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Abstract—Cryptocurrency users increasingly rely on obfus-
cation techniques such as mixers, swappers, and decentralised
or no-KYC exchanges to protect their anonymity. However, at
the same time, these services are exploited by criminals to
conceal and launder illicit funds. Among obfuscation services,
mixers remain one of the most challenging entities to tackle.
This is because their owners are often unwilling to cooperate
with Law Enforcement Agencies, and technically, they operate
as ‘black boxes’. To better understand their functionalities,
this paper proposes an approach to analyse the operations
of mixers by examining their address-transaction graphs and
identifying topological similarities to uncover common patterns
that can define the mixer’s modus operandi. The approach utilises
community detection algorithms to extract dense topological
structures and clustering algorithms to group similar commu-
nities. The analysis is further enriched by incorporating data
from external sources related to known Exchanges, in order
to understand their role in mixer operations. The approach is
applied to dissect the Blender.io mixer activities within the Bitcoin
blockchain, revealing: i) consistent structural patterns across
address-transaction graphs; ii) that Exchanges play a key role,
following a well-established pattern, which raises several concerns
about their AML/KYC policies. This paper represents an initial
step toward dissecting and understanding the complex nature of
mixer operations in cryptocurrency networks and extracting its
modus operandi.

Index Terms—Mixer activities, Cryptocurrency, Graph Anal-
ysis, Community Detection, Topological Similarity

I. INTRODUCTION

Today, we are witnessing an increasing emergence of High-

Risk Criminal Networks, where especially organised groups,

but also terrorists, engage in criminal activities that can rapidly

reach a large population and generate a significant impact on

public safety, economic stability, or national security [1]. At

the same time, emerging communication platforms and various

tactics including the Crime-as-a-Service (CaaS) strategy, allow

inexperienced users to access and use dedicated criminal

services such as ransomware creator, anonymisation networks,

phishing kits, money mule [10]. In both cases, whether involv-

ing organised groups or novice cybercriminals, the primary

objective remains the same: maximising the impact of attacks

while concealing their tracks and laundering illicit proceeds.

In this scenario, cryptocurrency plays a pivotal role in these

operations due to its anonymity, decentralisation, and border-

less nature, making it a preferred medium for concealing illicit

funds and facilitating money laundering. While studies [14],

[16] show that Law Enforcement Agencies (LEAs) can reduce

anonymity through the ’follow-the-money’ approach, crimi-

nals counteract this by employing obfuscation techniques such

as money mules and international bank transfers—are often

combined with crypto-specific services like mixers, swappers,

and no-KYC exchanges [8], [10]. The complexity of these

methods varies based on the crime type, the cryptocurrency

used, and perpetrators’ expertise [10].

Among dedicated services, mixers remain one of the most

challenging entities to tackle. This is because their owners

are often unwilling to cooperate with LEAs, and technically,

they operate as ‘black boxes’. In fact, they leverage advanced

cryptographic primitives such as hash functions (for data

integrity and unlinkability), zero-knowledge proofs (to ensure

anonymity), and commitment schemes (to secure and obscure

transaction details) [31]. Together, these techniques make it

exceptionally difficult for investigators to trace the flow of the

funds [9]. To tackle these challenges, financial authorities such

as the US Office of Foreign Assets Control (OFAC)1, Office of

Financial Sanctions Implementation (OFSI)2, European Exter-

nal Action Service (EEAS)3, United Nations Security Council

(UNSC)4, have started imposing sanctions on mixers involved

in illicit activities to discourage others from engaging relations

with them. Sinbad, Tornado Cash, and Blender.io [19]–[21] are

just a few examples of mixers sanctioned between 2022 and

2023. While this sanctioning strategy decreased funds sent to

mixers from illicit addresses, it did not stop user demand. In

fact, after that, organised groups like the Lazarus Group have

created their own mixer, while former users of sanctioned or

shutdown mixers have migrated to new entities such as YoMix

[8].

