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Fig. 1. Illustration of the physical and virtual robot arm. The transparent shape represents the working envelope. The boxes on the left and right are used
for the user study tasks.

Abstract— Conventional robot programming methods are
complex and time-consuming for users. In recent years, al-
ternative approaches such as mixed reality have been explored
to address these challenges and optimize robot programming.
While the findings of the mixed reality robot programming
methods are convincing, most existing methods rely on gesture
interaction for robot programming. Since controller-based in-
teractions have proven to be more reliable, this paper examines
three controller-based programming methods within a mixed
reality scenario: 1) Classical Jogging, where the user positions
the robot’s end effector using the controller’s thumbsticks, 2)
Direct Control, where the controller’s position and orientation
directly corresponds to the end effector’s, and 3) Gripper Con-
trol, where the controller is enhanced with a 3D-printed gripper
attachment to grasp and release objects. A within-subjects study
(n = 30) was conducted to compare these methods. The findings
indicate that the Gripper Control condition outperforms the
others in terms of task completion time, user experience, mental
demand, and task performance, while also being the preferred
method. Therefore, it demonstrates promising potential as an
effective and efficient approach for future robot programming.
Video available at https://youtu.be/83kWr8zUFIQ.

I. INTRODUCTION

Mixed reality (MR) [18] allows users to augment the phys-
ical environment with virtual elements, offering promising
opportunities in fields ranging from healthcare [12,29,30]
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to ordnance disposal [27,28]. For robot programming, this
potential has been explored for several years [1,5,25] since
traditional programming approaches are unintuitive, highly
skill-demanded, or time-consuming [21,36]. For instance,
in online programming, the robot is moved to a position
via a teach pendant by jogging per cycle, which is tedious
and time-consuming [19]. In offline programming, the task
is created on an independent computer, which provides
features like task simulation and collision detection but is
time-consuming, demanding, and requires a complete digital
model of the workspace [20]. Another example is walk-
through programming, where the robot’s end effector is
physically moved to the desired positions while the robot
controller records these movements [6]. A concept based on
this is programming by demonstration [13], in which the
robot not only imitates the movements but also learns the
tasks via machine learning to generalize these for similar
situations [26]. MR robot programming offers a solution to
the limitations of these conventional methods since this tech-
nology provides an efficient hybrid solution that combines
online and offline programming. It allows users to overlay
the physical robot environment with a virtual robot replica,
as depicted in Figure 1, enabling them to program the virtual
model first and simulate its movements. This process helps
identify potential problems, such as collisions, early on. Once
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the immersive simulation runs smoothly, the physical robot
can reliably execute the programmed tasks without having
to create a detailed digital model of the environment.

Research findings indicate that MR programming is more
effective and efficient than conventional methods [8,24].
An analysis of recent publications in this field shows that
the interaction is performed using gesture control in most
cases [7,11,14,22,22]. This involves the use of a remote
manipulation interaction technique for setting waypoints
[8,24,34]. However, this method is less accurate than direct
manipulation due to hand instability, inaccurate tracking
systems, and difficulty mapping the user’s movements to
virtual objects [16,17]. In addition, studies have shown that
the performance of gesture-based interaction is not as good
as controller-based interaction [9,15] while using tangible
objects leads to better results [2,3,28,33].

In this paper, we investigate the potential of controller-
based MR robot programming by comparing the following
three methods: 1) Classical Jogging, in which the user moves
the virtual robot using the thumbsticks and buttons of a
controller, 2) Direct Control, in which the position and ori-
entation of the controller (6-DoF) is transferred to the virtual
end effector, and 3) Gripper Control, which extends the
Direct Control method with a mechanical gripper identical to
that of the robot, enabling gripping and releasing of physical
objects. These three methods are evaluated in a study (n =
30) to determine their effectiveness and efficiency. A fast
and uncomplicated robot programming solution for people
with no previous experience or knowledge in human-robot
interaction can accelerate the widespread introduction of
robot technologies in small and medium-sized companies [6].

