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Abstract
Watermarking for diffusion images has drawn considerable atten-
tion due to the widespread use of text-to-image diffusion models
and the increasing need for their copyright protection. Recently,
advanced watermarking techniques, such as Tree Ring, integrate
watermarks by embedding traceable patterns (e.g., Rings) into the
latent distribution during the diffusion process. Such methods dis-
rupt the original semantics of the generated images due to the
inevitable distribution shift caused by the watermarks, thereby lim-
iting their practicality, particularly in digital art creation. In this
work, we present Semantic-aware Pivotal Tuning Watermarks (PT-
Mark), a novel invisible watermarking method that preserves both
the semantics of diffusion images and the traceability of the water-
mark. PT-Mark preserves the original semantics of the watermarked
image by gradually aligning the generation trajectory with the origi-
nal (pivotal) trajectory while maintaining the traceable watermarks
during whole diffusion denoising process. To achieve this, we first
compute the salient regions of the watermark at each diffusion
denoising step as a spatial prior to identify areas that can be aligned
without disrupting the watermark pattern. Guided by the region,
we then introduce an additional pivotal tuning branch that opti-
mizes the text embedding to align the semantics while preserving
the watermarks. Extensive evaluations demonstrate that PT-Mark
can preserve the original semantics of the diffusion images while in-
tegrating robust watermarks. It achieves a 10% improvement in the
performance of semantic preservation (i.e., SSIM, PSNR, and LPIPS)
compared to state-of-the-art watermarking methods, while also
showing comparable robustness against real-world perturbations

† Yaopeng Wang and Huiyu Xu are co-first authors.

and four times greater efficiency. Moreover, PT-Mark can act as a
plug-and-play module, aligning the generation process of existing
advanced watermarking methods to make them more applicable in
real-world scenarios.

CCS Concepts
• Security and privacy→ Social aspects of security and pri-
vacy.
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1 Introduction
Recently, the ease of use and powerful generation quality of text-
to-image diffusion models [4, 23–26] have led to a surge in their
application across various fields, including digital art [16, 23, 29]
and filmmaking [2, 3, 14, 35]. In these fields, images are gener-
ated based on carefully crafted text prompts provided by content
creators, making these images highly valuable [19, 24, 25, 39]. Con-
sequently, there is a growing need for copyright protection for
images produced by diffusion models.

To effectively prove the ownership of the images generated by
text-to-image diffusion models, many studies [7, 15, 32, 38] have
proposed embedding traceable watermark patterns into the initial
noise (latent state) of the latent diffusion process. Due to their low
computational overhead and robustness against real-world pertur-
bations (e.g., JPEG compression), these watermarking methods have
emerged as the prevailing solutions in both academic research and
industrial applications. They embed the watermark pattern into the
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Fourier transform of the initial noise and then perform the typical
diffusion denoising process using the shifted initial noise to obtain
the watermarked images. For watermark verification, DDIM inver-
sion is employed to recover the initial noise from the generated
image and quantify the likelihood that the recovered watermark
matches the target watermark.

Nevertheless, embedding watermarks inevitably induces a distri-
butional shift in the initial noise, as shown in Figure 1, leading to a
deviation in the diffusion denoising process compared to the origi-
nal generation trajectory. This semantic drift reduces their usability
in real-world scenarios, especially in domains where high semantic
fidelity is essential, such as digital art creation [16, 17, 29]. To ad-
dress this limitation, existing work [15, 38] focuses on optimizing
the initial noise to find an alternative latent initialization that, when
embedded with the watermark, generates a watermarked image
that preserves the original semantics. Although these methods can
somewhat mitigate the semantic drift caused by the initial distribu-
tion shift, they fail to effectively navigate the generation process,
which involves multiple diffusion denoising steps primarily influ-
enced by the text prompt. As a result, due to the lack of constraints
on the generation process, these methods often still suffer from
semantic degradation compared to the original semantics.

In this paper, we address the challenge of semantic preserva-
tion in watermarking methods for text-to-image diffusion models
by considering the entire diffusion denoising process. We argue
that both the original diffusion trajectory and the watermarked tra-
jectory can serve as explicit guidance, representing the semantics
and the watermark, respectively. By leveraging this guidance, we
explicitly steer the entire diffusion denoising process through the
manipulation of unconditional text embeddings, thereby enabling
semantic control while preserving the traceability of the embedded
watermark. Building upon this basic idea, we propose Semantic-
aware Pivotal TuningWatermark (PT-Mark), a novel invisible image
watermarking method for diffusion models. Specifically, for a given
image to be watermarked, we first recover both the original genera-
tion trajectory and the watermarked trajectory by applying DDIM
inversion and the typical watermarking process, respectively. The
full recovery of both trajectories enables us to explicitly capture
the evolving semantic and watermark patterns at each timestep, as
these patterns undergo changes throughout the diffusion denoising
process. We further propose employing a pretrained segmentation
network to compare the latent states with and without the water-
mark, in order to identify the salient regions associated with the
watermark. These regions serve as spatial priors to guide the dis-
entanglement of semantic content from watermark patterns. Next,
we introduce a pivotal tuning branch that takes the learnable text
embedding as input to generate a steering vector. Guided by the
identified salient regions, the text embedding is optimized via two
learning objectives: minimizing the discrepancy between the edited
latent state and the original latent state within watermark-agnostic
regions, and aligning it with the latent state in watermarked trajec-
tory within watermark-intensive regions.

