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Abstract
With the rise of powerful foundation models,
a pre-training-fine-tuning paradigm becomes in-
creasingly popular these days: A foundation
model is pre-trained using a huge amount of data
from various sources, and then the downstream
users only need to fine-tune and adapt it to spe-
cific downstream tasks. However, due to the high
computation complexity of adversarial training, it
is not feasible to fine-tune the foundation model
to improve its robustness on the downstream task.
Observing the above challenge, we want to im-
prove the downstream robustness without updat-
ing/accessing the weights in the foundation model.
Inspired from existing literature in robustness in-
heritance (Kim et al., 2020), through theoretical
investigation, we identify a close relationship be-
tween robust contrastive learning with the adver-
sarial robustness of supervised learning. To fur-
ther validate and utilize this theoretical insight, we
design a simple-yet-effective robust auto-encoder
as a data pre-processing method before feeding
the data into the foundation model. The proposed
approach has zero access to the foundation model
when training the robust auto-encoder. Extensive
experiments demonstrate the effectiveness of the
proposed method in improving the robustness of
downstream tasks, verifying the connection be-
tween the feature robustness (implied by small
adversarial contrastive loss) and the robustness of
the downstream task.

1. Introduction
In recent years, the development of foundation models has
inspired people to consider a new training paradigm: Instead
of training all layers of the neural network, the base large
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neural network is first trained by one party with a huge
amount of data from various sources (pre-training). Then,
the downstream users tune the last layers to adapt to the
specific downstream tasks (fine-tuning) (Yang et al., 2023).

Meanwhile, although recent advances in deep learning and
machine learning have led to breakthrough performance
and have been widely applied in practice, both empirical
evidence (e.g., (Madry et al., 2017)) and theoretical investi-
gations (e.g., (Haldar et al., 2024)) reveal that deep learning
models can be fragile and vulnerable against adversarial
input which is intentionally perturbed to mislead the model.
To improve the robustness of these models, adversarial train-
ing is one of the most popular ways (Madry et al., 2017).

With the new pre-training-fine-tuning paradigm, many stud-
ies consider improving adversarial robustness in the down-
stream task using adversarial pre-training and clean fine-
tuning. For example, some works empirically observe
the robustness of a robust pre-trained model using robust
contrastive learning being inherited to downstream tasks
(Shafahi et al., 2019; Salman et al., 2020; Deng et al., 2021b;
Zhang et al., 2021; Kim et al., 2020; Fan et al., 2021).

However, although the rise of the pre-training-and-fine-
tuning paradigm provides one possible way to reduce the
computation cost for the downstream users, concerns have
been raised regarding the computational cost of adversarial
training: Compared to clean training, the cost of adversarial
training is much higher since the attacks are recalculated in
each training iteration. For example, while clean training of
ResNet18 for CIFAR-10 takes 1 hour on a single NVIDIA
V100 GPU, adversarial training can take more than 20 hours
(Rice et al., 2020). Consequently, in the pre-training-fine-
tuning paradigm, though pre-training parties are mostly
resource-abundant entities like OpenAI, adversarial training
can still be burdensome as the computation cost to clean
pre-train a GPT-3 alone is already estimated to be up to
$4.6m (Ohiri & Poole, 2024). The infeasible adversarial
training cost leaves an open question to be answered:

How to leverage adversarial training in foundation models
to maintain a low computation cost?

To address the above challenge, we provide a theoretical
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Enhance Downstream Adversarial Robustness

Figure 1: Use a robust auto-encoder to pre-process the downstream data. After obtaining the pre-trained foundation model,
we use adversarial training to train a robust auto-encoder via leveraging adversarial contrastive loss. A robust auto-encoder
is used to pre-process downstream data. These pre-processed inputs are then fed into the foundation model.

analysis to bound the downstream adversarial loss using
adversarial contrastive loss. Further, based on the theoretical
insights, we design a robust pre-processor to validate the
importance of feature robustness (i.e., small adversarial
contrastive loss), and pursue robustness in the downstream
tasks with only clean foundation models.

Our main contributions are summarized as follows:

• We provide a theoretical analysis of the downstream
adversarial loss. Based on our derivation, for classifi-
cation tasks with cross-entropy loss, the downstream
adversarial loss can be upper-bounded by a combina-
tion of the downstream clean loss and the adversarial
contrastive loss (Theorem 1).

• In addition, in an (auto-encoder + foundation model
+ last layer adaptation) system, naively trained auto-
encoders with only reconstruction loss cannot effec-
tively output robust data (Proposition 1).

• Inspired from the above theoretical insights, we con-
sider the following robust data pre-processor as in Fig-
ure 1: We train an auto-encoder leveraging adversarial
contrastive loss to obtain a robust auto-encoder as a
data pre-processor and feed the corrupted data to the
pre-processor first and then feed the foundation model
with the output of the pre-processor.

Specifically, the robust auto-encoder consists of an
encoder-decoder structure, which is trained in an unsu-
pervised manner without requiring labels. The pre-
processed output is then passed to the foundation
model for downstream tasks. The training of the auto-
encoder is guided by adversarial contrastive loss, en-
suring that the latent representations are robust against
adversarial perturbations while maintaining the unsu-
pervised nature of the learning process.

While existing literature, e.g., (Salehi et al., 2021; Zhou
et al., 2023), attempts to add adversarial training, they
need to access the foundation model in adversarial

training. In contrast, we do not access the foundation
model when training the robust pre-processor. We
name our simple-yet-effective approach as Contrastive
Robust Preprocessing Defense (CRoPD).

• We empirically evaluate the robustness of CRoPD us-
ing multiple datasets. Our results show a significant
improvement in robustness in downstream tasks with
only a clean foundation model. The empirical observa-
tions echo our theoretical observations, and highlight
the importance of the feature robustness in robust su-
pervised learning.

2. Preliminaries
2.1. Data Distribution

We consider classification in the downstream task. Given
a dataset D = {(xi, yi)}ni=1, where xi is the input data
and yi ∈ Y is the corresponding target values with label
space Y , we assume that these data points are drawn from
an unknown joint probability distribution q(x, y).

2.2. Adversarial Training

To formulate adversarial training, we first define adversarial
attack. Given a loss function ℓ(·, ·) and a model f(·), an
adversarial attack aims to figure out the worst-case pertur-
bation which maximizes the loss, i.e.,

xadv ≜ arg max
x̄∈A(x)

ℓ(f(x̄), ·),

where A(x), referred to as the threat model, defines the
set of permissible adversarial perturbations for the input x.
Specifically,

A(x) = {x̄ : ∥x̄− x∥p≤ ϵ},

where p-norm (p = 2 or ∞) determines the metric used, and
ϵ specifies the attack budget. For example, when p = ∞,
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A(x) forms an L∞-ball around x with radius ϵ, i.e., the pixel
attack in image data. The second argument of ℓ(·, ·) can be
either the label for supervised learning (classification), or
f(x′) for some other data x′ in contrastive learning.

After defining the attack, adversarial training is a generic
algorithm to iteratively train the neural network: In each
iteration, given the current model f , we first calculate the
attacked version of the training data using the above defini-
tion of adversarial attack, and then use the attacked data to
calculate the loss and update the model correspondingly.

For clean training and adversarial training in this paper,
we use “clean training” to minimize the clean loss and use
“adversarial training” to minimize the adversarial loss.

2.3. Contrastive Learning and Robustness Inheritance

Different from supervised learning, contrastive learning
is an unsupervised learning method and does not need la-
bels/responses. The aim of contrastive learning is to figure
out an encoder fen(·) so that the similarity between similar
pairs (positive pairs) of data is maximized, while the simi-
larity between dissimilar pairs (negative pairs) is minimized.
To theoretically connect contrastive learning with super-
vised learning, Arora et al. (2019) formalize the semantic
similarity using latent classes and prove that minimizing
the contrastive loss leads to a representation function that
achieves a low average linear classification loss on down-
stream tasks. They establish that under certain conditions,
the contrastive loss serves as an upper bound of the expected
supervised loss, theoretically supporting the effectiveness
of contrastive learning in downstream supervised tasks.

Extending from the clean contrastive learning, the aim of
adversarial contrastive learning is to figure out an encoder
fen(·), and the adversarial contrastive loss Lcon is

Lcon(fen) = Eq(x)

[
ℓcon(fen(x

adv), fen(x))
]
, (1)

Empirically, this expectation is approximated by averaging
the loss over n samples from the dataset:

L̂con(fen) =
1

n

n∑
i=1

ℓcon(fen(x
adv
i ), fen(xi))).

The loss ℓcon is defined as

ℓcon(fen(x
adv
i ), fen(xi))

=− log
exp(sim(fen(x

adv
i ), fen(xi))/τ)∑

xneg∈Xneg exp(sim(fen(xi), fen(xneg))/τ)
,

where sim(·, ·) represents the cosine similarity between two
latent vectors, defined as

sim(u,v) =
uTv

∥u∥∥v∥
.

