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From Data Behavior to Code Analysis: A Multimodal Study on
Security and Privacy Challenges in Blockchain-Based DApp

HAOYANG SUN∗ and YISHUN WANG∗, Hainan University, China
XIAOQI LI, Hainan University, China

The recent proliferation of blockchain-based decentralized applications (DApp) has catalyzed transformative
advancements in distributed systems, with extensive deployments observed across financial, entertainment,
media, and cybersecurity domains. These trustless architectures, characterized by their decentralized nature
and elimination of third-party intermediaries, have garnered substantial institutional attention. Consequently,
the escalating security challenges confronting DApp demand rigorous scholarly investigation. This study
initiates with a systematic analysis of behavioral patterns derived from empirical DApp datasets, establishing
foundational insights for subsequent methodological developments. The principal security vulnerabilities in
Ethereum-based smart contracts developed via Solidity are then critically examined. Specifically, reentrancy
vulnerability attacks are addressed by formally representing contract logic using highly expressive code frag-
ments. This enables precise source code-level detection via bidirectional long short-term memory networks
with attention mechanisms (BLSTM-ATT). Regarding privacy preservation challenges, contemporary solu-
tions are evaluated through dual analytical lenses: identity privacy preservation and transaction anonymity
enhancement, while proposing future research trajectories in cryptographic obfuscation techniques.

Additional Key Words and Phrases: Blockchain; Decentralized Applications; Privacy Protection; Smart Con-
tracts; Deep Learning

1 INTRODUCTION
The emergence of Bitcoin has catalyzed unprecedented advancements in blockchain technology,
positioning it as a pivotal research frontier. This technological evolution has undergone three
distinct evolutionary phases: 1) The Blockchain 1.0 era, epitomized by Bitcoin, established the
cryptocurrency paradigm through decentralized monetary systems and payment mechanisms,
albeit with limited industrial applications. 2) The Blockchain 2.0 phase, marked by Ethereum’s
introduction of smart contracts with Turing-complete scripting capabilities, witnessed expanded
application scenarios across banking, insurance, securities, and trust sectors through sophisticated
development ecosystems. 3) The current DApp epoch, where blockchain serves as foundational
infrastructure enabling cross-industry credential authentication, while DApp function as value-
transfer vectors through cross-industry value transfer protocols.
Blockchain technology, frequently hailed as the linchpin of the Fourth Industrial Revolution,

derives its transformative potential primarily through DApp implementations – architecturally
defined as distributed applications underpinned by blockchain consensus mechanisms and self-
executing smart contracts. As the hallmark of Blockchain 3.0, DApp ecosystems critically influence
the maturation trajectory of blockchain infrastructures. Crucially, DApp are projected to epito-
mize future blockchain-enabled socioeconomic frameworks, particularly through their capacity to
mediate trustless transaction frameworks across decentralized autonomous organizations.

Although the concept of blockchain was proposed by Satoshi Nakamoto [29] (or a team) as early
as 2008, the application of this technology in the real world has only been in use for a few years, and
there are still a series of issues that cannot be ignored, such as privacy protection and controllable
supervision, the inability to achieve decentralization, security, and scalability simultaneously, and
the operational efficiency of blockchain itself. According to data from the blockchain security
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company PeckShield (Pai Dun), there were 177 blockchain security incidents in 2019, resulting in
economic losses as high as 7.679 billion US dollars, an increase of about 60% compared to 2018
[36]. According to incomplete statistics from the National Blockchain Vulnerability Database, the
number of blockchain security incidents in 2020 reached 555, an increase of nearly 240% compared
to 2019, with economic losses amounting to 17.9 billion US dollars [2]. According to data released by
the foreign research institution Chainalysis, the amount of cryptocurrency crime in 2021 reached
14 billion US dollars, an increase of 79% year-on-year. The losses caused by cryptocurrency fraud
cases reached 7.8 billion US dollars, an increase of 82% year-on-year, and the losses from hacking
theft cases were approximately 3.2 billion US dollars, an increase of 516% year-on-year [15].

This paper will, based on existing research, collect data related to DApp, and combine the struc-
tural characteristics of blockchain to analyze the privacy protection and security of decentralized
applications (DApp) on blockchain from two aspects: security and privacy protection.

The principal theoretical and methodological contributions of this paper are tripartite:

• First, a multidimensional analytical framework is developed for deconstructing DApp’
behavioral patterns through heterogeneous data fusion techniques.
• Second, an innovative vulnerability detection paradigm is established by implementing
Bidirectional Long Short-Term Memory networks with Attention mechanisms (BLSTM-
ATT) to identify reentrancy vulnerabilities in Solidity-based smart contracts at source code
granularity.
• Third, a systematic theoretical framework for privacy preservation is formulated through

dual-aspect analysis of identity anonymization protocols and transaction obfuscation mech-
anisms [35], incorporating formal verification of zk-SNARKs implementations and quanti-
tative assessment of differential privacy parameters.