We validate the effectiveness of PT-Mark through extensive eval-
uations on two widely used datasets (i.e., MS-COCO and Diffusion
DB). Experimental results show that PT-Mark successfully pre-
serves the original semantics, achieving a 10% improvement in

image quality metrics (PSNR, SSIM, FID, and LPIPS) over state-
of-the-art watermarking methods, while maintaining comparable
robustness to real-world perturbations with a 99% accuracy in wa-
termark verification. Moreover, PT-Mark offers a four times increase
in efficiency compared to state-of-the-art methods and can be in-
tegrated as a plug-and-play module into current watermarking
methods for text-to-image diffusion models.

In summary, our contributions are three-fold:
• We propose Semantic-aware Pivotal Tuning Watermark (PT-
Mark), which explicitly edits the entire diffusion denoising
process by optimizing the text embedding to disentangle
semantics from watermark patterns, thereby aligning image
semantics while preserving watermark traceability.
• PT-Mark can act as a plug-and-play module, integrating into
existing watermarking methods for text-to-image diffusion
models to effectively refine the generation trajectory without
compromising the embedded watermark.
• Extensive experiments demonstrate that PT-Mark surpasses
state-of-the-art watermarkingmethods in both invisibility (achiev-
ing a 10% improvement in PSNR) and efficiency (reducing
generation time by a factor of four), while maintaining high
watermark extraction accuracy (>99%) under diverse real-
world perturbations.

2 Related Work and Background
Diffusion Models and DDIM Inversion. Diffusion models have
demonstrated remarkable success in high-fidelity image generation
and have become foundational for a wide range of generative tasks,
including text-to-image synthesis [1, 22, 23, 25], image editing [5,
6, 10, 21], and restoration [33, 36]. These models progressively
transform random noise into coherent images through a learned
denoising process, effectively modeling complex data distributions.
A representative framework is the Denoising Diffusion Probabilistic
Model (DDPM) [12], which gradually adds Gaussian noise to the
data sample across 𝑇 timestamps according to a predefined noise
schedule {𝛽𝑡 }. The forward process is defined as:

𝑧𝑡 =
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜖, (1)

where 𝜖 ∼ N(0, I) is Gaussian noise, and 𝛼𝑡 =
∏𝑡

𝑖=1 (1 − 𝛽𝑖 ) is
derived from a predefined noise schedule {𝛽𝑡 }. Starting from pure
noise 𝑧𝑇 , the reverse process iteratively removes the noise to re-
cover the data sample 𝑧0. To improve sampling efficiency, Denoising
Diffusion Implicit Models (DDIM) [27] reformulate the reverse pro-
cess into a deterministic and non-Markovian process. Rather than
sampling from conditional distributions, DDIM directly predicts
the previous latent state 𝑧𝑡−1 using:

𝑧𝑡−1 =
√
𝛼𝑡−1

(
𝑧𝑡 −
√

1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 )√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1𝜖𝜃 (𝑧𝑡 ) . (2)

This inversion mechanism enables recovery of latent noise while
maintaining consistency with the generation process, facilitating
downstream tasks such as image editing.
Null-text Inversion. Classifier-Free Guidance (CFG) [13] is widely
utilized in diffusion models for conditional text-driven image gener-
ation. It enhances the generated images’ fidelity to textual condition
P by combining conditional and unconditional predictions during
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Figure 1: Overview of PT-Mark. We modify the entire diffusion denoising process after embedding watermarks into the initial
latent 𝑧𝑇 through Semantic-aware Pivotal Tuning. In this process, we optimize the null-text embedding to adjust the latent,
making it closer to the original semantics (Semantic PT) while preserving the watermark patterns (Watermark PT).

the reverse diffusion process. Specifically, CFG employs a null-text
embedding ∅ to compute unconditional predictions and amplifies
conditional predictions based on a guidance strength parameter:

𝜖𝜃 (𝑧𝑡 , 𝑡, C, ∅) = 𝑤 · 𝜖𝜃 (𝑧𝑡 , 𝑡, C) + (1 −𝑤) · 𝜖𝜃 (𝑧𝑡 , 𝑡, ∅). (3)

Here, 𝑧𝑡 represents latent variables at time step 𝑡 , C = 𝜓 (P) is
the embedding of the text condition, and𝑤 , typically greater than
1, controls the strength of the conditioning. However, using large
guidance scales in CFG can lead to cumulative errors, reducing
both image fidelity and editability. Null-text Inversion (NTI) [21]
addresses these challenges by dynamically optimizing the null-text
embedding during the reverse diffusion process of diffusion mod-
els. Initially, NTI performs DDIM inversion with a guidance scale
𝑤 = 1, generating a sequence of reference noise maps {𝑧∗𝑡 }𝑇𝑡=1. Sub-
sequently, the null-text embedding ∅𝑡 is optimized at each diffusion
step to minimize the reconstruction error | |𝑧𝑡−1 − 𝑧∗𝑡−1 | |

2
2.