Recognising the challenge in understanding how funds are

blended [6], [17], [31], and the difficulty in halting mixers’

activities, this work aims to take a first step toward dissect-

ing mixer operations. Specifically, it starts mapping mixer

activities within address-transaction graphs (or mixer activity

graphs), and analysing topological similarities in order to

1https://ofac.treasury.gov/
2https://sanctionssearchapp.ofsi.hmtreasury.gov.uk/
3https://www.eeas.europa.eu/
4https://www.un.org/securitycouncil/content/un-sc-consolidated-list
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extract common patterns that can be used to define the mixer’s

modus operandi. This task is achieved by extracting dense

topological structures in all the mixer activity graphs using

community detection algorithms, and subsequently grouping

similar communities using clustering algorithms. The analysis

also incorporates information about other known Exchange to

understand their role in mixer activities, enriching the findings.

This work aims to offer an intriguing yet partial understanding

of the mixer modus operandi.

Information about Blender.io mixer is used in this work to

obtain a preliminary validation of the approach. Blender.io was

chosen as it was one of the first mixers to be sanctioned by

the OFAC in May 2022 [19]. This mixer primarily operated on

the Bitcoin network and was sanctioned for engaging in ma-

licious cyber-enabled activities, including money laundering.

Information about the sanctioned mixer addresses is available

only from the US OFAC, as other agencies (OFSI, EEAS, etc.)

either lack such information or do not release it publicly.

In summary, the main contributions of this work are: 1)

introducing an initial step toward the extraction of cryptocur-

rency mixers’ modus operandi, 2) validating this initial step

through a specific use case; 3) highlighting the pivotal role of

Exchange entities in mixer operations.

II. RELATED WORK

Early researches were primarily focused on developing

innovative mixing strategies. Significant examples in literature

can be found in [6], [13], [31], with some of them being im-

plemented as a public service. On the other hand, the literature

focusing on analysing and studying the behaviour of existing

mixing services remains relatively sparse. A foundational work

in this area is provided by Moser et al. in [18], where the au-

thors conducted the first empirical study to evaluate the extent

to which Bitcoin mixers enhance user anonymity. Subsequent

research has provided more detailed analyses, often with an

emphasis on detecting mixing entities (e.g., transactions and

addresses) in the blockchain. For example, [28], [30] propose

heuristics aimed at identifying mixing transactions. Other

research has been directed to uncover security flaws in mixing

services. For example, [22] highlights critical privacy and

security issues, concluding that many mixing services fail to

adopt security solutions proposed by the academic community

and are often affected by severe vulnerabilities

Recent works have explored machine learning and deep

learning approaches to detect mixing services [25], [27],

[29]. The intuition behind these approaches is that mixing

services exhibit distinctive patterns that classifiers or clustering

algorithms can identify. For instance, the work in [27] uses

statistical features from recurring topological patterns to detect

mixer addresses. An interesting analysis, aimed at shedding

light on mixer’s modus operandi, is presented in [28]. The

authors categorise mixers into two primary groups based on

their employed mechanisms: swapping and obfuscating. Swap-

ping mechanisms utilise potentially lengthy peeling chains to

exchange inputs and outputs among users, whereas obfuscating

mechanisms rely on anonymity sets—outputs with identical

Fig. 1: Example of modified 1-step address-transaction graph.

transaction values directed to distinct users. Furthermore, the

authors primarily focus on obfuscating mechanisms, present-

ing heuristics for their detection. Inspired by these works, this

paper proposes enriching the detection of the mixer’s modus

operandi by analysing topological information to highlight

structural repetitions and common patterns.

III. GRAPH-BASED APPROACH

In Section III-A, the procedure to create the address-

transaction graphs is detailed, while Section III-B introduce

the methodology applied in this study.

A. Address-Transaction Graph

Blockchain analyses often exploit the intrinsic structure

generated by transactions to build an address-transaction graph

[11], [14], [33]. This graph is a directed graph where nodes can

represent either blockchain addresses and transactions, the di-

rected edges (arrows) from addresses to transactions represent

the sender relations, and edges from transactions to addresses

are receiver relations, as shown in Figure 1. Moreover, both

nodes and edges can be enriched with additional attributes

such as labels, amounts, fees, timestamps, etc.

To build this graph, a starting point needs to be defined,

as well as the number of exploring steps n. This parameter

specifies the number of transactions (both backward and

forward) to explore from a selected starting point. Therefore,

the graph will include all paths originating from or leading to

the starting point, with a maximum length of 2n.