The above formulation allows for adversarial examples to
be integrated into the contrastive loss by maximizing the
similarity between clean and adversarial representations
while minimizing similarities with negative samples.

To construct the dissimilar set Xneg in the above, we first
take Xneg as a set of clean examples X = {x1, . . . xM}
to calculate the corresponding xadv

j ’s as the approxi-
mation to form a set Xadv, and then take Xneg =
X

⋃
Xadv\{xi, x

adv
i } when figuring out the xadv

i on the
numerator of ℓcon.

Regarding the robustness inheritance phenomenon in adver-
sarial contrastive learning, the common scenario is to use
adversarial training to train a contrastive model and then
use clean training to replace the projector of the contrastive
model (the last linear layer) to adapt to the downstream task.
In this training paradigm, the downstream robustness is sig-
nificantly better than training the downstream task itself
from scratch (Kim et al., 2020).

3. Robust Data Pre-Processing
We first present the theoretical analysis in Section 3.1 and
the potential issue in auto-encoder in Section 3.2, and then
introduce the considered practical algorithm in Section 3.3.

3.1. Main Theory

To analyze the robustness of the downstream task T with
conditional distribution q(y | x), the cross-entropy loss (i.e.,
ℓsup) given the encoder parameter θ is

Eq(x,y)

[
Epθ(z|x)[− log p̂T (y | z)]

]
, (2)

and the corresponding adversarial loss is

Eq(x,y)

[
max

xadv∈A(x)
− logEpθ(z|xadv)[p̂T (y | z)]

]
, (3)

where p̂T is the model’s output probability of label y. We
aim to learn a classifier p̂T (y | fde(fen(x))) that predicts y
based on the robust decoded features fde(fen(x)).

The following theorem describes how the adversarial attack
impacts the downstream classification performance, and
how it is related to the adversarial contrastive loss:

Theorem 1. Assume for all x, the encoder fen(x) generates
a robust latent feature z such that ∥fen(xadv)− fen(x)∥≤
η1, where η1 is small, and for all pairs (x1, y1), (x2, y2)
with y1 ̸= y2, it holds that ∥fen(x1) − fen(x2)∥≥ η2 and
∥fen(x1) − fen(x

adv
2 )∥≥ η2, where η2 > η1 is a larger

constant. Additionally, assume that − log p̂T (y | fde(z)) ≤
M for all z ∈ Z and y ∈ Y . Then, for some constant κ,

Eq(x,y)

[
max

xadv∈A(x)
− log p̂T (y | fde(fen(xadv)))

]
3
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≤ Eq(x,y) [− log p̂T (y | fde(fen(x)))] + κLcon(fen) (4)

where Lcon(fen) is the robust contrastive loss defined in (1).

The proof of Theorem 1 can be found in Appendix D. Theo-
rem 1 illustrates how the downstream adversarial loss can
be connected to the adversarial contrastive loss: it is upper
bounded by the downstream clean loss plus the adversarial
contrastive loss. This implies that, if a data pre-processor
can achieve a small adversarial contrastive loss, it can also
lead to the robustness of the downstream classification.

3.2. Potential Issue in Adversarial Reconstruction Loss

To highlight the importance of the feature robustness (i.e.,
a small adversarial contrastive loss), when there is no data
pre-processing, or we only attack on the reconstruction loss
to train the auto-encoder (the benchmark ARAE), we further
show that these scenarios can result in a poor downstream
robustness. The following proposition provides an example:
Proposition 1. There exists a data generation model
(x, y), an auto-encoder (fen, fde), and a classifier
(fpre, flast) such that if the clean reconstruction loss
Ex

[
∥fde(fen(x))− x∥2

]
and the adversarial reconstruc-

tion loss Ex

[
∥fde(fen(xadv))− x∥2

]
for adversarial exam-

ples xadv within a perturbation budget ϵ are 0 and O(1/n)
respectively, then the adversarial classification loss satisfies

Eq(x,y)

[
max

xadv∈A(x)
− log p̂T

(
y | flast(fpre(fde(fen(xadv))))

)]
≥ Γ > Eq(x,y) [− log p̂T (y | flast(fpre(x)))] = O(δ), (5)

where Γ = O(− log(δ)) is a large value, and δ = o(1/n)
associated with the data distribution.

Proposition 1 is a possible scenario where the auto-encoder
is trained to achieve a small adversarial reconstruction loss
while the downstream classification task has a poor robust-
ness. It constructs a discrete data distribution with well-
separated points and a classifier that assigns high probability
to clean inputs and low probability to perturbed inputs. The
detailed proof can be found in Appendix D.

Proposition 1 underscores the need for a better approach
for robust auto-encoder. Further inspired by Theorem 1, by
integrating adversarial contrastive loss when training the
pre-processors, the robustness issue in auto-encoder can be
mitigated. We present the algorithm as follows.

3.3. Practical Algorithm

To design the robust data pre-processor, we leverage adver-
sarial contrastive learning when training the robust auto-
encoder. Unlike the original contrastive learning framework,
we assume that the foundation model already exists and try
to avoid accessing it to reduce computational costs. In this
case, since the foundation model receives images as inputs,

we need to develop a model to pre-process the images be-
fore feeding them into the foundation model. Consequently,
we leverage contrastive learning to train an auto-encoder,
the latter of which is supposed to output an image. The
proposed algorithm is summarized in Algorithm 1, and the
graphical illustration can be found in the above Figure 1.

There are several components in whole framework:

First, for the robust auto-encoder, assume we have a robust
auto-encoder defined by an encoder fen(x) and a decoder
fde(z), where z = fen(x) represents the latent feature of
the input x. This auto-encoder is trained using a combina-
tion of reconstruction loss and adversarial contrastive loss.
The reconstruction loss, ∥fde(fen(x)) − x∥2 ensures that
the decoder fde can accurately reconstruct the original in-
put from the encoded features. The adversarial contrastive
loss, Lcon(fen(x

adv), fen(x)) promotes robustness of the
features fen(x) against adversarial perturbations xadv .

Second, in addition to the robust auto-encoder, since the
output format of the foundation model might be different
from the downstream task, we further train a new last layer
on top of the foundation model. Recall that the output of
the robust auto-encoder is fde(fen(x)), the output of the
foundation model then becomes fpre(fde(fen(x))). Af-
ter passing this to the last linear layer, we get the output
as flast(fpre(fde(fen(x)))), and we minimize the down-
stream loss Lsup.

To connect with Theorem 1, In CRoPD, since we leverage
adversarial contrastive loss in training the auto-encoder, its
value is well controlled. In contrast, similar to Proposition 1,
when there is no data pre-processing, or we only attack on
the reconstruction loss to train the auto-encoder, there is no
expectation on how the adversarial contrastive loss behaves
in those models, and the robustness can be poor.

4. Experiments
In the experiments, we aim to demonstrate the effective-
ness of the proposed robust pre-processor method. The
expected result is that, CRoPD leads to robustness much
stronger than using a non-robust-contrastive-learning-based
data pre-processor, highlighting the importance of feature
robustness (a small adversarial training loss). In addition,
since the robust pre-processor is a small model, the final
adversarial robustness of the downstream task may be a bit
worse than using adversarial training to fine-tune the foun-
dation model. However, the computational cost of CRoPDis
much smaller than fine-tuning a foundation model using
adversarial training.
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Algorithm 1 Contrastive Robust Preprocessing Defense

1: Use pre-training dataset Spretrain to train a neural network flast(fpre(·)).
2: Use the downstream dataset Sdown to train a robust auto-encoder via minimizing the loss

min
fen,fde

∑
x∈Sdown

∥fde(fen(x))− x∥2+λ sup
xadv∈A(x)

Lcon(fen(x
adv), fen(x)),

3: Use the labeled downstream dataset Slabel to adjust the last layers flast for the downstream task:

min
flast

∑
(x,y)∈Slabel

Lsup(flast(fpre(fde(fen(x)))), y).

4.1. Experimental Setups

Datasets We conduct experiments on CIFAR-10, CIFAR-
100 (Krizhevsky, 2009), SVHN (Netzer et al., 2011) and
ImagenetTe (Howard, 2020) (a subset of 10 classes from
Imagenet (Deng et al., 2009)). We also consider a special
variation of CIFAR-10, dubbed CIFAR-2, that subsets the
first two classes of CIFAR-10 (airplane and automobile) for
computationally intensive robust training experiments. We
use the original dataset split to train and evaluate our models.
We briefly describe these datasets below: CIFAR-10: This
dataset consists of 60 000 – 32× 32 color images across 10
categories. CIFAR-2: A binary subset of CIFAR-10, con-
taining only the first two classes (airplane and automobile).
CIFAR-100: This dataset contains 60 000 – 32× 32 color
images with 100 categories. SVHN: This dataset contains
630 420 – 32×32 color images of digits (0-9) cropped from
house numbers in Google Street View images. ImagenetTe:
A subset of 13 000 images of 10 classes from the ImageNet
dataset (Deng et al., 2009).

