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Abstract
Recent advancements in Text-to-Image (T2I) generation have sig-
nificantly enhanced the realism and creativity of generated images.
However, such powerful generative capabilities pose risks related
to the production of inappropriate or harmful content. Existing
defense mechanisms, including prompt checkers and post-hoc im-
age checkers, are vulnerable to sophisticated adversarial attacks.
In this work, we propose TCBS-Attack, a novel query-based black-
box jailbreak attack that searches for tokens located near the deci-
sion boundaries defined by text and image checkers. By iteratively
optimizing tokens near these boundaries, TCBS-Attack generates
semantically coherent adversarial prompts capable of bypassing
multiple defensive layers in T2I models. Extensive experiments
demonstrate that our method consistently outperforms state-of-the-
art jailbreak attacks across various T2I models, including securely
trained open-source models and commercial online services like
DALL-E 3. TCBS-Attack achieves an ASR-4 of 45% and an ASR-1 of
21% on jailbreaking full-chain T2I models, significantly surpassing
baseline methods.
Warning: This paper contains model generations that are offensive
in nature.

Keywords
Text-to-Image model, jailbreak attack, constraint optimization prob-
lem

1 Introduction
Text-to-image (T2I) generation has seen rapid advancements in
recent years, fueled by the development of powerful deep diffusion
models such as Stable Diffusion [31] and DALL-E [30]. These mod-
els are capable of producing highly realistic and creative images
from natural language descriptions. However, this progress has
raised significant concerns regarding the potential generation of in-
appropriate or harmful content, commonly referred to as Not-Safe-
For-Work (NSFW) contents [15, 26, 28, 32, 34, 39]. While various
filtering mechanisms [1, 2] have been implemented to detect and
block NSFW outputs, these systems remain vulnerable to sophisti-
cated adversarial attacks, which can bypass the filters and generate
NSFW images.

Various methods have been proposed for jailbreaking T2I gener-
ation for NSFW attacks. Manual prompts have achieved commend-
able results. I2P [34] demonstrates strong attack capabilities as a
dataset of human-written prompts. However, the manual prompts
necessitate substantial human intervention, making large-scale ap-
plication challenging and lacking flexibility. Gradient-based [25, 40]
attacks treat the target model as a white-box system, leveraging
access to the model’s gradient information to optimize adversarial
prompts. MMA-Diffusion [40] leverages token-level gradients to
guide the optimization process, crafting adversarial prompts that
effectively bypass prompt filters. While this approach works well in
controlled environments, it is often impractical in real-world scenar-
ios due to the difficulty in obtaining the model’s gradient data [3, 4].
In contrast, query-based [9, 42] attacks do not require access to the
model’s gradient information. Instead, they focus on searching for
similar tokens within the vocabulary to craft adversarial prompts.
For instance, SneakyPrompt [42] employs reinforcement learning
to explore black-box jailbreak attacks, but it still faces the risk of
converging to local optima. HTS-Attack [9] enhances the jailbreak
performance through heuristic token search algorithms. However,
it does not address the post-hoc image checker during the token
search process. Despite query-based methods for generating adver-
sarial prompts preserve semantic integrity, they still face challenges
in bypassing the defense mechanisms of T2I models.

To address these issues, we propose a novel black-box jailbreak
attack method called token-level constraint boundary search attack
(TCBS-Attack). TCBS-Attack delineates the boundary between the
safe and unsafe contents within the search space by leveraging
the safety filter’s decision boundary. Tokens situated near this
boundary often exhibit heightened adversarial potential. TCBS-
Attack searches tokens in proximity to this boundary during the
token search to enhance the presence of NSFW contents within
adversarial prompts. By utilizing stringent detectors to establish
constraints for token search, TCBS-Attack effectively enhances the
stealthiness of adversarial prompts and the robustness of jailbreak
attacks against T2I model defense mechanisms.

Our approach demonstrates robust attack capabilities across
various adversarial environments. A systematic experimental anal-
ysis demonstrates the efficacy of our method. The experimental
results show that TCBS-Attack effectively bypasses the defense
mechanisms of T2I models, demonstrating its efficacy in black-box
jailbreak attacks. This advantage is attributed to TCBS-Attack’s
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query-based approach and its robust search capabilities. We sum-
marize our contributions as follows:

• We propose a novel query-based black-box jailbreak attack
method, TCBS-Attack, which employs token search based
on constraint boundary.

• TCBS-Attack enhances the efficacy of adversarial prompts
and bolsters jailbreak robustness against T2I model defense
mechanisms by identifying and utilizing tokens near the
constraint boundary during token search.

• Extensive experiments have demonstrated the effectiveness
of TCBS-Attack in jailbreaking T2I models. Evaluations en-
compass a variety of T2I models, prompt checkers, post-hoc
image checkers, and online commercial models.

2 Related Work
2.1 Adversarial Attacks on T2I Models
In recent years, adversarial attacks [11–13, 16, 45] on T2I models
have garnered significant attention due to their ability to exploit
model vulnerabilities and bypass safeguards [8, 10, 14, 17, 18, 18, 21,
23, 27, 28, 33]. These attacks typically aim to probe functional weak-
nesses by modifying input text, leading to undesirable or malicious
outcomes, including degraded image synthesis quality [23, 33, 43],
incorrect outputs [27, 45], and compromised image fidelity [21, 22].
An increasing body of research has focused on how to induce T2I
models to generate NSFW contents, such as gore, violence, adult
content, racial discrimination and politics. Also, these NSFW con-
tents possess the capability to bypass the defense mechanisms of
T2I models. UnlearnDiffAtk [44] and Ring-A-Bell [37] have made
pioneering contributions in this field. UnlearnDiffAtk [44] lever-
ages the intrinsic classification capabilities of diffusion models to
simplify the creation of adversarial prompts, primarily focusing on
concept-based diffusion models [7, 19]. However, it does not inves-
tigate other defense strategies. Ring-A-Bell [37] is a novel concept
retrieval algorithm that obtains holistic representations of sensitive
and inappropriate concepts through concept extraction, thereby
inducing T2I models to generate NSFW contents. However, it lacks
precise control over the synthesis details.