1.1 Related Work
DApp, which are derived from underlying blockchain platforms, are decentralized applications
running on top of smart contracts based on P2P peer-to-peer networks. The underlying blockchain
technology provides them with trustworthy data recording. Through searching for relevant in-
formation on the network, it is found that research on DApp by related platforms mainly focuses
on aspects such as application domains, application platforms, quality assessment, and DApp
architectures [9, 11, 25, 27, 38], with corresponding data and behavior analyses. Research on the
privacy protection and security of DApp is concentrated on the security and privacy protection of
the underlying technology they employ, namely blockchain technology.
In recent years, research on the security and privacy protection of blockchain technology has

been conducted. Bu et al. [3] investigated the security risks of blockchain systems, reviewed attack
cases on blockchain systems, and analyzed the exploited vulnerabilities. Taylor P. J. et al. [45]
conducted a systematic analysis of common blockchain security protocols. Singh S. et al.[44]
provided a detailed analysis of potential blockchain security attacks and proposed existing solutions
to these attacks. In addition, some researchers have offered insightful perspectives on vulnerability
detection in smart contracts[4, 17, 18, 23].
Regarding privacy protection, Abdikhakimov and Islombek [1] introduced privacy protection

mechanisms from three aspects: the blockchain network layer, the transaction layer, and the appli-
cation layer. Zhang et al.[51] classified blockchain privacy protection technologies into address
obfuscation, information hiding, and channel isolation and analyzed and compared the implementa-
tions of these three types of privacy protection technologies. Shen et al.[43] categorized blockchain
privacy into identity privacy and transaction privacy and analyzed the security issues associated
with these two types of privacy.
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In terms of smart contract security issues, Christof Ferreira Torres et al. [47] proposed a hybrid
simulator called CONFUZZIUS, which effectively identifies more bugs through constraint-solving
and dynamic data analysis. Rao et al.[37] proposed a transaction-based classification detection
method for Ethereum smart contracts. Palina Tolmach et al.[46] proposed formal models and
specifications for smart contracts, as well as methods for verifying such specifications.

2 BACKGROUND
2.1 Blockchain
Blockchain is a decentralized distributed database composed of multiple interconnected blocks
linked through cryptographic algorithms. Each block contains the hash value of the preceding
block, transaction data, timestamps, and other relevant information[28]. By leveraging consensus
algorithms, the blockchain network achieves a consensus mechanism, ensuring data synchro-
nization and eliminating the possibility of data forgery by any single node, thereby enabling a
trustless system. Through mutually agreed protocols and smart contracts, nodes interact and
compete autonomously, ensuring the system operates independently without human intervention.
Cryptographic algorithms enable any participant to query data records via public interfaces while
preventing data modification or repudiation[22]. The chained structure facilitates efficient and
rapid retrieval of transaction data, ensuring the traceability of data and transactions.

2.2 DApp
A DApp[10] represents the integration of traditional applications (APPs) with blockchain tech-
nology, typically operating on a peer-to-peer (P2P) network. It serves as an enhancement and
extension of conventional applications, with the key distinction being its decentralized nature. In
DApp, participant information is either anonymous or protected, and operations are conducted
through nodes on a peer-to-peer network. Smart contracts provide the foundational framework for
decentralization, enabling trustless interactions between participants. From a practical perspective,
a DApp can be succinctly conceptualized as a combination of smart contracts and traditional
applications[24], where smart contracts establish the prerequisites for decentralization. Structurally,
DApp involves interactions between a front-end interface and users, as well as between smart con-
tracts and the blockchain. This makes DApp publicly accessible programs that operate transparently
on a network, leveraging blockchain’s inherent properties of immutability and traceability.

2.3 Smart Contract
The concept of smart contracts[49] was first introduced by Nick Szabo in 1994. He defined a smart
contract as "a set of promises, specified in digital form, including the protocols within which the
parties perform on these promises." Smart contracts operate on distributed ledgers and can execute,
verify, and enforce complex behaviors of distributed nodes based on predefined rules, without the
need for third parties, thereby achieving functions such as programming and information exchange.
Smart contracts are intelligent electronic contracts that transform contractual agreements into

code, which is then deployed on a blockchain. Once deployed, the code is publicly accessible
and immutable. When external conditions change, such as a breach or contract expiration, smart
contracts automatically trigger the execution of predefined actions. This automation ensures
transparency, efficiency, and trust in transactions, eliminating the need for intermediaries and
reducing the potential for disputes.
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2.4 Ethereum
Ethereum[12] is a decentralized, open-source public blockchain platform with smart contract
functionality. It features an integrated Turing-complete programming language, enabling users
to develop decentralized applications (DApp) according to their specific requirements. As an
application runtime platform, Ethereum ensures data transparency by making all data publicly
accessible to nodes and immutable to third-party modifications. The Ethereum Virtual Machine
(EVM) facilitates the execution and invocation of smart contracts. Additionally, Ethereum employs
an account model, which reduces the cost of batch transaction processing, simplifies programming
and development, and broadens the scope of application scenarios.