Image Watermarking for Diffusion Models. Image watermark-
ing aims to embed identifiable information into images to protect
intellectual property and trace content origin. It has evolved into
two main approaches for generative models: embedding water-
marks after image generation (post-hoc) or during the generation
process (in-generation). Post-hoc methods, such as those using fre-
quency domain transformations like Discrete Wavelet Transform
(DWT) [34] and Discrete Cosine Transform (DCT) [8], or encoder-
decoder architectures like HiDDeN [41] and StegaStamp [28], em-
bed watermarks into pre-generated images. RivaGAN [37] intro-
duced adversarial training to enhance robustness, though these
methods still face challenges balancing watermark strength and
image quality. In-generation watermarking modifies the generation

process itself, embedding thewatermark duringmodel training or in
the latent space. Stable Signature [9] fine-tunes the latent decoder to
embed watermarks without altering the image generation pipeline
significantly. However, this method requires training a separate
decoder for each user to ensure unique watermarks, which limits
its scalability and flexibility. Tree-Ring watermarking [32] offers a
more integrated approach by embedding watermarks through mod-
ifications to the initial noise distribution. However, this approach
alters the latent distribution, potentially causing semantic changes
and compromising the fidelity of the original model. Recent works
like Zodiac [38] and ROBIN [15] aim to improve image quality
while maintaining watermark robustness. However, these methods
still face challenges such as color shifts and the introduction of
artifacts, which degrade the visual quality. In response, we propose
PT-Mark, a watermarking method designed to effectively balance
robustness and invisibility.

3 PT-Mark
In this section, we present our method, PT-Mark, which explicitly
modifies the diffusion denoising process to realign the semantics
disrupted by watermarks while preserving their traceability. We
begin by formulating the problem of invisible watermarking in
Section 3.1, followed by an overview of our method in Section 3.2.
Finally, we detail the key components of PT-Mark in Section 3.3.

3.1 Problem Formulation
Watermark embedding. Given an input image 𝑥 to be water-
marked, the watermark embedder first estimates its generation
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trajectory 𝑧∗ via DDIM inversion. Subsequently, a specific water-
mark message𝑊 , such as the ring radius used in Tree-Ring [32]
to uniquely identify the user, is embedded into the initial noise 𝑧∗

𝑇
within a user-specific regionM, whereM is a binary mask indicat-
ing the spatial location of the watermark. The modified initial noise,
denoted as 𝑧𝑇 , serves as the new starting point for the generation
trajectory of the watermarked image. Guided by a user-provided
text prompt, the watermark embedder employs the diffusion model
to iteratively denoise 𝑧𝑇 through a sequence of diffusion denoising
steps, producing a latent trajectory 𝑧𝑇 → 𝑧0. Once the final latent
state 𝑧0 is obtained, it is passed through the decoder to generate
the final watermarked image 𝑥 .
Watermark verification. Given an watermarked image 𝑥 , the wa-
termark verification process employs DDIM inversion to estimate
the original generation trajectory {𝑧∗𝑡 }𝑇𝑡=0. The verifier then per-
forms a statistical test to compute the p-value, which quantifies the
likelihood that the observed watermark could appear in a natural
image by random chance. To compute the p-value, the verifier first
transforms 𝑧∗

𝑇
into the Fourier domain, yielding the representation

𝑦. The null hypothesis is formulated as𝐻0 : 𝑦 ∼ N(0, 𝜎2, 𝐼𝐶 ), where
𝜎2 is estimated per image based on the variance of 𝑦, reflecting
the fact that DDIM inversion maps any input image to a Gaussian-
distributed noise space. To evaluate this hypothesis, the verifier
computes a distance score that quantifies the discrepancy between
the embedded watermark message𝑊 and the extracted message 𝑦
within the region specified by the binary maskM.

𝜂 =
1
𝜎2

∑︁
(M ⊙𝑊 −M ⊙ 𝑦)2 . (4)

An image is classified as watermarked if the computed value of 𝜂 is
sufficiently small to be unlikely under random chance. The corre-
sponding p-value, representing the probability of observing a value
less than or equal to𝜂, is computed from the cumulative distribution
function (CDF) of the non-central chi-squared distribution. Typi-
cally, non-watermarked images exhibit higher p-values, whereas
watermarked images produce lower p-values. A sufficiently low
p-value leads to the rejection of the null hypothesis 𝐻0, thereby
confirming the presence of the watermark.
Invisible Watermarking. In the watermark embedding process,
the original initial noise 𝑧∗

𝑇
is modified into a new latent state 𝑧𝑇 con-

taining the watermark. This modified initial noise 𝑧𝑇 serves as the
new starting point for the generation trajectory 𝑧𝑇 → 𝑧0. However,
due to the modification in the initial state, the resulting generation
trajectory 𝑧𝑇 → 𝑧0 deviates from the original trajectory 𝑧∗

𝑇
→ 𝑧∗0 ,

leading to semantic inconsistencies between the generated water-
marked image 𝑥 and the original image 𝑥 . Therefore, the primary
objective of invisible watermarking is to preserve the semantic
consistency between 𝑥 and 𝑥 . This can be measured by comparing
the feature distances, such as the FID score: 𝐹𝐼𝐷 (𝑥) ≃ 𝐹𝐼𝐷 (𝑥). At
the same time, invisible watermarking need to ensure that the wa-
termark’s traceability is preserved, meaning the DDIM trajectory of
𝑥 , denoted as {𝑧0, . . . , 𝑧𝑇 }, should be close to the original trajectory
{𝑧∗0, . . . , 𝑧

∗
𝑇
}.

3.2 Overview
The high-level overview of PT-Mark is illustrated in Figure 1. The
core idea of our method is to explicitly learn the disentanglement
of semantics content and watermark patterns in the latent space by
optimizing the null-text embedding to guide the diffusion denoising
process. This design enables the realignment of the generation tra-
jectory with the original semantics while preserving the traceability
of the embedded watermark.