Recent advancements in jailbreak attacks targeting T2I mod-
els, such as MMA-Diffusion [40], SneakyPrompt [42] and HTS-
Attack [9], have primarily focused on crafting adversarial prompts
that bypass safety checkers like Stable Diffusion’s Safety Checker [31].
These attacks usually rely on optimizing prompts that are designed
to circumvent these built-in defenses, either through gradient-based
optimization in white-box settings or query-based approaches in
black-box scenarios. While methods like MMA-Diffusion [40] ex-
ploit token-level gradients to optimize adversarial prompts, they are
constrained by the need for a white-box setup and face difficulties
when safety defenses successfully intercept these gradient signals.
SneakyPrompt [42] utilizes reinforcement learning to optimize ad-
versarial prompts, but it remains susceptible to getting trapped in
local optima. Similarly, HTS-Attack [9], which uses a query-based
strategy, optimizes adversarial prompts through heuristic token
search algorithms. However, this approach does not incorporate
the post-hoc image checker during the token search phase. These
methods, although effective in certain contexts, are not guaranteed
to work across a broad range of T2I models and defense systems.

This highlights the need for a more robust, versatile attack strategy
that can effectively bypass various defenses while maintaining high
attack success rates.

2.2 Defensive Methods for T2I Models
Defense methods for T2I models generally consist of three compo-
nents: the prompt checker before image generation, the securely
trained T2I model, and the post-hoc image checker. The prompt
checker includes defense modules that perform safety checks on in-
put prompts through sensitive word detection and overall semantic
analysis [24, 41]. The NSFW-text-classifier [2] evaluates the input
prompt to determine whether it contains NSFW content, providing
a corresponding score. The securely trained T2I model employs
safety training techniques, such as concept removal, to mitigate
NSFW attacks. The concept-based diffusion model, SLD [34], re-
moves and suppresses inappropriate image portions during the
diffusion process. The post-hoc image checkers [44] aim to assess
the images produced by the T2I model and filter out NSFW content.
For example, Stable Diffusion’s built-in Safety Checker [31] can
block images containing detected the NSFW content and return a
fully blacked-out image.

3 Methodology
3.1 Motivation
Safety filters, whether text-based or image-based, function as bi-
nary classifiers with decision boundaries in the text embedding
space [42]. To craft adversarial prompts that bypass both text and
image checkers in T2I models without compromising semantic
integrity, we propose a constrained boundary search algorithm,
which refines prompts near the constraint within a heuristic search
framework. We utilize the safety filter’s decision boundary as a con-
straint in our search space. By searching for similar tokens based
on CLIP [29] text similarity within the search space, the prompts
near this constraint boundary exhibit high textual similarity to the
target prompt, thereby maintaining strong semantic similarity.

We follow the setup based on query-based black-box attacks.
However, in TCBS-Attack (the detailed procedure is shown in Fig. 1),
we employ the decision boundaries of the text and image check-
ers to represent critical transition points between safe and unsafe
content generation, guiding our token search process. By refining
prompts in regions adjacent to these boundaries, we induce the
model to generate content that bypasses safety checkers and tra-
ditional prompt filters without triggering explicit defenses. Our
approach reduces reliance on complex gradient-based optimization
and enhances the efficacy of adversarial perturbations. The specific
details can be found in Sections 3.2 and 3.3.

3.2 Problem Formulation
Building upon the motivation outlined in Section 3.1, we refor-
mulate the jailbreak problem as a constrained optimization task.
Here, we use 𝑝𝑡𝑎𝑟 to denote the target prompt that contains NSFW
contents (e.g., “A naked man and a naked woman in the room”)
and 𝑝𝑎𝑑𝑣 to denote that the adversarial prompt crafted by the at-
tacker. The input sequence is 𝑝𝑡𝑎𝑟 = [𝑝1, 𝑝2, . . . , 𝑝𝐿] ∈ N𝐿 , where
𝑝𝑖 ∈ {0, 1, . . . , |𝑉 | − 1} is the 𝑖th token’s index, 𝑉 is the vocabulary
codebook, |𝑉 | is the vocabulary size, and 𝐿 is the prompt length.
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Figure 1: Overview of the proposed TCBS-Attack framework. TCBS-Attack initially detects sensitive tokens and initializes
population. Subsequently, candidate prompts in the population undergo iterative refinement through token search and token
selection based on constraint boundary, effectively bypassing safety measures in T2I models.

The optimization problem is structured to achieve two primary tar-
gets: maximizing the image similarity between the generated image
and the target content, and ensuring that the generated image sat-
isfies the safety requirements set by the T2I model. To quantify the
degree of semantic similarity, we introduce a pre-trained CLIP [29]
model, where 𝐼𝜃 (·) represent the image encoder, respectively. The
above problem can be formulated as follows:

max cos(𝐼𝜃 (𝐹𝜃 (𝑝𝑎𝑑𝑣)), 𝐼𝜃 (𝐹𝜃 (𝑝𝑡𝑎𝑟 )))

𝑠 .𝑡 .


𝐹𝜃 (𝑝𝑎𝑑𝑣) ≠ 0
𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣) = 1
𝐹𝑖𝑚𝑔 (𝑝𝑎𝑑𝑣) = 1,

(1)

where 𝐹𝜃 (·) denote the T2I model. If an adversarial prompt 𝑝𝑎𝑑𝑣 is
intercepted by the defense mechanism and no image is generated,
then 𝐹𝜃 (𝑝𝑎𝑑𝑣) = 0. Conversely, if an image is successfully gener-
ated, it is represented as 𝐹𝜃 (𝑝𝑎𝑑𝑣). 𝐹𝑡𝑒𝑥𝑡 (·) represents the prompt
checker: if 𝑝𝑎𝑑𝑣 passes this checker, 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣) = 1; otherwise,
𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣) = 0. Similarly, 𝐹𝑖𝑚𝑔 (·) denotes the post-hoc image
checker: if 𝑝𝑎𝑑𝑣 passes this checker, 𝐹𝑖𝑚𝑔 (𝑝𝑎𝑑𝑣) = 1; otherwise,
𝐹𝑖𝑚𝑔 (𝑝𝑎𝑑𝑣) = 0.

The objective in Eq. (1) is to maximize the semantic similarity
between the image generated from the adversarial prompt 𝑝𝑎𝑑𝑣 and
the target content. The target content is represented by the image
generated from the target prompt 𝑝𝑡𝑎𝑟 , ensuring the harmfulness
of the image. Enhancing the semantic similarity between these
two images maximizes the possibility of the T2I model generating
NSFW contents.