2.5 Security Threats
As an emerging application, DApp are increasingly recognized by enterprises and organizations
for their underlying blockchain technology[26], which features decentralization, tamper resistance,
and traceability. However, DApp still face significant security threats. In this context, we analyze
the security threats of DApp from two perspectives: smart contract security and privacy protection.

2.5.1 Smart Contract Security.
Smart contract security is a critical component of DApp security. In 2016, vulnerabilities in the
smart contracts of The DAO project led to the transfer of over 3.6 million Ether, resulting in
losses exceeding USD 50 million[5]. This incident caused a temporary downturn in blockchain
development.

2.5.2 Privacy Protection.
In blockchain systems, privacy protection primarily focuses on identity and transaction information,
which can be divided into identity privacy protection and transaction privacy protection. According
to a report by The Record in April 2021, over 533 million Facebook users’ personal information was
leaked on a hacking forum [34]. In June 2021, more than 700 million LinkedIn user data records
were sold on a dark web platform. These incidents have drawn urgent attention to data security
and privacy protection issues[32].

3 METHODOLOGY
3.1 Data Analytics for DApp
The advantages of DApp stem from the underlying blockchain technology, which enables data
ownership and value transfer. DApp facilitate inter-industry integration, ensure product control-
lability and traceability, reduce operational and development costs, enhance transaction security,
and improve user experience. Due to their decentralized nature, DApp are increasingly valued
and adopted by enterprises and organizations. However, security and privacy protection issues in
blockchain technology and smart contracts may introduce new challenges to DApp security. We
have collected the behavioral data of DApp and analyzed their distribution from the perspectives
of platform, type, and smart contract. This analysis of DApp data behavior forms the basis for our
subsequent analysis.

3.1.1 Data Collection.
Data collection is essential for this study on DAPP security and privacy protection. This section
introduces the dataset. We gathered DAPP-related data, including the number, types, platforms,
and transactions, from four websites: State of the DApp, DAppReview, Top Blockchain DApp, and
DApp.com, covering the period from April 2015 to February 2022. The data are presented in Table.1,
and we performed statistical analysis of DAPP data behavior accordingly.
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Platform DApp Count Smart Contract Count
Ethereum 2935 4890
Klaytn 80 316
EOS 331 550
Steem 79 177
Hive 56 105
POA 21 51
xDai 21 58
Neo 24 30
Obyte 17 162
OST 2 3
Loom 14 33
GoChain 7 17
Blockstack 24 0
TRON 88 281
ICON 16 36
NEAR 23 21
BSC 189 354
Moonriver 37 82

Table 1. Platform DApp and Smart Contract Counts

We collected data on 3,964 DApp. Based on their application scenarios, we categorized these
DApp into 21 classes, including gaming, gambling, and finance. The distribution of these categories
is shown in Table.2.

Category DAPP Count
Games 680
Gambling 611
Social 415
Finance 386
Exchanges 264
Development 222
NFT 201
Def’i 192
Media 169
Wallet 138
Marketplaces 131

Category DAPP Count
Governance 94
Security 87
Yield-farming 80
Property 81
Tools 61
Identity 48
Energy 34
Health 32
Insurance 20
Storage 18

Table 2. DAPP Category Distribution

In June 2018, EOS emerged as a new blockchain framework and gained attention for its scalability
in decentralized applications. However, Ethereum’s greater decentralization and longer application
release history have led to the majority of DApp still being deployed on Ethereum. Therefore, we
have collected and analyzed data on transactions, active users, and Ether from January 2018 to
September 2020. Specific activity details are shown in Table.3.
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Transaction Volume Active Users ETH
Games 14734372 764798 300356
Gambling 9155186 466603 5037386
Social 667250 143384 6265
Finance 8415631 2091082 24311498
Exchanges 21377239 2153735 16068296
Development 1306938 311914 293079
Media 684475 231868 3300
Wallet 6990099 1395655 1004362
Market 2435308 190737 147025
Governance 330860 103686 1919
Security 2397611 773461 16899
Property 913607 106301 42736
Identity 353166 58768 4617
Energy 12870 7414 3237
Health 263 96 0
Insurance 5745 1969 0
Storage 1281920 574544 8
High Risk 4842315 1760754 8446005

Table 3. Ethereum Activity Data

3.2 Analysis Results
Based on the data collected in Section 3.1, we performed preprocessing and conducted a multi-angle
analysis of DApp data behavior. This analysis addresses key questions, such as the current state of
DApp and which types are more investment-worthy. The findings enhance our understanding of
blockchain and provide a data foundation for security analysis and privacy protection.

