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A B S T R A C T
Decentralised applications (dApps) that run on public blockchains have the benefit of trustworthiness
and transparency as every activity that happens on the blockchain can be publicly traced through the
transaction data. However, this introduces a potential privacy problem as this data can be tracked
and analysed, which can reveal user-behaviour information. A user behaviour analysis pipeline was
proposed to present how this type of information can be extracted and analysed to identify separate
behavioural clusters that can describe how users behave in the game. The pipeline starts with the
collection of transaction data, involving smart contracts, that is collected from a blockchain-based
game called Planet IX. Both the raw transaction information and the transaction events are considered
in the data collection. From this data, separate game actions can be formed and those are leveraged
to present how and when the users conducted their in-game activities in the form of user flows. An
extended version of these user flows also presents how the Non-Fungible Tokens (NFTs) are being
leveraged in the user actions. The latter is given as input for a Graph Neural Network (GNN) model
to provide graph embeddings for these flows which then can be leveraged by clustering algorithms to
cluster user behaviours into separate behavioural clusters. We benchmark and compare well-known
clustering algorithms as a part of the proposed method. The user behaviour clusters were analysed
and visualised in a graph format. It was found that behavioural information can be extracted regarding
the users that belong to these clusters. Such information can be exploited by malicious users to their
advantage. To demonstrate this, a privacy threat model was also presented based on the results that
correspond to multiple potentially affected areas.

1. Introduction
Public blockchains have the benefits of immutability,

decentralisation and anonymity [1], and have a wide range
of potential use cases, such as distributed identity manage-
ment [2], record linkage [3] and metaverse [4]. DApps that
run on top of blockchains and NFTs that represent various
types of physical and digital objects, such as arts [5], have
become widely used in recent years. However, every submit-
ted blockchain transaction can be publicly traced by anyone,
thus, the transaction data can be analysed, which can uncover
behavioural information. This is somewhat analogous to
being able to analyse people’s browser history and activities,
which is a serious privacy concern. Zhang et al. [6] de-
scribed this as the issue of linkability of transactions, which
makes de-anonymisation inference attacks possible. There
have been multiple research works conducted on blockchain
transaction analysis, however, these have differing focuses
and they usually do not involve the events that are emitted by
the transactions in their analysis. Analysis in regards to NFTs
is mainly limited to their market analysis and related works
do not consider their actual usage in dApps. For instance,
Tao et al. [7] presented a network analysis of the Bitcoin
blockchain, and Pelechrinis et al. [8] provided an analysis
of the NBA’s TopShot NFT marketplace regarding illegal
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activities such as money laundering or trading illicit goods.
However, the type of user behaviour that can be extracted
from dApps through transaction analysis remains unknown
which prompted this research as there is a need to present
the full extent of the previously mentioned privacy concern.
Furthermore, behaviour analysis can be leveraged to identify
malicious entities such as phishing scammer participants [9].

This work aims to analyse behavioural information re-
garding in-app activities, including NFT usage by users of
blockchain-based games. We argue that this type of infor-
mation can be considered problematic, as malicious users
can use it to their advantage, for example, for impersonation
attacks or targeted scams [10, 11]. It can also be used by
related parties such as game providers, to track the users and
their activities and implement changes based on the corre-
sponding analysis. Tracking users in blockchain networks
can be done in multiple application areas. Hu et al. [12]
studied tracing users for blockchain data audit purposes.

In our work, a blockchain-based game called Planet IX1
was chosen as a case study application. Transactions from
multiple smart contracts were collected and used to get the
general transaction information and the emitted event logs.
The event logs were decoded to obtain all the event data
which was then converted into a graph format, thereby allow-
ing it to be queried to access information easily. All related
event sequences of users and NFTs were extracted through
database queries, which allowed the formation of general in-
game actions. From the event sequences and formed actions,

1https://planetix.com/
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the corresponding user action flows for every user were
presented. Similarly, for every tokenId (which is a property
that corresponds to an NFT), the associated actions were
extracted. They were also linked to user wallet addresses,
which enabled the presentation of extended user flows that
not only show the conducted activities but also which tokens
were used at what time by the performed actions.

These extended user flows served as input for a GNN
model that assigned unique graph embeddings for each of
them. A graph embedding is a vector representation of the
graph that is suitable to be used for clustering. Following
that, several clustering algorithms were utilised to cluster the
user flows into separate unique behavioural clusters. The al-
gorithms were evaluated based on common metrics, and one
of them was selected as the current method for the clustering
process. The output behavioural clusters were then described
which presented the separate types of user behaviours that
are possible in this chosen blockchain-based game. A corre-
sponding privacy threat model was also included to present
how this can potentially be utilised maliciously.

This research presents a new type of blockchain anal-
ysis that focuses on behavioural information that can in-
form users’ activities, interactions and habits. The malicious
actors or dApp developers do not need to fully identify
the person behind the user as they can construct a profile
based on the behavioural information and use that to their
advantage to conduct activities like targeting the original
user based on past actions or using the constructed profile
to perform impersonation-related attacks. Behavioural infor-
mation does not directly affect users’ privacy but by linking
multiple activities, relations and habits of users together,
it can reveal sensitive information. Therefore, behavioural
information is privacy-sensitive and has to be protected.
The overall contributions of this research are summarised
as follows:

• Proposed an action synthesis method that presented
unique actions from a blockchain-based application
which were used to construct users’ action flows.

• A user behaviour analysis pipeline was proposed that
adopts GNN. Multiple clustering algorithms were
utilised within the pipeline to cluster the user flows
into unique behavioural clusters. These clusters can
be used to analyse different user groups.

• The results were compared from the clustering algo-
rithms in order to identify the well performing ones for
this task. Descriptions were provided of the different
behavioural clusters that a chosen clustering algorithm
generated. A privacy threat model was also presented
that corresponded to the extracted behaviour clusters
and was linked to potential application areas.