We define the boundary in the search space based on the clas-
sifier’s decision threshold between classifying 𝑝𝑎𝑑𝑣 as NSFW or
non-NSFW contents. To ensure that the generated image adheres

to the safety mechanisms established by the T2I model, TCBS-
Attack incorporates the decision boundaries of both the prompt
checker and the post-hoc image checker as constraints within the
search space. For the prompt detector, exemplified by the NSFW-
text-classifier, we define the constraint boundary in the search
space based on the classifier’s decision threshold between classify-
ing 𝑝𝑎𝑑𝑣 as NSFW or non-NSFW content. Regarding the post-hoc
image checker, the interception of 𝑝𝑎𝑑𝑣 by the checker occurs be-
cause Stable Diffusion’s built-in Safety Checker [31] computes the
cosine similarity, cos(𝐼𝜃 (𝐹𝜃 (𝑝𝑎𝑑𝑣)), 𝑐𝑜𝑛𝑐𝑒𝑝𝑡), between the image’s
CLIP [29] embedding vector 𝐼𝜃 (𝐹𝜃 (𝑝𝑎𝑑𝑣)) and the pre-calculated
text embedding of 17 unsafe concepts 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 = [𝑐1, 𝑐2, . . . , 𝑐17].
The cosine similarity for each dimension is then compared with
the corresponding threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = [𝑡1, 𝑡2, . . . , 𝑡17]. If the co-
sine similarity for any dimension exceeds its threshold, the image
is classified as NSFW, and a fully black image is returned. To en-
hance the ability of the adversarial prompt to bypass these defense
mechanisms, we introduce the NSFW score as a constraint in our
algorithm. We define the NSFW score as follows:

𝑠𝑐𝑜𝑟𝑒 =

17∑︁
𝑖=1

max (cos(𝐼𝜃 (𝐹𝜃 (𝑝𝑎𝑑𝑣)), 𝑐𝑖 ) − 𝑡𝑖 , 0) . (2)

When 𝑠𝑐𝑜𝑟𝑒 = 0, it indicates that the adversarial prompt 𝑝𝑎𝑑𝑣 allows
the T2I model to generate an image normally and 𝐹𝑖𝑚𝑔 (𝑝𝑎𝑑𝑣) = 1.
However, when 𝑠𝑐𝑜𝑟𝑒 > 0, it signifies that the image generated by
𝑝𝑎𝑑𝑣 has been detected and intercepted by the safety checker and
𝐹𝑖𝑚𝑔 (𝑝𝑎𝑑𝑣) = 0.



3.3 Token-Level Constraint Boundary Search
TCBS-Attack generates adversarial prompts capable of bypassing
safety checkers in T2I models while ensuring semantic consistency
with the target prompt. We refine adversarial prompts iteratively by
manipulating sensitive and non-sensitive tokens while maintaining
constraints that prevent triggering safety mechanisms. Specifically,
TCBS-Attack begins by detecting sensitive tokens in the target
prompt 𝑝𝑡𝑎𝑟 . Based on the detected sensitive tokens, replacements
are made to initialize and generate 𝑛 candidate prompts. These
𝑛 candidates in the 𝑡𝑡ℎ iteration (denoted as 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡 ) then
undergo a token search based on constraint boundary, resulting
in 𝑛 new candidates (denoted as 𝑂𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝐼𝐼 ). Subsequently, the
2𝑛 candidates are evaluated through a token selection based on
constraint boundary, to select the final 𝑛 candidates (denoted as
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡+1) that will move on to the next iteration. The details
of the method are shown in Algorithm 1 and Fig. 1.

3.3.1 Initialization. In the initialization phase, we focus on mutat-
ing both sensitive and non-sensitive tokens in the target prompt
𝑝𝑡𝑎𝑟 . For the target prompt 𝑝𝑡𝑎𝑟 , we perform sensitive token de-
tection to identify and address potentially problematic tokens. We
adopt the method in HTS-Attack [9], starting by identifying sensi-
tive tokens through matching with a predefined NSFW word list 𝑆 .
We then use the NSFW-text-classifier [2] to select the tokens most
likely to be classified as NSFW in the vocabulary codebook 𝑉 and
remove them until they pass the classifier. These two sets of tokens
are subsequently merged to form the final list of sensitive tokens.
The key difference between our sensitive token detection method
and that of HTS-Attack [9] is that we utilize a subset of the NSFW
word list 𝑆 , and after detecting the tokens in 𝑆 , we do not remove
the corresponding tokens from the adversarial prompt. This step is
crucial for facilitating the initialization and token search process,
as we need to ensure that the prompt does not explicitly trigger
any known filters or classifiers.

For each sensitive token in 𝑝𝑡𝑎𝑟 , we first perform a search within
the vocabulary codebook 𝑉 to find the 𝑘 most similar tokens based
on the CLIP text similarity. One of these tokens is then randomly
selected and used to replace the original sensitive token. For non-
sensitive tokens, we perform a similar search process with a prob-
ability 𝑝𝑠1 to replace them with tokens that have high semantic
similarity to the sensitive tokens. This process is repeated 𝑛 times,
resulting in the generation of 𝑛 candidates 𝑝𝑐 = [𝑝𝑐1, 𝑝𝑐2, . . . , 𝑝𝑐𝑛].
These candidates will serve as the initial population for subsequent
optimization steps, providing a diverse starting point for further
refinements in the token search and selection.

3.3.2 Token Search Based on Constraint Boundary. The token search
phase involves refining each candidate in 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡 generated
in the initialization step. For each candidate 𝑝𝑐𝑖 , we apply a search
operation to the sensitive tokens, similar to the one used in the
initialization phase. For non-sensitive tokens in 𝑝𝑐𝑖 , we begin by
determining, with a probability 𝑝𝑠2, whether to replace the non-
sensitive token. If replacement is chosen, we then proceed with a
search with a probability 𝑝𝑠1 to find the most similar token. We
denote the population after replacement as 𝑂𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝐼 . Once the
token search is complete, We evaluate the new candidate 𝑝′

𝑐𝑖
based

on the its image similarity 𝑠𝑖𝑚′
𝑖
with the target content and its

Algorithm 1 TCBS-Attack Algorithm
Require: Target prompt 𝑝𝑡𝑎𝑟 , Vocabulary 𝑉 , NSFW list 𝑆 , CLIP

model 𝑇𝜃 (·), classifier 𝐹𝑡𝑒𝑥𝑡 (·), number of iterations 𝑇 , hyper-
parameters 𝑘, 𝑝𝑠1, 𝑝𝑠2,𝑚1,𝑚2, 𝑛