3.2.1 Platform Distribution Data.
With the continuous development and improvement of blockchain technology, DApp have also
been growing rapidly. The growing recognition of DApp’s value has drawn increasing attention
from organizations and enterprises. It should be noted that the quantity changes mentioned in the
figure below refer to the current number of DApp, which is the difference between newly added
and discontinued DApp.
Currently, the leading blockchain development platforms for DApp are Ethereum, EOS, and

TRON. As shown in Figure.1, Ethereum remains the dominant platform. While its longer existence
contributes to this dominance, the data also reflect Ethereum’s advantages in DApp development,
with a remarkable share of 74.04%.

Surveys indicate that the number of DApp deployed on Ethereum has consistently grown. Yet,
the growth rate has shifted over time. From April 2015 to November 2018, the growth rate increased,
but it has declined since November 2018. This change is mainly due to two factors: 1) Ethereum’s
security vulnerabilities, such as those in The DAO and Parity, which have raised risk concerns; and
2) the diversification of DApp development platforms, with the emergence of new platforms like
EOS and TRON.
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Fig. 1. Analysis on theQuantity of DApp Platforms

3.3 Category Analysis
The data in Figure.2 show that five DApp categories—gaming, gambling, social, finance, and
exchanges—account for 59.4% of the total. Additionally, transaction volumes and active users,
as indicated in Table 3.3.3 for Ethereum activity, are predominantly concentrated in these five
categories.

From the above analysis, we can draw the following conclusions:

• Finance-related DApp (finance and exchanges) are the most popular among users and have
the highest number of active users, followed by entertainment-related DApp (gaming and
gambling).
• In emerging fields such as health, insurance, and energy, the number of DApp, smart
contracts, and active users is relatively limited.

3.4 Reentrancy Vulnerability Detection for Smart Contracts
In the DApp development and application environment, smart contracts, which handle various
business logic, are receiving increasing attention for their security issues[19, 21, 48]. Notably,
the attack on The DAO, which exploited a reentrancy vulnerability in a smart contract, caused
a temporary downturn in blockchain applications[30]. This highlights reentrancy attacks as a
significant security threat to smart contracts.

Smart contract security is crucial for ensuring the safety and privacy of decentralized applications
based on blockchain technology. Building on our analysis of DApp data behavior in the previous
chapter, this chapter delves into reentrancy vulnerability attacks in smart contracts. We conduct an
in-depth study of their data behavior to achieve detection and identification of reentrancy attacks.

7



Games

17.9%

Gambling12.1%

Social

11.3%

Finance

8.3%

Exchanges

7.7%
Development

6.5%

NFT

5.9%

Other

30.3%

Categories
Games (15.4%)
Gambling (10.5%)
Social (9.7%)
Finance (7.2%)
Exchanges (6.7%)
Development (5.6%)
NFT (5.1%)
Other (26.1%):
 Wallet
 Marketplaces
 Governance
 Security
 Yield Farming
 Media
 Property
 Tools
 Identity
 Energy
 Health
 Insurance
 Storage

Fig. 2. DApp Category Distribution

Interest in smart contract security is growing, with researchers working to identify vulnerabilities.
Traditional analysis has relied on formal methods [41, 50]. Meanwhile, advances in deep learning
have expanded the role of neural networks. The LSTM model, effective for sequence tasks like
speech recognition[16] and text prediction[42], is particularly noteworthy.

The method used in this chapter can secure DApp deployed on blockchain systems. The reasons
are as follows:
• Smart contracts are integral to blockchain and DApp, so researching their security is vital
for understanding the security of blockchain and DApp.
• Reentrancy attacks on smart contracts can be detected and identified using deep learning
methods. This allows for the detection of smart contracts with reentrancy vulnerabilities,
thereby mitigating the security risks faced by DApp.

We focus on themost common and severe vulnerability in EVM-based smart contracts: reentrancy
attacks. This vulnerability is exploited when a contract attempts to send Ether before updating its
internal state. Specifically, reentrancy attacks can occur when a function creates an external call to
an untrusted smart contract.
When an attacker transfers Ether to a smart contract address, it triggers the attack contract’s

fallback function[14]. Malicious code hidden in this function can activate reentrancy, causing
repeated transfer operations.
In smart contracts, the fallback function is automatically triggered in two scenarios: 1) when a

contract call is made but no matching function is found, it is called by default; 2) when the contract
receives an Ether transfer, the fallback function can also be executed.
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In the example shown in Figure.3, the attack exploits the second trigger condition of the fallback
function in a smart contract, as described earlier. The money function in the attack contract
attempts to execute a withdrawal by calling the withdraw function of the victim contract. This
action irreversibly activates the fallback function in the attack contract, which then repeatedly
executes the withdrawal function until the Ether in the victim contract is depleted.