II. RELATED WORK

Yang et al. [35] compared a video see-through MR robot
programming system with an online programming method.
The MR method used an Oculus Rift HMD and a physical
handheld controller for interaction. In the online method,
participants could choose between manual leading and pen-
dant teaching. Both methods were evaluated in a within-
subjects study (n = 16) in which participants completed
two complex programming tasks. The results showed that
participants were faster, set fewer waypoints, and had less
cognitive load when using the MR method. Gadre et al.
[8] implemented an MR interface for robot programming
using a Microsoft HoloLens with gesture interaction and
compared it to a conventional offline 2D programming
method (monitor, keyboard, and mouse). Participants had
to perform two pick-and-place tasks in a within-subjects
study (n = 20). The analysis showed that the MR method
was faster, easier, more natural, and less work-intensive than
the conventional method. Quintero et al. [24] investigated
an MR robot programming method by comparing it with a
traditional kinesthetic teaching method. In a study (n = 10),
the participants performed free space and contact surface
trajectory tasks. The interaction was performed via hand
tracking using a Microsoft HoloLens and MYO armband.
Results of a study showed that the MR method took less

time, performed better, and required less physical effort but
more mental effort. Pizzagalli et al. [23] compared the two
MR methods, AR (Microsoft HoloLens) and VR (Oculus
Quest), with the online programming method teach pendant.
Both MR methods were operated via gesture interaction.
The results of a within-subjects study (n = 21) showed
that both MR methods were faster, easier to use, and less
demanding for users than the conventional programming
method. Dengxiong et al. [4] proposed a self-supervised 6-
DoF grasp pose detection system through an MR teleoper-
ation framework that efficiently learns useful grasp strate-
gies from human demonstrations without requiring explicit
grasp pose annotations. Thus, this method does not require
precise grasp pose monitoring, which offers advantages in
constrained environments. In real-world experiments, the
proposed system demonstrated the ability to successfully
grasp unknown objects after only three demonstrations.

III. METHODS
In this section, we describe our novel robot programming

approaches. As an apparatus for three methods, we use the
Meta Quest 31 MR head-mounted display (HMD) as an
interface. An Annin Robotics AR4 open-source robotic arm2,
which is a desktop-sized 6-DoF industrial robot. A TCP relay
server, running on a notebook, serves as the communication
interface between the two components. In addition, a self-
designed and 3D-printed controller extension is described in
more detail in Section III-C.

All three programming methods have the same basic
functions for simplifying usability. This includes render-
ing the virtual robot based on the specified end effector
position and orientation by performing real-time inverse
kinematics calculations. All methods use a waypoint-based
programming approach, where users define key positions
and orientations that form the robot’s trajectory. If the
movements of the end effector overstretch the physical joint
limits, the corresponding joint is visually highlighted. The
robot’s working envelope is visualized via a transparent
shape that looks like a sphere so the user can assess its
range. Furthermore, the trajectory of the end effector is
calculated and visualized using geometric path planning. It is
also possible to simulate this trajectory during programming,
which has the advantage that the user can safely see the
movements at close range and does not have to maintain
a safe distance as required for a physical robot. The virtual
and physical robot bases are synchronized, so the movements
in the augmented simulation match those of the physical
robot. This precise synchronization is executed by inserting
the 3D-printed gripper extension into a 3D-printed opening
(see Figure 2) on the robot base. As the orientation and
positioning of this opening relative to the physical robot and
the tracked gripper controller are known, the virtual model is
calibrated by executing a function with a controller button.
The software and its functions are implemented with Unity3.

1https://www.meta.com/de/quest/quest-3/
2https://www.anninrobotics.com/
3https://unity.com/



Fig. 2. Construciton for synchronization of the virtual and physical robot
bases. It is executed by inserting the 3D-printed gripper extension into the
3D-printed opening case.

A. Classical Jogging

The Classical Jogging condition is used as a baseline
since it reflects the conventional teach pendant method [19].
This allows the user to control the virtual end effector in
two separately selectable modes. In Position Mode, the left
joystick controls the end-effector’s X- and Y-coordinates,
while the right joystick controls its Z-coordinate. In Rotation
Mode, the left joystick changes the pitch and yaw of the
end-effector, while the right joystick modifies the roll angle.
Modes can be switched using a controller button, while
another button is used to program the defined waypoints.
The gripper state can be changed using the grip trigger of a
controller.

