan. While explicit constraints are readily apparent in
circuit designs, implicit assumptions used in Circom’s de facto
standard library, circomlib [29], can also introduce subtle under-
constrained bugs if not properly accounted for.

Consider the ZK program in Code 11 from zk-regex [66] which
validates the range of the given characters and is expected to ab-
normally terminate when they contain values larger than 255: This
template uses the LessThan circuit from circomlib, which implicitly
assumes that both inputs are represented by n bits or fewer. Al-
though this assumption is well known[30, 42], the EmailAddrRegex

template does not validate the bitwidth of the inputs provided to
LessThan.

The critical vulnerability arises from the potential overflow in
Line 7 and 8 of LessThan when input a is excessively large. Note
that Num2Bits is a template converting an input to the bit expres-
sion. To illustrate, suppose 𝑞 = 401 and msg[0] = 400. The com-
putation in Line 7 of LessThan becomes 400 + (1 ≪ 8) − 255 ≡
0 mod 401. Hence, LessThan outputs 1, erroneously passing the
range check of EmailAddrRegex. Our fuzzer successfully discov-
ered this bug, which the developer subsequently confirmed.

1 template LessThan(n) {
2 assert(n <= 252);
3 signal input in[2];
4 signal output out;
5 component n2b =

Num2Bits(n+1);
6
7 n2b.in <== in[0] +

(1<<n) - in[1];
8 out <== 1 - n2b.out[n

];
9 }

Code 10:

Implementation of

LessThan template from

circomlib [29].

This template assumes

that the inputs are at

most n bits wide. If the

inputs exceed n bits, the
comparison result may

be incorrect.

1 template EmailAddrRegex(n) {
2 signal input msg[n];
3
4 signal in_range_checks[n];
5 for (var i = 0; i < n; i++) {
6 in_range_checks[i] <==

LessThan (8)([msg[i],
255]);

7 in_range_checks[i] === 1;
8 // the rest is omitted

Code 11: Example of an under-

constrained circuit from zk-
regex [66]. LessThan implicitly

assumes that the bit length of

both inputs are not longer than

n, although LessThan itself does

not check the range of inputs.

Over-Constrained Circuit. As described in § 2.3, the default
configuration of the Circom compiler does not provide an opera-
tor that adds a condition to the constraints C without adding the
corresponding assignment or assertion to the computation P. Con-
sequently, the trace set T (P) is always a subset of the constraint
satisfaction set S(C), meaning that over-constrained circuits can-
not exist.

1 template SplitReward () {
2 signal input x;
3 signal z;
4 signal output y;
5
6 z <-- x \ 2;
7 z * 2 === x;
8 y <== z + 1;
9 }

Code 12: Example of over-

constrained circuit. Suppose

assert is not added in the

computation for ===.

Table 7: Trace and Constraint

Satisfaction Sets of Over-

Constrained Circuit (𝑞 = 5).

T (P) S(C)
x z y x z y
0 0 1 0 0 1
1 0 1 1 3 4
2 1 2 2 1 2
3 1 2 3 4 0
4 2 3 4 2 3

However, enabling the constraint _assert _dissabled flag
can lead to over-constrained circuits. Code 12 presents a modified
version of the Reward template from [59], illustrating a ZK program
that performs integer division. Note that "\" operator in Circom is
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the integer division, while "∗" operator is the multiplication modulo
𝑞. Suppose 𝑞 = 5 and constraint_assert_dissabled is turned
on. Then, Tab. 7 shows the trace and constraint satisfaction sets.
S(C) does not contain (x = 1, z = 0, y = 1) and (x = 3, z =

1, y = 2) of T (P), meaning that this circuit is over-constrained
(T (P) \ S(C) ≠ ∅). Note that it is also under-constrained.

Zero-Division Pattern. Code 13 presents a real-world example
of an under-constrained circuit from circomlib [29] that exhibits
the zero-division vulnerability pattern. On line 13, a division is
performed where the numerator is a degree-2 polynomial in in[0],
while the denominator is a degree-1 polynomial in in[1].

1 template MontgomeryDouble () {
2 signal input in[2];
3 signal output out [2];
4
5 var a = 168700;
6 var d = 168696;
7 var A = (2 * (a + d)) / (a - d);
8 var B = 4 / (a - d);
9
10 signal lamda;
11 signal x1_2;
12
13 x1_2 <== in[0] * in[0];
14
15 lamda <-- (3* x1_2 + 2*A*in[0] + 1 ) / (2*B*in[1]);
16 lamda * (2*B*in[1]) === (3* x1_2 + 2*A*in[0] + 1 );
17
18 out[0] <== B*lamda*lamda - A - 2*in[0];
19 out[1] <== lamda * (in[0] - out [0]) - in[1];
20 }

Code 13: Real example of Zero Division pattern in

circomlib [29]. lambda can be any value when both the

denominator and the numerator of Line 15 are 0, making

this circuit non-deterministically under-constrained.