PT-Mark consists two main stages in watermark embedding:
Pivotal Trajectory Generation and Semantic-aware Pivotal Tun-
ing. In the Pivotal Trajectory Generation stage, we generate both
the original and watermarked trajectories to serve as learning piv-
ots for semantic content and watermark information, respectively.
Specifically, we leverage DDIM inversion to recover the original
trajectory, and execute a typical watermarked image generation
process to obtain the watermarked trajectory. By comparing the
latent states along these two trajectories, we compute a salience
map that explicitly segments the watermark-relevant information
at each diffusion step. In the Semantic-aware Pivotal Tuning stage,
we introduce an additional pivotal tuning branch, referred to as
the PT-Mark trajectory. In this trajectory, we optimize a null-text
embedding (as described in Section 2), and input it into the diffu-
sion model at each step to generate a steering vector. This steering
vector adjusts the latent states along the PT-Mark trajectory, pro-
moting the disentanglement of semantic content and watermark
patterns. It ensures that the edited latent state closely aligns with
the original trajectory, while preserving the salient features of the
watermark within the watermarked latent space.

For watermark verification, we employ DDIM inversion to es-
timate the initial latent variable 𝑧∗

𝑇
and subsequently transform

it into the Fourier domain for comparison against the watermark
message stored in the database. As PT-Mark adopts the same verifi-
cation procedure as existing advanced diffusion-based watermark-
ing methods [7, 15, 32, 38], it functions as a plug-and-play solution.
Notably, PT-Mark operates by modifying only the diffusion denois-
ing process, without requiring additional training of the diffusion
model. This allows PT-Mark to be easily integrated into existing
watermarking methods for text-to-image diffusion models.

3.3 Design Details
Pivotal Trajectory Generation. To effectively identify the se-
mantic and watermark distribution in latent space, facilitating the
learning of the decoupling between watermark and semantics in
subsequent stages, it is crucial to segment a reliable spatial guid-
ance. To this end, we first employ DDIM inversion with a guidance
scale of 𝑤 = 1 to provide a rough approximation of the original
image and enable us to recover the original trajectory 𝑧∗0 → 𝑧∗

𝑇
.

In parallel, we embed the watermark information into the initial
latent 𝑧∗

𝑇
to obtain the modified latent 𝑧𝑇 , which then serves as

the starting point for the diffusion denoising process to gener-
ate the watermarked trajectory 𝑧𝑇 → 𝑧0. At each timestep along
these two trajectories, we extract the latent states and input them
into a pretrained segmentation network 𝑓𝑠𝑒𝑔 , which segments the
salient regions by highlighting the differences between the origi-
nal and watermarked latents. This yields a mask that localizes the
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watermark-relevant areas, which then serves as reliable guidance
for subsequent disentanglement optimization.
Semantic-aware Pivotal Tuning. We initiate the editing of the
entire diffusion denoising process from the initial noise of the water-
marked trajectory. The core objective of this editing is tomanipulate
the semantics such that they closely align with the original, while
simultaneously preserving the embedded watermark. Achieving
this goal requires effective disentanglement of semantic content and
watermark information, which is challenging when directly modi-
fying the latent states. Inspired by the Null-text Inversion technique
introduced in Section 2, we formulate this editing as a generative
optimization problem, implemented through an additional tuning
branch referred to as the PT-Mark trajectory. Leveraging the ex-
pressive power of text embeddings in the latent diffusion process,
which inherently guide generation and influence its trajectory, we
introduce an optimizable null-text embedding ∅. This embedding
is iteratively optimized to capture the fine-grained differences be-
tween the original and watermarked trajectories, thereby enabling
effective disentanglement of semantics and watermark patterns.

Specifically, given a text prompt P, we first encode it into the
textual condition embedding C = 𝜓 (P), and initialize the opti-
mizable null-text embedding as empty, denoted by ∅𝑇 = 𝜓 (” ”).
These two embeddings are then combined to generate a steering
vector that guides the modification of the latent state at each step of
the diffusion denoising process. At each timestamp 𝑡 , the null-text
embedding ∅𝑡 is initialized with the embedding from the previous
step, ∅𝑡+1. Leveraging the original and watermarked trajectories
generated by the Pivotal Trajectory Generation stage, we opti-
mize the null-text embedding ∅ with the default guidance scale
𝑤 = 7.5 across the timesteps 𝑡 = 𝑇, . . . , 1, each for 𝑁 iterations.
This optimization process is driven by two objectives (i). Semantic
maintenance: we optimize the null-text embedding to ensure that
the edited latent state remains close to the corresponding latent in
the original trajectory {𝑧∗𝑡 }𝑇𝑡=1:

L𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 =
𝑧∗𝑡−1 − 𝑧𝑡−1 (𝑧𝑡 , ∅𝑡 , C)

2
2 . (5)

(ii). Watermark preservation: Guided by the spatial prior ob-
tained from the Pivotal Trajectory Generation stage (in the form
of a spatial mask𝑀), we simultaneously optimize the null-text em-
bedding to constrain the edited latent state to remain aligned with
the watermarked trajectory {𝑧𝑡 }1𝑡=𝑇 , thereby preventing the loss
of watermark information during the diffusion denoising process,
specifically within the salient regions defined by𝑀 :

𝑀 = 𝑓𝑠𝑒𝑔 (𝑧𝑡−1, 𝑧
∗
𝑡−1), (6)

L𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 = ∥𝑀 ⊙ {𝑧𝑡−1 − 𝑧𝑡−1 (𝑧𝑡 , ∅𝑡 , C)}∥1 , (7)
where 𝑧𝑡−1 is a temporary variable during the optimization over 𝑁
iterations. At the end of each step 𝑡 , we update the latent for the
next step as:

𝑧𝑡−1 = 𝑧𝑡−1 (𝑧𝑡 , ∅𝑡 , C). (8)
By integrating the two optimization objectives, we continuously

optimize the null-text embedding to ultimately generate the final
watermarked image. The overall loss function is formulated as:

L = 𝜆1L𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝜆2L𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 , (9)

where 𝜆1, 𝜆2 are the weight that balance the semantic alignment
and watermark preservation objectives, respectively. This process

is repeated until the image semantics are sufficiently close to the
original image. The pseudo code for Semantic-aware Pivotal Tuning
is presented in Alg. 1.