B. Direct Control

The Direct Control method allows the virtual end effector
to follow the position and orientation of the Meta Quest
controller in real-time. The waypoint can be captured with
the controller button when the user reaches the desired
position, orientation, and grasp status. As in the Classical
Jogging condition, the state of the gripper can be changed
by pressing the controller’s grip trigger.

C. Gripper Control

In the Gripper Control method, as in the Direct Control
method, the end effector’s real-time position and orientation
correspond with the controller’s. The way objects are gripped
and released differs here, as the Meta Quest controller
is modified with a 3D-printed gripper extension shown in
Figure 3. This extension is a tangible interface that transmits
gripper states and provides haptic feedback when interacting
with target objects. It allows the user to grip, move, and
release physical objects while programming. This approach
offers a conceptual advantage, although it has not been
investigated in this contribution and is currently only a
potential benefit, as the haptic force feedback may assist in
handling fragile or deformable objects. All this is possible as
the design of the 3D-printed gripper is identical to that of the
servo gripper of the AR4 robot. The Gripper Controller is
operable with a single hand, and its jaws are interchangeable
for diverse pick-and-place tasks.

Fig. 3. Visualization of the gripper used for condition Gripper Control.

IV. EVALUATION

A. Study Design

We conducted a within-subjects study design to prevent
variations caused by individual differences and to obtain a
final evaluation of all programming methods. Using the three
methods (Classical Jogging, Direct Control, and Gripper
Control) all participants completed the three levels of the
independent variable. As dependent variables, we collected
the participants’ programming duration, subjective ratings
for assessing the User Experience using the short version
of the User Experience Questionnaire (UEQ-S) [31], the
Workload using the Raw NASA Task Load Index Ques-
tionnaire (NASA-TLX) [10], and specific questions for the
feasibility, natural usability, precision, and overall assess-
ment. In all three methods, participants completed two tasks
to assess their performance based on programming errors
(e.g., collisions, incorrect grab/release of objects, or skipped
programming steps). These errors were captured through
software data logging and documented observations by the
study supervisor.

B. Procedure

Initially, participants were briefed about the study and
received a safety introduction (for the mixed reality and
robotics hardware). Subsequently, they were asked to sign a
consent form and provide demographic information. A video
tutorial (8 : 40 min.) was presented to each participant to
explain the functionality of the system and the three pro-
gramming methods in an easy-to-understand and consistent
manner. Participants then completed the three programming
methods following the identical procedure for each method.
First, they had five minutes to familiarize themselves with
the system and the programming method by moving the
robot arm into various positions and orientations, operating
the gripper, and programming the robot states. Afterward,
there were two programming tasks with increasing levels



of difficulty. We used self-developed “target objects”, which
were designed to be easy to pick up and place down by
employing self-correcting geometry like big chamfers (see
Figure 4).

Fig. 4. Target objects that were used for the two study tasks due to their
self-correcting geometry.

Task 1: The first task (pick-and-place) was designed to be
relatively simple, involving the action of grabbing a “target
object” and dropping it into a cardboard box. This task was
chosen to familiarize the participants with the programming
method and to test their ability to carry out movements.

Task 2: The second task involved swapping two “target
objects”. There were three platforms, with one “target object”
on both the left and right platforms. Participants could choose
which “target object” to temporarily place on the third empty
platform in the middle to complete the task. This procedure
was more complex, as it required three grabbing and placing
operations and, therefore, more programming steps. The
collision risk was also higher.

After completing the two tasks, participants completed a
questionnaire that assessed their experience with the pro-
gramming method. This procedure was repeated for each
programming method. Upon completing the third program-
ming method, participants completed an additional ques-
tionnaire that focused on their overall experience of all
conditions. To avoid “order effects” that might influence
participants’ performance, we counterbalanced the order of
the three conditions according to the Latin Square. A live
stream was used to monitor the participants’ perspectives
during the study, providing real-time feedback and assistance
in case of problems. With a time limit of 5 minutes for each
task, the study took approximately 60 minutes.