The rest of the paper is constructed as follows: Section 2
presents related research works. In section 3, the proposed
user behaviour analysis pipeline is introduced in full detail.
Section 4 shows the clustering results from the chosen

clustering algorithm and describes the privacy threat model.
Finally, the paper is concluded in section 5.

2. Related work
In this section, the corresponding related works on

blockchain transaction analysis, blockchain-based games
and the usage of GNN are presented to highlight the dif-
ferences and limitations in this area of research.

Transaction analysis has been utilised for multiple pur-
poses in previous research. Wu et al. [13] proposed a novel
transaction tracing tool for account-based blockchains called
TRacer to trace illicit financial flows. They formed the
accounts and their token transfer relationships into a graph
format, which enables them to model Decentralised Finance
(DeFi) actions. Those were categorised into two patterns:
Xfer (transfer, minting, burning) and Swap (add liquidity,
remove liquidity, trade), where Xfer refers to sending/re-
ceiving tokens and Swap means the exchange of a token for
another token. Bonifazi et al. [14] proposed a new approach
to classify Ethereum users. They built a social network that
included the user addresses and their transactions, intro-
duced multiple features to characterise the addresses, and
utilised multivariate time series. Four classes of interest from
information provided by Etherscan were also defined: Token
Contract class involves addresses using tokens and not Ether.
The Exchange class includes the addresses that buy and sell
cryptocurrencies. The Bancor class is where users who allow
clients to deposit and convert belong. Finally, the Uniswap
class includes users who use the Uniswap protocol.

There has been research that focused on blockchain-
based games. Jiang et al. [15] investigated how blockchain
can introduce advantages regarding loot boxes. These boxes
are goods involving a probability of obtaining one/more
in-game virtual assets. They modelled in-game interactions
between the provider and the players as a two-stage Stack-
elberg game. However, they utilised that to conduct market
analysis, for example, the price set by the game provider, the
users’ utility and the impact of the gas fee. Jiang et al [16]
collected a year of player operation data from a blockchain-
based game called Aavegotchi. They analysed this data in
aspects of gaming and finance. The analysis includes daily
active addresses, functions and density distribution to reflect
player behaviours. Finally, they applied an unsupervised
Self-Organising Map (SOM) algorithm to divide user groups
into different clusters. Their work presented a similar aim as
the behavioural clusters in this work, as they provided in-
formation on user activity levels and included the functions
from the smart contracts in their data collection. However,
when presenting their clusters, they mainly focused on de-
scribing how much the corresponding users would invest.
They included their interactions but not in detail and did not
provide graph visualisation.

GNN is leveraged in the proposed pipeline. It can be
applied to multiple research tasks as it is shown as follows.
Wu et al. presented a survey on how GNN can be applied to
recommender systems [17]. They presented multiple areas
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where they can be utilised such as in user-item collaborative
filtering. They apply it to exploit high-order connectivity
from user-item interactions, or in social recommender sys-
tems. They use GNN to model social interactions. Jin et
al. [18] similarly showed how GNN is being used in time
series-related tasks, like classification and anomaly detec-
tion, as they are able to capture inter-variable and inter-
temporal relationships. They can be applied to blockchain-
related use cases as well. For example, Liu et al. [19]
proposed a novel GNN framework, Filter and Augment
Graph Neural Network, to provide an Ethereum transaction
network embedding model. In the proposed pipeline, user
flows are extracted, and they are subgraphs of the second
local database’s entire graph data. Alsentzer et al. [20] in-
troduced SUBGNN that can learn subgraph representations,
including if they are disentangled. They also detailed the
challenges of utilising GNNs in regard to subgraphs, which
we encountered when applying a GNN model to provide
subgraph embeddings.
The gap: As presented, other blockchain analysis works
may include the introduction and usage of actions in anal-
ysis, however, the application area is very different. Mainly
finance-related. They can also introduce classes that are
also a categorisation of the users, similar to the behavioural
clusters that are introduced in this work, however, they do
not have a direct relation to in-game activities. The proposed
pipeline can be beneficial in describing user behaviour in
multiple application areas as it can use data from various
types of blockchain-based applications. For example, these
clusters are based on in-game data, and as a result, they
are less general and can be more expressive in the area of
gaming.

Works on blockchain-based games are often market-
related analyses and cannot be applied directly to this work’s
research area as they do not present user behaviour. Even if
they include user categorisation in classes or clusters, the
main focus still relies on potential investment in the game
or other dApp and not on general application activities. This
research addresses this gap by introducing a novel pipeline
that can be used to describe different user behaviours, which
can focus on non-finance-related areas as well such as NFT
usage or which parts of the game are popular.

3. User behaviour analysis pipeline
In this section, the introduced user behaviour analysis

pipeline is presented that can be used to reveal the type
of behavioural information that can be extracted through
transaction analysis. As can be seen in Figure 1, it has
four components: data preprocessing, action formation and
application, GNN and clustering. First, an overview of the
pipeline is given and then each component is detailed.
3.1. Overview

Each step of Figure 1, namely Data preprocessing, Ac-
tion formation and application, GNN model, and Clustering,
is briefly described in this section to give a general overview.