Algorithm 1 Semantic-aware Pivotal Tuning
1: Input: source prompt P, input image 𝑥 , pre-trained segmenta-

tion network 𝑓𝑠𝑒𝑔 .
2: Output: Noise vector 𝑧𝑇 and optimized embeddings {∅𝑡 }𝑇𝑡=1.
3: Set guidance scale𝑤 = 1;
4: Compute the original trajectory {𝑧∗𝑡 }𝑇𝑡=1 using DDIM inversion

over 𝑥 ;
5: Set 𝑧𝑇 ← 𝐸𝑚𝑏𝑒𝑑 (𝑧∗

𝑇
) ▷ Embed watermarking into 𝑧∗

𝑇
;

6: Compute the watermarked trajectory {𝑧𝑡 }1𝑡=𝑇 using DDIM sam-
pling initialized from 𝑧𝑇 ;

7: Set guidance scale𝑤 = 7.5;
8: Initialize 𝑧𝑇 ← 𝑧𝑇 , C ← 𝜓 (P), ∅𝑇 ← 𝜓 (” ”);
9: for 𝑡 = 𝑇,𝑇 − 1, . . . , 1 do
10: for 𝑗 = 0, . . . , 𝑁 − 1 do
11: 𝑀 = 𝑓𝑠𝑒𝑔 (𝑧𝑡−1, 𝑧∗𝑡−1);
12: L𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 ←

𝑧∗
𝑡−1 − 𝑧𝑡−1 (𝑧𝑡 , ∅𝑡 , C)

2
2;

13: L𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 ← ∥𝑀 ⊙ {𝑧𝑡−1 − 𝑧𝑡−1 (𝑧𝑡 , ∅𝑡 , C)}∥1;
14: ∅𝑡 ← ∅𝑡 − ∇∅ (𝜆𝑠𝑒𝑚L𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝜆𝑤𝑚L𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 );
15: end for
16: Set 𝑧𝑡−1 ← 𝑧𝑡−1 (𝑧𝑡 , ∅𝑡 , C), ∅𝑡−1 ← ∅𝑡 ;
17: end for
18: Return 𝑧𝑇 , {∅𝑡 }𝑇𝑡=1

4 Experimental Evaluation
In this section, we first describe our experimental setup (Section 4.1).
We then conduct both quantitative (Section 4.2) and qualitative (Sec-
tion 4.3) evaluation of the proposed PT-Mark. Finally, we present
ablation studies in Section 4.4 to analyze the effectiveness of key
design components within PT-Mark.

4.1 Experimental Settings
Datasets. For fair comparison, we follow the previous work [15,
32, 38] to utilize two mainstream benchmark as our dataset: (i). MS-
COCO [20]: A large-scale dataset containing approximately 123000
real-world images, each paired with human-annotated captions. In
our experiments, we use 5000 captions from the validation set as
prompts to generate corresponding images for watermark evalua-
tion. (ii). DiffusionDB [31]: This dataset comprises over 2 million
text-to-image generation records created using Stable Diffusion
models, with each record containing a prompt, the generated image,
and associated metadata. Unlike MS-COCO, DiffusionDB focuses
exclusively on AI-generated images conditioned on natural lan-
guage prompts. We randomly sample 8000 prompts to generate
images for evaluating watermarking performance.
Baselines. To validate the effectiveness of the proposed PT-Mark,
we compare it against seven mainstream watermarking methods as
baselines: (i).Frequency-based Watermarking: DwtDct and DwtD-
ctSvd [8], which employ frequency decomposition as the embedding
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Table 1: The quantitative evaluation results on Diffusion DB and MS-COCO. Best results are in bold.

Method Image Quality Watermarking Robustness
PSNR ↑ SSIM ↑ MSSIM ↑ FID ↓ LPIPS ↓ Clean JPEG Crop Blur Noise Bright Rotation Avg

Diffsuion DB
DwtDct 38.20 0.97 0.99 1.28 0.01 0.86 0.51 0.54 0.49 0.44 0.49 0.49 0.49
DwtDctSvd 38.19 0.98 0.99 4.00 0.01 1.00 0.52 0.50 0.78 0.58 0.48 0.44 0.55
RivaGAN 40.52 0.98 0.99 6.14 0.01 0.99 0.82 0.97 0.82 0.70 0.86 0.43 0.77
StegaStamp 28.53 0.91 0.94 24.88 0.03 1.00 1.00 0.62 0.95 0.83 0.89 0.45 0.79
Tree-ring 15.18 0.56 0.59 42.97 0.37 1.00 1.00 1.00 1.00 0.97 1.00 0.97 0.99
ROBIN 23.55 0.75 0.87 27.55 0.13 0.98 0.99 1.00 1.00 0.97 0.99 0.93 0.98
Zodiac 25.53 0.93 0.97 13.44 0.04 0.98 1.00 0.94 1.00 0.97 1.00 0.45 0.89
Ours 28.18 0.94 0.97 11.32 0.03 1.00 1.00 0.98 1.00 0.96 1.00 0.97 0.99