Pre-processors Following Zhou et al. (2023), we use a
variant of ViT-MAE architecture that utilizes 50% determin-
istic masking for consistent reconstruction. The detailed
configuration is postponed to Appendix A.

In addition to Vanilla, which utilizes an auto-encoder trained
with reconstruction loss only, we also include two other
pre-processor baselines, ARAE (Salehi et al., 2021) and pre-
trained VAE (Kingma & Welling, 2014) from HuggingFace
Diffusers (von Platen et al., 2022). For ARAE, although
it utilizes adversarial training to train an auto-encoder, the
main purpose is to improve the output quality of the auto-
encoder rather than distinguishing similar and dissimilar
data. We also include VAE because its denoising capabili-
ties may also mitigate adversarial attacks. Finally, Identity
represents the case without any pre-processor and is the
most vulnerable baseline.

Following observations by Chen et al. (2020b), though ViT-
MAE naturally outputs latent embeddings, it is ineffective
for CRoPD or ARAE if we naively use this embedding to

align the latents. As a result, we use pooling and a two-
layered projector to reduce the latent to a 128-dimension
vector for training CRoPD and ARAE.

Before performing the downstream task, we first train the
CRoPD, Vanilla, and ARAE using the downstream dataset to
obtain pre-processors. Some sample image reconstructions
by ARAE and CRoPD are demonstrated in Figure 2.

CIFAR-10 CIFAR-100 SVHN ImagenetTe

Orig

ARAE

CRoPD

Figure 2: Sample image reconstructions of each dataset. Top
row: original images, middle row: ARAE reconstructions,
bottom row: CRoPD reconstructions. Columns correspond
to different datasets. ARAE reconstructions are sharper as
expected, while CRoPD reconstructions are purified and
more robust for downstream tasks.

Foundation Model and Downstream Task For all exper-
iments, we use the HuggingFace Transformers (Wolf et al.,
2020) to load a pre-trained large ViT-MAE (He et al., 2021)
as the foundation model. Due to the different characteris-
tics of the datasets, we consider different ways of using the
foundation model, and postpone the details to Appendix A.
Finally, to perform classification for all the scenarios above,
we instantiate and train a linear layer that maps features of
the foundation model to labels.

Attacks We evaluate the robustness of the system using a
true white-box attack scenario and PGD with two settings
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Pre-processor Fine-tuning Clean Robust
foundation Natural PGD-10 PGD-20 AutoAttack* Natural PGD-10 PGD-20 AutoAttack*

Identity 99.54 32.78±2.15 19.14±1.78 2.11±0.63 97.28 73.46±1.96 65.76±2.11 45.28±2.14
+ LoRA 98.44 43.11±2.20 33.55±2.09 8.38±1.23 97.54 65.50±2.08 55.96±2.16 28.18±2.04

VAE 94.71 57.23±2.18 46.45±2.20 34.78±2.04 92.80 71.47±2.03 62.54±2.14 56.03±2.15
Vanilla 99.31 34.10±2.03 22.09±1.77 7.87±1.20 97.05 73.92±1.96 66.84±2.07 55.45±2.11
ARAE 99.20 46.84±2.17 36.22±2.08 70.62±1.98 97.29 78.83±1.79 73.16±1.93 81.78±1.67

CRoPD, λ = 0.1 99.00 45.57±2.12 34.65±1.94 19.48±1.76 97.30 77.07±1.85 71.10±1.99 63.90±2.13
CRoPD, λ = 1 96.81 82.04±1.69 77.42±1.83 87.06±1.48 96.31 88.00±1.45 85.64±1.55 91.80±1.24
CRoPD, λ = 10 96.66 84.60±1.60 80.28±1.73 90.56±1.30 96.41 89.04±1.38 87.03±1.44 93.39±1.07

Identity ✓ 99.40 70.13±2.02 64.45±2.17 21.02±1.83 99.30 95.96±0.87 95.39±0.92 96.41±0.83

Table 1: Natural and robust performance comparison of different pre-processors on CIFAR-2. The results are presented for
both clean and robust trained (Robust) models, evaluated under clean conditions and against adversarial attacks (PGD-10,
PGD-20, and AutoAttack). The best values in each column, excluding full-rank fine-tuned models, are highlighted. CRoPD
achieves the best robust accuracies for both PGD and AutoAttack, beating the runner-up by 11% to 27%.
* We use APGD-CE, FAB, Square Attack for CIFAR-2, because the other attacks are not compatible with the binary classification task
(require at least 4 classes).

(PGD-10 and PGD-20). Adversarial examples are dynami-
cally generated during evaluation by calculating gradients
through the entire pipeline, which includes the robust auto-
encoder (encoder and decoder), the foundation model, and
the linear classifier. Specifically, we use an L∞ attack with
a maximum perturbation strength ϵ = 8/255 for CIFAR-2,
CIFAR-10, and CIFAR-100, and ϵ = 4/255 for Imagenette,
consistent with the training setup. Unlike training, where
FGSM is applied, evaluation employs iterative PGD attacks
to generate more challenging adversarial samples. For PGD-
10, the attack is iterated for 10 steps with each step size
limited to ϵ/5. Similarly, PGD-20 performs 20 iterations
with each step size limited to ϵ/10.

4.2. Binary Classification

Since CIFAR-2 contains only 10 000 training samples and
the computation is much less expensive than the other
datasets, we benchmark the performance of all methods
on CIFAR-2 with both clean and adversarial training. This
includes the proposed method CRoPD, other pre-processors
(Vanilla, ARAE, VAE), no pre-processor (Identity), and a
benchmark of fine-tuning the whole foundation model using
clean and adversarial training. Among all settings, robust
fine-tuning is far more expensive than clean training, up
to 10 times slower. The slow convergence rate of robust
fine-tuning makes it the slowest approach.

The results are summarized in Table 1. In general, CRoPD
outperforms the other methods when trained with both clean
and adversarial training. The following presents some de-
tails about the experiment results.

First, as mentioned in the experiment setup above, we pro-
vide a benchmark of robust fine-tuning for the foundation
model. From Table 1, it achieves a robust test accuracy of

around 96% for both PGD and AutoAttack, which is the
highest compared to others.

Second, comparing (Identity, Clean) and the other settings
with a pre-processor, without a pre-processor, all the small
perturbations/noise contained in the input are fed into the
foundation model, which leads to the worst robust test accu-
racy of only 32.78% for PGD-10, 19.14% for PGD-20 and
2.11% for AutoAttack. Consistent with our theorem, the
naı̈ve approach to adversarial auto-encoder, Vanilla, only
provides a slight improvement to robust accuracy compared
to Identity. Besides, comparing (Identity, Clean) with (Iden-
tity, Robust), when training the last linear layer using ad-
versarial training, the adversarial test accuracy can be sig-
nificantly improved to 73.46%, 65.76% and 45.28% for
PGD-10, PGD-20 and AutoAttack. However, these accu-
racy values are still much lower than the expensive, robust
fine-tuning setting of around 96%.

For the proposed method CRoPD, the weight for the ad-
versarial contrastive loss (λ) controls the clean and robust
accuracy trade-off as expected: The higher the λ is, the
more we favor robust accuracy over clean accuracy. Re-
call that the no pre-processor (Identity) robust training with
and without fine-tuning achieves around 95% and 70% ro-
bust accuracy, respectively. When taking the best λ = 10
and training the linear classification layer using clean train-
ing, robust accuracy of CRoPD outperforms robust training
without fine-tuning by upto 48% with less than 1% degra-
dation in clean accuracy. When the linear layer of CRoPD
(λ = 10) is trained with robust training, the robust accuracy
can be further enhanced to 89.04% for PGD-10, 87.03% for
PGD-20 and 93.39% for AutoAttack, Lastly, our proposed
method significantly improves the robustness of the whole
system by merely compromising around 3% in the natural
test accuracy.
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On the other hand, for the other pre-processors, to compare
Vanilla with VAE and ARAE, when the last linear layer is
trained using clean training, the adversarial test accuracy can
be significantly enhanced under both PGD and AutoAttack.
Although these two methods are not specifically designed
to remove adversarial attacks, since they still perform de-
noising, they are expected to be robust to adversarial attacks
to some extent. This aligns with the literature that random
smoothing can defend against adversarial attack (Cao &
Gong, 2017; Liu et al., 2018; Cohen et al., 2019). However,
the robustness is not as strong as models trained from adver-
sarial training, i.e., the adversarial test accuracies are much
lower than 89.04% and 87.03% achieved by our proposed
method CRoPD. We also try LoRA as a surrogate for faster
fine-tuning, but the performance is as similar as Identity
only.