These four are explained in detail later in their corresponding
sections. The analysed outcomes are presented in section 4.
Data preprocessing: Transaction information is collected
and stored in a graph format in a local database. By querying
the graph database, event sequences can be extracted for user
wallet addresses. There are two ways of extracting events
that correspond to a certain wallet address: enquiring events
from transactions that were submitted by the particular user
who has that wallet address or extracting events based on
event property information that corresponds to the address.
Action formation and user flow: The event sequences
were examined, and certain patterns were identified that
were used to form unique in-game actions. For every se-
quence, the pattern they belong to was checked, and the
corresponding action steps were also added and associated
with the particular user’s wallet address. An action step
refers to one in-game step a user makes at a given time
that is represented by a timestamp where the user performs
a specific action. The newly formed actions and the noted
action steps enabled us to establish a new local database
with two newly introduced node types: users and actions.
The action steps are presented as edges between these nodes.
By converting the data into a graph format, it is possible
to present how and in which order the users performed
these unique actions in the form of user flows. A similar
process can be used to extract event sequences for NFT
tokenIds. The tokenIds are unique numbers that identify an
NFT within a collection. Querying the first local database,
by using the particular tokenId as an event property value,
lead to the extraction of the event sequences. After that,
all the sequences were checked and assigned to the existing
action patterns or formed new actions. The token action steps
were also added. Every added action step included the wallet
address of the user that was associated with the particular
step (for example, the user that submitted the corresponding
transaction). This enabled us to add the NFTs as nodes and
the token action steps as a new type of edge in the second
database. With this new information, not only the user’s
action activities but also their NFT usage in the form of an
extended user flow can be presented. A second local database
was added where the action-related information was stored
as graphs.
GNN model: By examining multiple user flows, it can be
seen that some users conduct very similar activities, which
indicates that there is a possibility of analysing similar user
behaviours if they are grouped together. In this research, this
is formulated as an unsupervised clustering task. As a first
step, a GNN model was leveraged to provide graph embed-
dings for its input graph representation. The extended user
flows were passed as inputs for this model, however, there
was an elimination step to reduce complexity. In the GNN
model, both the node and edge features were considered.
From the included wallet addresses 70% of them were ran-
domly chosen for the training, and their corresponding user
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Figure 1: An overview of user behaviour analysis pipeline.

flows were added as input data. The remaining addresses
were used for testing.
Clustering process: The elbow method [21] was used to
estimate the number of clusters that were required because
we did not have any predefined knowledge or labels. From
the previous GNN step, we had two embedding arrays that
were used as input in the clustering process. Multiple clus-
tering algorithms were leveraged, and then their results were
compared through multiple clustering metrics. One of the
algorithms was chosen based on the comparison, and the
different behaviours coming from the corresponding clusters
were described and presented. Following that, the privacy
threat model was also presented.

In what follows the technical details of the above ap-
proach are presented.
3.2. Data preprocessing

The first step of the methodology is described which
includes the process of the data collection and how that
transaction information is converted into graph format which
then enables its analysis through various queries. The second
part of this describes how the event sequences for the users
and the NFTs can be extracted.
3.2.1. Data collection and graph formation

For this study, transaction data from a blockchain-based
game called Planet IX was collected. Based on our previous
work [22], APIs were leveraged, namely Polygonscan2 and
Alchemy3, to extract data from the Polygon blockchain
where the game is deployed. In addition to the basic transac-
tion information (such as transactionHash, blockHash and
value), the events that are emitted within the transactions

2https://docs.polygonscan.com/
3https://docs.alchemy.com/reference/api-overview

are also encoded. The collected data is then transformed
into graph format and stored in a local Neo4j database. This
enables the process of conducting blockchain transaction
analysis on the collected game data, which can reveal con-
nections between transactions, events and event properties.

The data coming from the emitted events includes var-
ious types of information such as token and staking-related
properties. It also presents a large number of involved wallet
addresses which are the potential user addresses that can
be examined to reveal user behaviour. By querying the
established local database 12146 distinct addresses were
extracted. However, this number is a combination of user,
smart contract and game-related addresses.
3.2.2. Event sequencing

Since in-game behavioural information [23] is extracted,
event sequences have to be linked to addresses. When build-
ing these sequences, the following has to be taken into ac-
count: the events that were emitted through the transactions
that were submitted by the particular address, and the events
that were part of other transactions, however, the specific
wallet address is included as event property information.
The latter transactions could have been initiated by a user
as the differing wallet address can be just the result of the
structure of the game, therefore, it has to be considered. For
the first type of event sequence, the database can be queried
based on the from address transaction information which
corresponds to the address that submitted the transaction.
The second type of event sequence is extracted by querying
connections between events through event property informa-
tion that has the address as the value. Besides the addresses’
event sequences, the sequences that correspond to NFTs are
also extracted, however, in this case, only the second type of
event sequences are possible because the query is based on
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(a) One-time NFT usage

(b) Multi-time NFT usage

Transactions

Evens

Event properties

Unique event
property pairs

Figure 2: Categorisation of NFTs based on usage (unique event property pairs link event property information across multiple
events).

the tokenIds of the NFTs. Following that, both the user and
NFT event sequences are ordered based on the timestamp
transaction information. By analysing these sequences, the
type of activities the users or NFTs have been involved with
can be learned.

When looking into the NFT event sequences, it can
be seen that certain NFTs are only leveraged once by one
address, whereas others can be part of several events and
can be leveraged by multiple addresses. An example of the
one-time NFT usage is given in Figure 2a, where an NFT is
placed down to a certain location and is not referenced again.
Figure 2b presents multiple-time NFT usage for a tokenId
that represents an avatar that is claimed multiple times. We
have to note, however, that a tokenId does not fully describe
an NFT, as multiple collections can have the same tokenId
value, but this still can indicate multiple usage of the same
NFT. In the future, this is planned to be extended.
3.3. Action formation and user flow

The formation of the unique in-game actions from the
address event sequences is presented. Two types of actions
are introduced: primary and secondary. It also describes
how the corresponding data can be converted into graph
format. Following that, the way to present the corresponding
user flows derived from the event sequences and also the
method to extend them with the inclusion of the NFTs will
be explained.
3.3.1. Formation of actions

In section 3.2, two types of event sequences were iden-
tified. The first type extracts them from the transactions that
were submitted by the wallet address. Actions that are de-
rived from these sequences were named as primary actions

since, in this case, it is certain that they describe address-
related activities. The second type acquires the events based
on connecting events through the address as a common
event property. Every action that is constructed from these
sequences, is secondary. Even though the address is included
as event information, the action may or may not describe
an activity the actor behind the address personally has been
a part of. Some of the identified actions can be considered
both primary and secondary as they were derived from both
types of event sequences. We identified 48 actions where
38 of them were primary, one was secondary and 9 were
determined as both.