C. Participants

The study was conducted with 30 participants (25 male, 5
female), aged between 19 and 38 years (M = 25.17, SD =
4.29). All were academics, most from a technical field.
On a scale ranging from 1 = “strongly disagree” to 5 =
“strongly agree”, they rated themselves as experienced in
robot programming (M = 2.63, SD = 1.73) and MR
(M = 2.93, SD = 1.70).

V. RESULTS

For parametric statistical data analysis (α = 0.05), one-
way repeated measures analysis of variance (ANOVA) and
post-hoc paired t-tests with Bonferroni-Holm correction were
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Fig. 5. The means of the UEQ ratings for each condition. Scales are (PQ)
Pragmatic Quality, (HQ) Hedonic Quality, and (O) Overall, ranging from
-3 to +3. Error bars represent the standard error.

used. Degrees of freedom were corrected in cases where
Mauchly’s Test indicated that the sphericity assumption was
violated. Effect sizes were reported using η2p (Partial Eta
Squared): small (> .01), medium (> .06), and large (> .14).

A. Task Completion Time

The statistical analysis of the duration (in seconds) re-
quired by the participants to complete the two tasks in the
three programming methods is as follows.

Duration task 1: The Greenhouse-Geisser (ϵ = .54) cor-
rection was used since Mauchly’s Test indicated a violation
of the sphericity (χ2(2) = 53.612, p < .001) assumption.
This resulted in F (1.08, 31.307) = 54.477, p < .001, η2p =
.653. The post-hoc analysis showed that participants com-
pleted the first task significantly faster in the conditions
Gripper Control (M = 22.84, SD = 10.33, p < .001)
and Direct Control (M = 27.23, SD = 17.64, p < .001)
compared to Classical Jogging (M = 122.53, SD = 74.84).

Duration task 2: For the duration of the more complex
task, a Greenhouse-Geisser (ϵ = .70) correction was also ap-
plied due to a sphericity (χ2(2) = 15.68, p < .001) violation
showing a significant effect F (1.4, 40.594) = 52.615, p <
.001, η2p = .645. The Gripper Control (M = 74.12, SD =
28.49) and Direct Control (M = 109.50, SD = 57.00)
conditions were significantly (p < .001) faster than Clas-
sical Jogging (M = 228.97, SD = 102.52). The Methods
Gripper Control and Direct Control duration also differed
significantly (p = .029).

B. User Experience

Participants rated the eight items of the UEQ-S question-
naire using a 7-point Likert scale, ranging from -3 = “horribly
bad” to 3 = “extremely good”. Four of these items represent
the pragmatic quality, and the other four are the hedonic
quality (see Figure 5).

Pragmatic quality showed a significant effect F (2, 58) =
36.971, p < .001, η2p = .560. It involves factors such as
perspicuity, efficiency, and dependability, so the interaction
quality was significantly (p < .001) higher in the Gripper
Control (M = 2.27, SD = 0.76) and Direct Control (M =
1.31, SD = 1.07) conditions compared to the Classical



Jogging (M = 0.11, SD = 1.0) conditions. The Gripper
Control was also significantly (p < .001) better than the
Direct Control condition.

Hedonic quality also showed a significant main effect
F (2, 58) = 34.023, p < .001, η2p = .540. This quality
includes stimulation and novelty, so the pleasure or fun of
the product was significantly (p < .001) better rated for
the Gripper Control (M = 2.20, SD = 0.76) and Direct
Control (M = 1.90, SD = 0.93) conditions compared to the
Classical Jogging (M = 0.89, SD = 1.11).

Overall mean scores showed a clear difference in the
statistical analysis F (2, 58) = 48.857, p < .001, η2p = .628.
The Gripper Control (M = 2.23, SD = 0.58) condition
received significantly (p < .001) better ratings than the
Direct Control (M = 1.60, SD = 0.76), and Classical
Jogging (M = 0.50, SD = 0.91). Direct Control was also
significantly (p < .001) better than Classical Jogging.