4.3. Multi-class Experiments

In this section, we conduct experiments using full datasets
for multi-class tasks, including CIFAR-10, ImagenetTe,
SVHN, CIFAR-100, and Tiny-Imagenet. The results for
all five datasets are summarized in Table 2. Similar to
CIFAR-2, CRoPD generally has the largest improvement
on the adversarial test accuracy compared to other methods,
especially for CIFAR-10 (2.83% to 47.99%).

Besides, although in some scenarios, e.g., (CRoPD vs. VAE
for ImagenetTe), (CRoPD vs. Vanilla for SVHN and CIFAR-
100), some other methods achieve similar performance to
CRoPD under PGD-10, CRoPD achieves better robustness
under PGD-20 and AutoAttack in general. The similar per-
formance of the other methods compared to CRoPD is also
caused by special issues: For ImagenetTe, VAE is origi-
nally trained using a superset of ImagenetTe, so it is not
surprising that it attains the highest performance under weak
attacks; For CIFAR-100, the inflated number of classes re-
quires more features to be retained. Combined with small
input dimension, the impact of the contrastive loss is weak-
ened, resulting in a similar performance between Vanilla
and CRoPD. This is further validated by results on Tiny-
Imagenet, a dataset with even larger number of classes but
much larger input dimension, where CRoPD outperforms
Vanilla and ARAE by a large margin under PGD-10 and
PGD-20, Additional ablation study on this hypothesis is
provided in Appendix B.2.

4.4. Transfer Ability

In this experiment, we use CIFAR-10/CIFAR-100 to train
the pre-processor and evaluate the adversarial test accuracy
on CIFAR-100/CIFAR-10 respectively1. When leveraging
contrastive learning, the auto-encoder is expected to com-

1Same as previous settings, we fine-tune the foundation model
for CIFAR-100 and leave CIFAR-10 foundation model as is.

Pre-processor Natural PGD-10 PGD-20 AutoAttack

Identity 91.56 2.83±0.33 1.19±0.21 5.08±0.44
+ LoRA 88.10 3.90±0.37 1.78±0.26 —

VAE 66.62 14.10±0.68 7.70±0.52 15.27±0.70
Vanilla 90.93 10.04±0.61 4.95±0.42 6.93±0.51
ARAE 87.96 18.38±0.76 7.73±0.51 13.44±0.65

CRoPD 79.31 47.99±0.98 40.31±0.99 66.05±0.95

(a) CIFAR-10

Pre-processor Natural PGD-10 PGD-20 AutoAttack

Identity 96.89 30.97±1.44 21.57±1.26 1.69±0.42
+ LoRA 96.97 33.28±1.47 21.43±1.29 —

VAE 96.57 59.91±1.51 45.31±1.57 13.03±1.10
Vanilla 92.30 54.55±1.52 47.88±1.58 30.62±1.45
ARAE 93.32 57.32±1.55 53.69±1.56 34.41±1.46

CRoPD 83.84 58.15±1.59 54.80±1.49 60.68±1.54

(b) ImagenetTe

Pre-processor Natural PGD-10 PGD-20

Identity 99.85 33.60±0.35 30.33±0.36
VAE 88.09 14.17±0.26 8.27±0.20
Vanilla 99.79 93.43±0.18 67.79±0.34
ARAE 99.21 59.08±0.35 43.32±0.37

CRoPD 99.78 95.81±0.14 95.22±0.16

(c) SVHN

Pre-processor Natural PGD-10 PGD-20 AutoAttack

Identity 81.11 6.15±0.47 4.39±0.41 9.79±0.58
VAE 44.21 6.67±0.50 3.82±0.38 13.76±0.67
Vanilla 80.09 58.18±0.99 55.94±0.94 18.48±0.74
ARAE 76.02 50.28±1.01 47.86±0.96 23.54±0.84

CRoPD 78.89 56.82±0.99 54.17±0.95 18.25±0.75

(d) CIFAR-100

Pre-processor Natural PGD-10 PGD-20

Identity 67.20 8.39±0.54 7.13±0.52
VAE 54.43 15.42±0.72 9.97±0.59
Vanilla 67.23 13.07±0.68 10.70±0.60
ARAE 67.34 19.82±0.79 16.64±0.72
CRoPD 65.84 22.16±0.82 18.73±0.78

(e) Tiny-Imagenet

Table 2: Clean and robust accuracy comparison of vari-
ous pre-processors across CIFAR-10, ImagenetTe, SVHN,
CIFAR-100 and Tiny-Imagenet. The results are evaluated
under clean conditions and against adversarial attacks (PGD-
10, PGD-20, and AutoAttack). The best values in each col-
umn are highlighted.
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Source Target Pre-processor Natural PGD-10 PGD-20

CIFAR-10 CIFAR-100
Identity 81.11 6.15±0.47 4.39±0.41
ARAE 75.62 49.38±1.00 46.03±0.99
CRoPD 78.43 56.41±0.98 55.16±0.97

CIFAR-100 CIFAR-10
Identity 91.56 2.83±0.33 1.19±0.21
ARAE 88.04 13.34±0.65 4.73±0.40
CRoPD 86.46 21.29±0.80 10.84±0.62

Table 3: Transfer learning results between CIFAR-10 and CIFAR-100 datasets. The table shows the clean and adversarial
accuracy for each pre-processor. The best values in each column are highlighted. The pre-processor is trained on the source
dataset and applied to reconstruct and classify images in the target dataset. λ = 1 is used when targeting CIFAR-100, as
the foundation model is fine-tuned and more robust, and we set λ = 6 for the less robust CIFAR-10 foundation model.
Compared to Identity and ARAE, CRoPD attained meaningful features and significantly improved robust accuracies.

prehensively learn all features from the data, thus we expect
that CRoPD can also transfer across datasets, better than
other methods. The results are summarized in Table 3.

From Table 3, both ARAE and CRoPD learn meaningful
features for reconstruction, providing excellent natural per-
formance similar to the upper bound by Identity. Meanwhile,
our CRoPD manages to exceed the robust performance of
ARAE by up to 10% across all settings.

5. Related Works
This section lists related works in the field of adversarial
training and contrastive learning.

Adversarially Robust Pre-processing In literature, some
existing works, e.g., (Sahay et al., 2019; Zhou et al., 2021;
Cann et al., 2022; Zhou et al., 2023), consider implementing
a robust data pre-processor to defend against adversarial
attacks. Compared to the existing literature, our proposed
method avoids utilizing the pre-trained model when train-
ing the robust data pre-processor. In contrast, these ex-
isting works use the supervised learning loss to train the
pre-processor, thus heavily relying on the pre-trained model.
Another work Salehi et al. (2021) proposes to design an at-
tack to corrupt the latent space to train a robust auto-encoder
to improve the output quality against adversarial attacks.

There is also other literature that designs attacks in auto-
encoder, e.g., (Tabacof et al., 2016). Tabacof et al. (2016)
designs an auto-encoder that receives an input image of
one class but outputs another image similar to the input but
belongs to another class.

Adversarial Training There are fruitful studies in the area
of adversarial training. For methodology, there are many
techniques, e.g., (Goodfellow et al., 2015; Zhang et al.,
2019; Wang et al., 2019b; Cai et al., 2018; Zhang et al.,
2020a; Carmon et al., 2019; Gowal et al., 2021; Mo et al.,
2022; Wang et al., 2022). Theoretical investigations have

also been conducted for adversarial training from different
perspectives. For instance, Chen et al. (2020a); Javanmard
et al. (2020); Taheri et al. (2021); Yin et al. (2018); Raghu-
nathan et al. (2019); Najafi et al. (2019); Min et al. (2020);
Hendrycks et al. (2019); Dan et al. (2020); Wu et al. (2020b);
Javanmard & Mehrabi (2021); Deng et al. (2021a); Javan-
mard & Soltanolkotabi (2022) study the statistical properties
of adversarial training. And Sinha et al. (2018); Wang et al.
(2019a); Xiao et al. (2022a;b) study the optimization aspect
of adversarial training. Lastly, Zhang et al. (2020b); Wu
et al. (2020a) work on theoretical issues related to adversar-
ial training with deep learning.

Contrastive Learning Contrastive learning is a popular
self-supervised learning algorithm. It uses unlabeled images
to train representations that distinguish different images
invariant to non-semantic transformations (Mikolov et al.,
2013; Oord et al., 2018; Arora et al., 2019; Dai & Lin,
2017; Chen et al., 2020b; Tian et al., 2020; Chen et al.,
2020b; Khosla et al., 2020; HaoChen et al., 2021; Chuang
et al., 2020; Xiao et al., 2020; Li et al., 2020). Besides
empirical studies, there are also many theoretical studies,
e.g., (Saunshi et al., 2019; HaoChen et al., 2021; 2022; Shen
et al., 2022; HaoChen & Ma, 2022; Saunshi et al., 2022).
Based on both empirical and theoretical studies, a common
understanding is that contrastive learning can capture the
features from the input via comparing positive (similar) and
negative (dissimilar) pairs.