MS-COCO
DwtDct 40.83 0.98 0.99 1.22 0.01 0.89 0.49 0.49 0.48 0.49 0.46 0.46 0.48
DwtDctSvd 40.10 0.99 0.99 3.19 0.01 1.00 0.52 0.51 0.78 0.57 0.49 0.45 0.55
RivaGAN 39.77 0.98 0.99 4.81 0.02 1.00 0.84 0.98 0.85 0.70 0.86 0.40 0.77
StegaStamp 27.92 0.91 0.95 18.45 0.03 1.00 1.00 0.61 0.94 0.76 0.88 0.44 0.77
Tree-ring 12.66 0.48 0.51 43.76 0.44 1.00 1.00 0.99 1.00 0.97 0.99 0.94 0.98
ROBIN 22.33 0.75 0.87 20.14 0.12 1.00 0.99 1.00 1.00 0.98 0.97 0.94 0.98
Zodiac 23.95 0.86 0.95 16.94 0.08 1.00 0.99 1.00 1.00 0.97 1.00 0.59 0.92
Ours 27.38 0.90 0.97 7.96 0.04 1.00 1.00 0.98 1.00 0.96 0.99 0.94 0.98

strategy. (ii).GAN-based Watermarking: RivaGAN [37] and StegaS-
tamp [28], which embed watermarks through generative adver-
sarial learning. (iii).Diffusion-based Watermarking: Tree-Ring [32],
ROBIN [15], and Zodiac [38], which embed watermarks in the latent
space of diffusion models.
Evaluation Metrics. To comprehensively evaluate our watermark-
ing method PT-Mark, we follow the previous work and employ
widely-used metrics from semantic maintenance and water-
mark preservation. For semantic maintenance, we utilize typical
pixel-level metrics including Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [30], andMultiscale SSIM (MSSIM),
where higher values indicating better preservation of original im-
age quality. To further evaluate the perceptual quality, which better
reflects human judgment, we use Learned Perceptual Image Patch
Similarity (LPIPS) [40] and Fréchet Inception Distance (FID) [11] as
metrics, with lower scores on these metrics indicate more natural-
looking results. Additionally, we evaluate the robustness of PT-Mark
under six common image perturbations: JPEG compression (quality
factor 25), random image cropping (75%), Gaussian blur (radius 4),
Gaussian noise (10% intensity), brightness adjustments (color jitter
with a brightness factor of 6), and random rotation (up to 75 de-
grees). In all our experiments, we evaluate watermark effectiveness
through Area Under the ROC Curve (AUC) to quantify detection
accuracy between watermarked and clean images.
ImplementationDetails. In our experiments, we utilize the Stable-
Diffusion-v2.1-base model [25] with 50 denoising steps, and adopt
the second-order multistep DPM-Solver sampling algorithm. The
classifier-free guidance scale is set to 7.5, following the default con-
figuration commonly used in prior works. The generated image
size is 512 × 512. We employ the Tree-Ring watermark pattern in
our experiments, embedding a randomly initialized ring pattern
in the last channel of the latent representation, with the radius set

to 10. To guide the optimization of the null-text embedding, we
employ Segment Anything Model (SAM) [18] as the pretrained seg-
mentation network for computing the watermark-relevant saliency
region. At each diffusion denoising step, we optimize the null-text
embedding 10 times to align the generation trajectory of the water-
marked image closely with that of the original image. We set the
loss weight for semantic maintenance (i.e., 𝜆1) to 1.50, and the loss
weight for watermark preservation (𝜆2) to 0.0007.