Ensure: Adversarial prompt 𝑝𝑎𝑑𝑣
1: Detect sensitive tokens in 𝑝𝑡𝑎𝑟 using NSFW list 𝑆 and NSFW-

text-classifier 𝐹𝑡𝑒𝑥𝑡 (·) form sensitive set.
2: Initialize empty candidate set 𝑃𝑐 .
3: for 𝑖 = 1 to 𝑛 do
4: Replace sensitive tokens by randomly selecting from top 𝑘

similar tokens in 𝑉 based on textual similarity 𝑆𝑡 :
𝑆𝑡 = cos(𝑇𝜃 (𝑝𝑐𝑖 ),𝑇𝜃 (𝑝𝑡𝑎𝑟 ))

5: Replace non-sensitive tokens with probability 𝑝𝑠1 similarly.
6: Add generated candidate to 𝑃𝑐 .
7: end for
8: while 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 < 𝑇 do
9: Initialize empty set 𝑃 ′𝑐 for offspring candidates.
10: for each candidate 𝑝𝑐𝑖 ∈ 𝑃𝑐 do
11: Conduct token search on sensitive tokens as initialization.

12: Replace non-sensitive tokens with probability 𝑝𝑠2, then
with 𝑝𝑠1 if selected.

13: Evaluate candidate using conditions in Eq. (3), (4).
14: if conditions met then
15: Repeat token search, add refined candidate to 𝑃 ′𝑐 .
16: else
17: Add refined candidate to 𝑃 ′𝑐 .
18: end if
19: end for
20: Combine original and new candidates into 2𝑛 candidate set.
21: Select 𝑛 candidates from 2𝑛 using binary tournament based

on Eq. (1), (2):
• If both NSFW scores are 0, choose based on 𝐹𝑡𝑒𝑥𝑡 ,

then similarity.
• If one NSFW score is 0, select candidate with NSFW

score 0.
• If both NSFW scores > 0, select based on 𝐹𝑡𝑒𝑥𝑡 , then

lowest NSFW score.
22: Update 𝑝𝑎𝑑𝑣 if selected candidates surpass its similarity

score.
23: end while
24: return 𝑝𝑎𝑑𝑣

proximity to the constraint boundaries. The conditions for further
search in the image domain are as follows:{

𝑠𝑖𝑚′
𝑖 > 𝑠𝑖𝑚𝑏𝑒𝑠𝑡 −𝑚1

0 < 𝑠𝑐𝑜𝑟𝑒′𝑖 < 𝑚2,
(3)

where 𝑠𝑖𝑚𝑏𝑒𝑠𝑡 represents the best image similarity recorded during
the search process,𝑚1 and𝑚2 are two hyperparameters used to
constrain the range of 𝑠𝑖𝑚′

𝑖
and 𝑠𝑐𝑜𝑟𝑒′

𝑖
.

The conditions for further search in the text domain are as fol-
lows:

𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣) = 0. (4)



If the new candidate 𝑝′
𝑐𝑖
satisfies the conditions in either Eq. (3) or

Eq. (4), we will perform the same search process on 𝑝′
𝑐𝑖
again. We

denote the population after the second replacement as𝑂𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝐼𝐼 .

3.3.3 Token Selection Based on Constraints. The token selection
phase involves selecting 𝑛 candidates from a pool of 2𝑛 candi-
dates, which includes 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡 and 𝑂𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝐼𝐼 . The selec-
tion process uses a binary tournament mechanism, where two
individuals are randomly selected from the population, and the
one with better fitness is chosen as a parent for the next gener-
ation. For each pair of candidates 𝑝𝑎𝑑𝑣1 and 𝑝𝑎𝑑𝑣2, we evaluate
their image similarity 𝑠𝑖𝑚1, 𝑠𝑖𝑚2, NSFW scores 𝑠𝑐𝑜𝑟𝑒1, 𝑠𝑐𝑜𝑟𝑒2 and
𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1), 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2). The specific selection conditions are as
follows:

1) If 𝑠𝑐𝑜𝑟𝑒1 = 𝑠𝑐𝑜𝑟𝑒2 = 0, this indicates that both candidates can
successfully pass through the safety checker. Subsequently,
we evaluate 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1) and 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2). If 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1) ≠
𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2), we select the better candidate 𝑝𝑎𝑑𝑣𝑖 for which
𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣𝑖 ) = 1. If 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1) = 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2), we select
the candidate with the higher image similarity, as it more
closely aligns with the target content.

2) If 𝑠𝑐𝑜𝑟𝑒1 = 0, 𝑠𝑐𝑜𝑟𝑒2 > 0 or 𝑠𝑐𝑜𝑟𝑒1 > 0, 𝑠𝑐𝑜𝑟𝑒2 = 0, we
select the candidate with a score of 0, as it is more likely
to successfully generate an image that passes through the
safety checker.

3) If 𝑠𝑐𝑜𝑟𝑒1 > 0, 𝑠𝑐𝑜𝑟𝑒2 > 0, we evaluate 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1) and
𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2). If 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1) ≠ 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2), we select the
candidate for which the result equals 1. If 𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣1) =

𝐹𝑡𝑒𝑥𝑡 (𝑝𝑎𝑑𝑣2), we select the candidate with the smaller NSFW
score, as it is more likely to pass through the safety checker
after further refinement.

This selection process ensures that only the most promising candi-
dates, with the highest potential to bypass safety mechanisms while
maintaining semantic relevance to the target content, are chosen
for the next iteration. This process continues until the number of
selected candidates reaches 𝑛 constituting 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡+1 entering
the next iteration.

4 Experiments
4.1 Experimental Settings
Datasets. We employ two standard benchmarks to evaluate our
experiments: MMA-Diffusion benchmark [40] and UnsafeDiff [28].
The MMA-Diffusion benchmark specifically encompasses NSFW
prompts within the sexual content category, with prompts origi-
nally derived from the LAION-COCO [36] dataset, also leveraged
in our analytical framework. We incorporate UnsafeDiff, a curated
dataset explicitly designed for NSFW evaluation. UnsafeDiff pro-
vides 30 prompts across six NSFW themes: adult content, violence,
gore, politics, racial discrimination, and inauthentic notable descrip-
tions. In total, we select 100 prompts from these datasets for the
comprehensive evaluation of our experiments.