6. Conclusion
In this paper, observing the computation challenge in fine-
tuning a foundation model using adversarial training, we
examine the role of adversarial contrastive learning to seek
a strategy where downstream robustness can be obtained
without using adversarial training on the foundation model.
We theoretically upper bound the downstream adversarial
loss by a combination of the downstream clean loss and
the adversarial contrastive loss, which implies that if a data
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pre-processor can result in a small adversarial contrastive
loss, the robustness of the whole system can be improved.
Leveraging this insight, an auto-encoder can be used to de-
velop a data pre-processor that purifies the downstream data
to remove potential adversarial attacks. Experiments demon-
strate that the proposed method results in an improvement
in the downstream robustness, highlighting the importance
of the feature robustness.

There are two future directions. First, one can deepen the
theoretical understanding via considering different data as-
sumption, e.g., the sparse coding model in (Allen-Zhu &
Li, 2020). Second, while this work considers image data,
the ideas can be borrowed to natural language processing to
enhance the robustness of large language models.

Impact Statement
This paper presents work whose goal is to advance the under-
standing of adversarial robustness. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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A. Extra Experimental Details
We describe our detailed experimental settings in this section. All experiments in this paper are conducted using a private
cluster with Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz and NVIDIA A100 GPUs. We report the confidence intervals by
bootstrapping the results equal to the full size of the test set for 1 000 repeats.

Foundation Model and Downstream Task For all experiments, we use the HuggingFace Transformers (Wolf et al., 2020)
to load a pre-trained large ViT-MAE (He et al., 2021) as the foundation model. We consider different scenarios of using
the foundation model. First, for some datasets, e.g., CIFAR-2, CIFAR-10, and ImagenetTe, their distribution lines up with
the pre-trained foundation model. Thus, we freeze the foundation model as-is for these datasets to achieve a low-cost but
efficient prediction. Second, we fine-tune the pre-trained foundation model using clean training for better alignments for
CIFAR-100 and SVHN. Third, for CIFAR-2, we use adversarial training to fine-tune the foundation model with Projected
Gradient Descent (PGD) (Madry et al., 2017), which serves as a benchmark and is expected to be the most robust baseline.

Finally, to perform classification for all the scenarios above, we instantiate and train a linear layer that maps features of the
foundation model to labels.

Pre-processor We use a modified version of ViT-MAE built on top of the codebase by Zhou et al. (2023) for CRoPD,
Vanilla, and ARAE. Our ViT-MAE applies deterministic masking with a mask rate of 50% and consists of a 8-layered
encoder and 2-layered decoder, where the attentions have 3-heads each. For datasets with lower resolution, we set the patch
size to 2 with a 192-dimension embedding, and for ImagenetTe we use a patch size of 14 with a 768-dimension embedding
size. Before feeding the latent embeddings to the projector, we first perform an average pooling with a pooling factor of 8.
The resulting tensor is then flattened and fed into a two-layered projector with 2048 hidden size and 128 output size. Table 4
shows the parameters used in setting up CRoPD, ARAE and VAE. For reconstruction, we use standard mean squared error
instead of binary cross entropy for better performance.

We apply data augmentation (Table 5) and/or adversarial perturbation to the inputs while training the auto-encoders. For the
adversarial perturbation, we use the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) with ℓinf -norm with a
max perturbation of 8/255 and 4/255 for low- and high-resolution datasets. Finally, the remaining optimization settings are
shown in Table 6.

Pre-processor settings

ARAE γ = 0.1

CRoPD λ = 10 for CIFAR-10, ImagenetTe

λ = 1 for SVHN, CIFAR-100

VAE diffusers.AutoencoderKL
stabilityai/sd-vae-ft-mse-original

Table 4: Pre-processor settings for different datasets.

Augmentation settings

CIFAR-2, CIFAR-10, SVHN, CIFAR-100

RandomResizedCrop(32)
RandomHorizontalFlip()
RandomApply([ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8)
RandomGrayscale(p=0.2)

ImagenetTe

RandomResizedCrop(224)
RandomHorizontalFlip()
RandomApply([ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8)
RandomGrayscale(p=0.2)

Table 5: Augmentation settings for CRoPD and Vanilla. Note that ARAE does not use augmented images.
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Optimization settings

Optimizer AdamW

Learning rate 1.5× 10−4

Weight decay 5× 10−2

Warmup epochs 20

Scheduler CosineAnnealingLR

Batch size

CIFAR-2: 32 (until epoch 150)
256 (after epoch 150)

CIFAR-10: 32

SVHN: 32

CIFAR-100: 96

ImagenetTe: 96

Max epochs

CIFAR-2: 400 epochs

CIFAR-10: 400 epochs

SVHN: 400 epochs

CIFAR-100: 150 epochs

ImagenetTe: 150 epochs

Table 6: Optimization settings for training pre-processors on different datasets.

Foundation Model and Linear Layer After training the pre-processors, we chain it with the foundation model
(facebook/vit-mae-large) and train a linear classification layer. As described before, we will also optionally
fine-tune the foundation model. Since the ViT-MAE expects 224× 224 sized inputs, which mismatch with the image size of
CIFAR-10, SVHN and CIFAR-100, we use the differentiable torch bi-linear interpolation to upscale image tensors from their
original 32 shape. We also apply the preprocessing normalization steps with parameters described by their configurations.
When training the linear classification layer (and optionally fine-tuning the foundation models), we perform optimization
until convergence or when it reaches max epochs. For robust training, we use PGD-10 with a larger step size of 0.007 to
generate adversarial examples and mix them with natural samples. The other detailed training parameters we used are shown
in Table 7.

Optimization settings

Optimizer AdamW

Learning rate 1× 10−2 (classification head only)

1× 10−4 (fine-tuning foundation)

Batch size 64

Max epochs 150

LR scheduler multiply by 0.1 after epochs 30, 70, 100

Table 7: Optimization settings for training linear classification head with optional fine-tuning of the foundation model.

B. Additional Experimental Results
In this appendix, we show some additional experimental results.
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Dataset Method Clean PGD-10 PGD-20 Time

CIFAR-10 Encoder-Only 65.58±0.94 28.08±0.86 25.61±0.86 315 sec * 50 epoch
CRoPD 79.31±0.40 47.99±0.98 40.31±0.99 250 sec * 100 epoch

ImagenetTe Encoder-Only 66.09±1.47 41.95±1.57 41.57±1.55 310 sec * 90 epoch
CRoPD 83.84±0.62 58.15±1.59 54.80±1.49 360 sec * 120 epoch

Table 8: Comparison of encoder-only adversarial training and CRoPD under PGD attacks.

B.1. Comparison with Encoder-Only Adversarial Training

Table 8 compares two training strategies across the CIFAR-10 and ImagenetTe datasets. The “Encoder-Only” approach
employs supervised adversarial training using only the encoder and the downstream dataset. In contrast, CRoPD utilizes
a robust auto-encoder (encoder+decoder) together with a frozen foundation model. On both datasets, CRoPD yields
consistently higher accuracy and adversarial robustness. For example, on CIFAR-10, the clean accuracy improves from
65.58% to 79.31%, while PGD-10 and PGD-20 robustness increase from 28.08 and 25.611% to 47.991% and 40.311%,
respectively. A similar trend is observed for ImagenetTe. Although CRoPD requires longer training times (250 sec * 100
epoch for CIFAR-10 and 360 sec * 120 epoch for ImagenetTe) compared to the Encoder-Only method, this additional
computational cost is offset by the significant performance gains achieved by leveraging robust contrastive learning and the
foundation model.

B.2. Why CRoPD perform worse on CIFAR-100?

Sample size λ Clean PGD-10 PGD-20

10% 0.15 79.28±0.82 11.92±0.64 8.43±0.55
20% 1 79.81±0.79 16.01±0.73 9.98±0.58
50% 10 81.85±0.78 25.75±0.84 14.33±0.71

100% 10 79.31±0.79 47.99±0.98 40.31±0.99

Table 9: Ablation study of CRoPD on CIFAR-10 by reducing the training set to 10%, 20%, 50% and 100%. We use different
λ values to balance the reconstruction and contrastive objectives given the size of the training set. CRoPD shows substantial
gains with increased training data, underscoring its data efficiency and scalability.