4.2 Quantitative Evaluation
Semantic Preservation. To evaluate the semantic preservation
performance of PT-Mark, we assess a series of image quality met-
rics that reflect the semantic differences between the original im-
age (without watermark) and the watermarked image generated
by PT-Mark, as shown in Table 1. Overall, PT-Mark consistently
outperforms state-of-the-art diffusion-based watermarking meth-
ods across all semantic preservation metrics. Notably, the widely
used Tree-Ring method significantly degrades image quality, with
PSNR dropping to 15.18 and SSIM to 0.56, indicating substantial se-
mantic distortion in both the DiffusionDB and MS-COCO datasets.
In contrast, PT-Mark yields over a 20% improvement in these met-
rics. In particular, PT-Mark demonstrates substantial improvements
in FID and LPIPS, two metrics closely aligned with human visual
perception. It achieves FID values below 10 and LPIPS scores be-
low 0.05, outperforming other latent diffusion-based watermarking
baselines by a significant margin. We also observe that PT-Mark
exhibits consistent semantic preservation across different datasets,
with only slight variations. In contrast, Zodiac exhibits a significant
decline in image quality when the text prompt is altered, indicat-
ing that existing diffusion-based watermarking methods may be
sensitive to prompt variation and lack robustness in maintaining
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original semantics. Compared to traditional methods such as Dwt-
Dct and DwtDctSvd, which achieve high image quality (e.g., PSNR
> 38, SSIM > 0.97), PT-Mark achieves comparable perceptual perfor-
mance (e.g., SSIM = 0.92, PSNR = 28.18, FID = 11.32 on DiffusionDB),
while maintaining stronger watermark traceability.
Watermark Robustness. As images are more easily disrupted
in real-world or adversarial scenarios, such as when shared on
social networks, it is crucial to evaluate the robustness of image
watermarking methods. Table 1 presents the effectiveness of water-
mark verification under several common real-world perturbations.
We observe that traditional watermarking methods (shown in the
upper half of each table) exhibit poor robustness when exposed
to such perturbations, resulting in undetectable watermarks with
AUC values dropping below 50%. In contrast, PT-Mark demon-
strates remarkable robustness across all perturbations, achieving
an average AUC of 0.99, while simultaneously maintaining good
semantic preservation performance. For adversarial training-based
methods such as RivaGAN and StegaStamp, we find their robust-
ness is limited, particularly under rotation attacks. Although Zodiac
achieves relatively good image quality (e.g., PSNR = 25.53, SSIM
= 0.93), it fails to preserve watermark detectability under rotation,
leading to a decrease in AUC to 0.89. We also observe that rotation
and Gaussian noise are the most damaging perturbations to water-
mark traceability. More than half of the evaluated methods exhibit
over a 20% drop in detection AUC under these conditions. PT-Mark,
on the other hand, maintains exceptional resilience, consistently
achieving an average AUC of 0.99 across all perturbation types.
Furthermore, we provide results on real-world adaptive watermark
removal attacks to assess PT-Mark’s robustness in more challenging
scenarios, as detailed in Appendix ??.
Efficiency. To evaluate the efficiency of PT-Mark, we measure its
time cost for generating a single image and compare it with state-of-
the-art latent diffusion-based watermarking methods, as shown in
Table 2. The time cost is categorized into two components: training
cost and inference cost. Among the evaluated methods, ROBIN re-
quires training a specific watermark pattern for each user, resulting
in significant training overhead. In contrast, the other methods, in-
cluding Tree-Ring, Zodiac, and PT-Mark, primarily incur time costs
during inference and do not require additional training. Although
ROBIN achieves a faster inference process than Tree-Ring, it incurs
a high training cost, making it several times more time-consuming
overall compared to the other methods. PT-Mark achieves a good
balance between efficiency and performance. For instance, PT-Mark
improves efficiency with a 4× reduction in inference time compared
to Zodiac. Although PT-Mark’s inference time is approximately 10
times higher than Tree-Ring’s, it significantly outperforms Tree-
Ring in terms of semantic preservation. In contrast, while Tree-Ring
is lightweight and easy to implement, it suffers from significant
degradation in semantic quality.

4.3 Qualitative Evaluation
Considering that traditional watermarking methods fail to with-
stand real-world perturbations and are therefore impractical for

Table 2: The time cost of different watermarking methods.

Method Training Cost (s) Inference Cost (s) Total Cost (s)
Tree-ring 0.00 11.65 11.65
ROBIN 1370.48 3.74 1374.21
Zodiac 0.00 684.67 684.67
Ours 0.00 149.94 149.94

“A bird sits perched on a tree branch”

Original Image Tree-Ring ROBIN Zodiac OursOriginal Image Tree-Ring ROBIN Zodiac Ours

“A vase full of irises with a pitcher on an end table”

“A couple sitting on a bench with a little girl”

“ A fantasy innkeeper, detailed digital art, sharp focus”

“A heroic corgi in elegant fantasy gear, richly detailed in a refined art style”

Figure 2: Qualitative evaluation of PT-Mark compared to
baselinemethods on theMS-COCOdataset (upper three rows)
and Diffusion DB dataset (lower two rows).

deployment in real-world scenarios, our qualitative evaluation fo-
cuses on advanced diffusion-based watermarking methods, includ-
ing Tree-Ring, ROBIN, and Zodiac. In Figure 2, we present five repre-
sentative examples drawn from both the MS-COCO dataset (upper
three rows) and the DiffusionDB dataset (lower two rows), using the
same watermark patterns across all methods for fair comparison.
These cases cover a variety of image styles and drawing objects. For
enhanced clarity and visual comparison, we recommend viewing
the figure in color and zooming in for finer details.

Overall, PT-Mark demonstrates superior text alignment, seman-
tic fidelity, and visual quality compared to existing diffusion-based
watermarking methods. For natural scene images (e.g., in the first
and third rows), PT-Mark preserves finer details and maintains
natural color tones. In contrast, Zodiac often introduces unnatural
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color shifts, while Tree-Ring frequently results in significant seman-
tic drift. Although ROBIN retains similar semantics, it struggles
with fine-grained details, such as misaligning the facial orienta-
tion of the girl in the third row. For images in a drawing style,
PT-Mark consistently outperforms other methods in texture coher-
ence, color consistency, and semantic alignment. Notably, Tree-Ring
significantly degrades the artistic expressiveness of the generated
content. In the fifth-row example, it causes severe alterations to
facial attributes in a digital portrait, failing to capture the “heroic”
essence of a corgi in fantasy armor, and often generates incoher-
ent, abstract patterns due to disrupted latent distributions. ROBIN
preserves global structure but suffers from local distortions, while
Zodiac produces dim, desaturated colors across all samples. In con-
trast, PT-Mark generates watermarked images that are visually
indistinguishable from their clean, unwatermarked counterparts,
preserving both the structure and style of the original generation.