In this study, Blender.io addresses obtained from the OFAC

list are used as starting points and the exploring step n is set to

2. Furthermore, to better understand the relationships between

mixer addresses, a modification to the graph creation process

is proposed. If during the creation of the address-transaction

graph of a mixer address Ay, another mixer address Ay+1 is

discovered, Ay+1 is used in turn as a new starting point within

the same graph, as shown in Figure 1 in case of 1-step graph.

In this way, we reduce the number of distinct graphs created

while simultaneously retaining all the necessary information

for evaluating relationships between mixer addresses within

a single graph. Finally, nodes are enriched (when available)

with external information, i.e., labels that identify them as

belonging to known Exchanges.

B. Topological Analysis

In this study, we propose conducting a topological analy-

sis of the previously created address-transaction graph. The



goal is to identify recurring patterns across multiple graphs,

confirming that mixer activities follow repeated dynamics and

interactions within the graph. For this reason, once the graphs

are created (Section III-A), a community detection technique

is used to split dense topological structures within all the

mixer address-transaction graphs. Specifically, the Louvain

Community (LC) detection algorithm is used, since it is based

on maximising modularity, a measure of how dense the con-

nections are within communities compared to those between

communities [5]. Yet, optimising this value yields the best

possible grouping of nodes in a network. Several studies [23],

[24] have shown that the LC algorithm consistently performs

well across different networks with different complexity.

Once the communities are extracted, 8 graph properties are

extracted to describe each community topology. Four of these

properties are at the graph level, providing a single value

for the entire community, whereas the other four are node-

level, meaning values are calculated for each node and then

averages are used. The graph-level properties are: number of

addresses, number of transactions, transitivity, and diameter,

while the node-level properties include: degree centrality,

closeness, betweenness, and harmonic centrality. These met-

rics are selected by combining the outcomes of previous

works [2], [4], [15]. Then, these topological properties are

used as input to clustering algorithms to group communities

that share similar properties. Specifically, two density-based

clustering algorithms are used in this paper: the Ordering

Points To Identify the Cluster Structure (OPTICS [3]) and the

Hierarchical Density-Based Spatial Clustering of Applications

with Noise (HDBSCAN [7]). The first one works by defining

dense regions using a minimum number of points that define a

cluster (minPts) and the maximum distance from one point to

another for both to be considered neighbours (ǫ). The second

algorithm still requires the minPts parameter but it is able to

automatically tune the ǫ parameter.

Finally, once the clusters are generated, they are dissected,

looking for the known entities (Exchange) within, generalising

their involvement and role in mixer operations.

IV. DATA OVERVIEW & CONFIGURATION

As mentioned, the main objective of this work is to dissect

the behaviour of the mixer Blender.io. At the paper date (Dec.

2024), the OFAC Specially Designated Nationals and Blocked

Persons list includes information about 45 Blender.io addresses

only related to the Bitcoin network. Since the exact names of

these addresses are not relevant and do not affect the aim of

this work, an identifier (ID) from 1 to 45 has been assigned

to each of them and used during the analysis. Furthermore,

to create the address-transaction graphs, the entire Bitcoin

blockchain data is considered, i.e., more than 870k blocks

and 1.120B transactions (at paper date). Finally, to enrich

the address-transaction graph with known real-world entities,

labelled/tagged addresses are gathered from multiple sources,

such as WalletExplorer and the GraphSense tagpacks [12].

These sources have been used as ”ground-truth” in many

previous researches [26], [32], and allowed us to gather

more than 38M addresses of almost 400 entities labelled as

Exchanges, Gambling, Marketplaces, Mining Pools, Mixers,

Services, Trading platforms, eWallet and Ransomware.
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Fig. 2: Number of mixer addresses in each address-transaction

graph created.

For the LC algorithm, the weights of the edges (e.g.,

the amounts sent or received) within the address-transaction

graphs are considered during community generation, while

other parameters like resolution and threshold are set to

default values, 1 and 1e-07, respectively. Furthermore, for our

analysis, all communities must be defined by address nodes at

the boundaries, meaning only address nodes can have an input

or output degree of 0. Therefore, we made a slight modification

to the LC detection process to incorporate this requirement.