Fig. 3. Reentrancy Attack Example

3.4.1 Data Preprocessing.
Historically, there haven’t been enough smart contracts to train neural networks. Today, with the
increasing number of smart contracts across blockchain platforms, the time is right for neural
network-based vulnerability detection. Deep learning methods are now employed to identify
vulnerabilities in smart contracts.

Our objective is to automatically determine if a given smart contract is reentrant using vul-
nerability detection methods. The automatic reentrancy vulnerability detection process involves
several steps, as shown in Figure.4. First, data cleaning of the original smart contract is essential,
such as removing blank lines, non-ASCII characters, and irrelevant comments. Then, the original
smart contract is converted into contract snippets composed of key program statements. Next, each
contract snippet is tokenized. Each snippet is then parsed into a series of code tokens, which are
embedded into feature vectors for representation. Finally, during the experimental phase, these
feature vectors are input into the adopted sequential model to train the detector, thereby achieving
the detection of reentrancy vulnerability attacks.

Smart contracts on Ethereum are programs written in Solidity. They consist of multiple code lines,
but some lines, like comments or unrelated functions, are irrelevant for reentrancy vulnerability
analysis. To facilitate precise feature extraction, we condense smart contracts into expressive
contract snippets.

Since deep neural networks typically use vectors as inputs, we need to represent smart contract
snippets as vectors that are semantically meaningful for reentrancy detection. First, before generat-
ing vectors for each snippet, we obtain a symbolic representation through the following steps: 1)
mapping user-defined variables to symbolic names (e.g., "VAR1," "VAR2"); 2) mapping user-defined
functions to symbolic names (e.g., "FUN1," "FUN2"). After this, we perform a lexical analysis to split
the symbolic representation of the contract snippet into a sequence of tokens.

Then, word2vec is used to convert these tokens into vectors. Word2vec maps tokens to integers
and transforms them into fixed-dimension vectors. Since contract snippets may have varying
numbers of tokens, the corresponding vectors can have different lengths. To ensure uniform vector
length for input, vectors are padded with zeros at the end if shorter than the fixed dimension or
truncated at the end if longer.
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Fig. 4. Data Processing Pipeline

3.4.2 Model.
An LSTM unit consists of an input gate 𝑖𝑡 , an output gate 𝑜𝑡 , a forget gate 𝑓𝑡 , and a cell state 𝐶𝑡 ,
allowing the unit to remember values at any time and control information flow. As shown in
Figure.5.

Fig. 5. LSTM Unit

The hidden state ℎ𝑡 of an LSTM unit can be computed as follows:
𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 )
𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 ) (1)
𝑜𝑡 = 𝜎 (𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ) (2)
¤𝐶𝑡 = tanh(𝑊𝑐 · [ℎ𝑡1 , 𝑥𝑡 ] + 𝑏𝐶 ) (3)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡 (4)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡 ) (5)

In this context,𝐶𝑡 represents a new candidate vector. The 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function 𝜎 and the hyperbolic
tangent function 𝑡𝑎𝑛ℎ are activation functions used within the LSTM unit. The symbol ⊙ denotes
matrix multiplication and element-wise multiplication. These functions share similar equations but
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differ in their parameter matrices𝑊 . Since standard LSTM cannot capture future information in a
sequence, a bidirectional LSTM layer is added to address this limitation.

To highlight the importance of certain output results for vulnerability detection, we introduced
an Attention Mechanism, resulting in the BLSTM-ATT sequential model. For instance, for important
words in lines of code (e.g., call.value), we use the Attention Mechanism to assign weights, which
can be formalized as:

𝜇𝑡 = tanh(𝑊ℎ𝑡 + 𝑏) (6)

𝛼𝑡 =
exp(𝜇𝑡 𝜇)

Σ(exp(𝜇𝑇𝑡 𝜇))
(7)

𝛼 represents a normalized weight obtained through the Attention Mechanism. The specific model
architecture is shown in Figure.6.

Fig. 6. Model Framework

We input word2vec-generated feature vectors into the BLSTM-ATT sequential model to learn
model parameters. This involves calculating gradients and updating parameters during backpropa-
gation. Once training is complete, the trained model is used for reentrancy detection.
Given one or more smart contract snippets from the test set, we convert them into vector

representations and input these vectors into the sequential model. The model outputs results for
each target smart contract, indicating whether it has reentrancy with "1" or "0".