Hash-Check Pattern. Code 14 illustrates the real-world circuit
implementing the hash-check pattern from the maci project [18].
Although this circuit is under-constrained due to insecure call of
LessThan within Quin TreeInclusionProof, detecting this issue
without the hash-check is difficult, as finding a valid input and
Merkle root pair requires inverting the hash function.

1 template QuinLeafExists(levels){
2 var LEAVES_PER_NODE = 5;
3 var LEAVES_PER_PATH_LEVEL = LEAVES_PER_NODE - 1;
4 var i;
5 var j;
6
7 signal input leaf;
8 signal input path_elements[levels ][ LEAVES_PER_PATH_LEVEL

];
9 signal input path_index[levels ];
10 signal input root;
11
12 // Verify the Merkle path
13 component verifier = QuinTreeInclusionProof(levels);
14 verifier.leaf <== leaf;
15 for (i = 0; i < levels; i ++) {
16 verifier.path_index[i] <== path_index[i];
17 for (j = 0; j < LEAVES_PER_PATH_LEVEL; j ++) {
18 verifier.path_elements[i][j] <== path_elements[i

][j];
19 }
20 }
21
22 root === verifier.root;
23 }

Code 14: Real example of Hash Check pattern from

maci [18]. Determining a valid pair of input and Merkle root

requires inverting the hash function. The circuit is under-

constrained due to an unsafe invocation of LessThan within

QuinTreeInclusionProof.

C Details of Benchmark Datasets

Fig. 6 presents a histogram of the number of instructions in the
program P after loop-unfolding, the constraint length |C|, and the
number of weak assignments in the dataset. The x-axis is logarith-
mic. We observe that nearly 60% of the benchmarks contain weak
assignments, which may lead to under-constrained bugs.

Fig.7 also presents the top 10 most frequently used templates in
our benchmark, all of which originate from circomlib[29]. The two
most commonly used templates are Num2Bits and IsZero. Notably,
IsEqual internally relies on IsZero, while LessThan builds upon
Num2Bits. Templates ranked 5 through 9—namely Sigma, MixLast,
Ark, and MixS—are mainly used within Poseidon [23], a widely
adopted hash function in zero-knowledge (ZK) circuits.

D Additional Experiments and Analysis

D.1 RQ6: Generality of TCCT

We investigate how our TCCT framework is generalized compared
to existing formulations.

Consider Code 15, which presents a lightly revised version of
Code 4. Recall that assert does not add a constraint, leading to an
under-constrained circuit. Line 4 and 9 are added by us to prevent
any signal from being unused in the constraint, while the circuit is
still under-constrained. Our TCCT can cover this issue since the
constraints accept trace even if b ≠ h.y, and zkFuzz successfully
detects this bug. In contrast, none of the existing tools can detect
this bug as the constraints are deterministic, and all signals are
utilized in the constraints.

1 template Verify () {
2 signal input a;
3 signal input b;
4 signal output c;
5
6 component h = Hash();
7 h.x <== a;
8 assert(b==h.y);
9 c <== h.y * b;
10 }

Code 15: Example of

an under-constrained circuit undetectable by other existing

tools. Only our TCCT model is capable of capturing this bug,

and zkFuzz successfully identifies it.

Another example is Code 16, a real-world circuit from the iden3
protocol, where the GreaterThan internally uses LessThan, and
the IN does not verify the bit-length of GreaterThan’s inputs. Con-
sequently, ZKAP erroneously marks the circuit as unsafe. However,
the first argument to GreaterThan is count—the sum of outputs
from IsEqual. Since each IsEqual outputs either 0 or 1, the maxi-
mum value of count is bounded by valueArraySize (which is 3 in
this case). As the second argument is 0, both inputs to GreaterThan
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Figure 6: Distribution of circuit characteristics across 354 real-world ZKP benchmarks. The dataset includes circuits with large

specifications, underscoring the need for scalable bug-detection tools. Notably, approximately 60% of circuits contain weak

assignments, posing a potential risk of under-constrained vulnerabilities in real-world circuits.
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Figure 7: Top 10 Frequently Occurring Circomlib Templates.

remain sufficiently small, ensuring the circuit is safe. Notably, zk-
Fuzz does not generate any false positive for this circuit.