4.4 Ablation Study
In this section, we further validate the effectiveness of each com-
ponent and hyperparameter in PT-Mark through a comprehensive
ablation study. Our experiments on module effectiveness focus on
two core components: Semantic Alignment (SA), which optimizes
the null-text embedding to ensure the edited latent state remains
close to the original generation trajectory, and Watermark Preser-
vation (WP), which refines the null-text embedding to align the
edited latent with the watermarked trajectory in salient regions.
For reference, we also include results from a baseline configuration
without watermark embedding (w/o WE) to isolate the impact of
watermark-related modules. For the hyperparameter analysis, we
focus on evaluating the effect of the number of null-text embedding
optimization iterations, and conduct an ablation study to explore
the impact of the starting timestep for pivotal tuning.
Module Effectiveness. The results of the evaluation on module
effectiveness are shown in Table 3. We observe that watermark
integration significantly degrades image quality, with Tree-Ring
yielding an SSIM of 0.56, a PSNR of 15.18, and an FID of 42.97. We
further demonstrate that applying pivotal tuning only on the origi-
nal trajectory (Semantic PT) substantially improves visual quality,
with SSIM rising to 0.94, PSNR increasing to 28.33, and FID de-
creasing to 10.73. Additionally, LPIPS significantly decreases to 0.03.
However, this optimization comes at the cost of robustness, partic-
ularly under transformations such as noise (0.77), brightness (0.87),
and rotation (0.80), which reduces the average robustness to 0.87.
By editing the entire diffusion denoising process with the guidance
of the watermark trajectory (PT-Mark), we mitigate the side effects
introduced by semantic pivotal tuning, improving robustness while
still maintaining high image quality compared to applying only
semantic pivotal tuning.
Number of Null-text optimization iterations.We conduct an
ablation study to investigate the impact of the number of null-text
optimization iterations in the trajectory optimization process used
during image watermark embedding. Specifically, we evaluate how
varying the number of iterations (5, 10, 15, 20) affects both the
perceptual quality of the watermarked images and their robustness
against common real-world perturbations. As shown in Figure 4,
increasing the number of iterations generally enhances the visual
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Figure 3: Impact of Null-text optimization iterations on AUC
under different degradations.
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Figure 4: Impact of Null-text optimization iterations on im-
age quality metrics.

quality of the generated watermarked images. Metrics such as PSNR
and SSIM steadily improve, FID decreases from 12.28 to 10.65, and
LPIPS reaches its optimal value at Step = 10, indicating better fi-
delity and perceptual similarity to the original image. However,
this improvement comes at the cost of robustness. As illustrated in
Figure 3, optimization with higher iterations (15 or 20) results in
significantly reduced classification accuracy under common image-
level distortions, such as cropping, noise, blur, brightness changes,
and rotation. For example, under a brightness attack, accuracy drops
from 1.00 at Step = 10 to just 0.46 at Step = 20, suggesting that too
much optimization on semantics may lead to overfitting to clean
data distributions, thereby making the embedded watermark more
vulnerable to real-world perturbations. Overall, step = 10 offers the
best trade-off, achieving high watermarked image quality while
maintaining strong resilience to various image perturbations.
Starting Step of Pivotal Tuning. To investigate the influence of
the starting step of pivotal tuning, we present examples of gener-
ated watermarked images edited from different steps, as shown in
Figure 5. We observe that starting the tuning process from 𝑆𝑡𝑒𝑝 = 0
results in images with the highest performance in preserving the
original semantics, especially in the intricate details of the image,
such as facial features, lighting, and textures. This early intervention
allows the optimization process to guide the generation trajectory
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Table 3: Ablation study of PT-Mark with different modules. The ablation settings are elaborated in Section 4.4.

Method Module Image Quality Watermarking Robustness
WE SA WP PSNR ↑ SSIM ↑ MSSIM ↑ FID ↓ LPIPS ↓ Clean JPEG Crop Blur Noise Bright Rotation Avg

Clean Image - - - ∞ 1.00 1.00 0.00 0.00 - - - - - - - -
Tree-Ring ✓ 15.18 0.56 0.59 42.97 0.37 1.00 1.00 1.00 1.00 0.97 1.00 0.97 0.99
PT-Mark (w/o WP) ✓ ✓ 28.33 0.94 0.97 10.73 0.03 1.00 0.92 0.92 0.95 0.77 0.87 0.80 0.87
PT-Mark ✓ ✓ ✓ 28.18 0.94 0.97 11.32 0.03 1.00 1.00 0.98 1.00 0.96 1.00 0.97 0.99

“Young, curly haired redhead girl in a dark medieval inn”

Pivotal Tuning start from 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟎𝟎 Pivotal Tuning start from 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑻𝑻

Original Image

Original Image “Cloudscape, nebula gasses in the background, fantasy magic angel”

Figure 5: Impact of pivotal tuning step on image quality.

from the beginning, ensuring that both image quality and semantic
consistency align well with the original image. In contrast, employ-
ing pivotal tuning at later steps results in noticeable degradation in
semantic preservation. Specifically, we observe that the generated
images increasingly drift from the original image semantics as the
tuning occurs later in the process.

5 Conclusion
In this paper, we proposed a novel invisible watermarking method
for Text-to-image Diffusion Models, called Semantic-aware Pivotal
Tuning Watermark (PT-Mark). We achieved the goal of semantic
preservation after embedding watermarks by editing the entire
diffusion denoising process. By incorporating an additional pivotal
tuning branch, PT-Mark optimized a learnable null-text embedding
to disentangle semantics from watermark patterns during the diffu-
sion denoising process and generated a steering vector that aligns
the entire generation process while preserving the traceability of
the watermark. Moreover, both qualitative and quantitative evalua-
tions demonstrated that our method can embed robust watermarks
without disrupting the original semantics of the generated image.
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