Formally, we use a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 classifier to predict the label𝑦∗ of the contract snippet S. The detector
takes the hidden state ℎ∗ as input:

𝑝 (𝑦/𝑆) = 𝑠𝑜𝑙 𝑓𝑚𝑎𝑥 (𝑊ℎ∗ + 𝑏) (8)

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 · 𝑝 (𝑦/𝑆) (9)

3.4.3 Model Training Details. In parameter settings, we use 10-fold cross-validation[7] to select
and train the optimal parameter values for reentrancy detection. We learn the model by optimizing
binary cross-entropy loss. All experiments adopt the optimal gradient descent algorithm 𝐴𝑑𝑎𝑚[13].
Our model searches for the learning rate 𝑙𝑟 in [0.0001, 0.0005, 0.001, 0.002, 0.005]. To prevent
overfitting, we adjust the dropout rate 𝑑𝑟 searched in [0.2, 0.4, 0.6, 0.8]. The final parameters are set
to: 𝑙𝑟 = 0.02, 𝑑𝑟 = 0.2, batch size 𝛽 = 64, and vector dimension 𝑣𝑚 = 300.
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3.4.4 Evaluation Metrics and Experimental Results. To evaluate the model’s performance, we use
metrics such as Accuracy (ACC), True Positive Rate (TPR), False Positive Rate (FPR), Precision
(PRE), and F1-score. These metrics are calculated based on four scenarios: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN), as shown in Table.4.

Table 4. Table 4.5 Sample Metrics

Actual Condition Predicted Condition
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

The formulas for the evaluation metrics are as follows:

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹1 =
2 ∗ 𝑃𝑅𝐸 ∗𝑇𝑃𝑅
𝑃𝑅𝐸 +𝑇𝑃𝑅

For the BLSTM-ATT sequential model, we repeated the experiments 10 times to calculate the
average performance, achieving favorable results. The BLSTM-ATT model achieved an F1-score of
88.26% and an FPR of 8.57%, indicating its ability to accurately identify reentrancy vulnerabilities.
The high accuracy is likely due to the effectiveness of the BLSTM architecture and the attention
mechanism. The BLSTM-ATT model not only captures long-term dependencies from both past and
future contexts but also highlights key points through the attention mechanism.

The performance of our sequential model was further analyzed using an ROC curve[6], as shown
in Figure 7. The ROC curve plots TPR on the y-axis and FPR on the x-axis and is commonly used to
evaluate binary classifiers. The AUC for the BLSTM-ATT model is close to 90%, indicating good
detection performance.
From the results, we can conclude that deep learning-based detection methods, specifically

sequential models, achieve the detection function effectively. This indicates that deep learning can be
applied to vulnerability detection in smart contracts. Additionally, due to the semantic information
capture of sequential models and the highlights of the attention mechanism, vulnerability detection
in smart contracts can achieve high accuracy.
The model’s good performance may be attributed to the contract snippets used, which discard

useless information (such as code comments and blank lines) and capture key points (such as
control flow dependencies, keywords, and semantic inheritance information). Through highly
expressive contract snippets, our sequential model is well-adapted and trained to accurately identify
vulnerabilities.
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Fig. 7. ROC Curve

3.5 Privacy Protection
With the growth of cloud computing, big data, and the Internet of Things, and the digital transforma-
tion of traditional industries, data volumes are growing exponentially, marking the arrival of the big
data era. As a strategic resource, data plays an increasingly important role in national governance,
economic growth, and national security, so research on data privacy and security is gaining more
attention. Blockchain technology, known for its decentralization, traceability, and immutability,
is widely used. However, these features come at the cost of disclosing certain information, such
as transaction content being exposed due to data verifiability. To reduce privacy leakage risks,
privacy protection on blockchains is essential, focusing mainly on identity privacy protection and
transaction privacy protection[20].

We extract privacy requirements and threats from the network environment, transactions, and
applications and conduct two types of analyses: The first analysis is based on the fundamental
characteristics of blockchain, while the second provides a detailed description of various threats.

3.5.1 Privacy Requirements of Blockchain.
In light of the characteristics of blockchain, we have conducted the following analyses:
• In blockchain transactions, each block contains the hash value of the previous block, forming

a chained structure. This means all transactions are traceable. Therefore, we need to make
the connections between transactions invisible.
• Since all transaction information is stored in a public, global ledger, any participant can
access and verify all data via public interfaces. Therefore, it is essential to protect identity
information, i.e., the relationship between blockchain addresses and user identity informa-
tion.
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The threats to blockchain privacy protection primarily stem from the associations between user
identity information and blockchain addresses, as well as the transaction records and the knowledge
behind them stored in the blockchain.