Regarding the clustering algorithms, for both the HDB-

SCAN and OPTICS, the minimum number of samples for

creating a cluster (minPts) is set to 5. Then, a study is

conducted to evaluate how the ǫ parameter affects the OPTICS

clusters, while HDBSCAN does not require such a study,

as it determines the optimal value internally. Specifically, 8

different values for ǫ (0.1, 0.5, 0.9, 1, 1.5, 2, 3, 5) are tested.

V. PRELIMINARY RESULTS

Using the graph creation approach introduced in Section

III-A, the 45 Blender.io addresses generate 23 distinct address-

transaction graphs, as shown in Figure 2. Yet, in one specific

case, 12 mixer addresses are linked within the same graph.

The LC-modified algorithm (Section III-B) extracts 208

structures from the 23 address-transaction graphs. Figure 3a

shows that most of them (116) are characterised by less than

10 nodes (both address and transaction types), while just a

few structures link more than 200 nodes. Figure 3b reports

the performance of the OPTICS algorithm with the different

ǫ. The figure illustrates that as ǫ increases, more elements are

assigned to clusters, leading to a decrease in the number of

outliers. As a result, the number of distinct clusters grows.

However, this trend holds only up to a certain threshold (ǫ =

1.5), beyond which no further changes occur in the number or

composition of clusters. This threshold marks the point where

the maximum number of communities is clustered, making it

the reference value for comparing OPTICS with HDBSCAN
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Fig. 4: Predominant topologies within cluster IDs 4. The width

of the edges indicates the amount sent/received.

clusters. Figure 3c and Figure 3d highlight the similarity in

the clusters’ creation between the two techniques. Indeed, not

only the clustering algorithms are aligned in terms of elements

per cluster (Figure 3c), but also in terms of labelled entities

within (Figure 3d). The main differences lie in four aspects:

i) the overall number of clusters (12 and 13 for HDBSCAN

and OPTICS, respectively), ii) the number of outlier elements

(51 vs 62), iii) the composition of cluster ID 4, and iv) the

number of Exchange addresses in cluster IDs 4, 9, and 10.

Another interesting finding is a large number of Exchanges

grouped in cluster IDs 4, 7, and 8, with more than 50, 12,

and 10 addresses, respectively. This highlights not only their

involvement in mixer activities but also their strictness in

following specific and concrete patterns. In fact, the structures

detected in cluster ID 4 are depicted and analysed using a

visualization tool (Gephi), and Figure 4 reports the predom-

inant/common topology. This structure represents 13 of the

17 communities shared by the HDBSCAN and OPTICS in

cluster ID 4. These communities are characterised by two

transaction nodes connected by exactly two addresses, with a

significant amount transferred directly from one input to one

output without substantial splitting (the width of the edges in

the graph). Furthermore, when labels are considered within

this analysis, they show that the highest input in TX1 and the

highest output in TX2 are both Exchange addresses.

VI. CONCLUSION AND FUTURE WORK

This work introduces an initial step toward the extraction

of cryptocurrency mixers’ modus operandi. Specifically, it

leverages address-transaction graphs to map mixer activities

and applies graph-based analyses to identify topological sim-

ilarities and patterns. This approach has been used to dis-

sect Blender.io activities, revealing that these activities follow

specific and well-defined topological structures. Additionally,

it highlights the pivotal role of Exchange entities in mixer

operations, raising concerns about their AML/KYC policies.

Although this work represents ongoing research, it provides

an intriguing yet partial view of mixer activities. As a next

step, we plan to include two additional dimensions to the

methodology. The first focuses on improving the topological

analysis by examining how mixer addresses interact within the



same graphs, as they may form specific patterns to accumulate

or split funds (e.g., aggregation networks, peeling chains, etc.).

The second dimension aims to integrate economic aspects into

the address-transaction graphs to determine whether mixers

follow identifiable patterns in terms of received/sent amounts

and temporal activity. By incorporating these elements, we

seek to refine investigative approaches, provide more action-

able intelligence.
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