C. Workload
Perceived workload ratings (where lower ratings indicate

a positive assessment and higher ratings a negative one) are
presented in Figure 6 and statistically analyzed as follows.
Excluding the NASA-TLX items, Physical demand, Tem-
poral demand, and Performance, the repeated measures
ANOVA showed an effect on the remaining items.

Mental demand F (2, 58) = 37.826, p < .001, η2p = .566
was significantly the lowest for condition Gripper Control
(M = 26.50, SD = 20.48) compared to Direct Control
(M = 38.67, SD = 23.56, p = .001) and Classical Jogging
(M = 57.83, SD = 24.02, p < .001). An effect (p < .001)
was also between Direct Control and Classical Jogging.

Effort Mauchly’s Test indicated that the assumption of
sphericity had been violated (χ2(2) = 7.796, p = .02), so de-
grees of freedom are corrected using Huyn-Feldt estimation
of sphericity (ϵ = .845). Results showed a significant effect
F (1.689, 48.987) = 29.844, p < .001, η2p = .507. Compared
to method Classical Jogging (M = 55.17, SD = 23.43),
participants had to work significantly less with methods
Gripper Control (M = 25.83, SD = 22.13) and Direct
Control (M = 31.17, SD = 23.22) to accomplish their level
of performance.

Frustration F (2, 58) = 7.416, p = .001, η2p = .204
was significantly lower with the methods Gripper Control
(M = 17.17, SD = 24.02, p = .002) and Direct Control
(M = 19.33, SD = 15.19, p = .006) compared to Classical
Jogging (M = 34.33, SD = 24.49).

Overall mean scores of all six NASA-TLX items showed
a clear difference in the statistical analysis F (2, 58) =
17.947, p < .001, η2p = .382, as the workload for the Gripper
Control (M = 25.69, SD = 15.62) and Direct Control
(M = 29.56, SD = 13.63) methods was significantly
(p < .001) lower than Classical Jogging (M = 38.94, SD =
15.55).

D. Specific Questions
The statistical analysis of the specific questions, which

were rated from 1 = “strongly disagree” to 7 = “strongly
agree”, showed significant effects.

Q1: “I was able to fulfill the tasks without any problems.”
F (2, 58) = 10.140, p < .001, η2p = .259. The Gripper
Control (M = 6.27, SD = 0.83) condition significantly
achived the best results compared to Direct Control (M =
5.07, SD = 1.44, p < .001) and Classical Jogging (M =
5.13, SD = 1.14, p < .001).

Q2: “The programming technique felt natural to use.”
F (2, 58) = 28.498, p < .001, η2p = .496. Conditions Gripper
Control (M = 6.20, SD = 1.06, p < .001) and Direct
Control (M = 5.57, SD = 1.22, p < .001) were rated
significantly better than Classical Jogging (M = 3.73, SD =
1.51).

After completing all three programming methods, the
participants evaluated them using the following questions.

Q3: “I was able to program the robot precisely.” since
Mauchly’s Test indicated a violated assumption of sphericity
(χ2(2) = 13.033, p = .001), the degrees of freedom
are corrected using Huyn-Feldt (ϵ = .757) resulting in
F (1.515, 43.935) = 11.574, p < .001, η2p = .285. The post-
hoc test indicated that Gripper Control (M = 6.37, SD =
0.77) was significantly better than Direct Control (M =
5.03, SD = 1.22, p < .001) and Classical Jogging (M =
5.13, SD = 1.43, p < .001).

Q4: “Overall, I would rate the method.”, F (2, 58) =
21.253, p < .001, η2p = .423. The ratings of the condition
Gripper Control (M = 6.27, SD = 0.98) were significantly
higher compared to Direct Control (M = 5.40, SD =
1.13, p = .010) and Classical Jogging (M = 4.17, SD =
1.58, p < .001). Also, the conditions Direct Control and
Classical Jogging revealed an effect (p < .001).

E. Task Performance

Performance task 1: The problem-free completion of
task 1 was most frequently achieved with condition Gripper
Control (70.0%), followed by Direct Control (46.7%) and
method Classical Jogging (26.7%). As illustrated in Figure 7,
there is a significant difference in the number of errors made
by the participants F (2, 58) = 6.911, p = .002, η2p = .192.
Gripper Control (M = 0.33, SD = 0.55) had significantly
less errors compared to Classical Jogging (M = 1.13, SD =
1.01). Direct Control (M = 0.70, SD = 0.75) revealed no
statistical difference.