When examining the transactions the events were ex-
tracted from, regardless of which case the transactions were
considered in, it can be seen that the events are repeating
across multiple similar transactions in unique recognisable
patterns. These patterns were identified and used to extract
the unique actions that all actors conduct within the game.
These patterns are explained as follows:
1. Unique events: This corresponds to those transactions

that have a unique set of events emitted that is fixed
at every occurrence. This transaction is submitted by a
wallet address.

2. Every event repeating the same amount of times: This
presents transactions where, within the event set, event
sequence chunks can be discovered that consist of the
same set of events. The event sequence chunk is added
as the new action. The sequence chunks can be clearly
grouped based on their event property values.

3. Every event repeats the same amount of times except for
one event, which only occurs once: This is similar to the
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(a) Single user flow (b) Extended user flow

Actions

Users

NFTs

Figure 3: Examples of user flows.

Algorithm 1 Action formation from event sequences
1: procedure FORM ACTIONS(𝑡𝑦𝑝𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)
2: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ← []
3: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← []
4: 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝𝑠 ← []
5: for addr in addresses do
6: if type = primary then
7: sequences ← primary event sequences
8: else
9: sequences ← secondary event sequences

10: end if
11: 𝑜𝑟𝑑𝑒𝑟 ← 0
12: for seq in sequences do
13: current_pattern ← call match_pattern

(𝑠𝑒𝑞, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)
14: current_events ← call get_events

(𝑠𝑒𝑞.𝑒𝑣𝑒𝑛𝑡𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
15: for each action in actions do
16: if action.events == current_events then
17: uuid ← action.id
18: else
19: uuid ← generate uuid
20: new_action ← {uuid: uuid, type:

type, events: current_events}
21: actions.push(new_action)
22: end if
23: new_step ← {order: order, uuid: uuid,

prev_uuid: action_steps[length(action_steps) - 1].uuid,
address: addr, transactionHash: seq.transactionHash,
timestamp: seq.timestamp, data: seq.data}

24: action_steps.push(new_step)
25: end for
26: order ← order + 1
27: end for
28: end for
29: return 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝𝑠
30: end procedure

previous pattern except for the single count event. It is
recognised that the latter event is actually a bulk event,
which means that it includes event property values from
the event sequence chunks initiated from the repeating
events. This is added as a new action formed as the
combination of the event sequence chunk and the bulk
event.

4. One event repeats a large number of times, whereas
the rest of them only occur once: In the corresponding
transactions, it can be noticed that there is one event that
occurs a large but varying number of times, while other
events are unique per transaction. This is added as a new
action by only adding the repeating event once but by
combining the event property values.

5. Some events repeat at the same amount of times, but
there are single count events as well: This groups all the
remaining other transactions as there are no recognisable
patterns. In this case, the actions are added with all the
events included.
These unique actions were added by going through the

event sequences. For every sequence, it was first checked
which pattern they belonged to. Following that, the then-
current action list (as the actions were formed, the action
list was continuously growing) was examined to investigate
whether the current sequence corresponded to an already
identified action. If not, the sequence was added as a new
action with a generated uuid (unique ID that is generated
and then assigned to the action), the action type (primary,
secondary or both) and the associated events. The action
step was also noted with the following information: The
order of the step (the order of the steps were able to be
ascertained because the sequences were previously ordered
based on the timestamps), the corresponding wallet address
(in the NFTs’ case this is the from address), in case of
an NFT-related sequence the tokenId, the transactionHash,
the timestamp, the previous and current action uuids and

Zelenyanszki et al.: Preprint submitted to Elsevier Page 6 of 15



Clustering and analysis of user behaviour in blockchain: A case study of Planet IX

Table 1
Properties of the action nodes.

Property Description
Total count total # times action is called
Min call min # times action is called
Max call max # times action is called
Mean call avg # times action is called
Min assets min # assets associated with action
Max assets max # assets associated with action
Mean assets mean # assets associated with action
Min tickets min # tickets associated with action
Max tickets max # tickets associated with action
Mean tickets mean # tickets associated with action
Min packs min # packs associated with action
Max packs max # packs associated with action
Mean packs mean # packs associated with action
Min timestamp first time action is called
Max timestamp last time action is called

the event data information. In the latter, the tokenIds or
IDs for the assets (NFTs), tickets (the game includes a
lottery activity) and packs (openable objects that include
additional items like avatar NFTs), the related addresses,
the values (such as reward amount) and additional IDs (like
IDs associated with waste management which is one of the
in-game activities) were noted. In the NFT’s case, only the
related addresses were noted. The action formation from
sequences can be seen in Algorithm 1 where the function
match_pattern matches the events with the established pat-
terns and function get_events shortens the event list based on
the matched pattern.
3.3.2. Graph representation

Similarly to our previous work [22], the extracted infor-
mation was converted into a graph format and stored in a
separate local Neo4j database. Three types of nodes were
introduced: 1. User nodes that correspond to the unique wal-
let addresses, as those are the only node property they have.
2. Action nodes that present the unique set of actions that
were formed from the event sequences based on the patterns
from the previous sub-section. They have multiple properties
that were extracted from the examination of the address and
NFT action steps. They are summarised those in Table 1. 3.
NFT nodes that correspond to a unique token and have only
one other property (isMultiple), which describes whether
they are one-time or multiple-time usage NFT. This new
local database includes two types of relations: NEXT_STEP,
which presents one step from a specific address at a given
timestamp, and USED_BY, which describes one NFT usage
at a given timestamp by a certain address (which can be non-
user). Both of them have the same three edge properties:
the corresponding wallet address, the order in which the
address conducted the action or the NFT was used and the
timestamp.