In CIFAR-100, the proposed method exhibits limited performance compared to its results on CIFAR-10. This difference is
primarily due to CIFAR-100 providing significantly fewer samples per class, which makes it more challenging to learn the
well-separated robust features required by our adversarial contrastive loss. With limited per-class data, the preprocessor
struggles to learn meaningful representations. In this context, a smaller adversarial contrastive loss weight (e.g., λ = 0.1)
might better balance the reconstruction and contrastive objectives; note that the Vanilla baseline corresponds to λ = 0.

To validate that data scarcity, not merely the number of classes, is the core issue, we conducted an ablation study on
CIFAR-10 by reducing its training set to 10%, 20%, and 50%, thereby matching the per-class data scale of CIFAR-100 (see
Table 9). CRoPD demonstrates substantial gains with increased training data, underscoring its data efficiency and scalability.

These observations imply that the lower performance observed on CIFAR-100 does not indicate a fundamental limitation
of CRoPD in multi-class settings. Instead, they highlight the critical importance of sufficient per-class data in achieving
high robustness, which is consistent with our theoretical insights (Theorem 1). With adequate data, CRoPD consistently
outperforms reconstruction-only baseline (Vanilla) in both clean accuracy and adversarial robustness.

B.3. ROCL Trained Foundation Model

Table 10 demonstrates another set of experiments on CIFAR-2 with a custom-trained model (using RoCL). Consistent with
Table 1, CRoPD out-performs the competing benchmark ARAE by a large margin. Surprisingly, CRoPD even outperforms
the (Identity, fine-tune) setting, though the gap is narrower.
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Pre-processor Fine-tuning Clean Robust
foundation Natural PGD-10 PGD-20 Natural PGD-10 PGD-20

Identity 98.41 1.40±0.53 0.74±0.38 98.77 0.21±0.19 0.00±0.00
Vanilla 98.31 1.00±0.42 0.35±0.25 96.08 9.15±1.26 5.04±0.96
ARAE 92.56 32.83±1.98 27.11±2.01 89.67 50.38±2.11 45.41±2.11

CRoPD, λ = 0.1 98.26 2.61±0.68 1.40±0.51 96.34 13.83±1.52 11.37±1.39
CRoPD, λ = 1 95.05 75.98±1.86 70.42±2.04 94.62 79.48±1.76 75.66±1.81
CRoPD, λ = 10 95.16 75.27±1.94 71.60±1.96 94.91 79.59±1.72 76.64±1.80

Identity ✓ 98.77 0.21±0.19 0.00±0.00 97.66 76.51±1.87 71.83±2.00

Table 10: Natural and robust performance comparison of different pre-processors on CIFAR-2 with a custom foundation
model trained with RoCL. The results are presented for both clean and robust trained (Robust) models, evaluated under clean
conditions and against adversarial attacks (PGD-10 and PGD-20). The best values in each column, excluding fine-tuned
models, are highlighted. All foundation model weights are frozen during training except for the fine-tuned models. CRoPD
achieves competitive robust accuracies for both PGD-10 and PGD-20, demonstrating strong performance.

C. Computation Requirements
We conduct all experiments using a private cluster with Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz and NVIDIA A100
GPUs. We execute our experiments using six cores, 48G Memory, and 1 GPU. We document the estimated experiment
runtime for CIFAR-2 experiments in Table 11. The total computation required by our method (CRoPD+Linear) can be much
cheaper than that of robust fine-tuning. In addition, we also report the parameter counts for each model in Table 12. Our
method only requires training of a fraction of parameters compared to the foundation model employed.

Dataset CRoPD (h) Linear (h) Fine-tune (h) Robust fine-tune (h)

CIFAR-100 5.0 3.0 7.3 19.6
ImagenetTe 9.6 1.7 3.6 22.3

Table 11: Estimated computation cost for training each model type on CIFAR-100 and ImagenetTe. The training time of our
method includes the CRoPD and Linear columns, while the alternative adversarial fine-tuning can take drastically longer.
Regular fine-tuning, though beneficial for robustness, can taker longer than the Linear to train due to slower convergence.

Dataset type CRoPD Foundation Fraction

Small 1.8× 107 3.0× 108 6.1%
Large 8.3× 107 3.0× 108 27.6%

Table 12: Parameter counts of models for different datasets. Fraction shows the Small and large dataset types refer to
non-ImagenetTe and ImagenetTe. By incorporating a pre-processor, we drastically reduced the number of parameters to
tune during training by more than 90% and 70%, respectively.

D. Proofs
Outline of the proof of Theorem 1 We now outline the key steps in proving Theorem 1 below, with detailed derivations
provided in the appendix.

We begin by applying Jensen’s inequality to the expectation of the negative log probability of the model’s prediction
Eq(x,y)

[
− logEpθ(z|a(x)) [p̂T (y | z)]

]
, where a(x) = argmaxxadv∈A(x) logEpθ(z|xadv)[p̂T (y | z)],∀x, transforming the

inner expectation into a more tractable form as Eq(x,y)

[
Epθ(z|a(x)) [− log p̂T (y | z)]

]
. Next, we express the difference

between the expected values of the loss function under the original distribution pθ(z|x) and the adversarial distribution
pθ(z|a(x)) using the Kantorovich-Rubinstein duality

Eq(x,y)

[
Epθ(z|a(x)) [− log p̂T (y | z)]− Epθ(z|x) [− log p̂T (y | z)]

]
≤ MC · EpT (x,y) [W (pθ(z | a(x)), pθ(z | x))] . (6)

16



Enhance Downstream Adversarial Robustness

This allows us to quantify the deviation of the adversarial distribution from the original one in latent space via the Wasserstein
distance.

Assuming accurate feature reconstruction by the foundation model’s decoder fde(z) ≈ x where z = fen(x), and robust
latent feature production by the encoder, such that ∥fen(a(x))− fen(x)∥ is small, then the encoder produces deterministic
and precise latent representations for given inputs, and the decoder reconstructs features accurately. Consequently, the
distributions pθ(z | x) and pθ(z | a(x)) are expected to be highly concentrated around fen(x) and fen(a(x)) with very small
variance. Given this concentration, it is reasonable to approximate these distributions as Dirac delta functions centered at
fen(x) and fen(a(x)). Respectively, we treat pθ(z | a(x)) and pθ(z | x) as Dirac delta distributions centered on fen(a(x))
and fen(x). This allows us to bound the Wasserstein distance by the Euclidean distance ∥fen(a(x))− fen(x)∥ between the
adversarial and original latent representations.

We then relate the Euclidean distance between fen(a(x)) and fen(x) to the adversarial contrastive loss Lcon through a scaling
constant κ. This formalizes the relationship between minimizing contrastive loss and improving adversarial robustness
∥fen(a(x)) − fen(x)∥≤ κ · Lcon (fen(a(x)), fen(x)). Finally, combining these elements yields the main inequality of
Theorem 1, bounding the adversarial loss in the downstream task by the clean downstream loss plus a scaled version of the
adversarial contrastive loss.

This proof leverages the Lipschitz continuity of the decoder to bound the impact of adversarial perturbations in latent space
and demonstrates how contrastive learning serves as a mechanism for enhancing robustness by aligning clean and adversarial
representations. Through this approach, we establish a theoretical connection between adversarial contrastive learning and
the robustness of downstream tasks, providing a solid foundation for our proposed method.

Proof of Theorem 1. Let a(x) = argmaxxadv∈A(x) logEpθ(z|xadv)[p̂T (y | z)],∀x, where θ is the the parameters of fen. z
refers to the sample latent values generated by encoder distribution fen(x). p̂T (y | z) = P (flast(fpre(fde(z))) = y) refers
to the model’s prediction of a certain class. A(x) represents the threat model. We note that − log p̂T (y | fde(z)) was used in
the Theorem 1 in the main body instead of the standard p̂T (y | z) to help better highlight the procedure of our mechanism.

To prove theorem 1, it suffices to show the below general bound of our adversarial contrastive loss,

Eq(x,y)

[
− logEpθ(z|a(x))[p̂T (y | z)]

]
≤ Eq(x,y)

[
Epθ(z|x)[− log p̂T (y | z)]

]
+ κ sup

xadv∈A(x)

Lcon(fen(x
adv), fen(x)).

To show this, we first apply Jensen’s Inequality and obtain the following relation,

Eq(x,y)

[
− logEpθ(z|a(x))[p̂T (y | z)]

]
≤ Eq(x,y)

[
Epθ(z|a(x))[− log p̂T (y | z)]

]
.

Consequentially, we further convert the inequality to the following form,

Eq(x,y)

[
Epθ(z|a(x))[− log p̂T (y | z)]

]
− Eq(x,y)

[
Epθ(z|x)[− log p̂T (y | z)]

]
=Eq(x,y)

[
Epθ(z|a(x))[− log p̂T (y | z)]− Epθ(z|x)[− log p̂T (y | z)]

]
≤ κ sup

xadv∈A(x)

Lcon(fen(x
adv), fen(x)).