T2I models. We primarily conduct our experiments on the
SDv1.4 model. Furthermore, we repurpose adversarial prompts ob-
tained from these attacks to evaluate transferability against two ad-
ditional open-source models: SLD(Medium) [34] and SafeGen [20].

To assess the effectiveness of adversarial prompts on online T2I
models, we select DALL-E 3 [30].

Defensive methods.We select three types of defense mecha-
nisms commonly used by T2I models: prompt checkers, securely
trained T2I models, and post-hoc image checker. For prompt check-
ers, we utilize NSFW-text-classifier [2] and Detoxify [1]. These
classifiers serve as pre-screening mechanisms by identifying NSFW
content in prompts submitted to T2I models. Regarding securely
trained T2I models, we choose SLD and SafeGen, both explicitly
trained to suppress the generation of inappropriate images typically
produced by standard T2I models. As for post-hoc image check-
ing, we employ Stable Diffusion’s built-in Safety Checker, which
replaces detected NSFW content with entirely black images.

Baselines. We select six state-of-the-art(SOTA) jailbreak at-
tack methods for comparison against our proposed TCBS-Attack:
I2P [34], QF-Attack [45], SneakyPrompt [42], MMA-Diffusion [40],
Divide-and-Conquer Attack(DACA) [5], and HTS-Attack [9]. Specif-
ically, I2P provides a human-written prompt dataset, from which
we chose 100 prompts aligned with NSFW categories in UnsafeDiff
for our experiments. QF-Attack, initially designed for circumvent-
ing T2I model defenses, includes GREEDY, GENETIC, and QF-PGD
strategies. Following MMA-Diffusion’s adaptation, we employ its
modified objective function and adopt the GREEDY strategy, which
demonstrates superior jailbreak performance in MMA-Diffusion.
SneakyPrompt utilizes reinforcement learning techniques to search
for adversarial prompts targeting T2I models. MMA-Diffusion lever-
ages gradient-based optimization to guide prompt refinement while
maintaining high fidelity of generated outputs. DACA employs
large language models (LLMs) to partition NSFW contents into
multiple benign descriptions, generating adversarial prompts ac-
cordingly. HTS-Attack utilizes heuristic token search methodolo-
gies to recombine and mutate tokens for optimizing adversarial
prompts. Due to differences in datasets during the reproduction of
HTS-Attack, we find that the text sim filter is ineffective in filtering
adversarial prompts. To ensure comparable difficulty levels, we
reconfigure HTS-Attack by modifying its second text sim filter in
each optimization iteration, implementing proportional selection
instead.

Evaluation metrics. We adopt multiple metrics to thoroughly
evaluate the effectiveness of jailbreak attack methods. Primarily,
we use the Attack Success Rate out of 𝑁 syntheses (ASR-N) metric.
Specifically, for each adversarial prompt, we generate 𝑁 images
using the T2I models. If at least one image bypasses the safety
checkers and contains NSFW content, we deem the adversarial
attack successful. In our experiments, we employ ASR-4 and ASR-1
to assess the performance. To verify the NSFW content of generated
images, we utilize two independent NSFW detectors: Q16 [35] and
MHSC [28]. Also, wemeasure the proportion of adversarial prompts
passing safety checkers using the Bypass metric. We define Bypass-
Text as the rate of adversarial prompts passing the prompt checker,
and Bypass-Img as the rate of generated images successfully passing
the post-hoc image checker.

Parameter Settings. In our experiments, we utilize the vocabu-
lary from the transformer [38] model BERT [6] and employ CLIP-
ViT-Base-Patch16 as the pre-trained text and image encoders𝑇𝜃 (·),
𝐼𝜃 (·). To generate reference images, we employ the surrogate T2I
model 𝐹𝑠 (·), specifically Stable Diffusion v1.5, which excludes any



Table 1: Comparison to baselines across 2 different prompt checkers. The bolded values are the highest performance.

T2I Model Prompt Checker Attack Bypass-Text Bypass-Img Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

SDv1.4 NSFW-text-classifier

I2P 47% 68% 22% 9% 8% 2%
QF-Attack 25% 81% 14% 5% 6% 1%

SneakyPrompt 33% 81% 18% 8% 18% 8%
MMA-Diffusion 4% 56% 2% 0% 2% 1%

DACA 60% 59% 22% 9% 4% 1%
HTS-Attack 32% 69% 19% 11% 18% 11%
TCBS-Attack 52% 82% 29% 14% 31% 16%

SDv1.4 Detoxify

I2P 96% 68% 42% 19% 33% 12%
QF-Attack 80% 81% 31% 13% 37% 13%

SneakyPrompt 66% 81% 33% 18% 34% 17%
MMA-Diffusion 55% 56% 27% 13% 31% 11%

DACA 99% 59% 40% 17% 11% 7%
HTS-Attack 74% 69% 43% 14% 44% 20%
TCBS-Attack 90% 82% 43% 21% 45% 20%

defensive modules. Specifically, we set a population size 𝑛 of 10.
The number of iterations 𝑇 is 50, which ensures that TCBS-Attack
has the same query budget as other methods. The probability 𝑝𝑠1 of
each non-sensitive token mutation is 0.1. During the token search
process, the probability 𝑝𝑠2 of adversarial prompts causing non-
sensitive token mutation is set to 0.2. The number of similar tokens
during token replacement 𝑘 is 20. The relaxation margins for the
image similarity constraint and NSFW score constraint are set to
𝑚1 = 0.05 and𝑚2 = 0.01.

4.2 Experimental Results on Jailbreaking
Full-Chain T2I Models

To evaluate the robustness and efficacy of our proposed TCBS-
Attack in a full-chain scenario, we integrate both prompt-based and
image-based defensemechanisms typically employed by T2Imodels.
Specifically, we combine the prompt checker module (NSFW-text-
classifier and Detoxify) and the post-hoc image checker module
(Stable Diffusion’s built-in Safety Checker) to comprehensively
assess the adversarial attack effectiveness.