3.3.3. Extracting user flows
As mentioned in the previous sub-section, action steps

from both the users and the NFTs are converted into a graph
format in the form of the NEXT_STEP and the USED_BY
relations. Since these relationships have the address as a
property, the database graph data can be filtered based on
that. This results in the user flow graphs that correspond
to the filter address only. Since the edges also include the
action step order number and the associated timestamps,
by examining these user flows, the type of activities the
participants have conducted can be described, and assump-
tions can be made in regard to their behaviour. For example,
what time they conduct certain actions, in which order they
perform a subset of actions or how active they are in general.
Shorter user flows indicate lesser engagement in the game.
Figure 3a presents an example of a single user-flow that only
shows how the actions have followed each other. If the NFT
nodes and their USED_BY relations are also included in the
filtering, an extended user flow can be presented, which also
considers how the assets were leveraged by the particular
corresponding address. An example of this can be seen in
Figure 3b.
3.4. Embedding and clustering

In the following, it is explained how the individual user
flows are categorised into multiple separate clusters to show
not only a single user behaviour but also to enable the
analysis of group user behaviour. For this purpose, a GNN
model was included that provides unique embeddings for
every user flow. These embeddings are then given as input
to the clustering algorithms, which results in clusters for all
the user flows and, therefore, enables them to be analysed
and visualised together. The entire process is visualised in
Figure 4.
3.4.1. Definition of user flow subgraph and

elimination
Let 𝐆(𝐕,𝐄) be a graph with a set 𝐕 of vertices and a set

𝐄 of edges. There are three types of vertices (nodes): 𝐀 ⊆ 𝐕
is the set of action nodes, 𝐔 ⊆ 𝐕 is the set of user nodes,
and 𝐍 ⊆ 𝐕 is the set of NFT nodes. For ∀𝐮 ∈ 𝐔 there is
a user flow 𝐒, which is a subgraph of 𝐆. For every such
user flow (sub)graph, a suitable graph representation 𝐒′ is
generated and then given as input for the GNN model to get
the corresponding subgraph embedding.

The graph representation 𝐒′ for each 𝐒 is being con-
structed as follows: As 𝐒 corresponds to one user 𝐮, the
related nodes consist of 𝐕𝐒 = {𝐮} ∪ {𝐚 ∣ 𝐚 ∈ 𝐀𝐮} ∪ {𝐧 ∣
𝐧 ∈ 𝐍𝐮} and 𝐄 = {𝐞 ∣ 𝐞 ∈ 𝐄𝐮} where the single
user node 𝐮 and its associated subset of the action nodes
𝐀𝐮, subset of the NFT nodes 𝐍𝐮 and the related edges 𝐄𝐮are considered. The user nodes are emitted from the input
graph representations for the GNN model as there is only
one user node for every user flow subgraph and the user
nodes only have the address property which makes them
negligible when it comes to learning. The corresponding
edges are also emitted as we assume that by eliminating
only one edge, these user flow subgraphs are still suitable
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Figure 4: Overall embedding and clustering process.

for clustering into separate diverse clusters. However, this
elimination reduces the complexity of the model because the
dimension differences between the user nodes and the other
nodes do not have to be handled. Furthermore, every 𝐒 that
interacted with less than four unique actions is excluded from
the embedding and clustering process as it is presumed that
an actual user would interact with multiple parts of the game
whereas a game-related address will perform the same set
of actions continuously. With this step, the included address
list is reduced to wallet addresses that are more likely to be
actual user addresses. From the extracted 12146 addresses,
only 8296 had associated event sequences and solely 716
were considered for clustering. The burn address 4 was
also eliminated. For the action nodes, the features presented
in Table 1 are considered. The NFT nodes only have the
isMultiple property to be included. The edge attributes are
fully leveraged. Based on this, GNN graph representations
were added for the 716 addresses.
3.4.2. GNN model

This sub-section presents the GNN model that is lever-
aged to produce graph embeddings. It consists of multiple
layers to provide an embedding that takes into account all
the necessary node features and also the edge attributes. By
leveraging all, the produced embedding is clearly unique for
∀𝐒, therefore, is suitable to be given as input for clustering
algorithms. The following is defined for the model:

Let 𝐗 ∈ ℝ𝑁×𝑑in_node be the input node features
Let 𝐘 ∈ ℝ𝑀×𝑑in_edge be the input edge attributes
Let 𝐈 ∈ ℝ2×𝑀 be the edge index
Let 𝐁 ∈ ℝ𝑁 be the batch vector
Let 𝐇 ∈ ℝ𝑁×𝑑hidden be the hidden node embeddings
Let 𝐙 ∈ ℝ𝐺×𝑑out be the output graph embeddings

As users perform different actions in varying order, the
sizes of the node features, edge index and edge attributes
tensors are different. In the following, all the layers the GNN
model consists of are being presented:

40x0000000000000000000000000000000000000000

Input Layer: The input consists of node features 𝐗, edge
index 𝐈 and the edge attributes 𝐘. The𝐗 that is given as input
is the concatenation of the padded node features matrices of
the action and NFT nodes. As they have differing dimen-
sions, this is an addition to reduce the complexity because
this way, the GNN model still behaves as a homogenous
model instead of the complexity of a heterogenous model.
The edge attributes are the same for both relations so there
was no need for an adjustment in that regard. The input layer
consists of the following:

𝐗 ∈ ℝ𝑁×𝑑in_node , 𝐈 ∈ ℝ2×𝑀 , 𝐘 ∈ ℝ𝑀×𝑑in_edge

Normalization Layer. Node features are standardised us-
ing layer normalisation [24] as a pre-processing step, which
was added to improve the performance of the training:

𝐗norm = LayerNorm(𝐗) ∈ ℝ𝑁×𝑑in_node

Concatenation Layer: Because the edge attributes are
also required to be considered when generating the subgraph
embeddings, they are concatenated to the node features.
Scatter Mean is applied to calculate the average of the edge
attributes and that is then concatenated to the node features.
This way all graph information is passed down through
the other layers. The applied Scatter Mean is described as
follows:

𝐈edge = scatter_mean(𝐘, 𝐈[0], dim = 0,
dim_size = 𝑁) ∈ ℝ𝑁×𝑑in_edge

The concatenated node features 𝐗cat that is passed down
to the GraphSAGE layer is explained as follows:
𝐗cat = concat(𝐗norm, 𝐈edge, dim = 1) ∈ ℝ𝑁×(𝑑in_node+𝑑in_edge)

GraphSAGE: A GraphSAGE [25] operator5 is utilised to
perform the neighbourhood aggregation where every node
aggregates features from its neighbouring nodes:

𝐇 = SAGEConv(𝐗cat, 𝐈) ∈ ℝ𝑁×𝑑hidden

5https://bitly.cx/oo1b
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ReLU Activation: The previously defined hidden features
are passed through a ReLU activation function:

𝐇relu = ReLU(𝐇) ∈ ℝ𝑁×𝑑hidden

Linear Transformation: A linear transformation is ap-
plied to the activated features to put them into the required
shape for the next step:

𝐇linear = 𝐇relu𝐖linear + 𝐛linear ∈ ℝ𝑁×𝑑out

Global Mean Pooling: Since the subgraph embeddings
from both the training and the testing of this model are
required to obtain, global mean pooling was applied to
obtain graph-level embeddings:

𝐙 = global_mean_pool(𝐇linear,𝐁) ∈ ℝ𝐺×𝑑out

Output Layer: Finally, the model returns the total graph-
level embeddings for the input 𝐒′:

𝐙 ∈ ℝ𝐺×𝑑out

3.4.3. Embedding and clustering of user-flow graphs
The user (sub)graphs were partitioned into a training and

testing dataset. 501 user addresses were chosen, and their
corresponding graph representations were constructed and
then added to the training dataset. The graph representations
were calculated for the remaining 215 users as well and
then placed in the testing dataset. The training dataset was
used to train the GNN model, and that was validated on the
testing dataset by graph embedding similarity. Each unique
subgraph embedding was extracted and grouped into one
array, which was given as input for the clustering algorithms.

Figure 5: Elbow method for optimal n.

Without pre-defined knowledge, we also did not have any
indicators of the suitable clustering algorithm that should be
applied. Therefore, clustering was performed by leveraging
multiple clustering algorithms, ranging from widely used to
state-of-the-art, and comparing their results. The applied al-
gorithms are as follows: k-means [26], mean-shift [27], spec-
tral clustering [28], agglomerative clustering [29], BIRCH

Table 2
Comparison of clustering algorithms.

Algorithm SC DBI CHI
k-means 0.6122 0.4605 2757.17
Mean-shift 0.5592 0.5456 987.51
Spectral clustering 0.1463 2.8559 605.45
Agglomerative clustering 0.5273 0.5712 2030.50
BIRCH 0.5447 0.4321 2232.54
Bisecting k-means 0.5685 0.4670 2412.91
Affinity propagation -0.6096 646.2999 1.65

[30], bisecting k-means [31] and affinity propagation [32].
We have also tried DBSCAN [33] and HDBSCAN [34], but
they did not yield comparable results, so we excluded them
from our experiment tables.

Prior to this clustering process, we did not have any
predefined knowledge of potential user behaviour or any
grand truth labels that we could use. Therefore, unsupervised
clustering was conducted to place the unique subgraph em-
beddings into multiple diverse clusters. We also did not have
any indication of the potentially required number of clusters
(n), so the elbow method was leveraged. Based on Figure 5,
6 was chosen as the number of clusters for those clustering
algorithms that require such an input.

4. Results and discussion
In this section, the results of the clustering process are

presented. At first, a comparison of the clustering algorithms
is provided. Based on that, one of the clustering methods
was chosen, and behavioural clusters that were produced by
this algorithm were presented. For each cluster, descriptions
were provided based on multiple aspects and some visuali-
sation examples are also presented.
4.1. Comparison of the clustering algorithms

Multiple clustering metrics were leveraged: the Silhou-
ette Coefficient (SC) [35], the Davies-Bouldin Index (DBI)
[36] and the Calinski-Harabasz Index (CHI) [37], to evaluate
the performance of the various clustering algorithms. SC
gives a value between -1 and 1 and the values closer to 1
present better clustering results. DBI ranges between 0 and
∞ and shows good clustering results when the value is close
to 0. In CHI there is no specific range but higher values
mean good clustering and lower values present poor results.
The results are presented in Table 2. They show that k-
means performed the best based on SC and CHI and BIRCH
outperformed all based on DBI. However, agglomerative
clustering and bisecting k-means produced very similar val-
ues as well which present a good performance so the usage
of any of those is recommended. On the other hand, spectral
clustering and affinity propagation presented poor results.
We chose k-means to present clustering results but any of
the recommended clustering algorithms can be utilised in
related research.
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(a) Cluster 𝐶1 (b) Cluster 𝐶2 (c) Cluster 𝐶3

(d) Cluster 𝐶4 (e) Cluster 𝐶5
Actions

Users
(f) Cluster 𝐶6

Figure 6: Behavioural clusters from k-means.

4.2. Behavioural clusters
In order to describe the different behavioural clusters

that were constructed by k-means, certain information was
extracted as a base for their comparison. This can be seen
in Table 3. Multiple features are presented for all 6 clusters,
they are named as follows in left to right order: the number
of users in the cluster, the mean number of assets, tickets and
packs that were used in any action, the length of the general
user flow, the number of unique NFTs that the corresponding
users utilised, the average time (in hours) the users spent
in the game during the examined time period, two of our
introduced metrics, asset usage (𝜌) and NFT distribution
(Φ) that we introduce later and the action sequences for the
general user flows. Those present how the actions follow
each other in the corresponding general user flows. In order
to show visualisation results, the clustering algorithm results
were added as edge properties, which enables us to filter
based on the clustering algorithm and the cluster number.
The clusters generated by k-means are visualised in Figure 6.
This presents how all user flow subgraphs of users of the
clusters are merged together to a new subgraph of 𝐆.

For better visibility, a general user flow was also gener-
ated for each cluster. For every possible step (based on the
average amount of steps the included users made within the
examined period) in that cluster, a check was made for which
action was the mode action to determine which one was the
most frequently performed by the users of that cluster at
the specific step, and that was added as the action for that
specific step. In order to visualise this, a virtual user node
was added as the starting user for all general user flows and
the edges in between nodes were added as a new type of
edge called VIRTUAL_STEP which has the k-means cluster
number as property. In Figure 7, the general user flows for the
behavioural clusters are presented. However, these graphs
also include all the NFT assets that were used by the actions
of the general user flows. In the following, all produced
clusters are described, which we summarise in Table 4. In
both Table 3 and Table 4, # refers to the cluster number.