To show this, consider Proposition 2 and Proposition 3 below, there exists a constant MC such that g(z) = − log p̂T (y|z)
MC

is
1-Lipschitz. This allows us to leverage the Kantorovich-Rubinstein duality to express the difference between the expectations
under the distributions pθ(z | a(x)) and pθ(z | x) in terms of a Wasserstein distance:

Eq(x,y)

[
Epθ(z|a(x))[− log p̂T (y | z)]− Epθ(z|x)[− log p̂T (y | z)]

]
= MC · Eq(x,y)

[
Epθ(z|a(x))[g(z)]− Epθ(z|x)[g(z)]

]
≤ MC · Eq(x,y)

[
sup

∥h∥L≤1

(
Epθ(z|a(x))[h(z)]− Epθ(z|x)[h(z)]

)]
(arises for g(z) belonging to 1-Lipschitz functions.)

= MC · Eq(x,y) [W (pθ(z | a(x)), pθ(z | x))] (follows from the Kantorovich-Rubinstein theorem.),

Consider the Wasserstein distance W (pθ(z | a(x)), pθ(z | x)), where W refers to the Wasserstein distance between the two
distributions pθ(z | a(x)) and pθ(z | x).
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Since the decoder fde has been pre-trained, in an idealized scenario, we can consider both pθ(z | a(x)) and pθ(z | x) as
Dirac delta distributions, centered at the points fen(a(x)) and fen(x), respectively.

Assuming that the function h(z) is Lipschitz continuous with respect to the encoded representations fen(a(x)) and fen(x),
we can then express the Wasserstein distance between these two Dirac Delta distributions as the Euclidean distance between
the encoded representations. Specifically, we have:

W (pθ(z | a(x)), pθ(z | x)) ≤ ∥fen(a(x))− fen(x)∥2.

Considering empirical distributions derived from the data, let {zi = fen(xi)}Ni=1 be samples from pθ(z | x) and {z′i =
fen(a(xi))}Ni=1 be samples from pθ(z | a(x)). We assume the following properties between zi and z′i holds for all i and
j ̸= i with yj ̸= yi,

∥zi − z′i∥ = ∥fen(xi)− fen(a(xi))∥≤ η1, (7)
∥zi − zj∥ = ∥fen(xi)− fen(xj)∥≥ η2, (8)
∥zi − z′j∥ = ∥fen(xi)− fen(a(xj))∥≥ η2. (9)

While Equation (7) guarantees similar pairs stay sufficiently close together in the embedding space, Equation (8) and
Equation (9) constrains dissimilar examples to be far apart, which aligns with the goal of our contrastive loss.

Considering these distances, a feasible transport plan in the Wasserstein distance computation is to match each zi with its
corresponding z′i. This matching incurs a cost of at most η1 per pair. Matching zi with any zj or z′j where yi ̸= yj would
incur a higher cost of at least η2. Therefore, this transport plan yields:

W (pθ(z | a(x)), pθ(z | x)) ≤ 1

N

N∑
i=1

∥zi − z′i∥= Eq(x,y)∥fen(a(x))− fen(x)∥2.

Thus, the Wasserstein distance W between the two distributions pθ(z | a(x)) and pθ(z | x) is bounded above by the
Euclidean distance between the encoded representations fen(a(x)) and fen(x), under the assumption that h(z) is Lipschitz
continuous. This bound can be formally expressed as:

Eq(x,y)

[
− logEpθ(z|a(x))[p̂T (y | z)]

]
≤Eq(x,y)

[
Epθ(z|x)[− log p̂T (y | z)]

]
+MC · Eq(x,y)∥fen(a(x))− fen(x)∥2.

This inequality suggests that the adversarial loss in the downstream task can be bounded by the distance between the encoded
representations of the original samples and their attacked (adversarial) counterparts.

First, instead of using a specific, predefined form of contrastive loss, we are leveraging the general idea behind contrastive
learning. The central concept in contrastive learning is to maximize the similarity (minimize the distance) between pairs of
similar samples (e.g., an original sample and its adversarial example). The following argument provided is an informal
idea and a brief proof that by minimizing the distance between such pairs, we can effectively bound the adversarial loss.
Now, considering the relationship between this distance and contrastive loss, informally, design a contrastive loss Lcon to
minimize the distance between the encoded representations of similar pairs (e.g., a sample and its adversarial version):

Given this, we can connect the Euclidean distance ∥fen(a(x))− fen(x)∥2 to the contrastive loss by introducing a scaling
constant C.

Eq(x,y)∥fen(a(x))− fen(x)∥2≤ C · Lcon(fen(x), fen(a(x))).

It is important to note that value of C depends on the contrastive loss and learning schedule. Assuming that our choice of
the loss function is a well-behaved model, then we can obtain a reasonable value of C for bounding adversarial Euclidean
distance.

By substituting this into the earlier inequality, we obtain:
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Eq(x,y)

[
− logEpθ(z|a(x))[p̂T (y | z)]

]
≤Eq(x,y)

[
Epθ(z|x)[− log p̂T (y | z)]

]
+MC · C · Lcon(fen(x), fen(a(x)))

≤Eq(x,y)

[
Epθ(z|x)[− log p̂T (y | z)]

]
+ κ sup

xadv∈A(x)

Lcon(fen(x
adv), fen(x)).

where κ = MC · C.

Using the above bounds, in our study, we specifically consider the adversarial contrastive loss Lcon defined as follows:

Lcon(fen(x
adv), fen(x)) = Eq(xi,yi)

[
ℓcon(fen(x

adv
i ), fen(xi))

]
,

where provided with a set of clean examples X = {x1, . . . xN}, each with an adversarial counterpart, Xadv =
{xadv

1 , . . . xadv
N }. Without an explicit negative sampling process, for xi, we now consider xadv

i as the similar example and
the remaining samples in these sets, Xneg = X

⋃
Xadv\{xi, x

adv
i } dissimilar and define the loss function as

ℓcon(fen(x
adv
i ), fen(xi)) = − log

exp(sim(fen(x
adv
i ), fen(xi))/τ)∑

xneg∈Xneg exp(sim(fen(xi), fen(xneg)/τ)
.

In the above, the similarity between two vectors u and v is measured using cosine similarity and is defined as:

sim(u,v) =
uTv

∥u∥∥v∥
,

which measures the cosine of the angle between u and v, normalized by their magnitudes.

So we have:

McEq(xi,yi)∥fen(xi)− fen(a(xi))∥2

= McEq(xi,yi)

√
∥fen(xi)− fen(a(xi))∥22

= McEq(xi,yi)

√
2
√
1− sim(fen(xi), fen(a(xi))

(considering the output for encoder is normalized, ∥fen(xi)∥2= 1)

≤
√
2McCsqrtEq(xi,yi)(1− sim(fen(xi), fen(a(xi)))

≤
√
2McCsqrtEq(xi,yi)exp(−sim(fen(xi), fen(a(xi))

(according to Taylor expansion for exp(x) and |sim(fen(xi), fen(a(xi)|< 1)

≤
√
2McCsqrtClogEq(xi,yi) log(1 + exp(−sim(fen(xi), fen(a(xi)))

≤
√
2McCsqrtClogCMEq(xi,yi) log((

∑
xneg∈Xneg

exp(sim(fen(xi), fen(x
neg))) ∗ exp(−sim(fen(xi), fen(a(xi)))

=
√
2McCsqrtClogCMEq(xi,yi)

(
− log

exp(sim(fen(x
adv
i ), fen(xi)))∑

xneg∈Xneg exp(sim(fen(xi), fen(xneg))

)
=

√
2McCsqrtClogCMEq(xi,yi)

[
ℓcon(fen(x

adv
i ), fen(xi))

]
≤ κ sup

xadv∈A(x)

Lcon(fen(x
adv), fen(x)).

where κ =
√
2McCsqrtClogCM.

• Csqrt is a scaling factor designed to linearize the expression involving the square root function, ensuring that the
inequality holds. The scaling factor Csqrt is defined by the formula:

Csqrt =
1

mint=sim(fen(xi),fen(a(xi)))

√
1−t
1−t

,

where t = sim(fen(xi), fen(a(xi))) represents the similarity between the clean and adversarial examples.

19



Enhance Downstream Adversarial Robustness

• In the context of adversarial contrastive training, given that sim(fen(xi), fen(a(xi))) will be less than 1, there exists a
bounded Csqrt. This ensures that the linear approximation 1− t is a valid upper bound for

√
1− t across the relevant

range of t.

• Clog is a scaling factor introduced to ensure that the logarithmic expression is correctly bounded by the exponential
function, maintaining the inequality’s validity. The scaling factor Clog is defined by the formula:

Clog =
1

mint=sim(fen(xi),fen(a(xi)))
log(1+exp(−t))

exp(−t)

,

where t = sim(fen(xi), fen(a(xi))) denotes the similarity between the clean and adversarial examples.