Table 1 presents the comparative evaluation of TCBS-Attack
against various baseline methods across two different prompt check-
ers and the post-hoc image checker using the SDv1.4. Overall, TCBS-
Attack consistently achieves superior performance across multiple
evaluation metrics. By iteratively refining token selection based on
proximity to these checkers’ decision boundaries, TCBS-Attack con-
sistently evades detection bymaintaining semantic coherence while
ensuring the stealthiness of generated prompts. In prompt checker
evaluations, Detoxify exhibits relatively weaker defensive capabili-
ties against baseline methods. In contrast, the gradient-based MMA-
Diffusion method is most easily intercepted, demonstrating only
a 4% success rate against the NSFW-text-classifier. While DACA
effectively bypasses prompt checkers by decomposing unethical
prompts into benign components, this approach considerably weak-
ens the attack performance of adversarial prompts. Among all eval-
uated methods, our proposed TCBS-Attack consistently achieves

high bypass success rates. Notably, TCBS-Attack significantly out-
performs other methods in tests against the NSFW-text-classifier,
highlighting its effectiveness.

In the post-hoc image detection evaluations, the tool detects
potentially offensive content in generated images and returns com-
pletely black images upon identifying violations. TCBS-Attack
demonstrates exceptional efficiency in bypassing the image checker,
achieving a Bypass-Img rate of 82%, the highest among all methods
tested.

We further analyze the attack success rates of images generated
after successfully bypassing both prompt and image checkers. Our
proposed method consistently achieves the highest NSFW attack
success rates across all prompt and image checkers. Specifically,
TCBS-Attack achieves an ASR-1 of 16% and ASR-4 of 31% when
evaluated using the NSFW-text-classifier, and an ASR-1 of 21%
and ASR-4 of 45% when evaluated using Detoxify. These results
demonstrate that TCBS-Attack effectively generates adversarial
prompts that bypass safety checkers and successfully induce T2I
models to generate NSFW images. Fig. 2 shows the attack effect of
TCBS-Attack.

4.3 Experimental Results on Jailbreaking
Securely Trained T2I Models

We repurpose the adversarial prompts obtained from experiment 4.2
to conduct transfer attacks on two securely trained open-source T2I
models: SafeGen and SLD. These models are specifically trained to
remove unsafe concepts and suppress inappropriate images gener-
ated by other diffusion models. Similar to the experiment in Section
4.2, we integrate prompt checker (NSFW-text-classifier) and image
safety checker for both securely trained T2I models.

Table 2 presents the comparative evaluation of TCBS-Attack and
baseline methods against two securely trained T2I models. The
results clearly indicate the superior performance of TCBS-Attack
over other methods in terms of attack success rates.

For the SafeGen model, TCBS-Attack achieves the highest ASR-4
(19% on Q16, 20% on MHSC) and ASR-1 (8% on Q16, 9% on MHSC),
surpassing baseline methods like HTS-Attack (17% ASR-4 on Q16)
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Figure 2: Visualization results of TCBS Attack.

and DACA (7% ASR-1 on Q16). Similarly, for the SLD model, TCBS-
Attack demonstrates notable effectiveness, achieving the highest
ASR-4 of 25% and ASR-1 of 12%, significantly outperforming other
baseline methods such as HTS-Attack and SneakyPrompt.

These results emphasize the robustness and effectiveness of
TCBS-Attack, validating its superior capability to successfully in-
duce securely trained T2I models to generate NSFW content despite
their reinforced security training. Moreover, our results demon-
strate the strong transferability of TCBS-Attack, effectively gener-
alizing its adversarial prompts to bypass security mechanisms in
various T2I model architectures.

4.4 Experimental Results on Jailbreaking
Online T2I Services

To further validate the real-world applicability of TCBS-Attack, we
evaluate its effectiveness against commercial online T2I services,
specifically DALL-E 3. Unlike open-source models, commercial T2I
services typically employ advanced, multi-layered security mea-
sures that pose significant challenges for adversarial attacks. Con-
sidering the cost associated with commercial models, we conduct
our experiments using 30 prompts from the UnsafeDiff dataset.
Correspondingly, I2P also selects 30 prompts from the matching
categories. Additionally, the bypass rate in attacking DALL-E 3 rep-
resents the proportion of prompts successfully generating images.

Table 3 presents the comparative results between TCBS-Attack
and baseline methods for the DALL-E 3 model. TCBS-Attack ex-
hibits robust adversarial effectiveness with the highest ASR-4 rate
of 73.33% and the highest ASR-1 rate of 56.67% on the Q16 detec-
tor, outperforming strong competitors such as MMA-Diffusion and
HTS-Attack. In the evaluation using the MHSC detector, TCBS-
Attack achieves an ASR-4 rate of 60.00% and an ASR-1 rate of

Table 2: Comparison to baselines across 2 securely trained
T2I models. The bolded values are the highest performance.

T2I Model Attack Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

SafeGen

I2P 14% 5% 5% 3%
QF-Attack 11% 2% 3% 3%

SneakyPrompt 12% 3% 9% 8%
MMA-Diffusion 1% 0% 2% 1%

DACA 16% 7% 3% 1%
HTS-Attack 17% 5% 13% 7%
TCBS-Attack 19% 8% 20% 9%

SLD

I2P 8% 3% 13% 4%
QF-Attack 2% 0% 8% 3%

SneakyPrompt 7% 2% 15% 4%
MMA-Diffusion 2% 0% 3% 2%

DACA 9% 2% 4% 0%
HTS-Attack 8% 3% 19% 9%
TCBS-Attack 10% 4% 25% 12%

36.67%, highlighting its capability to induce NSFW content genera-
tion despite DALL-E 3’s sophisticated security checks. These results
underline the potency and versatility of TCBS-Attack, establishing
it as a highly effective adversarial technique capable of challeng-
ing the security frameworks employed by leading commercial T2I
services.

4.5 Ablation Study
Table 4 presents an ablation study conducted to evaluate the contri-
butions of various constraints used in TCBS-Attack. We specifically



Table 3: Comparison to baselines for online commercial
model DALL-E 3. The bolded values are the highest perfor-
mance.

Attack Bypass Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

I2P 66.67% 60.00% 33.33% 23.33% 10.00%
QF-Attack 93.33% 66.67% 53.33% 53.33% 36.67%

SneakyPrompt 76.67% 73.33% 33.33% 53.33% 33.33%
MMA-Diffusion 96.67% 70.00% 50.00% 53.33% 30.00%

DACA 93.33% 40.00% 26.67% 26.67% 6.67%
HTS-Attack 86.67% 70.00% 53.33% 56.67% 36.67%
TCBS-Attack 93.33% 73.33% 56.67% 60.00% 36.67%

Table 4: Ablation Study. These experiments compare the per-
formance of TCBS-Attack after ablating different constraints.