1 template IN (valueArraySize){
2 signal input in;
3 signal input value[valueArraySize ];
4 signal output out;
5
6 component eq[valueArraySize ];
7 var count = 0;
8 for (var i=0; i<valueArraySize; i++) {
9 eq[i] = IsEqual ();
10 eq[i].in[0] <== in;
11 eq[i].in[1] <== value[i];
12 count += eq[i].out;
13 }
14 // GreaterThan internally uses LessThan
15 component gt = GreaterThan (252);
16 gt.in[0] <== count;
17 gt.in[1] <== 0;
18 out <== gt.out;
19 }
20
21 component main = IN(3);

Code 16: Real-world circuit from iden3: This is safe despite

misleading lack of bit-length checks

Result 6: Generality of TCCT

TCCT is more general than existing models, as it can cover
bugs that others miss while avoiding false positives in
real-world circuits.

D.2 RQ7: Alternative Mutation Strategies

In addition, we explore multiple strategies for input generation and
program mutation. First, we apply a genetic algorithm to optimize
input generation, using an error-based fitness score similar to the
optimization in program mutation. Specifically, the fitness score of
an input is defined as the minimum score across multiple program
mutants. As shown in the left figure of Fig. 8, although performance
eventually converges to the same level as the default setting, it
remains worse throughout the process. This suggests that, due to
the vast search space, guiding only program mutation with the
fitness function, while feeding generated inputs, achieves a better
balance between exploration and exploitation than guiding both
program mutation and input generation with the fitness function,
which skews more toward exploitation.
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Figure 8: Various input generation and program mutation

strategies.

We also investigate two additional program mutation strategies:
(1) adding a random constant to the right-hand side of a weak as-
signment, such as transforming z <– x into z <– x + 1234, and (2)
removing the statement of the weak assignment entirely. In Circom,
all signals are initialized to zero upon declaration, so eliminating
a weak assignment ensures that the left-hand variable remains
zero throughout execution. These new strategies are applied with
a probability of 0.2. However, their performance remains nearly
identical to the default setting.
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Result 7: Alternative Mutation Strategies

Adding two additional mutation strategies, random con-
stant addition and expression deletion, does not signifi-
cantly improve the performance of zkFuzz, highlighting
the effectiveness of its default mutation strategies.

D.3 RQ8: Performance of Other Baselines

Tab. 8 presents the performance of the modified Circomspect, which
recursively analyzes all internally called templates, and ZKAP with
the Unconstrained-Signal detector. While recursive Circomspect
detects all vulnerabilities, it also increases false positives, caus-
ing precision to drop sharply from 0.50 to 0.37. For ZKAP, the
Unconstrained-Signal detector does not contribute to finding new
bugs in our benchmarks.

Table 8: Performance of Circomspect with recursive analysis

and ZKAP with the US and the USCO detector. Prec. stands

for precision.

Constraint Size Circomspect
(Recursive)

ZKAP
(with US and USCO)

TP FP Prec. TP FP Prec.
Small 41 20 0.67 33 20 0.62
Medium 6 20 0.23 1 23 0.04
Large 16 27 0.37 3 5 0.38
Very Large 6 46 0.12 2 14 0.13
Total 69 113 0.38 39 62 0.39

Result 8: Performance of Other Baselines

The original ZKAP and Circomspect with recursive anal-
ysis detect more bugs, but at the cost of significantly in-
creasing false positives and reducing precision.

D.4 RQ9: Over-Constrained Circuits

To validate zkFuzz’s ability to detect over-constrained circuits, we
conduct experiments with the constraint_ assert_ dissabled
flag enabled, allowing over-constrained circuits to exist. In this
mode, the equality constraint === adds a condition to the constraints
set without inserting an assert into the program. Consequently,
developers likely need to add the corresponding assert manu-
ally in the Circom file to prevent over-constrained circuits. Since
most circuits are designed to function under the Circom compiler’s
default configuration, enabling this flag renders many circuits over-
constrained. In our benchmark, zkFuzz identifies 159 such cases
out of 354 test cases. However, because these circuits typically run
under the default compiler settings, such issues are unlikely to pose
a security risk in practice.

Result 9: Over-Constrained Circuits

Since most circuits are designed for the default settings of
the Circom compiler, enabling the constraint_ assert_
dissabled flag causes nearly half of the circuits to be
classified as over-constrained.
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