• In the context of adversarial contrastive training, given that sim(fen(xi), fen(a(xi))) lies within the range −1 < t < 1,
the scaling factor Clog can be bounded above by e

log(1+e) . This ensures that the logarithmic term is appropriately scaled
relative to the exponential term, preserving the bound.

• CM is a scaling factor that ensures the logarithm of the product is greater than or equal to the logarithm of the sum
log(1 + exp(−sim(fen(xi), fen(a(xi))))).

• Given that for large M (especially when M > 10), the sum
∑

xneg∈Xneg exp(sim(fen(xi), fen(x
neg))) will likely

exceed e(e + 1), making the product of this sum with exp(−sim(fen(xi), fen(a(xi)))) naturally larger than 1 +
exp(−sim(fen(xi), fen(a(xi)))), the scaling factor CM can be considered close to 1, or even negligible.

• In practical terms, CM can be ignored when M is sufficiently large, since the dominant terms in the sum ensure that the
inequality holds naturally without needing additional scaling.

Proposition 2. For the robust auto-encoder, assume we have a robust auto-encoder defined by an encoder fen(x) and
a decoder fde(z), where z = fen(x) represents the latent feature of the input x. This auto-encoder is trained using
a combination of reconstruction loss and adversarial contrastive loss. The reconstruction loss, ∥fde(fen(x)) − x∥2,
ensures that the decoder fde can accurately reconstruct the original input from the encoded features. The contrastive loss,
Lcon(fen(x+ δ), fen(x

′)), promotes robustness of the encoded features fen(x) against adversarial perturbations δ. There
exists a constant C such that fde(z)

C is 1-Lipschitz.

Proof of Proposition 2. Given the training process of the robust auto-encoder, two key losses are employed: the reconstruc-
tion loss ∥fde(fen(x))− x∥2 and the adversarial contrastive loss Lcon(fen(x+ δ), fen(x

′)). These losses are designed to
ensure that the encoder fen(x) and decoder fde(z) not only preserve the integrity of the original input x in the reconstruction
but also maintain robustness against adversarial perturbations.

We denote the Lipschitz constant of our encoder as Len. Additionally, given that in a ViT-MAE, the representation space is
typically larger than the input space, we assume there exists a lower bound on the gradient between any samples in our
dataset and within the threat model A of samples of our dataset. Formally, we write this as

len∥x1 − x2∥≤ ∥z1 − z2∥≤ Len∥x1 − x2∥,

where z1 = fen(x1) and z2 = fen(x2) represent the latent features of the inputs x1 and x2, respectively.

Similarly, the reconstruction loss ∥fde(fen(x))− x∥2 optimizes the decoder fde to ensure accurate reconstruction of the
input from the latent features. In most cases, it is safe to assume this optimization results in a finite-Lipschitz constant Lrec

that describes how the output fde(z) changes with respect to variations in the input x:

∥fde(z1)− fde(z2)∥≤ Lrec∥x1 − x2∥.

Given the relationships established by these losses, we can now derive the Lipschitz constant between the encoded feature z
and the decoder output fde(z). By combining the encoder’s and decoder’s Lipschitz constants, we obtain:
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∥fde(z1)− fde(z2)∥≤ Lrec∥x1 − x2∥≤ Lrec ·
1

len
∥z1 − z2∥.

Thus, the Lipschitz constant for the decoder with respect to the encoded feature z, denoted as L(z)
de , is:

L
(z)
de =

Lrec

len
.

Finally, by selecting the constant C = L
(z)
de , we can ensure that the scaled decoder function g(z) = fde(z)

C satisfies the
1-Lipschitz condition:

|g(z1)− g(z2)|=
1

C
|fde(z1)− fde(z2)|≤ ∥z1 − z2∥.

This concludes the proof, demonstrating that such a constant C exists and that fde(z)
C is indeed 1-Lipschitz, ensuring the

stability and robustness of the auto-encoder.

Proposition 3. Assume − log p̂T (y | fde(z)) ≤ M for all z ∈ Z, y ∈ Y . If there exists a constant C such that fde(z)
C is

1-Lipschitz, then there exists a constant MC such that − log p̂T (y|fde(z))
MC

is 1-Lipschitz.

Proof of Proposition 3. Given that − log p̂T (y | fde(z)) ≤ M for all z ∈ Z and y ∈ Y , we know that the function
− log p̂T (y | fde(z)) is bounded above by M . Consequently, p̂T (y | fde(z)) is bounded below by e−M .

Now, assume that there exists a constant C such that fde(z)
C is 1-Lipschitz, which implies:

∣∣∣∣fde(z1)C
− fde(z2)

C

∣∣∣∣ ≤ ∥z1 − z2∥, ∀z1, z2 ∈ Z.

Next, consider the function − log p̂T (y | fde(z)). To show that − log p̂T (y|fde(z))
MC

is 1-Lipschitz for some constant MC , we
recognize that the derivative of the log function is bounded by 1

p̂T (y|fde(z)) . Since p̂T (y | fde(z)) is bounded below by e−M ,
the derivative is bounded by eM .

Thus, we define MC as:
MC = C × eM .

We then scale the function − log p̂T (y | fde(z)) by MC and consider the difference:∣∣∣∣− log p̂T (y | fde(z1))
MC

− − log p̂T (y | fde(z2))
MC

∣∣∣∣ = 1

MC
|− log p̂T (y | fde(z1)) + log p̂T (y | fde(z2))| .

Given the earlier bound on the derivative of the log function, we have:

|log p̂T (y | fde(z1))− log p̂T (y | fde(z2))| ≤ eM · C · ∥z1 − z2∥.

Substituting into our earlier equation, we get:

∣∣∣∣− log p̂T (y | fde(z1))
MC

− − log p̂T (y | fde(z2))
MC

∣∣∣∣ ≤ eM · C
MC

· ∥z1 − z2∥=
eM · C
eM · C

· ∥z1 − z2∥= ∥z1 − z2∥.

Thus, − log p̂T (y|fde(z))
MC

is indeed 1-Lipschitz, which completes the proof.
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Proof of Proposition 1. To illustrate an extreme scenario in proving Proposition1, we construct a data generation model (x, y)
consisting of a discrete set {xi} with labels yi, an identity auto-encoder (fen, fde) that achieves negligible reconstruction
losses for both clean and adversarial inputs, and a classifier (fpre, flast) whose adversarial classification loss can be made
arbitrarily large despite near-perfect reconstructions.

Step 1: Construct a data distribution q(x, y). We select a finite (or discrete) set of points

X = {x1, . . . , xN} ⊂ Rd,

each assigned a label yi ∈ {1, . . . ,K}. We assume these points are well-separated by at least 2ϵ, i.e.,

∥xi − xj∥ ≥ 2ϵ for all i ̸= j.

We define a discrete distribution

q(x, y) =
1

N

N∑
i=1

δ(xi,yi)(x, y),

so that each pair (xi, yi) occurs with probability 1
N .

Step 2: Define an auto-encoder (fen, fde) with small reconstruction loss. Consider the identity mapping:

fen(x) = x, fde(z) = z.

Then for any input x (including adversarially perturbed inputs xadv),

fde(fen(x)) = x =⇒ ∥fde(fen(x))− x∥2 = 0.

Hence for both clean data x and any xadv with ∥xadv − x∥≤ ϵ, the reconstruction loss is exactly zero, i.e.,

Ex

[
∥fde(fen(x))− x∥2

]
= 0,

and
Ex

[
∥fde(fen(xadv))− x∥2

]
= ϵ2 = O(1/n)

if taking ϵ = O(1/
√
n). Thus both reconstruction errors (clean and adversarial) can be made as small as desired.

Step 3: Construct a brittle classifier (fpre, flast) with large adversarial loss. Define fpre to be the identity as well (or any
feature extractor that yields x effectively), so fpre(x) = x. Then let flast:Rd → ∆K (the probability simplex) be chosen as
follows:

1. For each clean point xi, assign label yi with probability very close to 1:

p̂T (yi | flast(fpre(xi))) = 1− δ,

for some arbitrary small constant δ > 0, then − log p̂T (yi | flast(fpre(xi))) = O(δ), ensuring near-zero loss on all
clean (xi, yi).

2. For any xadv satisfying ∥xadv − xi∥≤ ϵ, assign zero (or near-zero) probability to the label yi, i.e.

p̂T (yi | flast(fpre(xadv))) = O(δ).

Hence − log p̂T (yi | flast(fpre(xadv))) ≫ 0, so the classification loss is made arbitrarily large on these adversarial
perturbations.

Because the ϵ-balls around different xi do not intersect (∥xi − xj∥≥ 2ϵ), we can define such a piecewise decision rule
without conflict.
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