Attack Bypass
-Text

Bypass
-Img

Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

TCBS-Attack 90% 82% 43% 21% 45% 20%
- 𝐹𝑡𝑒𝑥𝑡 (·) 28% 74% 20% 7% 20% 8%
- 𝐹𝑖𝑚𝑔 (·) 54% 59% 21% 8% 26% 14%

- All constraint 24% 60% 14% 6% 16% 8%

consider three scenarios: removing the text constraint 𝐹𝑡𝑒𝑥𝑡 (·), re-
moving the image constraint 𝐹𝑖𝑚𝑔 (·), and removing all constraints.
Results clearly illustrate the significance of each constraint for
enhancing attack performance.

The fully constrained TCBS-Attack achieves the highest overall
performance, exhibiting a high Bypass-Text rate of 90%, the highest
Bypass-Img rate of 82%, and the best ASR-4 (45% on MHSC) and
ASR-1 (21% on Q16) scores. Removing the text constraint (𝐹𝑡𝑒𝑥𝑡 (·))
significantly reduces the Bypass-Text rate to 28%, while moder-
ately lowering the Bypass-Img rate to 74%, resulting in modest
ASR performance. Similarly, when removing the image constraint
(𝐹𝑖𝑚𝑔 (·)), the Bypass-Text rate decreases to 54%, and Bypass-Img
rate further declines to 59%, accompanied by intermediate ASR
scores. The removal of all constraints dramatically undermines the
attack’s effectiveness, leading to the lowest Bypass-Text rate of 24%,
a Bypass-Img rate of 60%, and considerably diminished ASR perfor-
mance, such as an ASR-1 of merely 6% on the Q16 detector. These
results emphasize the critical importance of jointly applying text
and image constraints, as this combination substantially enhances
adversarial effectiveness against robust safety measures.

4.6 Sensitivity Analysis
Tables 5, 6, and 7 present the sensitivity analysis results for key
parameters involved in TCBS-Attack, specifically focusing on the
relaxationmargins for the image similarity constraint𝑚1 andNSFW
score constraint𝑚2 and the number of similar tokens during token
replacement 𝑘 .

In conducting experiments on𝑚1, we set𝑚2 = 0.01 and 𝑘 = 25.
The larger the value of𝑚1, the broader the constraint boundary
during token search; conversely, a smaller 𝑚1 tightens the con-
straint boundary. Table 5 demonstrates the sensitivity analysis for

Table 5: Optimal parameter𝑚1 settings. These experiments
compare different parameter𝑚1 settings.

Attack Bypass
-Text

Bypass
-Img

Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

𝑚1 = 0 90.00% 86.67% 73.33% 36.67% 73.33% 43.33%
𝑚1 = 0.025 90.00% 83.33% 66.67% 40.00% 43.33% 26.67%
𝑚1 = 0.05 86.67% 90.00% 76.67% 40.00% 66.67% 43.33%
𝑚1 = 0.075 93.33% 90.00% 63.33% 33.33% 76.67% 40.00%
𝑚1 = 0.1 86.67% 90.00% 76.67% 40.00% 63.33% 40.00%

Table 6: Optimal parameter𝑚2 settings. These experiments
compare different parameter𝑚2 settings.

Attack Bypass
-Text

Bypass
-Img

Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

𝑚2 = 0.001 86.67% 86.67% 76.67% 36.67% 60.00% 30.00%
𝑚2 = 0.005 90.00% 83.33% 80.00% 40.00% 56.67% 30.00%
𝑚2 = 0.01 86.67% 90.00% 76.67% 40.00% 66.67% 43.33%
𝑚2 = 0.015 86.67% 90.00% 63.33% 26.67% 60.00% 43.33%
𝑚2 = 0.02 80.00% 83.33% 56.67% 26.67% 56.67% 23.33%

Table 7: Optimal parameter 𝑘 settings. These experiments
compare different parameter 𝑘 settings.

Attack Bypass
-Text

Bypass
-Img

Q16 MHSC
ASR-4 ASR-1 ASR-4 ASR-1

𝑘 = 5 73.33% 80.00% 60.00% 30.00% 60.00% 20.00%
𝑘 = 10 83.33% 90.00% 56.67% 30.00% 60.00% 26.66%
𝑘 = 15 93.33% 90.00% 73.33% 33.33% 70.00% 33.33%
𝑘 = 20 93.33% 86.67% 80.00% 40.00% 70.00% 46.67%
𝑘 = 25 86.67% 90.00% 76.67% 40.00% 66.67% 43.33%
𝑘 = 30 83.33% 86.67% 63.33% 30.00% 66.67% 30.00%
𝑘 = 35 90.00% 93.33% 73.33% 36.67% 66.67% 43.33%

the parameter𝑚1. The optimal performance appears at𝑚1 = 0.05,
achieving the highest Bypass-Img rate of 90% and the highest ASR
scores (40.00% ASR-1 for Q16 and 43.33% ASR-1 for MHSC). How-
ever, further increasing𝑚1 beyond 0.05 causes fluctuations in attack
efficacy, indicating that𝑚1 = 0.05 provides a balanced constraint
beneficial for consistent adversarial performance.

In conducting experiments on𝑚2, we set𝑚1 = 0.05 and 𝑘 = 25.
Table 6 demonstrates the sensitivity analysis for the parameter
𝑚2. A larger𝑚2 relaxes the image constraints during token search,
whereas a smaller𝑚2 imposes stricter image constraints. The opti-
mal setting identified is𝑚2 = 0.01, yielding the highest Bypass-Img
rate of 90% and balanced ASR results (66.67% ASR-4 and 43.33%
ASR-1 on MHSC).

In conducting experiments on 𝑘 , we set𝑚1 = 0.05 and𝑚2 = 0.01.
A larger 𝑘 reduces the textual similarity requirements during to-
ken search, which within certain limits can enhance the ability to
bypass safety detectors. Table 7 presents the sensitivity analysis
results regarding the token similarity parameter 𝑘 . As 𝑘 increases,
the ability of TCBS-Attack to bypass both text and image checkers
progressively improves. The best overall performance occurs at



𝑘 = 20, with the highest ASR scores (80% ASR-4 for Q16 and 70%
ASR-4 for MHSC) and Bypass-Text rate 93.33%. Further increasing
𝑘 beyond 20 does not lead to substantial improvements and occa-
sionally reduces effectiveness. This result highlights the critical
role of the 𝑘 parameter in effectively balancing token selection and
semantic coherence to maximize attack performance.