In the summary Table 4, the asset usage is calculated
by two metrics: 𝜌 and Φ. 𝜌 refers to high/low asset usage
by calculating the ratio of the actions that have any type
of asset usage as shown in Eq 1, while Φ presents whether
these NFT assets are well distributed among the actions by
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Table 3
Comparison of k-means clusters.

# Users Mean#
asset

Mean#
ticket

Mean#
pack

Flow
length NFTs Time

(hr)
Usage
(𝜌)

Distr.
(Φ) Typical action sequence

1 162 1.5578 0.0491 0.1639 11 441 52.19 0.50 2 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎0, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9
2 111 1.6725 0.0508 0.1525 11 574 64.53 0.40 2 𝑎0, 𝑎0, 𝑎5, 𝑎7, 𝑎10, 𝑎11, 𝑎12, 𝑎13, 𝑎6, 𝑎14, 𝑎9
3 100 1.4878 0.0508 0.1525 11 188 69.62 0.54 2 𝑎0, 𝑎1, 𝑎5, 𝑎15, 𝑎7, 𝑎9, 𝑎16, 𝑎17, 𝑎12, 𝑎6, 𝑎18

4 46 1.6011 0.0625 0.1875 15 820 247.20 0.50 3 𝑎0, 𝑎19, 𝑎0, 𝑎15, 𝑎20, 𝑎10, 𝑎21, 𝑎16, 𝑎22, 𝑎6,
𝑎23, 𝑎18, 𝑎24, 𝑎25, 𝑎26

5 161 1.2900 0.0769 0.1230 9 282 41.61 0.33 1 𝑎0, 𝑎27, 𝑎5, 𝑎15, 𝑎17, 𝑎10, 𝑎16, 𝑎7, 𝑎3
6 136 1.2849 0.0517 0.1034 9 280 69.36 0.62 1 𝑎0, 𝑎16, 𝑎5, 𝑎2, 𝑎10, 𝑎16, 𝑎6, 𝑎22, 𝑎28

Table 4
Summary of cluster descriptions.

# Active Asset usage Time
1 No High, not distributed Low
2 No Low, not distributed Medium
3 Semi-active High, not distributed Medium
4 Yes High, distributed Long
5 No Low, not distributed Short
6 No High, not distributed Medium

checking the number of nodes that have the majority of the
USED_BY relations. This is detailed in Eq 2. In both cases,
if a node has multiple USED_BY relations to a single NFT,
we only counted one relation. Asset usage is high if 𝜌 ≧ 𝛼
where 𝛼 is the usability factor which determines the ratio of
the action nodes that must have NFTs associated with them.
NFTs are well distributed if the number of nodes, that have
the majority ratio of the USED_BY relations where this ratio
is determined by the distribution factor 𝛽, are higher than the
distribution number of nodes that are represented by 𝛾 . They
are calculated as follows:

𝜌 =
∑𝑚

𝑖=1 𝑥𝑖 ⋅ (𝑥𝑖 > 0)
𝑚

(1)

where (𝑥𝑖 > 0) is the indicator function that equals 1 if 𝑥𝑖 >
0 and 0 otherwise, where 𝑥𝑖 is the number of USED_BY
relations associated with a particular node 𝐧 and 𝑚 is the
number of nodes in the general user flow.

𝚽 = min

{

𝑘 ∣
𝑘
∑

𝑖=1
𝑥𝑖 ≥ 𝛽 ⋅

𝑚
∑

𝑖=1
𝑥𝑖

}

(2)

where 𝑥𝑖 represents the number of USED_BY relations for
each node, 𝑚 is the total number of nodes in the general user
flow and 𝑘 is the minimum number of nodes needed to reach
or exceed the set threshold.

Based on the examination of the general user flows
visualised in Figure 7, we chose 0.5 for 𝛼, 0.6 for 𝛽 and 2
for 𝛾 . In Table 3, values for both metrics can be seen.

Table 4 also presents information regarding user activity.
When determining whether users in a cluster were active in
the game or not, the following was considered:

• Distributed NFT usage which suggests that they have
participated in multiple parts of the game and not just
focused on one aspect.

• The time the users spent in the game and the amount
of actions they performed within the examined period.

• Whether there is any element of the game that influ-
ences the users’ performed actions.

The behavioural clusters generated by k-means are de-
scribed as follows in the order of the ascending engagement
level of the included users:
Cluster 𝐶5 - Inactive Users with interest: The short
general user flow visualised in Figure 7e, the low asset usage,
mean asset and pack values and the lowest associated time
period shows that these users were highly inactive within the
period. However, the mean ticket value is the highest among
all clusters which means that lottery-related activities may
interest them and can be a key element in increasing potential
engagement. As a result of this the users who belong to this
cluster can be called inactive users with interested.
Cluster 𝐶6 - Inactive Users with no interest: Similar
behaviour to Cluster𝐶5 but with an increased amount of time
spent in the application. The overall asset usage is higher but
it is extremely low in all actions but one that has the majority
of the involved assets as presented in Figure 7f. There is
no clear indication what could increase the users’ activity
level, therefore, further behavioural analysis can be crucial
for the developers to gain insights on the users’ potential
interests and habits that can be utilised to make changes in
the application that can be beneficial for them. As there is
no defined interest, users of this cluster are named inactive
users with no interest.
Cluster 𝐶2 - Brief Engagers: Users in this cluster can
be considered not active because although they performed
multiple types of actions within a time period that is con-
sidered average, they did not use NFTs in a lot of actions.
The involved assets are crucial parts of this application
thus low usage presents low user participation. Figure 7b
presents this low asset usage. Application providers can also
leverage analysis of this cluster to determine causes of low
engagement after trial. The included users can be called brief
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(a) Cluster 𝐶1 - Dropouts (b) Cluster 𝐶2 - Brief Engagers

(c) Cluster 𝐶3 - Semi-active Users (d) Cluster 𝐶4 - Active Users

(e) Cluster 𝐶5 - Inactive Users with interest

Actions

Users

NFTs

(f) Cluster 𝐶6 - Inactive Users with no interest
Figure 7: Generated general user flows.

engages as they try the application but do not get involved in
all parts.