Performance task 2: With condition Gripper Control
(23.3%), task 2 was performed most often without any
problems, followed by Direct Control (6.7%) and Classical
Jogging (3.3%). The number of programming errors showed
a statistical effect F (2, 58) = 30.910, p < .001, η2p = .516.
Compared to Direct Control (M = 3.83, SD = 2.29, p <
.001) and Classical Jogging (M = 4.33, SD = 2.23, p <
.001), Gripper Control (M = 1.53, SD = 1.57) showed a
significantly lower number of errors.

VI. DISCUSSION

The user study results are consistent with those of earlier
works, in which the conventional method performed worst
[8,24,35]. It should be noted that the Classical Jogging
method, which serves as a baseline, has certain advantages
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Fig. 7. Errors that occurred during the two robot programming tasks. The
connected diamonds represent the mean values, and the dots are the outliers.

(e.g., augmented representation, path planning, trajectory
simulation) compared to traditional methods such as the
teach pendant. In spite of this, setting the position and
orientation using separated axes proved to take much longer
than 6-DOF interactions, as multiple mode changes and
perspective changes were needed to define a robot pose.

In contrast, the Direct Control method performs signifi-
cantly better due to its controller-based 6-DOF interaction,
as shown by the results of the UEQ and NASA RTLX
questionnaires and the recorded programming errors. Since
this method differs from the Classical Jogging method only
in its interaction technique, the results can only be attributed
to the fact that moving the controller to the desired position
requires less effort than moving it with the joysticks, which
is supported by more natural usability (Q2). Compared to the
existing hand-tracking-based MR approaches, the controller-
based approach is more suitable due to its haptics and better
tracking accuracy [32].

Overall, the results strongly support the use of the Gripper
Control method. It is the most efficient since its completion
time of the more complex and, therefore, more meaningful
task 2 was significantly the fastest. The overall results of
the UEQ questionnaire are also better and the mental effort
is significantly the lowest. This method is also the most
efficient, as evidenced by the lowest number of programming
errors in the relevant task 2 and the results of the specific
questions Q1 and Q3.

Our study has some limitations. As mentioned by Yang et
al. [35] regarding rendering quality, the imperfect occlusion
between augmented and physical objects can lead to errors in
depth perception, e.g., rendering virtual objects completely
when parts of them are already inside or behind a physical
object. In addition, using the gripper and controller buttons
simultaneously can be challenging for people with small
hands. The manual calibration is imperfect and can lead to
misalignment between the digital twin and the real robot,
which occurs when the user briefly removes the HMD from
the head. This could be improved by a computer vision-based
calibration, e.g., object or marker recognition. However, it is
currently not possible to access the real-time pass-through
video of the Quest 3.

A promising direction for future work would involve
improving the Gripper Controller, which holds potential
for enhancements in both the construction (e.g., increased
stiffness, reduced mechanical friction) and ergonomics (e.g.,
a longer trigger for more gripping force, or the use of a push
interaction instead of a trigger). Additionally, the controller
extension can be designed for the attachment of different
robot arm extensions.

VII. CONCLUSIONS

This article presents three controller-based methods for
MR robot programming. These are 1) Classical Jogging,
where the virtually augmented end effector is moved using
the thumbsticks of two controllers, 2) Direct Control, in
which the position of the end effector directly matches that
of the controller, and 3) Gripper Control, which builds
upon Direct Control by extending the controller with an
interactive 3D-printed gripper, allowing intuitive program-
ming by directly gripping, moving, and placing physical
objects. A within-subjects study (n = 30) was conducted
to compare these methods. Participants completed two tasks
for each method. The results demonstrate that the Gripper
Control condition is the fastest, has the best user experience,
the lowest mental demand, and the best subjective and
objective task performance. Therefore, the Gripper Control
method has the potential to significantly improve future robot
programming.
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