De-anonymization: Malicious nodes can join the network without authorization and monitor
communication data at the network layer. Attackers may link transaction information captured at
the network layer with the originating node’s IP address, thereby threatening user identity privacy.
• Network Analysis: By monitoring data transmitted in a P2P network, attackers can obtain
IP addresses when nodes broadcast transactions.
• Address Clustering: Users can divide the network into different address clusters. After
labeling with data collection techniques, some addresses can be linked to the same user.
While not easy to implement, these methods remain a potential threat and cannot be ignored.
• Denial of Service Attack: Malicious attackers exploit insufficiencies in network security
measures, rendering normal service means unusable and causing machines or network
resources to become unavailable.
• Sybil Attack: Malicious attackers use a small number of nodes to control multiple fake
identities, thereby disrupting the balance of reputation systems in a P2P network.

Transaction Pattern Analysis: Other transaction flows to the public network can be analyzed
statistically. For instance, transaction graph analysis can reveal overall transaction characteristics.
AS-level deployment analysis involves recursively connecting to clients, requesting, and collecting
the IP addresses of other peers to gather network information. This provides specific details about
the scale, structure, and distribution of the core network.

3.5.2 Identity Privacy Protection Methods.
Three common mechanisms for preserving anonymity in blockchain are: Coin Mixing[40], Ring
Signatures[39], and Non-interactive Zero-Knowledge Proofs[8].
Coin Mixing: Blockchain’s transparency links transaction senders and receivers. Analyzing

public data can reveal private info. A solution is to obscure transaction relationships using mixers,
enhancing anonymity.

If an entity wants to send a message𝑀 to another entity at address 𝑅, they encrypt𝑀 with the
recipient’s public key 𝐾𝑟 , attach address 𝑅, and then encrypt the result with the intermediary’s
public key 𝐾1. The left side of the following expression shows the ciphertext transferred to the
intermediary:

𝐾1 (𝑟0, 𝐾𝑅 (𝑟1, 𝑀), 𝑅) → 𝐾𝑅 (𝑟1, 𝑀), 𝑅 (10)

→ represents transforming the initial ciphertext into a new ciphertext on the right. During this
process, the intermediary decrypts the original ciphertext with their private key, then passes the
sub-ciphertext to 𝑅, who decrypts it with their private key. Note that 𝑟1 and 𝑟0, as random numbers,
ensure the message isn’t transmitted multiple times.

The core idea of coin mixing is to resist transaction graph analysis without encrypting transaction
content, thereby increasing the difficulty of attacks. By using intermediaries or spontaneous obfusca-
tion to mix and transfer funds, attackers cannot directly obtain the sender-receiver correspondence
in transactions, thus enhancing blockchain privacy protection.
Coin mixing techniques are categorized into centralized and decentralized approaches. Cen-

tralized methods use third-party nodes to obscure the link between transaction parties, making
cryptocurrency flows harder to track. Examples include online wallets, dedicated mixing services,
and multiple mixer overlays, which require no extra technical changes. Decentralized methods
replace third-party nodes with a P2P protocol, combining multiple transactions into one with many
inputs and outputs to hide associations.
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Ring Signature: In a ring signature scheme, user 𝐴 selects a group of participants, including
themselves, to form a ring 𝑢𝑠𝑒𝑟0, 𝑢𝑠𝑒𝑟1, ..., 𝑢𝑠𝑒𝑟𝑛 . Each participant has a public key from a standard
signature scheme (e.g., RSA, ECDSA). User𝐴 signs a message using their private key 𝑆𝐾𝐴 and all the
public keys 𝑃𝐾0, 𝑃𝐾1, ..., 𝑃𝐾𝑛 of the ring members. The verifier can confirm that the message was
signed by one member of the group but cannot identify the actual signer. This provides complete
anonymity for the signer. Ring signatures hide the signer’s identity among the public keys of the
ring, with no centralized authority or administrator involved.
Non-interactive Zero-Knowledge Proof(NIZK): A zero-knowledge proof (ZKP) is a crypto-

graphic method that allows one to prove a statement without revealing any additional information.
NIZK differs from ZKP in that it requires no interaction between the prover and verifier, making
it suitable for anonymous and distributed message verification in blockchain systems. A formal
definition of a Non-Interactive Zero-Knowledge (NIZK) proof system is as follows: Let (𝑃,𝑉 ) denote
a pair of probabilistic polynomial-time algorithms acting as the prover and verifier, respectively. For
a language L ⊆ NP (with a security parameter 𝑘), the tuple (𝑃,𝑉 ) is called an NIZK proof system
for L if it satisfies the following properties:
• Integrity: For any input 𝑥 ∈ L, its witness 𝑤 , and polynomial 𝑝 (), the following must
satisfied:

𝑃𝑟 [𝑉 (𝑅, 𝑥, 𝑃 (𝑅, 𝑥,𝑤)) = 1] ≥ 1 − 1
𝑝 ( |𝑥 |) (11)

• Soundness: For any input 𝑥 ∉ L,any probabilistic polynomial-time algorithm 𝑝∗, and any
polynomial 𝑃 (), the following must be satisfied:

𝑃𝑟 [𝑉 (𝑅, 𝑥, 𝑃∗ (𝑅, 𝑥)) = 1] < 1
𝑃 ( |𝑥 |) (12)

• Zero-Knowledge: For any 𝑥 ∈ L, its witness𝑤 , there exists a probabilistic polynomial-time
simulator 𝑆 such that the following distributions are computationally indistinguishable:

{𝑅, 𝑥, 𝑃 (𝑅, 𝑥,𝑤)} ≈ {𝑅, 𝑥, 𝜋} ← 𝑆 (𝑥) (13)

This means that all information obtained by the verifier during interaction with the prover
can also be computed by a probabilistic polynomial-time simulator. Note that 𝑅 is a public
random reference string.

3.5.3 Transaction Privacy Protection Methods.
Homomorphic encryption systems (HC) allow computations on ciphertexts without decrypting
them. This means that operations on encrypted data yield results that match those of the same
operations on plaintext. This enables tasks like querying encrypted data without exposing it, thus
enhancing privacy when data is outsourced or stored with third parties.
Consider a scenario where Party 𝐴 holds values (𝑥1, 𝑥2, ...𝑥𝑛),and Party 𝐵 holds a function 𝑓 ().

Both want to compute 𝑓 (𝑥1, 𝑥2, ...𝑥𝑛) without disclosing the values or the function’s details. In a
homomorphic encryption system, 𝐴 encrypts the inputs {𝐸 (𝑥1), ..., 𝐸 (𝑥𝑛)} and sends them to 𝐵. 𝐵
performs the computation on the ciphertexts, randomizes the result, and sends it back to 𝐴. Upon
decryption, 𝐴 securely obtains 𝑓 (𝑥1, 𝑥2, ...𝑥𝑛).

Homomorphic encryption systems, as black-box operations, take 𝑛 ciphertexts and operations as
input and output the encrypted result of the corresponding operation on the original data. This
feature makes them ideal for securely updating transaction amounts and other data in blockchains.
Typical homomorphic encryption schemes for blockchain privacy protection include the Pedersen
Commitment Scheme[33] and the Paillier System [31].
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4 FUTURE RESEARCH DIRECTIONS
From the above chapters, we understand common privacy protection methods. This section outlines
future research directions in this field.
• Scalability: Coin mixing causes extra waiting delays, and complex cryptographic primitives
often lead to significant computational and communication overhead. These high costs
limit the scalability of anonymity. Thus, one possible direction is to solve the combinatorial
optimization problem between existing or new cryptographic primitives and their potential
configurations.
• Enhancing Privacy under Weaker Assumptions: Strengthen privacy protection in scenarios
with minimal or no trust assumptions.
• Compatibility: A major challenge is ensuring compatibility between privacy protection
methods and account architectures, such as Ethereum’s account system, which maintains
addresses as a global state. Ethereum, being the most widely used platform due to its built-
in Turing-complete programming language, is considered ideal for DAPP development.
However, integrating privacy protection with its account architecture remains a significant
challenge.
• Privacy Protection and Regulatable Control: Blockchain’s decentralized and trustless nature

has driven its widespread adoption, with privacy protection safeguarding user data. However,
these technologies can be exploited for illegal activities like money laundering. Thus,
blockchain activities need regulation by a trusted institution to prevent misuse while still
protecting users’ sensitive data.

5 CONCLUSION
This paper focuses on the privacy and security issues of blockchain-based decentralized applications
(DApp). Through data behavior analysis of DApp, we reveal their development status and conduct
security analyses, supporting subsequent chapters. We also detect reentrancy vulnerability attacks
in smart contracts using the BLSTM-ATT model, enabling source code-level attack detection.
Furthermore, we examine privacy threats in blockchain and discuss cryptographic defenses like
identity and transaction privacy protection. Finally, we summarize existing privacy protection
methods and outline future research challenges in this field. Research on the privacy and security of
blockchain-based decentralized applications is a vast topic. This paper has only scratched the surface
by analyzing and discussing some basic knowledge, security threats, and corresponding methods.
For the underlying blockchain technology of DApp, its security issues are complex and directly
impact DApp security. Challenges such as data security at the data layer and consensus algorithm
security at the consensus layer warrant further exploration. Additionally, smart contracts, a unique
component of DApp, face not only reentrancy attacks but also other threats like short-address
attacks and code injection, which will remain research hotspots.
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