Cluster 𝐶1 - Dropouts: This cluster presents a com-
mon behaviour where the included users conducted various
types of activities within a short time with high asset usage
but they did not get invested in the application. Figure 7a
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presents a not well distributed asset usage as the majority of
the assets are centered around only two action nodes. NFT
distribution is important as the application consists of mul-
tiple activities offered by in-game corporations and some of
those involve NFTs and others are being performed without
the need for any asset usage. If the NFTs are well distributed
among actions, it can be assumed that the corresponding
users are invested in multiple parts of the application. Anal-
ysis of this behavioural cluster can provide information on
why certain users did not get engaged in the application after
conducting various types of activities in it. These users are
called dropouts.
Cluster 𝐶3 - Semi-active Users: Users of this cluster
performed multiple actions with high asset usage within an
average time period but with a poor distribution as presented
in Figure 7c. They can be considered semi-active users as
they engaged in the game but the distribution presents that
they did not get fully involved even though they spent more
time in the application than users of Cluster 𝐶2. Analysis of
this cluster can help developers to adopt strategies that can
potentially increase the corresponding users’ engagement.
Cluster 𝐶4 - Active Users: This cluster groups the users
that presented active user behaviour within the examined
period. Figure 7d presents the longest general user flow
that shows high asset usage with good distribution. The
values for mean asset, ticket and pack also present that
they utilised the game assets when participating in multiple
types of in-game activities. This cluster has the longest time
period which means that these users not only engaged but
presented continuos active behaviour. However, this cluster
has the lowest associated user base thereby, it can be stated
that active user behaviour is rare in this dApp. Behavioural
analysis of the involved users can enable the establishment
of engagement models of active user behaviour which can
be utilised by the game providers to check which parts of the
application boost active engagement.

Figure 8: Privacy threat model.

4.3. Privacy threat model
The modelled version of a potential privacy threat is

presented in this sub-section, which can be seen in Figure 8.
Game providers can conduct similar types of blockchain
analysis of their games, establishing behavioural clusters.

If a game provider would like to deduce what to add or
remove in the game in order to increase the engagement
of a certain player, the provider can extract the player’s
corresponding user flow. Then that can be matched to the
behavioural clusters’ general user flows. From the cluster
that matches, the game provider can extract the general user
flow, which shows the usual activities of the belonging users
and other in-game behavioural information in regard to how
the corresponding users usually behave. The provider then
can form and apply a change based on that which specifically
targets the specific player. In the following, a couple of
affected areas are presented:
GameFi: This threat model presents that this type of re-
search has a use case in the GameFi sector. This is further
supported by the examples given in the previous sub-section.
For example, behavioural information from an active cluster
can be utilised to reveal which activities boost interest and
information extracted from lesser active clusters can be
leveraged to conduct churn rate-related analysis. Results
from these analyses can enable game providers to design
more effective engagement and incentive models.
Secondary NFT marketplace: Users can buy assets in
the primary NFT marketplace that is associated with the
particular dApp. However, because of full ownership of
assets on the blockchain, these users can sell these assets
on other platforms that are not related to the original dApp
as well. We refer to these as secondary NFT marketplaces.
Analysis of the primary marketplace, secondary marketplace
or both can be also beneficial if a malicious actor would like
to learn more about a certain user’s behaviour. Therefore,
the pipeline can be utilised in this area as well. Data from
the smart contracts that are associated with the marketplaces
can be collected and behavioural clusters can be established
based on it. Targeted users’ user flows can then be matched
to the general user flows of the clusters and information from
the matched cluster can be utilised against the targeted user.
For example, it can be learned whether he/she is willing to
participate in an auction or not.
Metaverse: In a metaverse setting malicious attackers can
utilise similar techniques to construct social profiles of users
based on their activities and interactions. They can extract
the users’ user flows and match them to general user flows
thereby, gaining knowledge of common activities and habits
that are present in the matching cluster. These profiles can
be leveraged to create fake avatars, which can be utilised to
impersonate the original users or perform scams to a targeted
user base (users within a certain cluster), similarly to how
they are presented in [38]. To present an example, they can
check which cluster includes the most active users and target
them with scams, as they are more likely to respond because
of their higher participation rate. As a result of the possi-
bility of establishing behavioural clusters or user profiles,
blockchain applications in privacy-sensitive areas such as
healthcare or governance could face similar problems.
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5. Conclusion
Public blockchains have the potential to be used in

multiple application areas. However, the traceability of
transaction data by anyone presents a privacy challenge as
blockchain data analysis can potentially be used to extract
user behaviour. This work presented a process to extract and
define user behaviour clusters based on blockchain transac-
tion data that was collected from a chosen dApp which is
a blockchain-based game. From the data collection, unique
actions were identified and leveraged to present user action
flows that described the user’s activities and asset usage.
These user flows were utilised as input to a GNN model
to provide embeddings, which were then used in clustering
algorithms to put them into diverse clusters. These clusters
can be visualised and analysed to discuss the related user
behaviour. The first resulting behavioural clusters present
multiple information regarding the participating users like
their activity level and asset usage.

In future work, the time period provided for the user
flows will be increased so long-term user behaviour can also
be analysed. This means a wider time period that corre-
sponds to the current timestamps and also the examination
of user behaviour from a time period that is very distant from
the current timestamps. We assume that the analysis between
multiple periods may provide more expressive results. Cur-
rently, we only consider data from game-related smart con-
tracts, but combining that with transaction information from
secondary NFT markets and market analysis may extend in-
formation presented in the form of behavioural clusters. Data
from other blockchain-based applications DeFi services will
be collected and it will be investigated whether there are
general behavioural patterns across multiple dApps.
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