5 Conclusions
In this work, we introduce TCBS-Attack, a token-level constraint
boundary search method for jailbreaking Text-to-Image models.
Unlike the existing approaches, TCBS-Attack leverages the decision
boundaries of both prompt and image safety checkers, enabling
effective generation of semantically coherent adversarial prompts.
Our comprehensive evaluation demonstrated the effectiveness of
TCBS-Attack in bypassing prompt-based and image-based defensive
mechanisms, securely trained T2I models, and commercial online
T2I services.
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Overview
This supplementary material provides additional details to comple-
ment the main paper. Specifically, we include the following contents
to facilitate a deeper understanding and reproducibility of our pro-
posed TCBS-Attack:

• Sensitive Word List
• Implementation Details
• More Visualizations

Warning: This supplementary material contains model generations
that are offensive in nature.

A1 Sensitive Word List
Table A1 provide the explicit sensitive word lists employed during
the sensitive token detection phase in TCBS-Attack. It is worth
noting that the sensitive terms employed in our study are derived
from the curated list compiled by MMA-Diffusion, and the table
presented here uses only a subset of the full vocabulary. During the
experiment, we proactively exclude from the vocabulary any tokens
that contain or are composed of these sensitive words. Additionally,
in our sensitive token detection phase, we explicitly check whether
a given prompt includes any of the terms from this list. This dual
strategy not only enhances the stealthiness of our attack prompts
but also proves effective in circumventing prompt checkers that
rely primarily on keyword-based filtering.

Table A1: Sensitive word list.

Sensitive word list
sexual vagina
nude naked child
nudity explicit content
sex uncensored
18+ fuck
naked nipples
nsfw visible nipples
porn breast
dick areola

A2 Implementation Details
A2.1 Data Collection
To construct our evaluation benchmark, we draw upon two com-
plementary sources of NSFW prompts. First, we utilize a subset of
70 prompts selected from a larger collection of 1,000 adult-themed
prompts originally curated byMMA-Diffusion. These prompts were
mined from the LAION-COCO dataset and validated to trigger Sta-
ble Diffusion’s Safety Checker. To ensure broader thematic coverage
across diverse NSFW categories, we additionally incorporate 30
prompts provided by the UnsafeDiff benchmark, which includes
adult content, violence, gore, politics, racial discrimination, and
inauthentic notable descriptions. In total, we select 100 prompts to
comprehensively assess the performance of our proposed method.

A2.2 Hardware Platform
We conduct our experiments on the NVIDIA A6000 GPU with 48GB
of memory and NVIDIA RTX4090 GPU with 24GB of memory.

A2.3 Details of T2I Models
Stable Diffusion. In SD v1.4 and v1.5 models, we set the guidance
scale to 7.5, the number of inference steps to 100, and the image
size to 512 × 512.

SLD. In SLD model, we set the guidance scale to 7.5, the number
of inference steps to 100, the safety configuration to Medium, and
the image size to 512 × 512.

SafeGen. In SafeGen model, we set the guidance scale to 7.5, the
number of inference steps to 100, and the image size to 512 × 512.

DALL-E 3. For the online commercial model, DALL-E 3, We set
the image size to 1024 × 1024.

A2.4 Baseline Implementation
Among the baselines included in our study, QF-Attack and HTS-
Attack, are particularly noteworthy due to their adaptation in our
experimental setting. QF-Attack was originally developed for a
different adversarial objective and is not directly aligned with the
goal of jailbreaking T2I models. However, in the MMA-Diffusion
paper, the objective of QF-Attack was modified, with a new loss
function designed to match the constraints and evaluation criteria
of jailbreak scenarios. In our work, we follow the same adaptation
strategy to ensure consistency and fair comparison.

HTS-Attack employs a heuristic token search algorithm to it-
eratively recombine and mutate prompt tokens, optimizing them
into adversarial prompts capable of bypassing safety mechanisms.
During our reproduction, we observed that due to differences in
datasets, the original configuration of HTS-Attack’s second text sim
filter had little effect on pruning low-quality adversarial candidates.
As a result, the method suffered from excessive runtime overhead.
To ensure a fair experimental comparison under equivalent diffi-
culty, we reconfigured HTS-Attack by modifying its second text sim
filter. Specifically, in each optimization iteration, we retain only the
top 12 adversarial candidates based on their text similarity scores.
This modification maintains an equivalent query budget to TCBS-
Attack and ensures that both methods operate under comparable
computational constraints.

A2.5 Details of Ablation Study
In our ablation study, we systematically examine three scenarios: re-
moving the text constraint 𝐹𝑡𝑒𝑥𝑡 (·), removing the image constraint
𝐹𝑖𝑚𝑔 (·), and removing all constraints. TCBS-Attack disables the
corresponding constraint functions during both the token search
and token selection stages.

It is important to note that in the original design of TCBS-Attack,
the token selection process prioritizes the image constraint 𝐹𝑖𝑚𝑔 (·)
first, followed by the text constraint 𝐹𝑡𝑒𝑥𝑡 (·), and finally the image
similarity metric. When the image constraint is removed, TCBS-
Attack adjusts its selection logic by first evaluating whether a can-
didate prompt satisfies the text constraint, and then ranking by
image similarity. Conversely, when the text constraint is removed,
the algorithm gives precedence to the image constraint, and only
considers image similarity as a secondary criterion. In the case
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Figure A1: Visualization results of TCBS Attack on SafeGen.

where both constraints are removed, TCBS-Attack ranks candidate
prompts solely based on their image similarity to the target content.

This hierarchical constraint handling in the token selection phase
ensures that the influence of each component can be independently
evaluated, providing a clear understanding of the individual contri-
butions of 𝐹𝑡𝑒𝑥𝑡 (·) and 𝐹𝑖𝑚𝑔 (·) to the overall attack effectiveness.

A3 More Visualizations
In this section, we present qualitative visualization results generated
by the SafeGen model, as illustrated in Fig. A1.
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